1
|
Brier MR, Judge B, Ying C, Salter A, An H, Patel A, Wang Q, Wang Y, Cross AH, Naismith RT, Benzinger TL, Goyal MS. Increased White Matter Aerobic Glycolysis in Multiple Sclerosis. Ann Neurol 2024. [PMID: 39714123 DOI: 10.1002/ana.27165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 10/23/2024] [Accepted: 12/02/2024] [Indexed: 12/24/2024]
Abstract
OBJECTIVE Despite treatments which reduce relapses in multiple sclerosis (MS), many patients continue to experience progressive disability accumulation. MS is associated with metabolic disruptions and cerebral metabolic stress predisposes to tissue injury and possibly impaired remyelination. Additionally, myelin homeostasis is metabolically expensive and reliant on glycolysis. We investigated cerebral metabolic changes in MS and when in the disease course they occurred, and assessed their relationship with microstructural changes. METHODS This study used combined fluorodeoxyglucose (FDG) positron emission tomography (PET) and magnetic resonance imaging (MRI) to measure cerebral metabolic rate of glucose and oxygen, thereby quantifying glycolysis. Twelve healthy controls, 20 patients with relapsing MS, and 13 patients with non-relapsing MS were studied. Relapsing patients with MS were treatment naïve and scanned pre- and post-initiation of high efficacy disease modifying therapy. RESULTS In normal appearing white matter, we observed increased glucose utilization and reduced oxygen utilization in newly diagnosed MS, consistent with increased glycolysis. Increased glycolysis was greater in patients with a longer disease duration course and higher disability. Among newly diagnosed patients, different treatments had differential impacts on glucose utilization. Last, whereas hypermetabolism within lesions was clearly associated with inflammation, no such relationship was found within normal appearing white matter. INTERPRETATION Increased white matter glycolysis is a prominent feature of cerebral metabolism in MS. It begins early in the disease course, increases with disease duration and is independent of microstructural evidence of inflammation in normal appearing white matter. Optimization of the metabolic environment may be an important component of therapies designed to reduce progressive disability. ANN NEUROL 2024.
Collapse
Affiliation(s)
- Matthew R Brier
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO
| | - Bradley Judge
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Chunwei Ying
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO
| | - Amber Salter
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Hongyu An
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO
| | - Aakash Patel
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| | - Qing Wang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO
| | - Yong Wang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO
| | - Anne H Cross
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Robert T Naismith
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Tammie Ls Benzinger
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO
| | - Manu S Goyal
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
2
|
Zhang Y, Wang X, Gao Z, Li X, Meng R, Wu X, Ding J, Shen W, Zhu J. Hypoxia-inducible factor-1α promotes macrophage functional activities in protecting hypoxia-tolerant large yellow croaker ( Larimichthys crocea) against Aeromonas hydrophila infection. Front Immunol 2024; 15:1410082. [PMID: 39156889 PMCID: PMC11327042 DOI: 10.3389/fimmu.2024.1410082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/08/2024] [Indexed: 08/20/2024] Open
Abstract
The immune system requires a high energy expenditure to resist pathogen invasion. Macrophages undergo metabolic reprogramming to meet these energy requirements and immunologic activity and polarize to M1-type macrophages. Understanding the metabolic pathway switching in large yellow croaker (Larimichthys crocea) macrophages in response to lipopolysaccharide (LPS) stimulation and whether this switching affects immunity is helpful in explaining the stronger immunity of hypoxia-tolerant L. crocea. In this study, transcript levels of glycolytic pathway genes (Glut1 and Pdk1), mRNA levels or enzyme activities of glycolytic enzymes [hexokinase (HK), phosphofructokinase (PFK), pyruvate kinase (PK), and lactate dehydrogenase A (LDHA)], aerobic respiratory enzymes [pyruvate dehydrogenase (PDH), isocitrate dehydrogenase (IDH), and succinate dehydrogenase (SDH)], metabolites [lactic acid (LA) and adenosine triphosphate (ATP)], levels of bactericidal products [reactive oxygen species (ROS) and nitric oxide (NO)], and transcripts and level changes of inflammatory factors [IL1β, TNFα, and interferon (IFN) γ] were detected in LPS-stimulated L. crocea head kidney macrophages. We showed that glycolysis was significantly induced, the tricarboxylic acid (TCA) cycle was inhibited, and metabolic reprogramming occurred, showing the Warburg effect when immune cells were activated. To determine the potential regulatory mechanism behind these changes, LcHIF-1α was detected and found to be significantly induced and transferred to the nucleus after LPS stimulation. LcHif-1α interference led to a significant reduction in glycolytic pathway gene transcript expression, enzyme activity, metabolites, bactericidal substances, and inflammatory factor levels; a significant increase in the aerobic respiration enzymes; and decreased migration, invasion, and phagocytosis. Further ultrastructural observation by electron microscopy showed that fewer microspheres contained phagocytes and that more cells were damaged after LcHif-1α interference. LcHif-1α overexpression L. crocea head kidney macrophages showed the opposite trend, and promoter activities of Ldha and Il1β were significantly enhanced after LcHif-1α overexpression in HEK293T cells. Our data showed that LcHIF-1α acted as a metabolic switch in L. crocea macrophages and was important in polarization. Hypoxia-tolerant L. crocea head kidney showed a stronger Warburg effect and inhibited the TCA cycle, higher metabolites, and bactericidal substance levels. These results collectively revealed that LcHif-1α may promote the functional activities of head kidney macrophages in protecting hypoxia-tolerant L. crocea from Aeromonas hydrophila infection.
Collapse
Affiliation(s)
- Yibo Zhang
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, and Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, Ningbo Academy of Oceanology and Fishery, Ningbo, Zhejiang, China
| | - Xuelei Wang
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, Ningbo Academy of Oceanology and Fishery, Ningbo, Zhejiang, China
| | - Zhenyu Gao
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, and Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, Ningbo Academy of Oceanology and Fishery, Ningbo, Zhejiang, China
| | - XuJie Li
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, Ningbo Academy of Oceanology and Fishery, Ningbo, Zhejiang, China
| | - Ran Meng
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, Ningbo Academy of Oceanology and Fishery, Ningbo, Zhejiang, China
| | - Xiongfei Wu
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, Ningbo Academy of Oceanology and Fishery, Ningbo, Zhejiang, China
| | - Jie Ding
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, and Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, Ningbo Academy of Oceanology and Fishery, Ningbo, Zhejiang, China
| | - Weiliang Shen
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, Ningbo Academy of Oceanology and Fishery, Ningbo, Zhejiang, China
| | - Junquan Zhu
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, and Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
3
|
Marhl M. What do stimulated beta cells have in common with cancer cells? Biosystems 2024; 242:105257. [PMID: 38876357 DOI: 10.1016/j.biosystems.2024.105257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
This study investigates the metabolic parallels between stimulated pancreatic beta cells and cancer cells, focusing on glucose and glutamine metabolism. Addressing the significant public health challenges of Type 2 Diabetes (T2D) and cancer, we aim to deepen our understanding of the mechanisms driving insulin secretion and cellular proliferation. Our analysis of anaplerotic cycles and the role of NADPH in biosynthesis elucidates their vital functions in both processes. Additionally, we point out that both cell types share an antioxidative response mediated by the Nrf2 signaling pathway, glutathione synthesis, and UCP2 upregulation. Notably, UCP2 facilitates the transfer of C4 metabolites, enhancing reductive TCA cycle metabolism. Furthermore, we observe that hypoxic responses are transient in beta cells post-stimulation but persistent in cancer cells. By synthesizing these insights, the research may suggest novel therapeutic targets for T2D, highlighting the shared metabolic strategies of stimulated beta cells and cancer cells. This comparative analysis not only illuminates the metabolic complexity of these conditions but also emphasizes the crucial role of metabolic pathways in cell function and survival, offering fresh perspectives for tackling T2D and cancer challenges.
Collapse
Affiliation(s)
- Marko Marhl
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia; Faculty of Education, University of Maribor, Koroška cesta 160, 2000, Maribor, Slovenia; Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000, Maribor, Slovenia.
| |
Collapse
|
4
|
Ewald J, He Z, Dimitriew W, Schuster S. Including glutamine in a resource allocation model of energy metabolism in cancer and yeast cells. NPJ Syst Biol Appl 2024; 10:77. [PMID: 39025861 PMCID: PMC11258256 DOI: 10.1038/s41540-024-00393-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Energy metabolism is crucial for all living cells, especially during fast growth or stress scenarios. Many cancer and activated immune cells (Warburg effect) or yeasts (Crabtree effect) mostly rely on aerobic glucose fermentation leading to lactate or ethanol, respectively, to generate ATP. In recent years, several mathematical models have been proposed to explain the Warburg effect on theoretical grounds. Besides glucose, glutamine is a very important substrate for eukaryotic cells-not only for biosynthesis, but also for energy metabolism. Here, we present a minimal constraint-based stoichiometric model for explaining both the classical Warburg effect and the experimentally observed respirofermentation of glutamine (WarburQ effect). We consider glucose and glutamine respiration as well as the respective fermentation pathways. Our resource allocation model calculates the ATP production rate, taking into account enzyme masses and, therefore, pathway costs. While our calculation predicts glucose fermentation to be a superior energy-generating pathway in human cells, different enzyme characteristics in yeasts reduce this advantage, in some cases to such an extent that glucose respiration is preferred. The latter is observed for the fungal pathogen Candida albicans, which is a known Crabtree-negative yeast. Further, optimization results show that glutamine is a valuable energy source and important substrate under glucose limitation, in addition to its role as a carbon and nitrogen source of biomass in eukaryotic cells. In conclusion, our model provides insights that glutamine is an underestimated fuel for eukaryotic cells during fast growth and infection scenarios and explains well the observed parallel respirofermentation of glucose and glutamine in several cell types.
Collapse
Affiliation(s)
- Jan Ewald
- Department of Bioinformatics, Friedrich Schiller University of Jena, Ernst-Abbe-Platz 2, 07743, Jena, Germany
- Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI) Dresden/Leipzig, Leipzig University, Humboldtstraße 25, 04105, Leipzig, Germany
| | - Ziyang He
- Department of Bioinformatics, Friedrich Schiller University of Jena, Ernst-Abbe-Platz 2, 07743, Jena, Germany
| | - Wassili Dimitriew
- Department of Bioinformatics, Friedrich Schiller University of Jena, Ernst-Abbe-Platz 2, 07743, Jena, Germany
| | - Stefan Schuster
- Department of Bioinformatics, Friedrich Schiller University of Jena, Ernst-Abbe-Platz 2, 07743, Jena, Germany.
| |
Collapse
|
5
|
Dwivedi S, Glock C, Germerodt S, Stark H, Schuster S. Game-theoretical description of the go-or-grow dichotomy in tumor development for various settings and parameter constellations. Sci Rep 2023; 13:16758. [PMID: 37798314 PMCID: PMC10555990 DOI: 10.1038/s41598-023-43199-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023] Open
Abstract
A medically important feature of several types of tumors is their ability to "decide" between staying at a primary site in the body or leaving it and forming metastases. The present theoretical study aims to provide a better understanding of the ultimate reasons for this so-called "go-or-grow" dichotomy. To that end, we use game theory, which has proven to be useful in analyzing the competition between tumors and healthy tissues or among different tumor cells. We begin by determining the game types in the Basanta-Hatzikirou-Deutsch model, depending on the parameter values. Thereafter, we suggest and analyze five modified variants of the model. For example, in the basic model, the deadlock game, Prisoner's Dilemma, and hawk-dove game can occur. The modified versions lead to several additional game types, such as battle of the sexes, route-choice, and stag-hunt games. For some game types, all cells are predicted to stay on their original site ("grow phenotype"), while for other types, only a certain fraction stay and the other cells migrate away ("go phenotype"). If the nutrient supply at a distant site is high, all the cells are predicted to go. We discuss our predictions in terms of the pros and cons of caloric restriction and limitations of the supply of vitamins or methionine. Our results may help devise treatments to prevent metastasis.
Collapse
Affiliation(s)
- Shalu Dwivedi
- Department of Bioinformatics, Matthias Schleiden Institute, Friedrich Schiller University, Ernst-Abbe-Platz 2, 07743, Jena, Germany
| | - Christina Glock
- Department of Bioinformatics, Matthias Schleiden Institute, Friedrich Schiller University, Ernst-Abbe-Platz 2, 07743, Jena, Germany
| | - Sebastian Germerodt
- Department of Bioinformatics, Matthias Schleiden Institute, Friedrich Schiller University, Ernst-Abbe-Platz 2, 07743, Jena, Germany
| | - Heiko Stark
- Department of Bioinformatics, Matthias Schleiden Institute, Friedrich Schiller University, Ernst-Abbe-Platz 2, 07743, Jena, Germany
- Institute of Zoology and Evolutionary Research, University of Jena, Erbertstr. 1, 07743, Jena, Germany
| | - Stefan Schuster
- Department of Bioinformatics, Matthias Schleiden Institute, Friedrich Schiller University, Ernst-Abbe-Platz 2, 07743, Jena, Germany.
| |
Collapse
|
6
|
Xu W, Fan J, Wang Y, Wang Y, Zhu J, Ren A, Yu H, Shi L, Zhao M. Mitochondrial pyruvate carrier regulates the lignocellulosic decomposition rate through metabolism in Ganoderma lucidum. FEMS Microbiol Lett 2021; 368:6316105. [PMID: 34227669 DOI: 10.1093/femsle/fnab088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 07/02/2021] [Indexed: 11/14/2022] Open
Abstract
The activity of mitochondrial pyruvate carrier (MPC) can be modulated to regulate intracellular metabolism under different culture conditions. In Ganoderma lucidum, the role of MPC in regulating carbon sources remains unknown. By knocking down MPC genes (MPC1 and MPC2), this research found that the loss of MPC increased the growth rate of G. lucidum by ~30% in a medium with wood chips as a carbon source. Then cellulase and laccase activities were tested. Endoglucanase and laccase activity increased by ~50% and ~35%, respectively, in MPC knockdown mutants compared with that in the wild type strain. Finally, the expression levels of genes related to glycolysis were assayed, and the transcription levels of these enzymes were found to be increased by ~250% compared with the wild type strain. In conclusion, the regulation of intracellular metabolism by MPC provides a new way to improve the use of nondominant carbon sources such as lignocellulose.
Collapse
Affiliation(s)
- Wenzhao Xu
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Junpei Fan
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Yihong Wang
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Yunxiao Wang
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Jing Zhu
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Ang Ren
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Hanshou Yu
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Liang Shi
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Mingwen Zhao
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| |
Collapse
|
7
|
Schuster S, Ewald J, Kaleta C. Modeling the energy metabolism in immune cells. Curr Opin Biotechnol 2021; 68:282-291. [PMID: 33770632 DOI: 10.1016/j.copbio.2021.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/16/2021] [Accepted: 03/01/2021] [Indexed: 02/08/2023]
Abstract
In this review, we summarize and briefly discuss various approaches to modeling the metabolism in human immune cells, with a focus on energy metabolism. These approaches include metabolic reconstruction, elementary modes, and flux balance analysis, which are often subsumed under constraint-based modeling. Further approaches are evolutionary game theory and kinetic modeling. Many immune cells such as macrophages show the Warburg effect, meaning that glycolysis is upregulated upon activation. We outline a minimal model for explaining that effect using optimization. The effect of a confrontation with pathogen cells on immunometabolism is highlighted. Models describing the differences between M1 and M2 macrophages, ROS production in neutrophils, and tryptophan metabolism are discussed. Obstacles and future prospects are outlined.
Collapse
Affiliation(s)
- Stefan Schuster
- Department of Bioinformatics, Matthias Schleiden Institute, Friedrich Schiller University Jena, Ernst-Abbe-Pl. 2, 07743 Jena, Germany.
| | - Jan Ewald
- Department of Bioinformatics, Matthias Schleiden Institute, Friedrich Schiller University Jena, Ernst-Abbe-Pl. 2, 07743 Jena, Germany
| | - Christoph Kaleta
- Medical Systems Biology Group, Institute of Experimental Medicine, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
8
|
Otto AM. Metabolic Constants and Plasticity of Cancer Cells in a Limiting Glucose and Glutamine Microenvironment-A Pyruvate Perspective. Front Oncol 2020; 10:596197. [PMID: 33425750 PMCID: PMC7793857 DOI: 10.3389/fonc.2020.596197] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/21/2020] [Indexed: 12/18/2022] Open
Abstract
The metabolism of cancer cells is an issue of dealing with fluctuating and limiting levels of nutrients in a precarious microenvironment to ensure their vitality and propagation. Glucose and glutamine are central metabolites for catabolic and anabolic metabolism, which is in the limelight of numerous diagnostic methods and therapeutic targeting. Understanding tumor metabolism in conditions of nutrient depletion is important for such applications and for interpreting the readouts. To exemplify the metabolic network of tumor cells in a model system, the fate 13C6-glucose was tracked in a breast cancer cell line growing in variable low glucose/low glutamine conditions. 13C-glucose-derived metabolites allowed to deduce the engagement of metabolic pathways, namely glycolysis, the TCA-cycle including glutamine and pyruvate anaplerosis, amino acid synthesis (serine, glycine, aspartate, glutamate), gluconeogenesis, and pyruvate replenishment. While the metabolic program did not change, limiting glucose and glutamine supply reduced cellular metabolite levels and enhanced pyruvate recycling as well as pyruvate carboxylation for entry into the TCA-cycle. Otherwise, the same metabolic pathways, including gluconeogenesis, were similarly engaged with physiologically saturating as with limiting glucose and glutamine. Therefore, the metabolic plasticity in precarious nutritional microenvironment does not require metabolic reprogramming, but is based on dynamic changes in metabolite quantity, reaction rates, and directions of the existing metabolic network.
Collapse
Affiliation(s)
- Angela M Otto
- Munich School of BioEngineering, Technical University of Munich, Garching, Germany
| |
Collapse
|
9
|
Wang T, Jiao Y, Zhang X. Immunometabolic Pathways and Its Therapeutic Implication in Autoimmune Diseases. Clin Rev Allergy Immunol 2020; 60:55-67. [PMID: 33179144 DOI: 10.1007/s12016-020-08821-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2020] [Indexed: 02/08/2023]
Abstract
Autoimmune diseases (AIDs) are characterized with aberrant immune responses and their respective signaling pathways controlling cell differentiation, death, and survival. Cell metabolism is also an indispensable biochemical process that provides the very fundamental energy and materials. Accumulating evidences implicate that metabolism pathways have critical roles in determining the function of different immune subsets. Mechanisms of how immunometabolism participate in the pathogenesis of AIDs were also under intensive exploration. Here, in this review, we summarize the metabolic features of immune cells in AIDs and also the individual function of immunometabolism pathways, including glucose metabolism and tricarboxylic acid (TCA) cycle, in the setting of AIDs, mainly focusing on the potential targets for intervention. We also review studies that explore the intervention strategies targeting key molecules of metabolic pathways, such as mammalian target of rapamycin (mTOR), AMP-activated protein kinase (AMPK), and hypoxia-inducible factor 1a (HIF1a), in systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). The highlight of this review is to provide a comprehensive summary of the status quo of immunometabolism studies in AIDs and the potential translatable drug targets.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Clinical Immunology Centre, Medical Epigenetics Research Centre, State Key Laboratory of Difficult and Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing , 100730, China.,State Key Laboratory of Difficult, Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing , 100730, China
| | - Yuhao Jiao
- Clinical Immunology Centre, Medical Epigenetics Research Centre, State Key Laboratory of Difficult and Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing , 100730, China.,Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College; The Ministry of Education Key Laboratory, Beijing , 100730, China
| | - Xuan Zhang
- Clinical Immunology Centre, Medical Epigenetics Research Centre, State Key Laboratory of Difficult and Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing , 100730, China. .,Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College; The Ministry of Education Key Laboratory, Beijing , 100730, China. .,State Key Laboratory of Difficult, Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing , 100730, China.
| |
Collapse
|
10
|
The Multifaceted Pyruvate Metabolism: Role of the Mitochondrial Pyruvate Carrier. Biomolecules 2020; 10:biom10071068. [PMID: 32708919 PMCID: PMC7407832 DOI: 10.3390/biom10071068] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 12/17/2022] Open
Abstract
Pyruvate, the end product of glycolysis, plays a major role in cell metabolism. Produced in the cytosol, it is oxidized in the mitochondria where it fuels the citric acid cycle and boosts oxidative phosphorylation. Its sole entry point into mitochondria is through the recently identified mitochondrial pyruvate carrier (MPC). In this review, we report the latest findings on the physiology of the MPC and we discuss how a dysfunctional MPC can lead to diverse pathologies, including neurodegenerative diseases, metabolic disorders, and cancer.
Collapse
|
11
|
Abstract
Dysregulated metabolism is one of the hallmarks of cancer. Under normal physiological conditions, ATP is primarily generated by oxidative phosphorylation. Cancers commonly undergo a dramatic shift toward glycolysis, despite the presence of oxygen. This phenomenon is known as the Warburg effect, and requires the activity of LDHA. LDHA converts pyruvate to lactate in the final step of glycolysis and is often upregulated in cancer. LDHA inhibitors present a promising therapeutic option, as LDHA blockade leads to apoptosis in cancer cells. Despite this, existing LDHA inhibitors have shown limited clinical efficacy. Here, we review recent progress in LDHA structure, function and regulation as well as strategies to target this critical enzyme.
Collapse
|
12
|
Hörhold F, Eisel D, Oswald M, Kolte A, Röll D, Osen W, Eichmüller SB, König R. Reprogramming of macrophages employing gene regulatory and metabolic network models. PLoS Comput Biol 2020; 16:e1007657. [PMID: 32097424 PMCID: PMC7059956 DOI: 10.1371/journal.pcbi.1007657] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 03/06/2020] [Accepted: 01/14/2020] [Indexed: 12/20/2022] Open
Abstract
Upon exposure to different stimuli, resting macrophages undergo classical or alternative polarization into distinct phenotypes that can cause fatal dysfunction in a large range of diseases, such as systemic infection leading to sepsis or the generation of an immunosuppressive tumor microenvironment. Investigating gene regulatory and metabolic networks, we observed two metabolic switches during polarization. Most prominently, anaerobic glycolysis was utilized by M1-polarized macrophages, while the biosynthesis of inosine monophosphate was upregulated in M2-polarized macrophages. Moreover, we observed a switch in the urea cycle. Gene regulatory network models revealed E2F1, MYC, PPARγ and STAT6 to be the major players in the distinct signatures of these polarization events. Employing functional assays targeting these regulators, we observed the repolarization of M2-like cells into M1-like cells, as evidenced by their specific gene expression signatures and cytokine secretion profiles. The predicted regulators are essential to maintaining the M2-like phenotype and function and thus represent potential targets for the therapeutic reprogramming of immunosuppressive M2-like macrophages.
Collapse
Affiliation(s)
- Franziska Hörhold
- Center for Sepsis Control and Care, University Hospital, Jena, Germany
| | - David Eisel
- Research Group GMP & T Cell Therapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz, Germany
| | - Marcus Oswald
- Center for Sepsis Control and Care, University Hospital, Jena, Germany
| | - Amol Kolte
- Center for Sepsis Control and Care, University Hospital, Jena, Germany
| | - Daniela Röll
- Center for Sepsis Control and Care, University Hospital, Jena, Germany
| | - Wolfram Osen
- Research Group GMP & T Cell Therapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan B. Eichmüller
- Research Group GMP & T Cell Therapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rainer König
- Center for Sepsis Control and Care, University Hospital, Jena, Germany
| |
Collapse
|
13
|
Mathematical Modeling of the Function of Warburg Effect in Tumor Microenvironment. Sci Rep 2018; 8:8903. [PMID: 29891989 PMCID: PMC5995918 DOI: 10.1038/s41598-018-27303-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/22/2018] [Indexed: 12/21/2022] Open
Abstract
Tumor cells are known for their increased glucose uptake rates even in the presence of abundant oxygen. This altered metabolic shift towards aerobic glycolysis is known as the Warburg effect. Despite an enormous number of studies conducted on the causes and consequences of this phenomenon, little is known about how the Warburg effect affects tumor growth and progression. We developed a multi-scale computational model to explore the detailed effects of glucose metabolism of cancer cells on tumorigenesis behavior in a tumor microenvironment. Despite glycolytic tumors, the growth of non-glycolytic tumor is dependent on a congruous morphology without markedly interfering with glucose and acid concentrations of the tumor microenvironment. Upregulated glucose metabolism helped to retain oxygen levels above the hypoxic limit during early tumor growth, and thus obviated the need for neo-vasculature recruitment. Importantly, simulating growth of tumors within a range of glucose uptake rates showed that there exists a spectrum of glucose uptake rates within which the tumor is most aggressive, i.e. it can exert maximal acidic stress on its microenvironment and most efficiently compete for glucose supplies. Moreover, within the same spectrum, the tumor could grow to invasive morphologies while its size did not markedly shrink.
Collapse
|
14
|
Zhou J, Li C, Yao W, Alsiddig MC, Huo L, Liu H, Miao YL. Hypoxia-inducible factor-1α-dependent autophagy plays a role in glycolysis switch in mouse granulosa cells†. Biol Reprod 2018; 99:308-318. [DOI: 10.1093/biolre/ioy061] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/09/2018] [Indexed: 12/11/2022] Open
Affiliation(s)
- Jilong Zhou
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Chengyu Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Wang Yao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - M C Alsiddig
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Lijun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Honglin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yi-Liang Miao
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
15
|
Yu L, Chen X, Wang L, Chen S. The sweet trap in tumors: aerobic glycolysis and potential targets for therapy. Oncotarget 2018; 7:38908-38926. [PMID: 26918353 PMCID: PMC5122440 DOI: 10.18632/oncotarget.7676] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/16/2016] [Indexed: 12/11/2022] Open
Abstract
Metabolic change is one of the hallmarks of tumor, which has recently attracted a great of attention. One of main metabolic characteristics of tumor cells is the high level of glycolysis even in the presence of oxygen, known as aerobic glycolysis or the Warburg effect. The energy production is much less in glycolysis pathway than that in tricarboxylic acid cycle. The molecular mechanism of a high glycolytic flux in tumor cells remains unclear. A large amount of intermediates derived from glycolytic pathway could meet the biosynthetic requirements of the proliferating cells. Hypoxia-induced HIF-1α, PI3K-Akt-mTOR signaling pathway, and many other factors, such as oncogene activation and tumor suppressor inactivation, drive cancer cells to favor glycolysis over mitochondrial oxidation. Several small molecules targeting glycolytic pathway exhibit promising anticancer activity both in vitro and in vivo. In this review, we will focus on the latest progress in the regulation of aerobic glycolysis and discuss the potential targets for the tumor therapy.
Collapse
Affiliation(s)
- Li Yu
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
| | - Xun Chen
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, P.R. China
| | - Liantang Wang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
| | - Shangwu Chen
- State Key Laboratory for Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
| |
Collapse
|
16
|
Fernandez-de-Cossio-Diaz J, De Martino A, Mulet R. Microenvironmental cooperation promotes early spread and bistability of a Warburg-like phenotype. Sci Rep 2017; 7:3103. [PMID: 28596605 PMCID: PMC5465218 DOI: 10.1038/s41598-017-03342-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/27/2017] [Indexed: 12/31/2022] Open
Abstract
We introduce an in silico model for the initial spread of an aberrant phenotype with Warburg-like overflow metabolism within a healthy homeostatic tissue in contact with a nutrient reservoir (the blood), aimed at characterizing the role of the microenvironment for aberrant growth. Accounting for cellular metabolic activity, competition for nutrients, spatial diffusion and their feedbacks on aberrant replication and death rates, we obtain a phase portrait where distinct asymptotic whole-tissue states are found upon varying the tissue-blood turnover rate and the level of blood-borne primary nutrient. Over a broad range of parameters, the spreading dynamics is bistable as random fluctuations can impact the final state of the tissue. Such a behaviour turns out to be linked to the re-cycling of overflow products by non-aberrant cells. Quantitative insight on the overall emerging picture is provided by a spatially homogeneous version of the model.
Collapse
Affiliation(s)
| | - Andrea De Martino
- Soft and Living Matter Lab, Istituto di Nanotecnologia (CNR-NANOTEC), Rome, Italy.
- Human Genetics Foundation, Turin, Italy.
| | - Roberto Mulet
- Group of Complex Systems and Statistical Physics, Department of Theoretical Physics, Physics Faculty, University of Havana, La Habana, Cuba
| |
Collapse
|
17
|
Abstract
One of the fundamental traits of immune cells in rheumatoid arthritis (RA) is their ability to proliferate, a property shared with the joint-resident cells that form the synovial pannus. The building of biomass imposes high demands for energy and biosynthetic precursors, implicating metabolic control as a basic disease mechanism. During preclinical RA, when autoreactive T cells expand and immunological tolerance is broken, the main sites of disease are the secondary lymphoid tissues. Naive CD4+ T cells from patients with RA have a distinct metabolic signature, characterized by dampened glycolysis, low ATP levels and enhanced shunting of glucose into the pentose phosphate pathway. Equipped with high levels of NADPH and depleted of intracellular reactive oxygen species, such T cells hyperproliferate and acquire proinflammatory effector functions. During clinical RA, immune cells coexist with stromal cells in the acidic milieu of the inflamed joint. This microenvironment is rich in metabolic intermediates that are released into the extracellular space to shape cell-cell communication and the functional activity of tissue-resident cells. Increasing awareness of how metabolites regulate signalling pathways, guide post-translational modifications and condition the tissue microenvironment will help to connect environmental factors with the pathogenic behaviour of T cells in RA.
Collapse
|
18
|
Papegay B, Stadler M, Nuyens V, Kruys V, Boogaerts JG, Vamecq J. Short fasting does not protect perfused ex vivo rat liver against ischemia-reperfusion. On the importance of a minimal cell energy charge. Nutrition 2017; 35:21-27. [DOI: 10.1016/j.nut.2016.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 09/28/2016] [Accepted: 10/01/2016] [Indexed: 01/27/2023]
|