1
|
Kiyama R, Wada-Kiyama Y. Estrogenic actions of alkaloids: Structural characteristics and molecular mechanisms. Biochem Pharmacol 2024; 232:116645. [PMID: 39577707 DOI: 10.1016/j.bcp.2024.116645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/29/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
This comprehensive review of estrogenic alkaloids reveals that although the number is small, they exhibit a wide range of structures, biosynthesis pathways, mechanisms of action, and applications. Estrogenic alkaloids belong to different classes, different biosynthetic pathways, different estrogenic actions (estrogenic/synergistic, anti-estrogenic/antagonistic, biphasic, and acting as a selective estrogen receptor modulator or SERM), different receptor-initiated signaling pathways, different ways of modulations of estrogen action, and different applications. The future applications of estrogenic alkaloids, such as those for diagnostics, drug development, and therapeutics, are considered with the help of new databases containing comprehensive descriptions of their relationships and more elaborate artificial intelligence-based prediction technologies. Structure-activity studies reveal the significance of the nitrogen atom for their structural and functional diversity, which may help support their broader applications. Based on the summary of previous reports, estrogenic alkaloids have significant potential for future applications.
Collapse
Affiliation(s)
- Ryoiti Kiyama
- Dept. of Life Science, Faculty of Life Science, Kyushu Sangyo Univ. 2-3-1 Matsukadai, Higashi-ku, Fukuoka 813-8503, Japan.
| | - Yuko Wada-Kiyama
- Department of Physiology, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan
| |
Collapse
|
2
|
de Medina P, Ayadi S, Diallo K, Buñay J, Pucheu L, Soulès R, Record M, Brillouet S, Vija L, Courbon F, Silvente-Poirot S, Poirot M. The Cholesterol-5,6-Epoxide Hydrolase: A Metabolic Checkpoint in Several Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:149-161. [PMID: 38036879 DOI: 10.1007/978-3-031-43883-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Cholesterol-5,6-epoxides (5,6-ECs) are oxysterols (OS) that have been linked to several pathologies including cancers and neurodegenerative diseases. 5,6-ECs can be produced from cholesterol by several mechanisms including reactive oxygen species, lipoperoxidation, and cytochrome P450 enzymes. 5,6-ECs exist as two different diastereoisomers: 5,6α-EC and 5,6β-EC with different metabolic fates. They can be produced as a mixture or as single products of epoxidation. The epoxide ring of 5,6α-EC and 5,6β-EC is very stable and 5,6-ECs are prone to hydration by the cholesterol-5,6-epoxide hydrolase (ChEH) to give cholestane-3β,5α,6β-triol, which can be further oxidized into oncosterone. 5,6α-EC is prone to chemical and enzymatic conjugation reactions leading to bioactive compounds such as dendrogenins, highlighting the existence of a new metabolic branch on the cholesterol pathway centered on 5,6α-EC. We will summarize in this chapter current knowledge on this pathway which is controlled by the ChEH.
Collapse
Affiliation(s)
- Philippe de Medina
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV: "Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France
- Equipe labellisée par la Ligue Nationale contre le Cancer, Toulouse, France
- French Network for Nutrition Physical Activity and Cancer Research (NACRe Network), Jouy-en-Josas, France
| | - Silia Ayadi
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV: "Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France
- Equipe labellisée par la Ligue Nationale contre le Cancer, Toulouse, France
- French Network for Nutrition Physical Activity and Cancer Research (NACRe Network), Jouy-en-Josas, France
| | - Khadijetou Diallo
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV: "Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France
- Equipe labellisée par la Ligue Nationale contre le Cancer, Toulouse, France
- French Network for Nutrition Physical Activity and Cancer Research (NACRe Network), Jouy-en-Josas, France
| | - Julio Buñay
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV: "Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France
- Equipe labellisée par la Ligue Nationale contre le Cancer, Toulouse, France
- French Network for Nutrition Physical Activity and Cancer Research (NACRe Network), Jouy-en-Josas, France
| | - Laly Pucheu
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV: "Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France
- Equipe labellisée par la Ligue Nationale contre le Cancer, Toulouse, France
- French Network for Nutrition Physical Activity and Cancer Research (NACRe Network), Jouy-en-Josas, France
| | - Regis Soulès
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV: "Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France
- Equipe labellisée par la Ligue Nationale contre le Cancer, Toulouse, France
- French Network for Nutrition Physical Activity and Cancer Research (NACRe Network), Jouy-en-Josas, France
| | - Michel Record
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV: "Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France
- Equipe labellisée par la Ligue Nationale contre le Cancer, Toulouse, France
- French Network for Nutrition Physical Activity and Cancer Research (NACRe Network), Jouy-en-Josas, France
| | - Severine Brillouet
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV: "Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France
- Equipe labellisée par la Ligue Nationale contre le Cancer, Toulouse, France
- French Network for Nutrition Physical Activity and Cancer Research (NACRe Network), Jouy-en-Josas, France
- Department of Radiopharmacy, Institut Universitaire du Cancer Toulouse - Oncopole, Toulouse, France
| | - Lavinia Vija
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV: "Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France
- Equipe labellisée par la Ligue Nationale contre le Cancer, Toulouse, France
- French Network for Nutrition Physical Activity and Cancer Research (NACRe Network), Jouy-en-Josas, France
- Department of Medical Imaging, Institut Universitaire du Cancer Toulouse - Oncopole, Toulouse, France
| | - Frederic Courbon
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV: "Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France
- Equipe labellisée par la Ligue Nationale contre le Cancer, Toulouse, France
- French Network for Nutrition Physical Activity and Cancer Research (NACRe Network), Jouy-en-Josas, France
- Department of Medical Imaging, Institut Universitaire du Cancer Toulouse - Oncopole, Toulouse, France
| | - Sandrine Silvente-Poirot
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV: "Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France
- Equipe labellisée par la Ligue Nationale contre le Cancer, Toulouse, France
- French Network for Nutrition Physical Activity and Cancer Research (NACRe Network), Jouy-en-Josas, France
| | - Marc Poirot
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV: "Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France.
- Equipe labellisée par la Ligue Nationale contre le Cancer, Toulouse, France.
- French Network for Nutrition Physical Activity and Cancer Research (NACRe Network), Jouy-en-Josas, France.
| |
Collapse
|
3
|
Ben Hassen C, Goupille C, Vigor C, Durand T, Guéraud F, Silvente-Poirot S, Poirot M, Frank PG. Is cholesterol a risk factor for breast cancer incidence and outcome? J Steroid Biochem Mol Biol 2023; 232:106346. [PMID: 37321513 DOI: 10.1016/j.jsbmb.2023.106346] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
Cholesterol plays important roles in many physiological processes, including cell membrane structure and function, hormone synthesis, and the regulation of cellular homeostasis. The role of cholesterol in breast cancer is complex, and some studies have suggested that elevated cholesterol levels may be associated with an increased risk of developing breast cancer, while others have found no significant association. On the other hand, other studies have shown that, for total cholesterol and plasma HDL-associated cholesterol levels, there was inverse association with breast cancer risk. One possible mechanism by which cholesterol may contribute to breast cancer risk is as a key precursor of estrogen. Other potential mechanisms by which cholesterol may contribute to breast cancer risk include its role in inflammation and oxidative stress, which have been linked to cancer progression. Cholesterol has also been shown to play a role in signaling pathways regulating the growth and proliferation of cancer cells. In addition, recent studies have shown that cholesterol metabolism can generate tumor promoters such as cholesteryl esters, oncosterone, 27-hydroxycholesterol but also tumor suppressor metabolites such as dendrogenin A. This review summarizes some of the most important clinical studies that have evaluated the role of cholesterol or its derivatives in breast cancer. It also addresses the role of cholesterol and its derivatives at the cellular level.
Collapse
Affiliation(s)
| | - Caroline Goupille
- INSERM N2C UMR1069, University of Tours, 37032 Tours, France; Department of Gynecology, CHRU Hôpital Bretonneau, boulevard Tonnellé, 37044 Tours, France
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron, IBMM, Pôle Chimie Balard Recherche, Université de Montpellier, CNRS, ENSCM, 34293 CEDEX 5 Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, IBMM, Pôle Chimie Balard Recherche, Université de Montpellier, CNRS, ENSCM, 34293 CEDEX 5 Montpellier, France
| | - Françoise Guéraud
- INRAE, Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Sandrine Silvente-Poirot
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV:"Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France; Equipe labellisée par la Ligue Nationale contre le Cancer, France
| | - Marc Poirot
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV:"Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France; Equipe labellisée par la Ligue Nationale contre le Cancer, France
| | - Philippe G Frank
- INSERM N2C UMR1069, University of Tours, 37032 Tours, France; SGS Health and Nutrition, Saint Benoît, France.
| |
Collapse
|
4
|
Guidara W, Messedi M, Naifar M, Maalej M, Khrouf W, Grayaa S, Maalej M, Bonnefont-Rousselot D, Lamari F, Ayadi F. Plasma oxysterols in drug-free patients with schizophrenia. J Steroid Biochem Mol Biol 2022; 221:106123. [PMID: 35550868 DOI: 10.1016/j.jsbmb.2022.106123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 11/15/2022]
Abstract
Evidence from clinical, genetic, and medical studies has shown the neuronal developmental disorder aspect of schizophrenia (SZ). Whereas oxysterols are vital factors in neurodevelopment, it is still unknown whether they are involved in the pathophysiology of SZ. The current study aims to explore the profile of oxysterols in plasma, ratio to total cholesterol (Tchol) and the association with clinical factors in patients with SZ. Forty men diagnosed with SZ and forty healthy controls matched for age and sex were included in the study. The ratios of cholestane-3β,5α,6β-triol, 27-hydroxycholesterol (27-OHC) and Cholestanol to Tchol increased in the schizophrenic group compared to controls. However, levels of 24S-hydroxycholesterol (24-OHC) were not significantly different between patients and controls. For the SZ patients, the plasma 24-OHC levels were positively correlated with the positive and negative syndrome total scores (PANSS) but negatively correlated with the Montreal Cognitive Assessment scores (MOCA). Moreover, the ratio Cholestanol to Tchol was negatively correlated with MOCA scores and positively correlated with PANSS general. The binary logistic regression analysis revealed that the ratio Cholestane-3β,5α,6β-triol/TChol could be considered as an independent risk factor for SZ. On the other hand, the receiver's operating characteristics analysis corresponding to potential biomarkers on SZ showed Areas Under the Curve (AUCs) of 82.1%; 69.7% and 77.6% for the ratio of Cholestane-3β,5α,6β-triol/TChol, 27-OHC/TChol and Cholestanol/TChol respectively. The relevance of Cholestane-3β,5α,6β-triol, 27-OHC and Cholestanol assays as biomarkers of this disease deserves further investigation.
Collapse
Affiliation(s)
- Wassim Guidara
- Research Laboratory "Molecular Basis of Human Diseases", LR19ES13, Sfax Medicine School, University of Sfax, Tunisia.
| | - Meriam Messedi
- Research Laboratory "Molecular Basis of Human Diseases", LR19ES13, Sfax Medicine School, University of Sfax, Tunisia
| | - Manel Naifar
- Research Laboratory "Molecular Basis of Human Diseases", LR19ES13, Sfax Medicine School, University of Sfax, Tunisia; Biochemistry Laboratory, Habib Bourguiba Hospital, Sfax, Tunisia
| | - Manel Maalej
- Psychiatry C-department, Hédi Chaker Hospital, Sfax, Tunisia
| | - Walid Khrouf
- Service de Biochimie Métabolique, AP-HP.Sorbonne Université, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, DMU BioGeM, F-75013 Paris, France
| | - Sahar Grayaa
- Research Laboratory "Molecular Basis of Human Diseases", LR19ES13, Sfax Medicine School, University of Sfax, Tunisia
| | - Mohamed Maalej
- Psychiatry C-department, Hédi Chaker Hospital, Sfax, Tunisia
| | - Dominique Bonnefont-Rousselot
- Service de Biochimie Métabolique, AP-HP.Sorbonne Université, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, DMU BioGeM, F-75013 Paris, France; Université de Paris, CNRS, Inserm, UTCBS, F-75006 Paris, France
| | - Foudil Lamari
- Service de Biochimie Métabolique, AP-HP.Sorbonne Université, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, DMU BioGeM, F-75013 Paris, France
| | - Fatma Ayadi
- Research Laboratory "Molecular Basis of Human Diseases", LR19ES13, Sfax Medicine School, University of Sfax, Tunisia; Biochemistry Laboratory, Habib Bourguiba Hospital, Sfax, Tunisia
| |
Collapse
|
5
|
Oxysterols are potential physiological regulators of ageing. Ageing Res Rev 2022; 77:101615. [PMID: 35351610 DOI: 10.1016/j.arr.2022.101615] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/18/2022] [Accepted: 03/24/2022] [Indexed: 12/24/2022]
Abstract
Delaying and even reversing ageing is a major public health challenge with a tremendous potential to postpone a plethora of diseases including cancer, metabolic syndromes and neurodegenerative disorders. A better understanding of ageing as well as the development of innovative anti-ageing strategies are therefore an increasingly important field of research. Several biological processes including inflammation, proteostasis, epigenetic, oxidative stress, stem cell exhaustion, senescence and stress adaptive response have been reported for their key role in ageing. In this review, we describe the relationships that have been established between cholesterol homeostasis, in particular at the level of oxysterols, and ageing. Initially considered as harmful pro-inflammatory and cytotoxic metabolites, oxysterols are currently emerging as an expanding family of fine regulators of various biological processes involved in ageing. Indeed, depending of their chemical structure and their concentration, oxysterols exhibit deleterious or beneficial effects on inflammation, oxidative stress and cell survival. In addition, stem cell differentiation, epigenetics, cellular senescence and proteostasis are also modulated by oxysterols. Altogether, these data support the fact that ageing is influenced by an oxysterol profile. Further studies are thus required to explore more deeply the impact of the "oxysterome" on ageing and therefore this cholesterol metabolic pathway constitutes a promising target for future anti-ageing interventions.
Collapse
|
6
|
Huang Y, Li G, Hong C, Zheng X, Yu H, Zhang Y. Potential of Steroidal Alkaloids in Cancer: Perspective Insight Into Structure-Activity Relationships. Front Oncol 2021; 11:733369. [PMID: 34616681 PMCID: PMC8489381 DOI: 10.3389/fonc.2021.733369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/12/2021] [Indexed: 11/13/2022] Open
Abstract
Steroidal alkaloids contain both steroidal and alkaloid properties in terms of chemical properties and pharmacological activities. Due to outstanding biological activities such as alkaloids and similar pharmacological effects to other steroids, steroidal alkaloids have received special attention in anticancer activity recently. Substituted groups in chemical structure play markedly important roles in biological activities. Therefore, the effective way to obtain lead compounds quickly is structural modification, which is guided by structure-activity relationships (SARs). This review presents the SAR of steroidal alkaloids and anticancer, including pregnane alkaloids, cyclopregnane alkaloids, cholestane alkaloids, C-nor-D-homosteroidal alkaloids, and bis-steroidal pyrazine. A summary of SAR can powerfully help to design and synthesize more lead compounds.
Collapse
Affiliation(s)
- Ying Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Gen Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chong Hong
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Xia Zheng
- The Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Haiyang Yu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan Zhang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
7
|
Young J, Bell S, Qian Y, Hyman C, Berryman DE. Mouse models of growth hormone insensitivity. Rev Endocr Metab Disord 2021; 22:17-29. [PMID: 33037595 PMCID: PMC7979446 DOI: 10.1007/s11154-020-09600-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/01/2020] [Indexed: 11/28/2022]
Abstract
Growth hormone (GH) induces pleiotropic effects on growth and metabolism via binding and subsequent activation of the growth hormone receptor (GHR) and its downstream signaling pathways. Growth hormone insensitivity (GHI) describes a group of disorders in which there is resistance to the action of GH and resultant insulin-like growth factor I (IGF-I) deficiency. GHI is commonly due to genetic disorders of the GH receptor causing GH receptor deficiency (e.g. Laron Syndrome (LS)), decreased activation of GHR, or defects in post-receptor signaling molecules. Genetically altered mouse lines have been invaluable to better understand the physiological impact of GHI due to the ability to do invasive and longitudinal measures of metabolism, growth, and health on a whole animal or in individual tissues/cells. In the current review, the phenotype of mouse lines with GHI will be reviewed. Mouse lines to be discussed include: 1) GHR-/- mice with a gene disruption in the GHR that results in no functional GHR throughout life, also referred to as the Laron mouse, 2) mice with temporal loss of GHR (aGHRKO) starting at 6 weeks of age, 3) mice transgenic for a GHR antagonist (GHA mice), 4) mice with GHI in select tissues or cells generated via Cre-lox or related technology, and 5) assorted mice with defects in post-receptor signaling molecules. Collectively, these mouse lines have revealed an intriguing role of GH action in health, disease, and aging.
Collapse
Affiliation(s)
- Jonathan Young
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, 45701, USA
- Edison Biotechnology Institute, Konneker Research Labs, Ohio University, Athens, OH, USA
| | - Stephen Bell
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, 45701, USA
- Edison Biotechnology Institute, Konneker Research Labs, Ohio University, Athens, OH, USA
| | - Yanrong Qian
- Edison Biotechnology Institute, Konneker Research Labs, Ohio University, Athens, OH, USA
| | - Caroline Hyman
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, 45701, USA
| | - Darlene E Berryman
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, 45701, USA.
- Edison Biotechnology Institute, Konneker Research Labs, Ohio University, Athens, OH, USA.
| |
Collapse
|
8
|
de Medina P, Diallo K, Huc-Claustre E, Attia M, Soulès R, Silvente-Poirot S, Poirot M. The 5,6-epoxycholesterol metabolic pathway in breast cancer: Emergence of new pharmacological targets. Br J Pharmacol 2020; 178:3248-3260. [PMID: 32696532 DOI: 10.1111/bph.15205] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022] Open
Abstract
Metabolic pathways have emerged as cornerstones in carcinogenic deregulation providing new therapeutic strategies for cancer management. Recently, a new branch of cholesterol metabolism has been discovered involving the biochemical transformation of 5,6-epoxycholesterols (5,6-ECs). The 5,6-ECs are metabolized in breast cancers to the tumour promoter oncosterone whereas, in normal breast tissue, they are metabolized to the tumour suppressor metabolite, dendrogenin A (DDA). Blocking the mitogenic and invasive potential of oncosterone will present new opportunities for breast cancer treatment. The reactivation of DDA biosynthesis, or its use as a drug, represents promising therapeutic approaches such as DDA-deficiency complementation, activation of breast cancer cell re-differentiation and breast cancer chemoprevention. This review presents current knowledge of the 5,6-EC metabolic pathway in breast cancer, focusing on the 5,6-EC metabolic enzymes ChEH and HSD11B2 and on 5,6-EC metabolite targets, the oxysterol receptor (LXRβ) and the glucocorticoid receptor. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.
Collapse
Affiliation(s)
- Philippe de Medina
- UMR-1037, Cancer Research Center of Toulouse (CRCT), Team "Cholesterol Metabolism and Therapeutic Innovations"; Equipe labellisée par la Ligue Nationale Contre le Cancer, The French Network for Nutrition and Cancer Research (NACRe Network), INSERM-Université de Toulouse, Toulouse, France
| | - Khadijetou Diallo
- UMR-1037, Cancer Research Center of Toulouse (CRCT), Team "Cholesterol Metabolism and Therapeutic Innovations"; Equipe labellisée par la Ligue Nationale Contre le Cancer, The French Network for Nutrition and Cancer Research (NACRe Network), INSERM-Université de Toulouse, Toulouse, France
| | - Emilie Huc-Claustre
- UMR-1037, Cancer Research Center of Toulouse (CRCT), Team "Cholesterol Metabolism and Therapeutic Innovations"; Equipe labellisée par la Ligue Nationale Contre le Cancer, The French Network for Nutrition and Cancer Research (NACRe Network), INSERM-Université de Toulouse, Toulouse, France
| | - Mehdi Attia
- UMR-1037, Cancer Research Center of Toulouse (CRCT), Team "Cholesterol Metabolism and Therapeutic Innovations"; Equipe labellisée par la Ligue Nationale Contre le Cancer, The French Network for Nutrition and Cancer Research (NACRe Network), INSERM-Université de Toulouse, Toulouse, France
| | - Régis Soulès
- UMR-1037, Cancer Research Center of Toulouse (CRCT), Team "Cholesterol Metabolism and Therapeutic Innovations"; Equipe labellisée par la Ligue Nationale Contre le Cancer, The French Network for Nutrition and Cancer Research (NACRe Network), INSERM-Université de Toulouse, Toulouse, France
| | - Sandrine Silvente-Poirot
- UMR-1037, Cancer Research Center of Toulouse (CRCT), Team "Cholesterol Metabolism and Therapeutic Innovations"; Equipe labellisée par la Ligue Nationale Contre le Cancer, The French Network for Nutrition and Cancer Research (NACRe Network), INSERM-Université de Toulouse, Toulouse, France
| | - Marc Poirot
- UMR-1037, Cancer Research Center of Toulouse (CRCT), Team "Cholesterol Metabolism and Therapeutic Innovations"; Equipe labellisée par la Ligue Nationale Contre le Cancer, The French Network for Nutrition and Cancer Research (NACRe Network), INSERM-Université de Toulouse, Toulouse, France
| |
Collapse
|
9
|
Abdallah ME, El-Readi MZ, Althubiti MA, Almaimani RA, Ismail AM, Idris S, Refaat B, Almalki WH, Babakr AT, Mukhtar MH, Abdalla AN, Idris OF. Tamoxifen and the PI3K Inhibitor: LY294002 Synergistically Induce Apoptosis and Cell Cycle Arrest in Breast Cancer MCF-7 Cells. Molecules 2020; 25:E3355. [PMID: 32722075 PMCID: PMC7436112 DOI: 10.3390/molecules25153355] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/18/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is considered as one of the most aggressive types of cancer. Acquired therapeutic resistance is the major cause of chemotherapy failure in breast cancer patients. To overcome this resistance and to improve the efficacy of treatment, drug combination is employed as a promising approach for this purpose. The synergistic cytotoxic, apoptosis inducing, and cell cycle effects of the combination of LY294002 (LY), a phosphatidylinositide-3-kinase (PI3K) inhibitor, with the traditional cytotoxic anti-estrogen drug tamoxifen (TAM) in breast cancer cells (MCF-7) were investigated. LY and TAM exhibited potent cytotoxic effect on MCF-7 cells with IC50 values 0.87 µM and 1.02 µM. The combination of non-toxic concentration of LY and TAM showed highly significant synergistic interaction as observed from isobologram (IC50: 0.17 µM, combination index: 0.18, colony formation: 9.01%) compared to untreated control. The percentage of early/late apoptosis significantly increased after treatment of MCF-7 cells with LY and TAM combination: 40.3%/28.3% (p < 0.001), compared to LY single treatment (19.8%/11.4%) and TAM single treatment (32.4%/5.9%). In addition, LY and TAM combination induced the apoptotic genes Caspase-3, Caspase-7, and p53, as well as p21 as cell cycle promotor, and significantly downregulated the anti-apoptotic genes Bcl-2 and survivin. The cell cycle assay revealed that the combination induced apoptosis by increasing the pre-G1: 28.3% compared to 1.6% of control. pAKT and Cyclin D1 protein expressions were significantly more downregulated by the combination treatment compared to the single drug treatment. The results suggested that the synergistic cytotoxic effect of LY and TAM is achieved by the induction of apoptosis and cell cycle arrest through cyclin D1, pAKT, caspases, and Bcl-2 signaling pathways.
Collapse
Affiliation(s)
- Mohamed E. Abdallah
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (M.E.A.); (M.A.A.); (R.A.A.); (A.T.B.); (M.H.M.)
| | - Mahmoud Zaki El-Readi
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (M.E.A.); (M.A.A.); (R.A.A.); (A.T.B.); (M.H.M.)
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Mohammad Ahmad Althubiti
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (M.E.A.); (M.A.A.); (R.A.A.); (A.T.B.); (M.H.M.)
| | - Riyad Adnan Almaimani
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (M.E.A.); (M.A.A.); (R.A.A.); (A.T.B.); (M.H.M.)
| | - Amar Mohamed Ismail
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, Al-Neelain University, Khartoum 11121, Sudan; (A.M.I.); (O.F.I.)
| | - Shakir Idris
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 7607, Saudi Arabia; (S.I.); (B.R.)
| | - Bassem Refaat
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 7607, Saudi Arabia; (S.I.); (B.R.)
| | - Waleed Hassan Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Abdullatif Taha Babakr
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (M.E.A.); (M.A.A.); (R.A.A.); (A.T.B.); (M.H.M.)
| | - Mohammed H. Mukhtar
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (M.E.A.); (M.A.A.); (R.A.A.); (A.T.B.); (M.H.M.)
| | - Ashraf N. Abdalla
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
- Department of Pharmacology and Toxicology, Medicinal and Aromatic Plants Research Institute, National Center for Research, Khartoum 2404, Sudan
| | - Omer Fadul Idris
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, Al-Neelain University, Khartoum 11121, Sudan; (A.M.I.); (O.F.I.)
| |
Collapse
|
10
|
Reactive Sterol Electrophiles: Mechanisms of Formation and Reactions with Proteins and Amino Acid Nucleophiles. CHEMISTRY (BASEL, SWITZERLAND) 2020; 2:390-417. [PMID: 35372835 PMCID: PMC8976181 DOI: 10.3390/chemistry2020025] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Radical-mediated lipid oxidation and the formation of lipid hydroperoxides has been a focal point in the investigation of a number of human pathologies. Lipid peroxidation has long been linked to the inflammatory response and more recently, has been identified as the central tenet of the oxidative cell death mechanism known as ferroptosis. The formation of lipid electrophile-protein adducts has been associated with many of the disorders that involve perturbations of the cellular redox status, but the identities of adducted proteins and the effects of adduction on protein function are mostly unknown. Both cholesterol and 7-dehydrocholesterol (7-DHC), which is the immediate biosynthetic precursor to cholesterol, are oxidizable by species such as ozone and oxygen-centered free radicals. Product mixtures from radical chain processes are particularly complex, with recent studies having expanded the sets of electrophilic compounds formed. Here, we describe recent developments related to the formation of sterol-derived electrophiles and the adduction of these electrophiles to proteins. A framework for understanding sterol peroxidation mechanisms, which has significantly advanced in recent years, as well as the methods for the study of sterol electrophile-protein adduction, are presented in this review.
Collapse
|
11
|
Soulès R, Audouard-Combe F, Huc-Claustre E, de Medina P, Rives A, Chatelut E, Dalenc F, Franchet C, Silvente-Poirot S, Poirot M, Allal B. A fast UPLC-HILIC method for an accurate quantification of dendrogenin A in human tissues. J Steroid Biochem Mol Biol 2019; 194:105447. [PMID: 31415823 DOI: 10.1016/j.jsbmb.2019.105447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/05/2019] [Accepted: 08/11/2019] [Indexed: 11/20/2022]
Abstract
Dendrogenin A (DDA) is a newly-discovered steroidal alkaloid, which remains to date the first ever found in mammals. DDA is a cholesterol metabolites that induces cancer cell differentiation and death in vitro and in vivo, and thus behave like a tumor suppressor metabolite. Preliminary studies performed on 10 patients with estrogen receptor positive breast cancers (ER(+)BC) showed a strong decrease in DDA levels between normal matched tissue and tumors. This suggests that a deregulation on DDA metabolism is associated with breast carcinogenesis. To further investigate DDA metabolism on large cohorts of patients we have developed an ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS) procedure for the quantification of DDA in liquid and in solid tissues. This method enabled the identification of DDA analogues such as its geometric isomer C17 and dendrogenin B (C26) in human samples showing that other 5,6α-epoxycholesterol conjugation products with biogenic amines exist as endogenous metabolites . We report here the first complete method of quantification of DDA in liquid and solid tissues using hydrophilic interaction liquid chromatography (HILIC). Two different methods of extraction using either a Bligh and Dyer organic extraction or protein precipitation were successfully applied to quantify DDA in solid and liquid tissues. The protein precipitation method was the fastest. The fact that this method is automatable opens up possibilities to study DDA metabolism in large cohorts of patients.
Collapse
Affiliation(s)
- Régis Soulès
- Team « Cholesterol metabolism and therapeutic innovations », Cancer Research Center of Toulouse, UMR 1037 INSERM-University of Toulouse, Toulouse, France; Equipe labellisée par la Ligue Nationale Contre le Cancer, France
| | | | - Emilie Huc-Claustre
- Team « Cholesterol metabolism and therapeutic innovations », Cancer Research Center of Toulouse, UMR 1037 INSERM-University of Toulouse, Toulouse, France; Equipe labellisée par la Ligue Nationale Contre le Cancer, France
| | - Philippe de Medina
- Team « Cholesterol metabolism and therapeutic innovations », Cancer Research Center of Toulouse, UMR 1037 INSERM-University of Toulouse, Toulouse, France; Equipe labellisée par la Ligue Nationale Contre le Cancer, France
| | - Arnaud Rives
- Affichem, Toulouse, France; Dendrogenix, Liège, Belgium
| | - Etienne Chatelut
- Team "Dose individualization of anticancer drugs », Cancer Research Center of Toulouse, UMR 1037 INSERM-University of Toulouse, Toulouse, France; Institut Claudius Regaud, Institut Universitaire du Cancer-Oncopole, Toulouse, France
| | - Florence Dalenc
- Team « Cholesterol metabolism and therapeutic innovations », Cancer Research Center of Toulouse, UMR 1037 INSERM-University of Toulouse, Toulouse, France; Equipe labellisée par la Ligue Nationale Contre le Cancer, France; Institut Claudius Regaud, Institut Universitaire du Cancer-Oncopole, Toulouse, France
| | - Camille Franchet
- Service d'Anatomo-Pathologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Sandrine Silvente-Poirot
- Team « Cholesterol metabolism and therapeutic innovations », Cancer Research Center of Toulouse, UMR 1037 INSERM-University of Toulouse, Toulouse, France; Equipe labellisée par la Ligue Nationale Contre le Cancer, France
| | - Marc Poirot
- Team « Cholesterol metabolism and therapeutic innovations », Cancer Research Center of Toulouse, UMR 1037 INSERM-University of Toulouse, Toulouse, France; Equipe labellisée par la Ligue Nationale Contre le Cancer, France.
| | - Ben Allal
- Team "Dose individualization of anticancer drugs », Cancer Research Center of Toulouse, UMR 1037 INSERM-University of Toulouse, Toulouse, France; Institut Claudius Regaud, Institut Universitaire du Cancer-Oncopole, Toulouse, France.
| |
Collapse
|
12
|
Bauriaud-Mallet M, Vija-Racaru L, Brillouet S, Mallinger A, de Medina P, Rives A, Payre B, Poirot M, Courbon F, Silvente-Poirot S. The cholesterol-derived metabolite dendrogenin A functionally reprograms breast adenocarcinoma and undifferentiated thyroid cancer cells. J Steroid Biochem Mol Biol 2019; 192:105390. [PMID: 31170473 DOI: 10.1016/j.jsbmb.2019.105390] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/29/2019] [Accepted: 06/02/2019] [Indexed: 01/05/2023]
Abstract
Dendrogenin A (DDA) is a tumor suppressor mammalian cholesterol-derived metabolite and a new class of ligand of the Liver X receptor (LXR), which displays tumor cell differentiation. In human MCF7 breast adenocarcinoma cells, DDA-induced cell differentiation was associated with an increased accumulation of neutral lipids and proteins found in milk indicating that DDA re-activates some functions of lactating cells. Active iodide transport occurs in the normal lactating mammary cells through the sodium/iodide symporter (NIS) and iodide (I) is secreted into milk to be used by the nursing newborn for thyroid hormones biosynthesis. In the present study, we assessed whether DDA may induce other characteristic of lactating cells such as NIS expression and iodine uptake in MCF7 breast cancer cells and extended this study to the papillary B-CPAP and undifferentiated anaplastic 8505c thyroid cancer cells. Moreover, we evaluated DDA impact on the expression of thyroid specific proteins involved in thyroid hormone biogenesis. We report here that DDA induces NIS expression in MCF7 cells and significantly increases the uptake of 131-I by acting through the LXR. In addition, DDA induces phenotypic, molecular and functional characteristics of redifferentiation in the two human thyroid carcinoma cell lines and the uptake of 131-I in the undifferentiated 8505c cells was associated with a strong expression of all the specific proteins involved in thyroid hormone biosynthesis, TSH receptor, thyroperoxidase and thyroglobulin. 131-I incorporation in the 8505c cells was stimulated by DDA as well as by the synthetic LXR ligand, GW3965. Together these data show that the re-differentiation of breast and thyroid cancer cells by DDA, is associated with the recovery of functional NIS expression and involves an LXR-dependent mechanism. These results open new avenues of research for the diagnosis of thyroid cancers as well as the development of new therapeutic approaches for radioiodine refractory thyroid cancers.
Collapse
Affiliation(s)
- Mathilde Bauriaud-Mallet
- Team "Cholesterol Metabolism and Therapeutic Innovations," Cancer Research Center of Toulouse (CRCT), UMR 1037, Université de Toulouse, CNRS, Inserm, UPS, 31037, Toulouse, France; Université Toulouse, Toulouse, France; Institut Claudius Regaud, Nuclear Medicine Department, Institut Universitaire de Toulouse-Oncopole, Toulouse, 31100, France
| | - Lavinia Vija-Racaru
- Team "Cholesterol Metabolism and Therapeutic Innovations," Cancer Research Center of Toulouse (CRCT), UMR 1037, Université de Toulouse, CNRS, Inserm, UPS, 31037, Toulouse, France; Université Toulouse, Toulouse, France; Institut Claudius Regaud, Nuclear Medicine Department, Institut Universitaire de Toulouse-Oncopole, Toulouse, 31100, France
| | - Séverine Brillouet
- Team "Cholesterol Metabolism and Therapeutic Innovations," Cancer Research Center of Toulouse (CRCT), UMR 1037, Université de Toulouse, CNRS, Inserm, UPS, 31037, Toulouse, France; Université Toulouse, Toulouse, France; Institut Claudius Regaud, Nuclear Medicine Department, Institut Universitaire de Toulouse-Oncopole, Toulouse, 31100, France
| | - Arnaud Mallinger
- Team "Cholesterol Metabolism and Therapeutic Innovations," Cancer Research Center of Toulouse (CRCT), UMR 1037, Université de Toulouse, CNRS, Inserm, UPS, 31037, Toulouse, France; Université Toulouse, Toulouse, France
| | | | | | - Bruno Payre
- Centre de Microscopie Electronique Appliquée à la Biologie, Faculté de Médecine de Rangueil, Université de Toulouse, Toulouse, France
| | - Marc Poirot
- Team "Cholesterol Metabolism and Therapeutic Innovations," Cancer Research Center of Toulouse (CRCT), UMR 1037, Université de Toulouse, CNRS, Inserm, UPS, 31037, Toulouse, France; Université Toulouse, Toulouse, France.
| | - Fréderic Courbon
- Team "Cholesterol Metabolism and Therapeutic Innovations," Cancer Research Center of Toulouse (CRCT), UMR 1037, Université de Toulouse, CNRS, Inserm, UPS, 31037, Toulouse, France; Université Toulouse, Toulouse, France; Institut Claudius Regaud, Nuclear Medicine Department, Institut Universitaire de Toulouse-Oncopole, Toulouse, 31100, France
| | - Sandrine Silvente-Poirot
- Team "Cholesterol Metabolism and Therapeutic Innovations," Cancer Research Center of Toulouse (CRCT), UMR 1037, Université de Toulouse, CNRS, Inserm, UPS, 31037, Toulouse, France; Université Toulouse, Toulouse, France.
| |
Collapse
|
13
|
Nelson ER. The significance of cholesterol and its metabolite, 27-hydroxycholesterol in breast cancer. Mol Cell Endocrinol 2018; 466:73-80. [PMID: 28919300 PMCID: PMC5854519 DOI: 10.1016/j.mce.2017.09.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 12/12/2022]
Abstract
Although significant advances in the treatment of breast cancer have been made, in particular in the use of endocrine therapy, de novo and aquired resistance to therapy, and metastatic recurrence continue to be major clinical problems. Given the high prevalence of breast cancer, new life-style or chemotherapeutic approaches are required. In this regard, cholesterol has emerged as a risk factor for the onset of breast cancer, and elevated cholesterol is associated with a poor prognosis. While treatment with cholesterol lowering medication is not associated with breast cancer risk, it does appear to be protective against recurrence. Importantly, the cholesterol axis represents a potential target for both life-style and pharmacological intervention. This review will outline the clinical and preclinical data supporting a role for cholesterol in breast cancer pathophysiology. Specific focus is given to 27-hydroxycholesterol (27-OHC; (3β,25R)-Cholest-5-ene-3,26-diol)), a primary metabolite of cholesterol that has recently been defined as an endogenous Selective Estrogen Receptor Modulator. Future perspectives and directions are discussed.
Collapse
Affiliation(s)
- Erik R Nelson
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; University of Illinois Cancer Center, Chicago, IL, USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Cancer Center at Illinois, University of Illinois at Urbana-Champaign, IL, USA.
| |
Collapse
|
14
|
Chemistry, biochemistry, metabolic fate and mechanism of action of 6-oxo-cholestan-3β,5α-diol (OCDO), a tumor promoter and cholesterol metabolite. Biochimie 2018; 153:139-149. [PMID: 29654865 DOI: 10.1016/j.biochi.2018.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/09/2018] [Indexed: 12/11/2022]
Abstract
Oxygenation products of cholesterol, named oxysterols, were suspected since the 20th century to be involved in carcinogenesis. Among the family of oxysterol molecules, cholesterol-5,6-epoxides (5,6-EC) retained the attention of scientists because they contain a putative alkylating epoxide group. However, studies failed into demonstrating that 5,6-EC were direct carcinogens and revealed a surprising chemical stability and unreactivity towards nucleophiles in standard conditions. Analyses of 5,6-EC metabolism in normal cells showed that they were extensively transformed into cholestane-3β,5α,6β-triol (CT) by the cholesterol-5,6-epoxide hydrolase (ChEH). Studies performed in cancer cells showed that CT was additionally metabolized into an oxysterol identified as the 6-oxo-cholestan-3β,5α-diol (OCDO), by the 11β-hydroxysteroid dehydrogenase of type 2 (HSD2), the enzyme which inactivates cortisol into cortisone. Importantly, OCDO was shown to display tumor promoter properties in breast cancers, by binding to the glucocorticoid receptor, and independently of their estrogen receptor status, revealing the existence of a new tumorigenic pathway centered on 5,6-EC. In breast tumors from patients, OCDO production as well as the expression of the enzymes involved in the pathway producing OCDO, namely ChEH subunits and HSD2, were higher compared to normal tissues, and overexpression of these enzymes correlate with a higher risk of patient death, indicating that this onco-metabolism is of major importance to breast cancer pathology. Herein, we will review the actual knowledge and the future trends in OCDO chemistry, biochemistry, metabolism and mechanism of action and will discuss the impact of OCDO discovery on new anticancer therapeutic strategies.
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW To update researchers of recently discovered metabolites of cholesterol and of its precursors and to suggest relevant metabolic pathways. RECENT FINDINGS Patients suffering from inborn errors of sterol biosynthesis, transport and metabolism display unusual metabolic pathways, which may be major routes in the diseased state but minor in the healthy individual. Although quantitatively minor, these pathways may still be important in healthy individuals. Four inborn errors of metabolism, Smith-Lemli-Opitz syndrome, cerebrotendinous xanthomatosis and Niemann Pick disease types B (NPB) and C (NPC) result from mutations in different genes but can generate elevated levels of the same sterol metabolite, 7-oxocholesterol, in plasma. How this molecule is metabolized further is of great interest as its metabolites may have an important role in embryonic development. A second metabolite, abundant in NPC and NPB diseases, cholestane-3β,5α,6β-triol (3β,5α,6β-triol), has recently been shown to be metabolized to the corresponding bile acid, 3β,5α,6β-trihydroxycholanoic acid, providing a diagnostic marker in plasma. The origin of cholestane-3β,5α,6β-triol is likely to be 3β-hydroxycholestan-5,6-epoxide, which can alternatively be metabolized to the tumour suppressor dendrogenin A (DDA). In breast tumours, DDA levels are found to be decreased compared with normal tissues linking sterol metabolism to cancer. SUMMARY Unusual sterol metabolites and pathways may not only provide markers of disease, but also clues towards cause and treatment.
Collapse
Affiliation(s)
- Yuqin Wang
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, UK
| | | |
Collapse
|
16
|
Poirot M, Silvente-Poirot S. The tumor-suppressor cholesterol metabolite, dendrogenin A, is a new class of LXR modulator activating lethal autophagy in cancers. Biochem Pharmacol 2018; 153:75-81. [PMID: 29409832 DOI: 10.1016/j.bcp.2018.01.046] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 01/29/2018] [Indexed: 12/31/2022]
Abstract
Dendrogenin A (DDA) is a mammalian cholesterol metabolite recently identified that displays tumor suppressor properties. The discovery of DDA has revealed the existence in mammals of a new metabolic branch in the cholesterol pathway centered on 5,6α-epoxycholesterol and bridging cholesterol metabolism with histamine metabolism. Metabolic studies showed a drop in DDA levels in cancer cells and tumors compared to normal cells, suggesting a link between DDA metabolism deregulation and oncogenesis. Importantly, complementation of cancer cells with DDA induced 1) cancer cell re-differentiation, 2) blockade of 6-oxo-cholestan-3β,5α-diol (OCDO) production, an endogenous tumor promoter and 3) lethal autophagy in tumors. Importantly, by binding the liver X receptor (LXR), DDA activates the expression of genes controlling autophagy. These genes include NR4A1, NR4A3, LC3 and TFEB. The canonical LXR ligands 22(R)hydroxycholesterol, TO901317 and GW3965 did not induce these effects indicating that DDA delineates a new class of selective LXR modulator (SLiM). The induction of lethal autophagy by DDA was associated with the accumulation in cancer cells of lysosomes and of the pro-lysosomal cholesterol precursor zymostenol due to the inhibition of the 3β-hydroxysteroid-Δ8Δ7-isomerase enzyme (D8D7I). The anti-cancer efficacy of DDA was established on different mouse and human cancers such as breast cancers, melanoma and acute myeloid leukemia, including patient derived xenografts, and did not discriminate bulk cancer cells from cancer cell progenitors. Together these data highlight that the mammalian metabolite DDA is a promising anticancer compound with a broad range of anticancer applications. In addition, DDA and LXR are new actors in the transcriptional control of autophagy and DDA being a "first in line" driver of lethal autophagy in cancers via the LXR.
Collapse
Affiliation(s)
- Marc Poirot
- Team "Cholesterol Metabolism and Therapeutic Innovations", Cancer Research Center of Toulouse, UMR 1037 INSERM-University of Toulouse, Toulouse, France; Cancer Research Center of Toulouse, UMR 1037 INSERM-University of Toulouse, Toulouse, France.
| | - Sandrine Silvente-Poirot
- Team "Cholesterol Metabolism and Therapeutic Innovations", Cancer Research Center of Toulouse, UMR 1037 INSERM-University of Toulouse, Toulouse, France; Cancer Research Center of Toulouse, UMR 1037 INSERM-University of Toulouse, Toulouse, France.
| |
Collapse
|
17
|
Muratsugu S, Baba H, Tanimoto T, Sawaguchi K, Ikemoto S, Tasaki M, Terao Y, Tada M. Chemoselective epoxidation of cholesterol derivatives on a surface-designed molecularly imprinted Ru–porphyrin catalyst. Chem Commun (Camb) 2018; 54:5114-5117. [DOI: 10.1039/c8cc00896e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High chemoselectivity for the C5C6 epoxidation of cholesterol derivatives without protecting other oxidizable functional groups was achieved on a newly designed molecularly imprinted Ru–porphyrin catalyst using a SiO2-support.
Collapse
Affiliation(s)
- Satoshi Muratsugu
- Department of Chemistry, Graduate School of Science
- Nagoya University
- Nagoya
- Japan
| | - Hiroshi Baba
- Department of Chemistry, Graduate School of Science
- Nagoya University
- Nagoya
- Japan
| | - Tatsuya Tanimoto
- Department of Chemistry, Graduate School of Science
- Nagoya University
- Nagoya
- Japan
| | - Kana Sawaguchi
- Research Center for Materials Science (RCMS) & Integrated Research Consortium on Chemical Science (IRCCS)
- Nagoya University
- Nagoya
- Japan
| | - Satoru Ikemoto
- Department of Chemistry, Graduate School of Science
- Nagoya University
- Nagoya
- Japan
| | - Masahiro Tasaki
- Department of Chemistry, Graduate School of Science
- Nagoya University
- Nagoya
- Japan
| | - Yosuke Terao
- Department of Chemistry, Graduate School of Science
- Nagoya University
- Nagoya
- Japan
| | - Mizuki Tada
- Department of Chemistry, Graduate School of Science
- Nagoya University
- Nagoya
- Japan
- Research Center for Materials Science (RCMS) & Integrated Research Consortium on Chemical Science (IRCCS)
| |
Collapse
|
18
|
Dendrogenin A drives LXR to trigger lethal autophagy in cancers. Nat Commun 2017; 8:1903. [PMID: 29199269 PMCID: PMC5712521 DOI: 10.1038/s41467-017-01948-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 10/27/2017] [Indexed: 01/09/2023] Open
Abstract
Dendrogenin A (DDA) is a newly discovered cholesterol metabolite with tumor suppressor properties. Here, we explored its efficacy and mechanism of cell death in melanoma and acute myeloid leukemia (AML). We found that DDA induced lethal autophagy in vitro and in vivo, including primary AML patient samples, independently of melanoma Braf status or AML molecular and cytogenetic classifications. DDA is a partial agonist on liver-X-receptor (LXR) increasing Nur77, Nor1, and LC3 expression leading to autolysosome formation. Moreover, DDA inhibited the cholesterol biosynthesizing enzyme 3β-hydroxysterol-Δ8,7-isomerase (D8D7I) leading to sterol accumulation and cooperating in autophagy induction. This mechanism of death was not observed with other LXR ligands or D8D7I inhibitors establishing DDA selectivity. The potent anti-tumor activity of DDA, its original mechanism of action and its low toxicity support its clinical evaluation. More generally, this study reveals that DDA can direct control a nuclear receptor to trigger lethal autophagy in cancers.
Collapse
|
19
|
Leignadier J, Dalenc F, Poirot M, Silvente-Poirot S. Improving the efficacy of hormone therapy in breast cancer: The role of cholesterol metabolism in SERM-mediated autophagy, cell differentiation and death. Biochem Pharmacol 2017. [DOI: 10.1016/j.bcp.2017.06.120] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
20
|
Quantitative analysis of the tumor suppressor dendrogenin A using liquid chromatography tandem mass spectrometry. Chem Phys Lipids 2017; 207:81-86. [DOI: 10.1016/j.chemphyslip.2017.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/29/2017] [Accepted: 06/30/2017] [Indexed: 11/18/2022]
|
21
|
Improvement of 5,6α-epoxycholesterol, 5,6β-epoxycholesterol, cholestane-3β,5α,6β-triol and 6-oxo-cholestan-3β,5α-diol recovery for quantification by GC/MS. Chem Phys Lipids 2017; 207:92-98. [PMID: 28554594 DOI: 10.1016/j.chemphyslip.2017.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/21/2017] [Accepted: 05/23/2017] [Indexed: 01/19/2023]
Abstract
5,6α-epoxycholesterol (5,6α-EC) and 5,6β-epoxycholesterol (5,6β-EC) are oxysterols involved in the anticancer pharmacology of the widely used antitumor drug tamoxifen. They are both metabolized into cholestane-3β,5α,6β-triol (CT) by the cholesterol-5,6-epoxide hydrolase (ChEH) enzyme, and CT is metabolized by an as-yet uncharacterized enzyme into 6-oxo-cholestan-3β,5α-diol (OCDO). A recent feasibility study showed that the 5,6-ECs may represent surrogate markers of tamoxifen activity in breast cancer patients undergoing endocrine therapy, thus there is a growing interest in their accurate quantification. These oxysterols are usually quantified by gas-liquid chromatography coupled to mass spectrometry (GC/MS), using an isotope dilution methodology with the corresponding deuterated oxysterol. This method is considered to be relative quantitative since all of the standards used are deuterated oxysterols, however it is not known whether the preparation of each oxysterol is affected in the same way by the extraction, pre-purification by solid phase extraction (SPE) and trimethylsilylation steps, particularly when using biological samples that contain many other reactive compounds. Thus, in this study we investigated the yield of the 5,6-ECs, CT and OCDO recovery from patient serum samples at different stages of their work-up and trimethylsilylation prior to GC/MS analysis, using [14C]-labeled analogs to follow these oxysterols at each step. We measured a 40 to 60% loss of material for the 5,6-ECs and OCDO, however we also describe the conditions that improved their recovery. Our data also show that the use of deuterated 5,6α-EC, 5,6β-EC, CT and OCDO is an absolute requirement for their accurate quantification.
Collapse
|
22
|
Griffiths WJ, Abdel-Khalik J, Yutuc E, Morgan AH, Gilmore I, Hearn T, Wang Y. Cholesterolomics: An update. Anal Biochem 2017; 524:56-67. [PMID: 28087213 PMCID: PMC5378159 DOI: 10.1016/j.ab.2017.01.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/23/2016] [Accepted: 01/09/2017] [Indexed: 01/04/2023]
Abstract
Cholesterolomics can be regarded as the identification and quantification of cholesterol, its precursors post squalene, and metabolites of cholesterol and of its precursors, in a biological sample. These molecules include 1,25-dihydroxyvitamin D3, steroid hormones and bile acids and intermediates in their respective biosynthetic pathways. In this short article we will concentrate our attention on intermediates in bile acid biosynthesis pathways, in particular oxysterols and cholestenoic acids. These molecular classes are implicated in the aetiology of a diverse array of diseases including autoimmune disease, Parkinson's disease, motor neuron disease, breast cancer, the lysosomal storage disease Niemann-Pick type C and the autosomal recessive disorder Smith-Lemli-Opitz syndrome. Mass spectrometry (MS) is the dominant technology for sterol analysis including both gas-chromatography (GC)-MS and liquid chromatography (LC)-MS and more recently matrix-assisted laser desorption/ionisation (MALDI)-MS for tissue imaging studies. Here we will discuss exciting biological findings and recent analytical improvements.
Collapse
Affiliation(s)
| | | | - Eylan Yutuc
- Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK
| | - Alwena H Morgan
- Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK
| | - Ian Gilmore
- Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK
| | - Thomas Hearn
- Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK
| | - Yuqin Wang
- Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK.
| |
Collapse
|