1
|
Kathiresan DS, Balasubramani R, Marudhachalam K, Jaiswal P, Ramesh N, Sureshbabu SG, Puthamohan VM, Vijayan M. Role of Mitochondrial Dysfunctions in Neurodegenerative Disorders: Advances in Mitochondrial Biology. Mol Neurobiol 2024:10.1007/s12035-024-04469-x. [PMID: 39269547 DOI: 10.1007/s12035-024-04469-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
Mitochondria, essential organelles responsible for cellular energy production, emerge as a key factor in the pathogenesis of neurodegenerative disorders. This review explores advancements in mitochondrial biology studies that highlight the pivotal connection between mitochondrial dysfunctions and neurological conditions such as Alzheimer's, Parkinson's, Huntington's, ischemic stroke, and vascular dementia. Mitochondrial DNA mutations, impaired dynamics, and disruptions in the ETC contribute to compromised energy production and heightened oxidative stress. These factors, in turn, lead to neuronal damage and cell death. Recent research has unveiled potential therapeutic strategies targeting mitochondrial dysfunction, including mitochondria targeted therapies and antioxidants. Furthermore, the identification of reliable biomarkers for assessing mitochondrial dysfunction opens new avenues for early diagnosis and monitoring of disease progression. By delving into these advancements, this review underscores the significance of understanding mitochondrial biology in unraveling the mechanisms underlying neurodegenerative disorders. It lays the groundwork for developing targeted treatments to combat these devastating neurological conditions.
Collapse
Affiliation(s)
- Divya Sri Kathiresan
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Rubadevi Balasubramani
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Kamalesh Marudhachalam
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Piyush Jaiswal
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Nivedha Ramesh
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Suruthi Gunna Sureshbabu
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Vinayaga Moorthi Puthamohan
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India.
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
2
|
Hryc CF, Mallampalli VKPS, Bovshik EI, Azinas S, Fan G, Serysheva II, Sparagna GC, Baker ML, Mileykovskaya E, Dowhan W. Structural insights into cardiolipin replacement by phosphatidylglycerol in a cardiolipin-lacking yeast respiratory supercomplex. Nat Commun 2023; 14:2783. [PMID: 37188665 PMCID: PMC10185535 DOI: 10.1038/s41467-023-38441-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/03/2023] [Indexed: 05/17/2023] Open
Abstract
Cardiolipin is a hallmark phospholipid of mitochondrial membranes. Despite established significance of cardiolipin in supporting respiratory supercomplex organization, a mechanistic understanding of this lipid-protein interaction is still lacking. To address the essential role of cardiolipin in supercomplex organization, we report cryo-EM structures of a wild type supercomplex (IV1III2IV1) and a supercomplex (III2IV1) isolated from a cardiolipin-lacking Saccharomyces cerevisiae mutant at 3.2-Å and 3.3-Å resolution, respectively, and demonstrate that phosphatidylglycerol in III2IV1 occupies similar positions as cardiolipin in IV1III2IV1. Lipid-protein interactions within these complexes differ, which conceivably underlies the reduced level of IV1III2IV1 and high levels of III2IV1 and free III2 and IV in mutant mitochondria. Here we show that anionic phospholipids interact with positive amino acids and appear to nucleate a phospholipid domain at the interface between the individual complexes, which dampen charge repulsion and further stabilize interaction, respectively, between individual complexes.
Collapse
Affiliation(s)
- Corey F Hryc
- Department of Biochemistry and Molecular Biology, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Venkata K P S Mallampalli
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Evgeniy I Bovshik
- Department of Biochemistry and Molecular Biology, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Stavros Azinas
- Department of Biochemistry and Molecular Biology, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Guizhen Fan
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Irina I Serysheva
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Genevieve C Sparagna
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorada, USA
| | - Matthew L Baker
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA.
| | - Eugenia Mileykovskaya
- Department of Biochemistry and Molecular Biology, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA.
| | - William Dowhan
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA.
| |
Collapse
|
3
|
Abstract
Cells use mitophagy to remove dysfunctional or excess mitochondria, frequently in response to imposed stresses, such as hypoxia and nutrient deprivation. Mitochondrial cargo receptors (MCR) induced by these stresses target mitochondria to autophagosomes through interaction with members of the LC3/GABARAP family. There are a growing number of these MCRs, including BNIP3, BNIP3L, FUNDC1, Bcl2-L-13, FKBP8, Prohibitin-2, and others, in addition to mitochondrial protein targets of PINK1/Parkin phospho-ubiquitination. There is also an emerging link between mitochondrial lipid signaling and mitophagy where ceramide, sphingosine-1-phosphate, and cardiolipin have all been shown to promote mitophagy. Here, we review the upstream signaling mechanisms that regulate mitophagy, including components of the mitochondrial fission machinery, AMPK, ATF4, FoxOs, Sirtuins, and mtDNA release, and address the significance of these pathways for stress responses in tumorigenesis and metastasis. In particular, we focus on how mitophagy modulators intersect with cell cycle control and survival pathways in cancer, including following ECM detachment and during cell migration and metastasis. Finally, we interrogate how mitophagy affects tissue atrophy during cancer cachexia and therapy responses in the clinic.
Collapse
Affiliation(s)
- Logan P Poole
- The Ben May Department for Cancer Research, The Gordon Center for Integrative Sciences, W-338, The University of Chicago, 929 E 57th Street, Chicago, IL, 60637, USA
- The Committee on Cancer Biology, The University of Chicago, Chicago, USA
| | - Kay F Macleod
- The Ben May Department for Cancer Research, The Gordon Center for Integrative Sciences, W-338, The University of Chicago, 929 E 57th Street, Chicago, IL, 60637, USA.
- The Committee on Cancer Biology, The University of Chicago, Chicago, USA.
| |
Collapse
|
4
|
Janovska P, Melenovsky V, Svobodova M, Havlenova T, Kratochvilova H, Haluzik M, Hoskova E, Pelikanova T, Kautzner J, Monzo L, Jurcova I, Adamcova K, Lenkova L, Buresova J, Rossmeisl M, Kuda O, Cajka T, Kopecky J. Dysregulation of epicardial adipose tissue in cachexia due to heart failure: the role of natriuretic peptides and cardiolipin. J Cachexia Sarcopenia Muscle 2020; 11:1614-1627. [PMID: 33084249 PMCID: PMC7749591 DOI: 10.1002/jcsm.12631] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Cachexia worsens long-term prognosis of patients with heart failure (HF). Effective treatment of cachexia is missing. We seek to characterize mechanisms of cachexia in adipose tissue, which could serve as novel targets for the treatment. METHODS The study was conducted in advanced HF patients (n = 52; 83% male patients) undergoing heart transplantation. Patients with ≥7.5% non-intentional body weight (BW) loss during the last 6 months were rated cachectic. Clinical characteristics and circulating markers were compared between cachectic (n = 17) and the remaining, BW-stable patients. In epicardial adipose tissue (EAT), expression of selected genes was evaluated, and a combined metabolomic/lipidomic analysis was performed to assess (i) the role of adipose tissue metabolism in the development of cachexia and (ii) potential impact of cachexia-associated changes on EAT-myocardium environment. RESULTS Cachectic vs. BW-stable patients had higher plasma levels of natriuretic peptide B (BNP; 2007 ± 1229 vs. 1411 ± 1272 pg/mL; P = 0.010) and lower EAT thickness (2.1 ± 0.8 vs. 2.9 ± 1.4 mm; P = 0.010), and they were treated with ~2.5-fold lower dose of both β-blockers and angiotensin-converting enzyme inhibitors or angiotensin receptor blockers (ACE/ARB-inhibitors). The overall pattern of EAT gene expression suggested simultaneous activation of lipolysis and lipogenesis in cachexia. Lower ratio between expression levels of natriuretic peptide receptors C and A was observed in cachectic vs. BW-stable patients (0.47 vs. 1.30), supporting activation of EAT lipolysis by natriuretic peptides. Fundamental differences in metabolome/lipidome between BW-stable and cachectic patients were found. Mitochondrial phospholipid cardiolipin (CL), specifically the least abundant CL 70:6 species (containing C16:1, C18:1, and C18:2 acyls), was the most discriminating analyte (partial least squares discriminant analysis; variable importance in projection score = 4). Its EAT levels were higher in cachectic as compared with BW-stable patients and correlated with the degree of BW loss during the last 6 months (r = -0.94; P = 0.036). CONCLUSIONS Our results suggest that (i) BNP signalling contributes to changes in EAT metabolism in cardiac cachexia and (ii) maintenance of stable BW and 'healthy' EAT-myocardium microenvironment depends on the ability to tolerate higher doses of both ACE/ARB inhibitors and β-adrenergic blockers. In line with preclinical studies, we show for the first time in humans the association of cachexia with increased adipose tissue levels of CL. Specifically, CL 70:6 could precipitate wasting of adipose tissue, and thus, it could represent a therapeutic target to ameliorate cachexia.
Collapse
Affiliation(s)
- Petra Janovska
- Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Vojtech Melenovsky
- Department of Cardiology, Institute for Clinical and Experimental Medicine - IKEM, Prague, Czech Republic
| | - Michaela Svobodova
- Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Tereza Havlenova
- Department of Cardiology, Institute for Clinical and Experimental Medicine - IKEM, Prague, Czech Republic
| | - Helena Kratochvilova
- Department of Cardiology, Institute for Clinical and Experimental Medicine - IKEM, Prague, Czech Republic
| | - Martin Haluzik
- Department of Cardiology, Institute for Clinical and Experimental Medicine - IKEM, Prague, Czech Republic
| | - Eva Hoskova
- Department of Cardiology, Institute for Clinical and Experimental Medicine - IKEM, Prague, Czech Republic
| | - Terezie Pelikanova
- Department of Cardiology, Institute for Clinical and Experimental Medicine - IKEM, Prague, Czech Republic
| | - Josef Kautzner
- Department of Cardiology, Institute for Clinical and Experimental Medicine - IKEM, Prague, Czech Republic
| | - Luca Monzo
- Department of Cardiology, Institute for Clinical and Experimental Medicine - IKEM, Prague, Czech Republic
| | - Ivana Jurcova
- Department of Cardiology, Institute for Clinical and Experimental Medicine - IKEM, Prague, Czech Republic
| | - Katerina Adamcova
- Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Lucie Lenkova
- Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Jana Buresova
- Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Martin Rossmeisl
- Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Ondrej Kuda
- Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Tomas Cajka
- Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Jan Kopecky
- Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic
| |
Collapse
|
5
|
Pinault M, Guimaraes C, Dumas J, Servais S, Chevalier S, Besson P, Goupille C. A 1D High Performance Thin Layer Chromatography Method Validated to Quantify Phospholipids Including Cardiolipin and Monolysocardiolipin from Biological Samples. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201900240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Michelle Pinault
- Université de Tours, INSERM N2C UMR1069 37032 Tours cedex 01 France
- Faculté de Médecine de Tours Université de Tours 37000 Tours France
| | - Cyrille Guimaraes
- Université de Tours, INSERM N2C UMR1069 37032 Tours cedex 01 France
- Faculté de Médecine de Tours Université de Tours 37000 Tours France
| | - Jean‐François Dumas
- Université de Tours, INSERM N2C UMR1069 37032 Tours cedex 01 France
- Faculté de Pharmacie de Tours Université de Tours 37200 Tours France
| | - Stéphane Servais
- Université de Tours, INSERM N2C UMR1069 37032 Tours cedex 01 France
- IUT de Tours Université de Tours 37100 Tours France
| | - Stephan Chevalier
- Université de Tours, INSERM N2C UMR1069 37032 Tours cedex 01 France
- Faculté de Pharmacie de Tours Université de Tours 37200 Tours France
| | - Pierre Besson
- Université de Tours, INSERM N2C UMR1069 37032 Tours cedex 01 France
- Faculté de Pharmacie de Tours Université de Tours 37200 Tours France
| | - Caroline Goupille
- Université de Tours, INSERM N2C UMR1069 37032 Tours cedex 01 France
- CHRU de Tours, Hôpital Bretonneau 2 boulevard Tonnellé 37000 Tours France
| |
Collapse
|
6
|
Halle JL, Pena GS, Paez HG, Castro AJ, Rossiter HB, Visavadiya NP, Whitehurst MA, Khamoui AV. Tissue-specific dysregulation of mitochondrial respiratory capacity and coupling control in colon-26 tumor-induced cachexia. Am J Physiol Regul Integr Comp Physiol 2019; 317:R68-R82. [PMID: 31017805 DOI: 10.1152/ajpregu.00028.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In addition to skeletal muscle dysfunction, cancer cachexia is a systemic disease involving remodeling of nonmuscle organs such as adipose and liver. Impairment of mitochondrial function is associated with multiple chronic diseases. The tissue-specific control of mitochondrial function in cancer cachexia is not well defined. This study determined mitochondrial respiratory capacity and coupling control of skeletal muscle, white adipose tissue (WAT), and liver in colon-26 (C26) tumor-induced cachexia. Tissues were collected from PBS-injected weight-stable mice, C26 weight-stable mice and C26 mice with moderate (10% weight loss) and severe cachexia (20% weight loss). The respiratory control ratio [(RCR) an index of oxidative phosphorylation (OXPHOS) coupling efficiency] was low in WAT during the induction of cachexia because of high nonphosphorylating LEAK respiration. Liver RCR was low in C26 weight-stable and moderately cachexic mice because of reduced OXPHOS. Liver RCR was further reduced with severe cachexia, where Ant2 but not Ucp2 expression was increased. Ant2 was inversely correlated with RCR in the liver (r = -0.547, P < 0.01). Liver cardiolipin increased in moderate and severe cachexia, suggesting this early event may also contribute to mitochondrial uncoupling. Impaired skeletal muscle mitochondrial respiration occurred predominantly in severe cachexia, at complex I. These findings suggest that mitochondrial function is subject to tissue-specific control during cancer cachexia, whereby remodeling in WAT and liver arise early and may contribute to altered energy balance, followed by impaired skeletal muscle respiration. We highlight an under-recognized role of liver and WAT mitochondrial function in cancer cachexia and suggest mitochondrial function of multiple tissues to be therapeutic targets.
Collapse
Affiliation(s)
- Jessica L Halle
- Department of Exercise Science and Health Promotion, Florida Atlantic University , Boca Raton, Florida
| | - Gabriel S Pena
- Department of Exercise Science and Health Promotion, Florida Atlantic University , Boca Raton, Florida
| | - Hector G Paez
- Department of Exercise Science and Health Promotion, Florida Atlantic University , Boca Raton, Florida
| | - Adrianna J Castro
- Department of Exercise Science and Health Promotion, Florida Atlantic University , Boca Raton, Florida
| | - Harry B Rossiter
- Division of Respiratory and Critical Care Physiology and Medicine, Department of Medicine, Los Angeles Biomedical Research Institute at Harbor-University of California Los Angeles Medical Center , Torrance, California.,Faculty of Biological Sciences, University of Leeds , Leeds , United Kingdom
| | - Nishant P Visavadiya
- Department of Exercise Science and Health Promotion, Florida Atlantic University , Boca Raton, Florida
| | - Michael A Whitehurst
- Department of Exercise Science and Health Promotion, Florida Atlantic University , Boca Raton, Florida
| | - Andy V Khamoui
- Department of Exercise Science and Health Promotion, Florida Atlantic University , Boca Raton, Florida
| |
Collapse
|
7
|
Tafazzin-dependent cardiolipin composition in C6 glioma cells correlates with changes in mitochondrial and cellular functions, and cellular proliferation. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:452-465. [PMID: 30639735 DOI: 10.1016/j.bbalip.2019.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 12/07/2018] [Accepted: 01/06/2019] [Indexed: 11/20/2022]
Abstract
The mitochondrial phospholipid cardiolipin (CL) has been implicated with mitochondrial morphology, function and, more recently, with cellular proliferation. Tafazzin, an acyltransferase with key functions in CL remodeling determining actual CL composition, affects mitochondrial oxidative phosphorylation. Here, we show that the CRISPR-Cas9 mediated knock-out of tafazzin (Taz) is associated with substantial alterations of various mitochondrial and cellular characteristics in C6 glioma cells. The knock-out of tafazzin substantially changed the profile of fatty acids incorporated in CL and the distribution of molecular CL species. Taz knock-out was further associated with decreased capacity of oxidative phosphorylation that mainly originates from impaired complex I associated energy metabolism in C6 glioma cells. The lack of tafazzin switched energy metabolism from oxidative phosphorylation to glycolysis indicated by lower respiration rates, membrane potential and higher levels of mitochondria-derived reactive oxygen species but keeping the cellular ATP content unchanged. The impact of tafazzin on mitochondria was also indicated by altered morphology and arrangement in tafazzin deficient C6 glioma cells. In the cells we observed tafazzin-dependent changes in the distribution of cellular fatty acids as an indication of altered lipid metabolism as well as in stability/morphology. Most impressive is the dramatic reduction in cell proliferation in tafazzin deficient C6 glioma cells that is not mediated by reactive oxygen species. Our data clearly indicate that defects in CL phospholipid remodeling trigger a cascade of events including modifications in CL linked to subsequent alterations in mitochondrial and cellular functions.
Collapse
|
8
|
Wu L, Cao K, Ni Z, Wang S, Li W, Liu X, Chen Z. Rhein reverses doxorubicin resistance in SMMC-7721 liver cancer cells by inhibiting energy metabolism and inducing mitochondrial permeability transition pore opening. Biofactors 2019; 45:85-96. [PMID: 30496631 DOI: 10.1002/biof.1462] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/27/2018] [Accepted: 09/18/2018] [Indexed: 01/28/2023]
Abstract
Rhein, a monomeric anthraquinone obtained from the plant herb species Polygonum multiflorum and P. cuspidatum, has been proposed to have anticancer activity. This activity has been suggested to be associated with mitochondrial injury due to the induction of mitochondrial permeability transition pore (mPTP) opening. In this study, the effects of 5-80 μM rhein on cell viability, half-maximal inhibitory concentration (IC50 value), resistance index, and apoptosis were assessed in the liver cancer cell lines SMMC-7721 and SMMC-7721/DOX (doxorubicin-resistant cells). Rhein (10-80 μM) significantly reduced the viability of both cell lines; 20 μM rhein significantly increased sensitivity to DOX and increased apoptosis in SMMC-7721 cells, but reversed resistance to DOX by 7.24-fold in SMMC-7721/DOX cells. Treatment with rhein increased accumulation of DOX in SMMC-7721/DOX cells, inhibited mitochondrial energy metabolism, decreased cellular ATP, and ADP levels, and altered the ratio of ATP to ADP. These effects may result from the binding of rhein with voltage-dependent ion channels (VDACs), adenine nucleotide translocase (ANT), and cyclophilin D, affecting their function and leading to the inhibition of ATP transport by VDACs and ANT. ATP synthesis was greatly reduced and mitochondrial inner membrane potential decreased. Together, these results indicate that rhein could reverse drug resistance in SMMC-7721/DOX cells by inhibiting energy metabolism and inducing mPTP opening. © 2018 BioFactors, 45(1):85-96, 2019.
Collapse
MESH Headings
- Adenosine Triphosphate/antagonists & inhibitors
- Adenosine Triphosphate/biosynthesis
- Anthraquinones/isolation & purification
- Anthraquinones/pharmacology
- Antibiotics, Antineoplastic/pharmacology
- Antineoplastic Agents, Phytogenic/isolation & purification
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis/drug effects
- Cell Line, Tumor
- Cell Survival/drug effects
- Cyclophilins/genetics
- Cyclophilins/metabolism
- Doxorubicin/pharmacology
- Drug Combinations
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Drug Synergism
- Energy Metabolism/drug effects
- Energy Metabolism/genetics
- Fallopia japonica/chemistry
- Fallopia multiflora/chemistry
- Gene Expression Regulation, Neoplastic/drug effects
- Hepatocytes/drug effects
- Hepatocytes/metabolism
- Hepatocytes/pathology
- Humans
- Membrane Potential, Mitochondrial/drug effects
- Membrane Potential, Mitochondrial/genetics
- Mitochondria/drug effects
- Mitochondria/genetics
- Mitochondria/metabolism
- Mitochondrial ADP, ATP Translocases/genetics
- Mitochondrial ADP, ATP Translocases/metabolism
- Mitochondrial Membrane Transport Proteins/drug effects
- Mitochondrial Membrane Transport Proteins/genetics
- Mitochondrial Membrane Transport Proteins/metabolism
- Mitochondrial Permeability Transition Pore
- Plant Extracts/chemistry
- Voltage-Dependent Anion Channels/genetics
- Voltage-Dependent Anion Channels/metabolism
Collapse
Affiliation(s)
- Li Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Kexin Cao
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zihui Ni
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shaodong Wang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Weidong Li
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xiao Liu
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zhipeng Chen
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
9
|
Cala MP, Agulló‐Ortuño MT, Prieto‐García E, González‐Riano C, Parrilla‐Rubio L, Barbas C, Díaz‐García CV, García A, Pernaut C, Adeva J, Riesco MC, Rupérez FJ, Lopez‐Martin JA. Multiplatform plasma fingerprinting in cancer cachexia: a pilot observational and translational study. J Cachexia Sarcopenia Muscle 2018; 9:348-357. [PMID: 29464940 PMCID: PMC5879957 DOI: 10.1002/jcsm.12270] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/04/2017] [Accepted: 10/24/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Cachexia is a metabolic syndrome that affects up to 50-80% of cancer patients. The pathophysiology is characterized by a variable combination of reduced food intake and abnormal metabolism, including systemic inflammation and negative protein and energy balance. Despite its high clinical significance, defined diagnostic criteria and established therapeutic strategies are lacking. The 'omics' technologies provide a global view of biological systems. We hypothesize that blood-based metabolomics might identify findings in cachectic patients that could provide clues to gain knowledge on its pathophysiology, and eventually postulate new therapeutic strategies. METHODS This is a cross-sectional observational study in two cohorts of cancer patients, with and without cachexia. Patients were consecutively recruited from routine clinical practice of a General Oncology Department at '12 de Octubre' University Hospital. Selected clinical and biochemical features were collected. Blood metabolite fingerprinting was performed using three analytical platforms, gas chromatography coupled to mass spectrometry (GC-MS), capillary electrophoresis coupled to mass spectrometry (CE-MS), and liquid chromatography coupled to mass spectrometry (LC-MS). Besides, we performed pathway-based metabolite analyses to obtain more information on biological functions. RESULTS A total of 15 subjects were included in this study, 8 cachectic and 7 non-cachectic patients. Metabolomic analyses were able to correctly classify their samples in 80% (GC-MS), 97% (CE-MS), 96% [LC-MS (positive mode)], and 89% [LC-MS (negative mode)] of the cases. The most prominent metabolic alteration in plasma of cachectic patients was the decrease of amino acids and derivatives [especially arginine, tryptophan, indolelactic acid, and threonine, with 0.4-fold change (FC) compared with non-cachectic patients], along with the reduction of glycerophospholipids [mainly lysophosphatidylcholines(O-16:0) and lysophosphatidylcholines(20:3) sn-1, FC = 0.1] and sphingolipids [SM(d30:0), FC = 0.5]. The metabolite with the highest increase was cortisol (FC = 1.6). Such alterations suggest a role of the following metabolic pathways in the pathophysiology of cancer cachexia: arginine and proline metabolism; alanine, aspartate, and glutamate metabolism; phenylalanine metabolism; lysine degradation; aminoacyl-tRNA biosynthesis; fatty acid elongation in mitochondria; tricarboxylic acids cycle; among others. CONCLUSIONS These findings suggest that plasma amino acids and lipids profiling has great potential to find the mechanisms involved in the pathogenesis of cachexia. Metabolic profiling of plasma from cancer patients show differences between cachexia and non-cachexia in amino acids and lipids that might be related to mechanisms involved in its pathophysiology. A better understanding of these mechanisms might identify novel therapeutic approaches to palliate this unmet medical condition.
Collapse
Affiliation(s)
- Mónica Patricia Cala
- Centre for Metabolomic and Bioanalysis (CEMBIO), Facultad de FarmaciaUniversidad San Pablo CEUUrbanización Montepríncipe, M‐501 km 028660Boadilla del Monte, MadridSpain
- Grupo de Investigación en Química Analítica y Bioanalítica (GABIO), Department of Chemistry, Faculty of SciencesUniversidad de los AndesCra. 1 No. 18a‐10111710BogotáColombia
| | - María Teresa Agulló‐Ortuño
- Clinical & Translational Cancer Research GroupInstituto de Investigación Sanitaria Hospital 12 de Octubre (i+12)Av Córdoba s/n28041MadridSpain
| | - Elena Prieto‐García
- Clinical & Translational Cancer Research GroupInstituto de Investigación Sanitaria Hospital 12 de Octubre (i+12)Av Córdoba s/n28041MadridSpain
| | - Carolina González‐Riano
- Centre for Metabolomic and Bioanalysis (CEMBIO), Facultad de FarmaciaUniversidad San Pablo CEUUrbanización Montepríncipe, M‐501 km 028660Boadilla del Monte, MadridSpain
| | - Lucía Parrilla‐Rubio
- Medical Oncology DepartmentHospital Universitario 12 de OctubreAv de Córdoba s/n28041MadridSpain
| | - Coral Barbas
- Centre for Metabolomic and Bioanalysis (CEMBIO), Facultad de FarmaciaUniversidad San Pablo CEUUrbanización Montepríncipe, M‐501 km 028660Boadilla del Monte, MadridSpain
| | - Carmen Vanesa Díaz‐García
- Clinical & Translational Cancer Research GroupInstituto de Investigación Sanitaria Hospital 12 de Octubre (i+12)Av Córdoba s/n28041MadridSpain
| | - Antonia García
- Centre for Metabolomic and Bioanalysis (CEMBIO), Facultad de FarmaciaUniversidad San Pablo CEUUrbanización Montepríncipe, M‐501 km 028660Boadilla del Monte, MadridSpain
| | - Cristina Pernaut
- Medical Oncology DepartmentHospital Universitario 12 de OctubreAv de Córdoba s/n28041MadridSpain
| | - Jorge Adeva
- Medical Oncology DepartmentHospital Universitario 12 de OctubreAv de Córdoba s/n28041MadridSpain
| | - María Carmen Riesco
- Medical Oncology DepartmentHospital Universitario 12 de OctubreAv de Córdoba s/n28041MadridSpain
| | - Francisco Javier Rupérez
- Centre for Metabolomic and Bioanalysis (CEMBIO), Facultad de FarmaciaUniversidad San Pablo CEUUrbanización Montepríncipe, M‐501 km 028660Boadilla del Monte, MadridSpain
| | - Jose Antonio Lopez‐Martin
- Clinical & Translational Cancer Research GroupInstituto de Investigación Sanitaria Hospital 12 de Octubre (i+12)Av Córdoba s/n28041MadridSpain
- Medical Oncology DepartmentHospital Universitario 12 de OctubreAv de Córdoba s/n28041MadridSpain
| |
Collapse
|
10
|
Guo R, Gu J, Zong S, Wu M, Yang M. Structure and mechanism of mitochondrial electron transport chain. Biomed J 2018; 41:9-20. [PMID: 29673555 PMCID: PMC6138618 DOI: 10.1016/j.bj.2017.12.001] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/16/2017] [Accepted: 12/01/2017] [Indexed: 12/22/2022] Open
Abstract
Respiration is one of the most vital and basic features of living organisms. In mammals, respiration is accomplished by respiratory chain complexes located on the mitochondrial inner membrane. In the past century, scientists put tremendous efforts in understanding these complexes, but failed to solve the high resolution structure until recently. In 2016, three research groups reported the structure of respiratory chain supercomplex from different species, and fortunately the structure solved by our group has the highest resolution. In this review, we will compare the recently solved structures of respirasome, probe into the relationship between cristae shape and respiratory chain organization, and discuss the highly disputed issues afterwards. Besides, our group reported the first high resolution structure of respirasome and medium resolution structure of megacomplex from cultured human cells this year. Definitely, these supercomplex structures will provide precious information for conquering the mitochondrial malfunction diseases.
Collapse
Affiliation(s)
- Runyu Guo
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing, China; Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jinke Gu
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing, China; Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shuai Zong
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing, China; Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Meng Wu
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing, China; Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Maojun Yang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing, China; Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
11
|
Drake LE, Springer MZ, Poole LP, Kim CJ, Macleod KF. Expanding perspectives on the significance of mitophagy in cancer. Semin Cancer Biol 2017; 47:110-124. [PMID: 28450176 PMCID: PMC5654704 DOI: 10.1016/j.semcancer.2017.04.008] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 02/06/2023]
Abstract
Mitophagy is a selective mode of autophagy in which mitochondria are specifically targeted for degradation at the autophagolysosome. Mitophagy is activated by stresses such as hypoxia, nutrient deprivation, DNA damage, inflammation and mitochondrial membrane depolarization and plays a role in maintaining mitochondrial integrity and function. Defects in mitophagy lead to mitochondrial dysfunction that can affect metabolic reprogramming in response to stress, alter cell fate determination and differentiation, which in turn affects disease incidence and etiology, including cancer. Here, we discuss how different mitophagy adaptors and modulators, including Parkin, BNIP3, BNIP3L, p62/SQSTM1 and OPTN, are regulated in response to physiological stresses and deregulated in cancers. Additionally, we explore how these different mitophagy control pathways coordinate with each other. Finally, we review new developments in understanding how mitophagy affects stemness, cell fate determination, inflammation and DNA damage responses that are relevant to understanding the role of mitophagy in cancer.
Collapse
Affiliation(s)
- Lauren E Drake
- The Ben May Department for Cancer Research, The University of Chicago, USA
| | - Maya Z Springer
- The Ben May Department for Cancer Research, The University of Chicago, USA; The Committee on Cancer Biology, The University of Chicago, USA
| | - Logan P Poole
- The Ben May Department for Cancer Research, The University of Chicago, USA; The Committee on Cancer Biology, The University of Chicago, USA
| | - Casey J Kim
- The Ben May Department for Cancer Research, The University of Chicago, USA
| | - Kay F Macleod
- The Ben May Department for Cancer Research, The University of Chicago, USA; The Committee on Cancer Biology, The University of Chicago, USA.
| |
Collapse
|
12
|
Ceco E, Weinberg SE, Chandel NS, Sznajder JI. Metabolism and Skeletal Muscle Homeostasis in Lung Disease. Am J Respir Cell Mol Biol 2017; 57:28-34. [PMID: 28085493 DOI: 10.1165/rcmb.2016-0355tr] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
There is increased awareness that patients with lung diseases develop muscle dysfunction. Muscle dysfunction is a major contributor to a decreased quality of life in patients with chronic pulmonary diseases. Furthermore, muscle dysfunction exacerbates lung disease outcome, as a decrease in muscle mass and function are associated with increased morbidity, often long after critical illness or lung disease has been resolved. As we are learning more about the role of metabolism in health and disease, we are appreciating more the direct role of metabolism in skeletal muscle homeostasis. Altered metabolism is associated with numerous skeletal muscle pathologies and, conversely, skeletal muscle diseases are associated with significant changes in metabolic pathways. In this review, we highlight the role of metabolism in the regulation of skeletal muscle homeostasis. Understanding the metabolic pathways that underlie skeletal muscle wasting is of significant clinical interest for critically ill patients as well as patients with chronic lung disease, in which proper skeletal muscle function is essential to disease outcome.
Collapse
Affiliation(s)
- Ermelinda Ceco
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois
| | - Samuel E Weinberg
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois
| | - Navdeep S Chandel
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
13
|
Zhang SN, Li XZ, Yang XY. Drug-likeness prediction of chemical constituents isolated from Chinese materia medica Ciwujia. JOURNAL OF ETHNOPHARMACOLOGY 2017; 198:131-138. [PMID: 28065780 DOI: 10.1016/j.jep.2017.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 12/10/2016] [Accepted: 01/04/2017] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ciwujia (CWJ), one of the most commonly used Chinese materia medicas (CMMs), is derived from the roots, rhizomes, and stems of Acanthopanax senticosus harms (AS). CWJ has been used for the treatment of various central nervous system (CNS) and peripheral system diseases. Drug-likeness prediction can help to analyze the absorption, distribution, metabolism, and excretion (ADME) processes of the compounds in CWJ, as well as their potential therapeutic and toxic effects, which is of significance in the confirmation of the active material bases of CWJ. MATERIALS AND METHODS The ADME properties of the compounds were calculated through web based PreADMET program and ACD/I-Lab 2.0. The potential therapeutic and toxicity targets of these compounds were screened by the ChemQuery tool in DrugBank and T3DB. RESULTS 14/39 compounds had moderate or good oral bioavailability (OB). 29/39 compounds bound weakly to the plasma proteins. 18/39 compounds might pass across the blood-brain barrier (BBB). Most of these compounds showed low renal excretion ability. 25/39 compounds had 99 structurally similar drugs and 158 potential therapeutic targets. Additionally, 17/39 compounds had 53 structurally similar toxins and 126 potential toxicity targets. CONCLUSION Our study suggests that these compounds have a certain drug-likeness potentials, which are also likely to be the material bases of CWJ. These results may provide a reference for the safe use of CWJ and the expansion of its application scope.
Collapse
Affiliation(s)
- Shuai-Nan Zhang
- Department of Pharmacy, Guiyang University of Chinese Medicine, Guiyang 550025, PR China
| | - Xu-Zhao Li
- Department of Pharmacy, Guiyang University of Chinese Medicine, Guiyang 550025, PR China.
| | - Xu-Yan Yang
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, PR China.
| |
Collapse
|
14
|
Xie T, Zhou X, Wang S, Lu Y, Zhu H, Kang A, Deng H, Xu J, Shen C, Di L, Shan J. Development and application of a comprehensive lipidomic analysis to investigate Tripterygium wilfordii-induced liver injury. Anal Bioanal Chem 2016; 408:4341-55. [PMID: 27086014 DOI: 10.1007/s00216-016-9533-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/17/2016] [Accepted: 03/30/2016] [Indexed: 12/16/2022]
Abstract
Lipid metabolic pathways play pivotal roles in liver function, and disturbances of these pathways are associated with various diseases. Thus, comprehensive characterization and measurement of lipid metabolites are essential to deciphering the contributions of lipid network metabolism to diseases or its responses to drug intervention. Here, we report an integrated lipidomic analysis for the comprehensive detection of lipid metabolites. To facilitate the characterization of untargeted lipids through fragmentation analysis, nine formulas were proposed to identify the fatty acid composition of lipids from complex MS (n) spectrum information. By these formulas, the co-eluted isomeric compounds could be distinguished. In total, 250 lipids were detected and characterized, including diacylglycerols, triacylglycerols, glycerophosphoethanolamines, glycerophosphocholines, glycerophosphoserines, glycerophosphoglycerols, glycerophosphoinositols, cardiolipins, ceramides, and sphingomyelins. Integrated with the targeted lipidomics, a total of 27 inflammatory oxylipins were also measured. To evaluate the aberrant lipid metabolism involved in liver injury induced by Tripterygium wilfordii, lipid network metabolism was further investigated. Results indicated that energy lipid modification, membrane remodeling, potential signaling lipid alterations, and abnormal inflammation response were associated with injury. Because of the important roles of lipids in liver metabolism, this new method is expected to be useful in analyzing other lipid metabolism diseases.
Collapse
Affiliation(s)
- Tong Xie
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China.
| | - Xueping Zhou
- The First Clinical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Shouchuan Wang
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Yan Lu
- The First Clinical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Huaxu Zhu
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, College of Pharmacy, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
| | - An Kang
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, College of Pharmacy, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
| | - Haishan Deng
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, College of Pharmacy, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
| | - Jianya Xu
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Cunsi Shen
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Liuqing Di
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, College of Pharmacy, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
15
|
Nonmuscle Tissues Contribution to Cancer Cachexia. Mediators Inflamm 2015; 2015:182872. [PMID: 26523094 PMCID: PMC4615210 DOI: 10.1155/2015/182872] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/26/2015] [Indexed: 01/05/2023] Open
Abstract
Cachexia is a syndrome associated with cancer, characterized by body weight loss, muscle and adipose tissue wasting, and inflammation, being often associated with anorexia. In spite of the fact that muscle tissue represents more than 40% of body weight and seems to be the main tissue involved in the wasting that occurs during cachexia, recent developments suggest that tissues/organs such as adipose (both brown and white), brain, liver, gut, and heart are directly involved in the cachectic process and may be responsible for muscle wasting. This suggests that cachexia is indeed a multiorgan syndrome. Bearing all this in mind, the aim of the present review is to examine the impact of nonmuscle tissues in cancer cachexia.
Collapse
|
16
|
Bedia C, Dalmau N, Jaumot J, Tauler R. Phenotypic malignant changes and untargeted lipidomic analysis of long-term exposed prostate cancer cells to endocrine disruptors. ENVIRONMENTAL RESEARCH 2015; 140:18-31. [PMID: 25817993 DOI: 10.1016/j.envres.2015.03.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/05/2015] [Accepted: 03/16/2015] [Indexed: 05/10/2023]
Abstract
Endocrine disruptors (EDs) are a class of environmental toxic molecules able to interfere with the normal hormone metabolism. Numerous studies involve EDs exposure to initiation and development of cancers, including prostate cancer. In this work, three different EDs (aldrin, aroclor 1254 and chlorpyrifos (CPF)) were investigated as potential inducers of a malignant phenotype in DU145 prostate cancer cells after a chronic exposure. Epithelial to mesenchymal transition (EMT) induction, proliferation, migration, colony formation and release of metalloproteinase 2 (MMP-2) were analyzed in 50-day exposed cells to the selected EDs. As a result, aldrin and CPF exposure led to an EMT induction (loss of 16% and 14% of E-cadherin levels, respectively, compared to the unexposed cells). Aroclor and CPF presented an increased migration (134% and 126%, respectively), colony formation (204% and 144%, respectively) and MMP-2 release (137% in both cases) compared to the unexposed cells. An untargeted lipidomic analysis was performed to decipher the lipids involved in the observed transformations. As general results, aldrin exposure showed a global decrease in phospholipids and sphingolipids, and aroclor and CPF showed an increase of certain phospholipids, glycosphingolipids as well as a remarkable increase of some cardiolipin species. Furthermore, the three exposures resulted in an increase of some triglyceride species. In conclusion, some significant changes in lipids were identified and thus we postulate that some lipid compounds and lipid metabolic pathways could be involved in the acquisition of the malignant phenotype in exposed prostate cancer cells to the selected EDs.
Collapse
Affiliation(s)
- Carmen Bedia
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), c/ Jordi Girona 18-24, 08034 Barcelona, Spain.
| | - Núria Dalmau
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), c/ Jordi Girona 18-24, 08034 Barcelona, Spain.
| | - Joaquim Jaumot
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), c/ Jordi Girona 18-24, 08034 Barcelona, Spain.
| | - Romà Tauler
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), c/ Jordi Girona 18-24, 08034 Barcelona, Spain.
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW The aim of the present review is to examine the impact of mitochondrial dysfunction in cancer cachexia. RECENT FINDINGS Oxidative pathways are altered in this tissue during muscle wasting and this seems to be a consequence of mitochondrial abnormalities that include altered morphology and function, decreased ATP synthesis and uncoupling. SUMMARY An alteration of energy balance is the immediate cause of cachexia. Both alterations in energy intake and expenditure are responsible for the wasting syndrome associated with different types of pathological conditions, such as cancer. Different types of molecular mechanisms contribute to energy expenditure and, therefore, involuntary body weight loss, one of which is mitochondrial dysfunction.
Collapse
Affiliation(s)
- Josep M Argilés
- aCancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona bInstitut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain
| | | | | |
Collapse
|
18
|
McLean JB, Moylan JS, Andrade FH. Mitochondria dysfunction in lung cancer-induced muscle wasting in C2C12 myotubes. Front Physiol 2014; 5:503. [PMID: 25566096 PMCID: PMC4270181 DOI: 10.3389/fphys.2014.00503] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/03/2014] [Indexed: 01/06/2023] Open
Abstract
AIMS Cancer cachexia is a syndrome which results in severe loss of muscle mass and marked fatigue. Conditioned media from cachexia-inducing cancer cells triggers metabolic dysfunction in skeletal muscle, including decreased mitochondrial respiration, which may contribute to fatigue. We hypothesized that Lewis lung carcinoma conditioned medium (LCM) would impair the mitochondrial electron transport chain (ETC) and increase production of reactive oxygen species, ultimately leading to decreased mitochondrial respiration. We incubated C2C12 myotubes with LCM for 30 min, 2, 4, 24 or 48 h. We measured protein content by western blot; oxidant production by 2',7'-dichlorofluorescin diacetate (DCF), 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate (DAF), and MitoSox; cytochrome c oxidase activity by oxidation of cytochrome c substrate; and oxygen consumption rate (OCR) of intact myotubes by Seahorse XF Analyzer. RESULTS LCM treatment for 2 or 24 h decreased basal OCR and ATP-related OCR, but did not alter the content of mitochondrial complexes I, III, IV and V. LCM treatment caused a transient rise in reactive oxygen species (ROS). In particular, mitochondrial superoxide (MitoSOX) was elevated at 2 h. 4-Hydroxynonenal, a marker of oxidative stress, was elevated in both cytosolic and mitochondrial fractions of cell lysates after LCM treatment. CONCLUSION These data show that lung cancer-conditioned media alters electron flow in the ETC and increases mitochondrial ROS production, both of which may ultimately impair aerobic metabolism and decrease muscle endurance.
Collapse
Affiliation(s)
- Julie B McLean
- Department of Physiology, University of Kentucky Lexington, KY, USA ; Center for Muscle Biology, University of Kentucky Lexington, KY, USA
| | - Jennifer S Moylan
- Department of Physiology, University of Kentucky Lexington, KY, USA ; Center for Muscle Biology, University of Kentucky Lexington, KY, USA
| | - Francisco H Andrade
- Department of Physiology, University of Kentucky Lexington, KY, USA ; Center for Muscle Biology, University of Kentucky Lexington, KY, USA
| |
Collapse
|
19
|
Chao YJ, Chang WH, Ting HC, Chao WT, Hsu YHH. Cell cycle arrest and cell survival induce reverse trends of cardiolipin remodeling. PLoS One 2014; 9:e113680. [PMID: 25422939 PMCID: PMC4244155 DOI: 10.1371/journal.pone.0113680] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 10/27/2014] [Indexed: 11/18/2022] Open
Abstract
Cell survival from the arrested state can be a cause of the cancer recurrence. Transition from the arrest state to the growth state is highly regulated by mitochondrial activity, which is related to the lipid compositions of the mitochondrial membrane. Cardiolipin is a critical phospholipid for the mitochondrial integrity and functions. We examined the changes of cardiolipin species by LC-MS in the transition between cell cycle arrest and cell reviving in HT1080 fibrosarcoma cells. We have identified 41 cardiolipin species by MS/MS and semi-quantitated them to analyze the detailed changes of cardiolipin species. The mass spectra of cardiolipin with the same carbon number form an envelope, and the C64, C66, C68, C70 C72 and C74 envelopes in HT1080 cells show a normal distribution in the full scan mass spectrum. The cardiolipin quantity in a cell decreases while entering the cell cycle arrest, but maintains at a similar level through cell survival. While cells awakening from the arrested state and preparing itself for replication, the groups with short acyl chains, such as C64, C66 and C68 show a decrease of cardiolipin percentage, but the groups with long acyl chains, such as C70 and C72 display an increase of cardiolipin percentage. Interestingly, the trends of the cardiolipin species changes during the arresting state are completely opposite to cell growing state. Our results indicate that the cardiolipin species shift from the short chain to long chain cardiolipin during the transition from cell cycle arrest to cell progression.
Collapse
Affiliation(s)
- Yu-Jen Chao
- Department of Chemistry, Tunghai University, Taichung, Taiwan
| | - Wan-Hsin Chang
- Department of Chemistry, Tunghai University, Taichung, Taiwan
| | - Hsiu-Chi Ting
- Department of Chemistry, Tunghai University, Taichung, Taiwan
| | - Wei-Ting Chao
- Department of Life Science, Tunghai University, Taichung, Taiwan
- Life Science Research Center, Tunghai University, Taichung, Taiwan
| | - Yuan-Hao Howard Hsu
- Department of Chemistry, Tunghai University, Taichung, Taiwan
- Life Science Research Center, Tunghai University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
20
|
Physiological underpinnings associated with differences in pace of life and metabolic rate in north temperate and neotropical birds. J Comp Physiol B 2014; 184:545-61. [PMID: 24671698 DOI: 10.1007/s00360-014-0825-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 02/28/2014] [Accepted: 03/05/2014] [Indexed: 12/11/2022]
Abstract
Animal life-history traits fall within limited ecological space with animals that have high reproductive rates having short lives, a continuum referred to as a "slow-fast" life-history axis. Animals of the same body mass at the slow end of the life-history continuum are characterized by low annual reproductive output and low mortality rate, such as is found in many tropical birds, whereas at the fast end, rates of reproduction and mortality are high, as in temperate birds. These differences in life-history traits are thought to result from trade-offs between investment in reproduction or self-maintenance as mediated by the biotic and abiotic environment. Thus, tropical and temperate birds provide a unique system to examine physiological consequences of life-history trade-offs at opposing ends of the "pace of life" spectrum. We have explored the implications of these trade-offs at several levels of physiological organization including whole-animal, organ systems, and cells. Tropical birds tend to have higher survival, slower growth, lower rates of whole-animal basal metabolic rate and peak metabolic rate, and smaller metabolically active organs compared with temperate birds. At the cellular level, primary dermal fibroblasts from tropical birds tend to have lower cellular metabolic rates and appear to be more resistant to oxidative cell stress than those of temperate birds. However, at the subcellular level, lipid peroxidation rates, a measure of the ability of lipid molecules within the cell membranes to thwart the propagation of oxidative damage, appear not to be different between tropical and temperate species. Nevertheless, lipids in mitochondrial membranes of tropical birds tend to have increased concentrations of plasmalogens (phospholipids with antioxidant properties), and decreased concentrations of cardiolipin (a complex phospholipid in the electron transport chain) compared with temperate birds.
Collapse
|
21
|
Calhoon EA, Jimenez AG, Harper JM, Jurkowitz MS, Williams JB. Linkages between mitochondrial lipids and life history in temperate and tropical birds. Physiol Biochem Zool 2014; 87:265-75. [PMID: 24642544 DOI: 10.1086/674696] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Temperate birds tend to have a fast pace of life and short life spans with high reproductive output, whereas tropical birds tend to have a slower pace of life, invest fewer resources in reproduction, and have higher adult survival rates. How these differences in life history at the organismal level are rooted in differences at the cellular level is a major focus of current research. Here, we cultured fibroblasts from phylogenetically paired tropical and temperate species, isolated mitochondria from each, and compared their mitochondrial membrane lipids. We also correlated the amounts of these lipids with an important life history parameter, clutch size. We found that tropical birds tended to have less mitochondrial lipid per cell, especially less cardiolipin per cell, suggesting that cells from tropical birds have fewer mitochondria or less inner mitochondrial membrane per cell. We also found that the mitochondria of tropical birds and the species with the smallest clutch sizes had higher amounts of plasmalogens, a lipid that could serve as an antioxidant. Overall, our findings are consistent with the idea that there are underlying molecular and cellular physiological traits that could account for the differences in whole-animal physiology between animals with different life histories.
Collapse
Affiliation(s)
- Elisabeth A Calhoon
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, 318 West 12th Avenue, Columbus, Ohio 43210; 2Department of Pathology, University of Michigan, 1301 Catherine Road, Ann Arbor, Michigan 48109; 3Department of Molecular and Cellular Biochemistry, Ohio State University, 1645 Neil Avenue, Columbus, Ohio 43210
| | | | | | | | | |
Collapse
|
22
|
Monteiro JP, Oliveira PJ, Jurado AS. Mitochondrial membrane lipid remodeling in pathophysiology: a new target for diet and therapeutic interventions. Prog Lipid Res 2013; 52:513-28. [PMID: 23827885 DOI: 10.1016/j.plipres.2013.06.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 06/14/2013] [Accepted: 06/17/2013] [Indexed: 12/22/2022]
Abstract
Mitochondria are arbiters in the fragile balance between cell life and death. These organelles present an intricate membrane system, with a peculiar lipid composition and displaying transverse as well as lateral asymmetry. Some lipids are synthesized inside mitochondria, while others have to be imported or acquired in the form of precursors. Here, we review different processes, including external interventions (e.g., diet) and a range of biological events (apoptosis, disease and aging), which may result in alterations of mitochondrial membrane lipid content. Cardiolipin, the mitochondria lipid trademark, whose biosynthetic pathway is highly regulated, will deserve special attention in this review. The modulation of mitochondrial membrane lipid composition, especially by diet, as a therapeutic strategy for the treatment of some pathologies will be also addressed.
Collapse
Affiliation(s)
- João P Monteiro
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Department of Life Sciences, University of Coimbra, Portugal
| | | | | |
Collapse
|
23
|
Bazán S, Mileykovskaya E, Mallampalli VKPS, Heacock P, Sparagna GC, Dowhan W. Cardiolipin-dependent reconstitution of respiratory supercomplexes from purified Saccharomyces cerevisiae complexes III and IV. J Biol Chem 2012; 288:401-11. [PMID: 23172229 DOI: 10.1074/jbc.m112.425876] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here, we report for the first time in vitro reconstitution of the respiratory supercomplexes from individual complexes III and IV. Complexes III and IV were purified from Saccharomyces cerevisiae mitochondria. Complex III contained eight molecules of cardiolipin, and complex IV contained two molecules of cardiolipin, as determined by electrospray ionization-mass spectrometry. Complex IV also contained Rcf1p. No supercomplexes were formed upon mixing of the purified complexes, and low amounts of the supercomplex trimer III(2)IV(1) were formed after reconstitution into proteoliposomes containing only phosphatidylcholine and phosphatidylethanolamine. Further addition of cardiolipin to the proteoliposome reconstitution mixture resulted in distinct formation of both the III(2)IV(1) supercomplex trimer and III(2)IV(2) supercomplex tetramer. No other anionic phospholipid was as effective as cardiolipin in supporting tetramer formation. Phospholipase treatment of complex IV prevented trimer formation in the absence of cardiolipin. Both trimer and tetramer formations were restored by cardiolipin. Analysis of the reconstituted tetramer by single particle electron microscopy confirmed native organization of individual complexes within the supercomplex. In conclusion, although some trimer formation occurred dependent only on tightly bound cardiolipin, tetramer formation required additional cardiolipin. This is consistent with the high cardiolipin content in the native tetramer. The dependence on cardiolipin for supercomplex formation suggests that changes in cardiolipin levels resulting from changes in physiological conditions may control the equilibrium between individual respiratory complexes and supercomplexes in vivo.
Collapse
Affiliation(s)
- Soledad Bazán
- Department of Biochemistry and Molecular Biology, University of Texas at Houston Medical School, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|