1
|
Nesci S, Algieri C, Tallarida MA, Stanzione R, Marchi S, Pietrangelo D, Trombetti F, D'Ambrosio L, Forte M, Cotugno M, Nunzi I, Bigi R, Maiuolo L, De Nino A, Pinton P, Romeo G, Rubattu S. Molecular mechanisms of naringenin modulation of mitochondrial permeability transition acting on F 1F O-ATPase and counteracting saline load-induced injury in SHRSP cerebral endothelial cells. Eur J Cell Biol 2024; 103:151398. [PMID: 38368729 DOI: 10.1016/j.ejcb.2024.151398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/18/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024] Open
Abstract
Naringenin (NRG) was characterized for its ability to counteract mitochondrial dysfunction which is linked to cardiovascular diseases. The F1FO-ATPase can act as a molecular target of NRG. The interaction of NRG with this enzyme can avoid the energy transmission mechanism of ATP hydrolysis, especially in the presence of Ca2+ cation used as cofactor. Indeed, NRG was a selective inhibitor of the hydrophilic F1 domain displaying a binding site overlapped with quercetin in the inside surface of an annulus made by the three α and the three β subunits arranged alternatively in a hexamer. The kinetic constant of inhibition suggested that NRG preferred the enzyme activated by Ca2+ rather than the F1FO-ATPase activated by the natural cofactor Mg2+. From the inhibition type mechanism of NRG stemmed the possibility to speculate that NRG can prevent the activation of F1FO-ATPase by Ca2+. The event correlated to the protective role in the mitochondrial permeability transition pore opening by NRG as well as to the reduction of ROS production probably linked to the NRG chemical structure with antioxidant action. Moreover, in primary cerebral endothelial cells (ECs) obtained from stroke prone spontaneously hypertensive rats NRG had a protective effect on salt-induced injury by restoring cell viability and endothelial cell tube formation while also rescuing complex I activity.
Collapse
Affiliation(s)
- Salvatore Nesci
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia 40064, Italy.
| | - Cristina Algieri
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia 40064, Italy
| | | | | | - Saverio Marchi
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona 60126, Italy
| | - Donatella Pietrangelo
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome 00189, Italy
| | - Fabiana Trombetti
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia 40064, Italy
| | - Luca D'Ambrosio
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina 04100, Italy
| | | | | | - Ilaria Nunzi
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona 60126, Italy
| | - Rachele Bigi
- Department of Neuroscience, Mental Health, and Sensory Organs, Sapienza University, Rome 00189, Italy
| | - Loredana Maiuolo
- Department of Chemistry and Chemical Technologies, University of Calabria, Cosenza 87036, Italy
| | - Antonio De Nino
- Department of Chemistry and Chemical Technologies, University of Calabria, Cosenza 87036, Italy
| | - Paolo Pinton
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, Cotignola 48033, Italy; Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara 44121, Italy
| | - Giovanni Romeo
- Medical Genetics Unit, Sant'Orsola-Malpighi University Hospital, Bologna 40126, Italy
| | - Speranza Rubattu
- IRCCS Neuromed, Pozzilli 86077, Italy; Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome 00189, Italy
| |
Collapse
|
2
|
Algieri C, Oppedisano F, Trombetti F, Fabbri M, Palma E, Nesci S. Selenite ameliorates the ATP hydrolysis of mitochondrial F 1F O-ATPase by changing the redox state of thiol groups and impairs the ADP phosphorylation. Free Radic Biol Med 2024; 210:333-343. [PMID: 38056573 DOI: 10.1016/j.freeradbiomed.2023.11.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/19/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
Selenite as an inorganic form of selenium can affect the redox state of mitochondria by modifying the thiol groups of cysteines. The F1FO-ATPase has been identified as a mitochondrial target of this compound. Indeed, the bifunctional mechanism of ATP turnover of F1FO-ATPase was differently modified by selenite. The activity of ATP hydrolysis was stimulated, whereas the ADP phosphorylation was inhibited. We ascertain that a possible new protein adduct identified as seleno-dithiol (-S-Se-S-) mercaptoethanol-sensitive caused the activation of F-ATPase activity and the oxidation of free -SH groups in mitochondria. Conversely, the inhibition of ATP synthesis by selenite might be irreversible. The kinetic analysis of the activation mechanism was an uncompetitive mixed type with respect to the ATP substrate. Selenite bound more selectively to the F1FO-ATPase loaded with the substrate by preferentially forming a tertiary (enzyme-ATP-selenite) complex. Otherwise, the selenite was a competitive mixed-type activator with respect to the Mg2+ cofactor. Thus, selenite more specifically bound to the free enzyme forming the complex enzyme-selenite. However, even if the selenite impaired the catalysis of F1FO-ATPase, the mitochondrial permeability transition pore phenomenon was unaffected. Therefore, the reversible energy transduction mechanism of F1FO-ATPase can be oppositely regulated by selenite.
Collapse
Affiliation(s)
- Cristina Algieri
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, 40064, Ozzano Emilia, Italy
| | - Francesca Oppedisano
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Græcia" of Catanzaro, 88100, Catanzaro, Italy
| | - Fabiana Trombetti
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, 40064, Ozzano Emilia, Italy
| | - Micaela Fabbri
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, 40064, Ozzano Emilia, Italy
| | - Ernesto Palma
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Græcia" of Catanzaro, 88100, Catanzaro, Italy
| | - Salvatore Nesci
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, 40064, Ozzano Emilia, Italy.
| |
Collapse
|
3
|
Coluccino G, Muraca VP, Corazza A, Lippe G. Cyclophilin D in Mitochondrial Dysfunction: A Key Player in Neurodegeneration? Biomolecules 2023; 13:1265. [PMID: 37627330 PMCID: PMC10452829 DOI: 10.3390/biom13081265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Mitochondrial dysfunction plays a pivotal role in numerous complex diseases. Understanding the molecular mechanisms by which the "powerhouse of the cell" turns into the "factory of death" is an exciting yet challenging task that can unveil new therapeutic targets. The mitochondrial matrix protein CyPD is a peptidylprolyl cis-trans isomerase involved in the regulation of the permeability transition pore (mPTP). The mPTP is a multi-conductance channel in the inner mitochondrial membrane whose dysregulated opening can ultimately lead to cell death and whose involvement in pathology has been extensively documented over the past few decades. Moreover, several mPTP-independent CyPD interactions have been identified, indicating that CyPD could be involved in the fine regulation of several biochemical pathways. To further enrich the picture, CyPD undergoes several post-translational modifications that regulate both its activity and interaction with its clients. Here, we will dissect what is currently known about CyPD and critically review the most recent literature about its involvement in neurodegenerative disorders, focusing on Alzheimer's Disease and Parkinson's Disease, supporting the notion that CyPD could serve as a promising therapeutic target for the treatment of such conditions. Notably, significant efforts have been made to develop CyPD-specific inhibitors, which hold promise for the treatment of such complex disorders.
Collapse
Affiliation(s)
- Gabriele Coluccino
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy; (V.P.M.); (A.C.)
| | | | | | - Giovanna Lippe
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy; (V.P.M.); (A.C.)
| |
Collapse
|
4
|
Bernardi P, Carraro M, Lippe G. The mitochondrial permeability transition: Recent progress and open questions. FEBS J 2022; 289:7051-7074. [PMID: 34710270 PMCID: PMC9787756 DOI: 10.1111/febs.16254] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/27/2021] [Indexed: 01/13/2023]
Abstract
Major progress has been made in defining the basis of the mitochondrial permeability transition, a Ca2+ -dependent permeability increase of the inner membrane that has puzzled mitochondrial research for almost 70 years. Initially considered an artefact of limited biological interest by most, over the years the permeability transition has raised to the status of regulator of mitochondrial ion homeostasis and of druggable effector mechanism of cell death. The permeability transition is mediated by opening of channel(s) modulated by matrix cyclophilin D, the permeability transition pore(s) (PTP). The field has received new impulse (a) from the hypothesis that the PTP may originate from a Ca2+ -dependent conformational change of F-ATP synthase and (b) from the reevaluation of the long-standing hypothesis that it originates from the adenine nucleotide translocator (ANT). Here, we provide a synthetic account of the structure of ANT and F-ATP synthase to discuss potential and controversial mechanisms through which they may form high-conductance channels; and review some intriguing findings from the wealth of early studies of PTP modulation that still await an explanation. We hope that this review will stimulate new experiments addressing the many outstanding problems, and thus contribute to the eventual solution of the puzzle of the permeability transition.
Collapse
Affiliation(s)
- Paolo Bernardi
- Department of Biomedical Sciences and CNR Neuroscience InstituteUniversity of PadovaItaly
| | - Michela Carraro
- Department of Biomedical Sciences and CNR Neuroscience InstituteUniversity of PadovaItaly
| | | |
Collapse
|
5
|
Nesci S. What happens when the mitochondrial H +-translocating F 1F O-ATP(hydrol)ase becomes a molecular target of calcium? The pore opens. Biochimie 2022; 198:92-95. [PMID: 35367315 DOI: 10.1016/j.biochi.2022.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/19/2022] [Accepted: 03/28/2022] [Indexed: 12/29/2022]
Abstract
The F1FO-ATPase has Mg2+ cofactor as the natural divalent cation to support the bifunctional activity of ATP synthesis and hydrolysis. Different physio(patho)logical conditions permit the molecular interaction of Ca2+ with the enzyme and the modification of the biological role. Three distinct binding regions of Ca2+ have been localized on the enzyme complex: one in the F1 catalytic sites and the other two sites in the membrane-embedded domain FO. In all likelihood, Ca2+-activated enzyme most frequently works as an H+-translocating F1FO-ATP(hydrol)ase with a monofunctional activity that triggers the formation of mitochondrial permeability transition pore (mPTP) phenomenon. The protein(s) component of the mPTP is considered an arcane mystery. However, the F1FO-ATPase could reveal the molecular mechanism of pore opening when Ca2+ is bound to the enzyme. In this regard, the role of Ca2+-dependent function of the F1FO-ATPase in the formation of the mPTP is discussed.
Collapse
Affiliation(s)
- Salvatore Nesci
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, 40064, Ozzano Emilia, Bologna, Italy.
| |
Collapse
|
6
|
Algieri C, Bernardini C, Oppedisano F, La Mantia D, Trombetti F, Palma E, Forni M, Mollace V, Romeo G, Nesci S. Mitochondria Bioenergetic Functions and Cell Metabolism Are Modulated by the Bergamot Polyphenolic Fraction. Cells 2022; 11:1401. [PMID: 35563707 PMCID: PMC9099917 DOI: 10.3390/cells11091401] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/08/2022] [Accepted: 04/19/2022] [Indexed: 02/01/2023] Open
Abstract
The bergamot polyphenolic fraction (BPF) was evaluated in the F1FO-ATPase activity of swine heart mitochondria. In the presence of a concentration higher than 50 µg/mL BPF, the ATPase activity of F1FO-ATPase, dependent on the natural cofactor Mg2+, increased by 15%, whereas the enzyme activity in the presence of Ca2+ was inhibited by 10%. By considering this opposite BPF effect, the F1FO-ATPase activity involved in providing ATP synthesis in oxidative phosphorylation and triggering mitochondrial permeability transition pore (mPTP) formation has been evaluated. The BPF improved the catalytic coupling of oxidative phosphorylation in the presence of a substrate at the first phosphorylation site, boosting the respiratory control ratios (state 3/state 4) by 25% and 85% with 50 µg/mL and 100 µg/mL BPF, respectively. Conversely, the substrate at the second phosphorylation site led to the improvement of the state 3/state 4 ratios by 15% only with 100 µg/mL BPF. Moreover, the BPF carried out its beneficial effect on the mPTP phenomenon by desensitizing the pore opening. The acute effect of the BPF on the metabolism of porcine aortica endothelial cells (pAECs) showed an ATP rate index greater than one, which points out a prevailing mitochondrial oxidative metabolism with respect to the glycolytic pathway, and this ratio rose by about three times with 100 µg/mL BPF. Consistently, the mitochondrial ATP turnover, in addition to the basal and maximal respiration, were higher in the presence of the BPF than in the controls, and the MTT test revealed an increase in cell viability with a BPF concentration above 200 µg/mL. Therefore, the molecule mixture of the BPF aims to ensure good performance of the mitochondrial bioenergetic parameters.
Collapse
Affiliation(s)
- Cristina Algieri
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano Emilia, Italy; (C.A.); (C.B.); (D.L.M.); (F.T.); (M.F.); (S.N.)
| | - Chiara Bernardini
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano Emilia, Italy; (C.A.); (C.B.); (D.L.M.); (F.T.); (M.F.); (S.N.)
| | - Francesca Oppedisano
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Debora La Mantia
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano Emilia, Italy; (C.A.); (C.B.); (D.L.M.); (F.T.); (M.F.); (S.N.)
| | - Fabiana Trombetti
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano Emilia, Italy; (C.A.); (C.B.); (D.L.M.); (F.T.); (M.F.); (S.N.)
| | - Ernesto Palma
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Monica Forni
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano Emilia, Italy; (C.A.); (C.B.); (D.L.M.); (F.T.); (M.F.); (S.N.)
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Vincenzo Mollace
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Giovanni Romeo
- Department Gynecological, Obstetrical and Pediatric Sciences, Medical Genetics Unit, Sant’Orsola-Malpighi University Hospital, 40126 Bologna, Italy;
| | - Salvatore Nesci
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano Emilia, Italy; (C.A.); (C.B.); (D.L.M.); (F.T.); (M.F.); (S.N.)
| |
Collapse
|
7
|
Garone C, Pietra A, Nesci S. From the Structural and (Dys)Function of ATP Synthase to Deficiency in Age-Related Diseases. Life (Basel) 2022; 12:401. [PMID: 35330152 PMCID: PMC8949411 DOI: 10.3390/life12030401] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 12/21/2022] Open
Abstract
The ATP synthase is a mitochondrial inner membrane complex whose function is essential for cell bioenergy, being responsible for the conversion of ADP into ATP and playing a role in mitochondrial cristae morphology organization. The enzyme is composed of 18 protein subunits, 16 nuclear DNA (nDNA) encoded and two mitochondrial DNA (mtDNA) encoded, organized in two domains, FO and F1. Pathogenetic variants in genes encoding structural subunits or assembly factors are responsible for fatal human diseases. Emerging evidence also underlines the role of ATP-synthase in neurodegenerative diseases as Parkinson's, Alzheimer's, and motor neuron diseases such as Amyotrophic Lateral Sclerosis. Post-translational modification, epigenetic modulation of ATP gene expression and protein level, and the mechanism of mitochondrial transition pore have been deemed responsible for neuronal cell death in vivo and in vitro models for neurodegenerative diseases. In this review, we will explore ATP synthase assembly and function in physiological and pathological conditions by referring to the recent cryo-EM studies and by exploring human disease models.
Collapse
Affiliation(s)
- Caterina Garone
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40137 Bologna, Italy;
- Center for Applied Biomedical Research, Alma Mater Studiorum University of Bologna, 40137 Bologna, Italy
- UOC Neuropsichiatria dell’età Pediatrica, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40137 Bologna, Italy
| | - Andrea Pietra
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40137 Bologna, Italy;
- UO Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40137 Bologna, Italy
| | - Salvatore Nesci
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, 40064 Ozzano Emilia, Italy
| |
Collapse
|
8
|
Algieri C, Trombetti F, Pagliarani A, Fabbri M, Nesci S. The inhibition of gadolinium ion (Gd 3+) on the mitochondrial F 1F O-ATPase is linked to the modulation of the mitochondrial permeability transition pore. Int J Biol Macromol 2021; 184:250-258. [PMID: 34126146 DOI: 10.1016/j.ijbiomac.2021.06.065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/18/2022]
Abstract
The mitochondrial permeability transition pore (PTP), which drives regulated cell death when Ca2+ concentration suddenly increases in mitochondria, was related to changes in the Ca2+-activated F1FO-ATPase. The effects of the gadolinium cation (Gd3+), widely used for diagnosis and therapy, and reported as PTP blocker, were evaluated on the F1FO-ATPase activated by Mg2+ or Ca2+ and on the PTP. Gd3+ more effectively inhibits the Ca2+-activated F1FO-ATPase than the Mg2+-activated F1FO-ATPase by a mixed-type inhibition on the former and by uncompetitive mechanism on the latter. Most likely Gd3+ binding to F1, is favoured by Ca2+ insertion. The maximal inactivation rates (kinact) of pseudo-first order inactivation are similar either when the F1FO-ATPase is activated by Ca2+ or by Mg2+. The half-maximal inactivator concentrations (KI) are 2.35 ± 0.35 mM and 0.72 ± 0.11 mM, respectively. The potency of a mechanism-based inhibitor (kinact/KI) also highlights a higher inhibition efficiency of Gd3+ on the Ca2+-activated F1FO-ATPase (0.59 ± 0.09 mM-1∙s-1) than on the Mg2+-activated F1FO-ATPase (0.13 ± 0.02 mM-1∙s-1). Consistently, the PTP is desensitized in presence of Gd3+. The Gd3+ inhibition on both the mitochondrial Ca2+-activated F1FO-ATPase and the PTP strengthens the link between the PTP and the F1FO-ATPase when activated by Ca2+ and provides insights on the biological effects of Gd3+.
Collapse
Affiliation(s)
- Cristina Algieri
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, via Tolara di Sopra, 50, 40064, Ozzano Emilia, Bologna, Italy
| | - Fabiana Trombetti
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, via Tolara di Sopra, 50, 40064, Ozzano Emilia, Bologna, Italy
| | - Alessandra Pagliarani
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, via Tolara di Sopra, 50, 40064, Ozzano Emilia, Bologna, Italy.
| | - Micaela Fabbri
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, via Tolara di Sopra, 50, 40064, Ozzano Emilia, Bologna, Italy
| | - Salvatore Nesci
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, via Tolara di Sopra, 50, 40064, Ozzano Emilia, Bologna, Italy.
| |
Collapse
|
9
|
Nesci S, Trombetti F, Pagliarani A, Ventrella V, Algieri C, Tioli G, Lenaz G. Molecular and Supramolecular Structure of the Mitochondrial Oxidative Phosphorylation System: Implications for Pathology. Life (Basel) 2021; 11:242. [PMID: 33804034 PMCID: PMC7999509 DOI: 10.3390/life11030242] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023] Open
Abstract
Under aerobic conditions, mitochondrial oxidative phosphorylation (OXPHOS) converts the energy released by nutrient oxidation into ATP, the currency of living organisms. The whole biochemical machinery is hosted by the inner mitochondrial membrane (mtIM) where the protonmotive force built by respiratory complexes, dynamically assembled as super-complexes, allows the F1FO-ATP synthase to make ATP from ADP + Pi. Recently mitochondria emerged not only as cell powerhouses, but also as signaling hubs by way of reactive oxygen species (ROS) production. However, when ROS removal systems and/or OXPHOS constituents are defective, the physiological ROS generation can cause ROS imbalance and oxidative stress, which in turn damages cell components. Moreover, the morphology of mitochondria rules cell fate and the formation of the mitochondrial permeability transition pore in the mtIM, which, most likely with the F1FO-ATP synthase contribution, permeabilizes mitochondria and leads to cell death. As the multiple mitochondrial functions are mutually interconnected, changes in protein composition by mutations or in supercomplex assembly and/or in membrane structures often generate a dysfunctional cascade and lead to life-incompatible diseases or severe syndromes. The known structural/functional changes in mitochondrial proteins and structures, which impact mitochondrial bioenergetics because of an impaired or defective energy transduction system, here reviewed, constitute the main biochemical damage in a variety of genetic and age-related diseases.
Collapse
Affiliation(s)
- Salvatore Nesci
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, 40064 Ozzano Emilia, Italy; (F.T.); (V.V.); (C.A.)
| | - Fabiana Trombetti
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, 40064 Ozzano Emilia, Italy; (F.T.); (V.V.); (C.A.)
| | - Alessandra Pagliarani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, 40064 Ozzano Emilia, Italy; (F.T.); (V.V.); (C.A.)
| | - Vittoria Ventrella
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, 40064 Ozzano Emilia, Italy; (F.T.); (V.V.); (C.A.)
| | - Cristina Algieri
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, 40064 Ozzano Emilia, Italy; (F.T.); (V.V.); (C.A.)
| | - Gaia Tioli
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy;
| | - Giorgio Lenaz
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy;
| |
Collapse
|
10
|
Nesci S, Pagliarani A. Ca 2+ as cofactor of the mitochondrial H + -translocating F 1 F O -ATP(hydrol)ase. Proteins 2021; 89:477-482. [PMID: 33378096 DOI: 10.1002/prot.26040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/03/2020] [Accepted: 12/27/2020] [Indexed: 01/05/2023]
Abstract
The mitochondrial F1 FO -ATPase in the presence of the natural cofactor Mg2+ acts as the enzyme of life by synthesizing ATP, but it can also hydrolyze ATP to pump H+ . Interestingly, Mg2+ can be replaced by Ca2+ , but only to sustain ATP hydrolysis and not ATP synthesis. When Ca2+ inserts in F1 , the torque generation built by the chemomechanical coupling between F1 and the rotating central stalk was reported as unable to drive the transmembrane H+ flux within FO . However, the failed H+ translocation is not consistent with the oligomycin-sensitivity of the Ca2+ -dependent F1 FO -ATP(hydrol)ase. New enzyme roles in mitochondrial energy transduction are suggested by recent advances. Accordingly, the structural F1 FO -ATPase distortion driven by ATP hydrolysis sustained by Ca2+ is consistent with the permeability transition pore signal propagation pathway. The Ca2+ -activated F1 FO -ATPase, by forming the pore, may contribute to dissipate the transmembrane H+ gradient created by the same enzyme complex.
Collapse
Affiliation(s)
- Salvatore Nesci
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, Bologna, Italy
| | - Alessandra Pagliarani
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, Bologna, Italy
| |
Collapse
|
11
|
Algieri C, Nesci S, Trombetti F, Fabbri M, Ventrella V, Pagliarani A. Mitochondrial F 1F O-ATPase and permeability transition pore response to sulfide in the midgut gland of Mytilus galloprovincialis. Biochimie 2020; 180:222-228. [PMID: 33212166 DOI: 10.1016/j.biochi.2020.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/16/2022]
Abstract
The molecular mechanisms which rule the formation and opening of the mitochondrial permeability transition pore (mPTP), the lethal mechanism which permeabilizes mitochondria to water and solutes and drives the cell to death, are still unclear and particularly little investigated in invertebrates. Since Ca2+ increase in mitochondria is accompanied by mPTP opening and the participation of the mitochondrial F1FO-ATPase in the mPTP is increasingly sustained, the substitution of the natural cofactor Mg2+ by Ca2+ in the F1FO-ATPase activation has been involved in the mPTP mechanism. In mussel midgut gland mitochondria the similar kinetic properties of the Mg2+- or Ca2+-dependent F1FO-ATPase activities, namely the same affinity for ATP and bi-site activation kinetics by the ATP substrate, in spite of the higher enzyme activity and coupling efficiency of the Mg2+-dependent F1FO-ATPase, suggest that both enzyme activities are involved in the bioenergetic machinery. Other than being a mitochondrial poison and environmental contaminant, sulfide at low concentrations acts as gaseous mediator and can induce post-translational modifications of proteins. The sulfide donor NaHS, at micromolar concentrations, does not alter the two F1FO-ATPase activities, but desensitizes the mPTP to Ca2+ input. Unexpectedly, NaHS, under the conditions tested, points out a chemical refractoriness of both F1FO-ATPase activities and a failed relationship between the Ca2+-dependent F1FO-ATPase and the mPTP in mussels. The findings suggest that mPTP role and regulation may be different in different taxa and that the F1FO-ATPase insensitivity to NaHS may allow mussels to cope with environmental sulfide.
Collapse
Affiliation(s)
- Cristina Algieri
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, via Tolara di Sopra, 50, 40064, Ozzano Emilia, Bologna, Italy
| | - Salvatore Nesci
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, via Tolara di Sopra, 50, 40064, Ozzano Emilia, Bologna, Italy.
| | - Fabiana Trombetti
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, via Tolara di Sopra, 50, 40064, Ozzano Emilia, Bologna, Italy
| | - Micaela Fabbri
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, via Tolara di Sopra, 50, 40064, Ozzano Emilia, Bologna, Italy
| | - Vittoria Ventrella
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, via Tolara di Sopra, 50, 40064, Ozzano Emilia, Bologna, Italy
| | - Alessandra Pagliarani
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, via Tolara di Sopra, 50, 40064, Ozzano Emilia, Bologna, Italy
| |
Collapse
|
12
|
Algieri V, Algieri C, Maiuolo L, De Nino A, Pagliarani A, Tallarida MA, Trombetti F, Nesci S. 1,5-Disubstituted-1,2,3-triazoles as inhibitors of the mitochondrial Ca 2+ -activated F 1 F O -ATP(hydrol)ase and the permeability transition pore. Ann N Y Acad Sci 2020; 1485:43-55. [PMID: 32959908 DOI: 10.1111/nyas.14474] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/24/2020] [Accepted: 08/01/2020] [Indexed: 02/06/2023]
Abstract
The mitochondrial permeability transition pore (mPTP), a high-conductance channel triggered by a sudden Ca2+ concentration increase, is composed of the F1 FO -ATPase. Since mPTP opening leads to mitochondrial dysfunction, which is a feature of many diseases, a great pharmacological challenge is to find mPTP modulators. In our study, the effects of two 1,5-disubstituted 1,2,3-triazole derivatives, five-membered heterocycles with three nitrogen atoms in the ring and capable of forming secondary interactions with proteins, were investigated. Compounds 3a and 3b were selected among a wide range of structurally related compounds because of their chemical properties and effectiveness in preliminary studies. In swine heart mitochondria, both compounds inhibit Ca2+ -activated F1 FO -ATPase without affecting F-ATPase activity sustained by the natural cofactor Mg2+ . The inhibition is mutually exclusive, probably because of their shared enzyme site, and uncompetitive with respect to the ATP substrate, since they only bind to the enzyme-ATP complex. Both compounds show the same inhibition constant (K'i ), but compound 3a has a doubled inactivation rate constant compared with compound 3b. Moreover, both compounds desensitize mPTP opening without altering mitochondrial respiration. The results strengthen the link between Ca2+ -activated F1 FO -ATPase and mPTP and suggest that these inhibitors can be pharmacologically exploited to counteract mPTP-related diseases.
Collapse
Affiliation(s)
- Vincenzo Algieri
- Department of Chemistry and Chemical Technologies, University of Calabria, Cosenza, Italy
| | - Cristina Algieri
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, Italy
| | - Loredana Maiuolo
- Department of Chemistry and Chemical Technologies, University of Calabria, Cosenza, Italy
| | - Antonio De Nino
- Department of Chemistry and Chemical Technologies, University of Calabria, Cosenza, Italy
| | - Alessandra Pagliarani
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, Italy
| | | | - Fabiana Trombetti
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, Italy
| | - Salvatore Nesci
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, Italy
| |
Collapse
|
13
|
Mnatsakanyan N, Jonas EA. The new role of F 1F o ATP synthase in mitochondria-mediated neurodegeneration and neuroprotection. Exp Neurol 2020; 332:113400. [PMID: 32653453 DOI: 10.1016/j.expneurol.2020.113400] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/23/2020] [Accepted: 07/07/2020] [Indexed: 02/08/2023]
Abstract
The mitochondrial F1Fo ATP synthase is one of the most abundant proteins of the mitochondrial inner membrane, which catalyzes the final step of oxidative phosphorylation to synthesize ATP from ADP and Pi. ATP synthase uses the electrochemical gradient of protons (ΔμH+) across the mitochondrial inner membrane to synthesize ATP. Under certain pathophysiological conditions, ATP synthase can run in reverse to hydrolyze ATP and build the necessary ΔμH+ across the mitochondrial inner membrane. Tight coupling between these two processes, proton translocation and ATP synthesis, is achieved by the unique rotational mechanism of ATP synthase and is necessary for efficient cellular metabolism and cell survival. The uncoupling of these processes, dissipation of mitochondrial inner membrane potential, elevated levels of ROS, low matrix content of ATP in combination with other cellular malfunction trigger the opening of the mitochondrial permeability transition pore in the mitochondrial inner membrane. In this review we will discuss the new role of ATP synthase beyond oxidative phosphorylation. We will highlight its function as a unique regulator of cell life and death and as a key target in mitochondria-mediated neurodegeneration and neuroprotection.
Collapse
Affiliation(s)
- Nelli Mnatsakanyan
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, USA.
| | - Elizabeth Ann Jonas
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
14
|
Structural and functional properties of plant mitochondrial F-ATP synthase. Mitochondrion 2020; 53:178-193. [DOI: 10.1016/j.mito.2020.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/25/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022]
|
15
|
Mnatsakanyan N, Jonas EA. ATP synthase c-subunit ring as the channel of mitochondrial permeability transition: Regulator of metabolism in development and degeneration. J Mol Cell Cardiol 2020; 144:109-118. [PMID: 32461058 PMCID: PMC7877492 DOI: 10.1016/j.yjmcc.2020.05.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/07/2020] [Accepted: 05/20/2020] [Indexed: 12/29/2022]
Abstract
The mitochondrial permeability transition pore (mPTP) or mitochondrial megachannel is arguably one of the most mysterious phenomena in biology today. mPTP has been at the center of ongoing extensive scientific research for the last several decades. In this review we will discuss recent advances in the field that enhance our understanding of the molecular composition of mPTP, its regulatory mechanisms and its pathophysiological role. We will describe our recent findings on the role of ATP synthase c-subunit ring as a central player in mitochondrial permeability transition and as an important metabolic regulator during development and in degenerative diseases.
Collapse
Affiliation(s)
- Nelli Mnatsakanyan
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, USA.
| | - Elizabeth Ann Jonas
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
16
|
Phenylglyoxal inhibition of the mitochondrial F 1F O-ATPase activated by Mg 2+ or by Ca 2+ provides clues on the mitochondrial permeability transition pore. Arch Biochem Biophys 2020; 681:108258. [PMID: 31917961 DOI: 10.1016/j.abb.2020.108258] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/06/2019] [Accepted: 01/03/2020] [Indexed: 01/01/2023]
Abstract
Phenylglyoxal (PGO), known to cause post-translational modifications of Arg residues, was used to highlight the role of arginine residues of the F1FO-ATPase, which may be crucial to yield the mitochondrial permeability transition pore (mPTP). In swine heart mitochondria PGO inhibits ATP hydrolysis by the F1FO-ATPase either sustained by the natural cofactor Mg2+ or by Ca2+ by a similar uncompetitive inhibition mechanism, namely the tertiary complex (ESI) only forms when the ATP substrate is already bound to the enzyme, and with similar strength, as shown by the similar K'i values (0.82 ± 0.07 mM in presence of Mg2+ and 0.64 ± 0.05 mM in the presence of Ca2+). Multiple inhibitor analysis indicates that features of the F1 catalytic sites and/or the FO proton binding sites are apparently unaffected by PGO. However, PGO and F1 or FO inhibitors can bind the enzyme combine simultaneously. However they mutually hinder to bind the Mg2+-activated F1FO-ATPase, whereas they do not mutually exclude to bind the Ca2+-activated F1FO-ATPase. The putative formation of PGO-arginine adducts, and the consequent spatial rearrangement in the enzyme structure, inhibits the F1FO-ATPase activity but, as shown by the calcium retention capacity evaluation in intact mitochondria, apparently favours the mPTP formation.
Collapse
|
17
|
Algieri C, Trombetti F, Pagliarani A, Ventrella V, Bernardini C, Fabbri M, Forni M, Nesci S. Mitochondrial Ca 2+ -activated F 1 F O -ATPase hydrolyzes ATP and promotes the permeability transition pore. Ann N Y Acad Sci 2019; 1457:142-157. [PMID: 31441951 DOI: 10.1111/nyas.14218] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/19/2019] [Accepted: 07/24/2019] [Indexed: 01/14/2023]
Abstract
The properties of the mitochondrial F1 FO -ATPase catalytic site, which can bind Mg2+ , Mn2+ , or Ca2+ and hydrolyze ATP, were explored by inhibition kinetic analyses to cast light on the Ca2+ -activated F1 FO -ATPase connection with the permeability transition pore (PTP) that initiates cascade events leading to cell death. While the natural cofactor Mg2+ activates the F1 FO -ATPase in competition with Mn2+ , Ca2+ is a noncompetitive inhibitor in the presence of Mg2+ . Selective F1 inhibitors (Is-F1 ), namely NBD-Cl, piceatannol, resveratrol, and quercetin, exerted different mechanisms (mixed and uncompetitive inhibition) on either Ca2+ - or Mg2+ -activated F1 FO -ATPase, consistent with the conclusion that the catalytic mechanism changes when Mg2+ is replaced by Ca2+ . In a partially purified F1 domain preparation, Ca2+ -activated F1 -ATPase maintained Is-F1 sensitivity, and enzyme inhibition was accompanied by the maintenance of the mitochondrial calcium retention capacity and membrane potential. The data strengthen the structural relationship between Ca2+ -activated F1 FO -ATPase and the PTP, and, in turn, on consequences, such as physiopathological cellular changes.
Collapse
Affiliation(s)
- Cristina Algieri
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Fabiana Trombetti
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | | | - Vittoria Ventrella
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Chiara Bernardini
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Micaela Fabbri
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Monica Forni
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Salvatore Nesci
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
18
|
Nesci S. The mitochondrial permeability transition pore in cell death: A promising drug binding bioarchitecture. Med Res Rev 2019; 40:811-817. [PMID: 31617227 DOI: 10.1002/med.21635] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 01/08/2023]
Abstract
Bioenergetic failure often features programmed cell death involved in some severe pathologies. When the cell is fated to die, the inner mitochondrial membrane becomes permeable to ions and solutes, due to the formation and opening of a channel known as mitochondrial permeability transition pore (mPTP). Up to now, the still-elusive mPTP structure and mechanism prevented any attempt to identify/design drugs to rule its formation and limit cell death. Latest advances, which strongly suggest that the F1 FO -ATPase can coincide with the mPTP, open new perspectives in therapy. Compounds targeting and inhibiting cyclophilin D, a known mPTP promoter, could be exploited to block mPTP formation. Moreover, if the mPTP-F1 FO -ATPase connection will be consolidated, selected F1 FO -ATPase inhibitors could represent novel therapeutic options to attenuate mPTP-related diseases by directly acting on mPTP molecular mechanism. This intriguing perspective, which raises new hopes to counteract mPTP-related diseases, stimulates further studies to clarify the mPTP architecture and mechanism.
Collapse
Affiliation(s)
- Salvatore Nesci
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
19
|
Purified F-ATP synthase forms a Ca 2+-dependent high-conductance channel matching the mitochondrial permeability transition pore. Nat Commun 2019; 10:4341. [PMID: 31554800 PMCID: PMC6761146 DOI: 10.1038/s41467-019-12331-1] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 08/29/2019] [Indexed: 12/20/2022] Open
Abstract
The molecular identity of the mitochondrial megachannel (MMC)/permeability transition pore (PTP), a key effector of cell death, remains controversial. By combining highly purified, fully active bovine F-ATP synthase with preformed liposomes we show that Ca2+ dissipates the H+ gradient generated by ATP hydrolysis. After incorporation of the same preparation into planar lipid bilayers Ca2+ elicits currents matching those of the MMC/PTP. Currents were fully reversible, were stabilized by benzodiazepine 423, a ligand of the OSCP subunit of F-ATP synthase that activates the MMC/PTP, and were inhibited by Mg2+ and adenine nucleotides, which also inhibit the PTP. Channel activity was insensitive to inhibitors of the adenine nucleotide translocase (ANT) and of the voltage-dependent anion channel (VDAC). Native gel-purified oligomers and dimers, but not monomers, gave rise to channel activity. These findings resolve the long-standing mystery of the MMC/PTP and demonstrate that Ca2+ can transform the energy-conserving F-ATP synthase into an energy-dissipating device. The molecular identity of the mitochondrial megachannel (MMC)/permeability transition pore (PTP), a key effector of cell death, remains controversial. Here authors demonstrate that the membrane embedded bovine F-ATP synthase elicits Ca2 + -dependent currents matching those of the MMC/PTP.
Collapse
|
20
|
Nesci S, Trombetti F, Algieri C, Pagliarani A. A Therapeutic Role for the F 1F O-ATP Synthase. SLAS DISCOVERY 2019; 24:893-903. [PMID: 31266411 DOI: 10.1177/2472555219860448] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Recently, the F1FO-ATP synthase, due to its dual role of life enzyme as main adenosine triphosphate (ATP) maker and of death enzyme, as ATP dissipator and putative structural component of the mitochondrial permeability transition pore (mPTP), which triggers cell death, has been increasingly considered as a drug target. Accordingly, the enzyme offers new strategies to counteract the increased antibiotic resistance. The challenge is to find or synthesize compounds able to discriminate between prokaryotic and mitochondrial F1FO-ATP synthase, exploiting subtle structural differences to kill pathogens without affecting the host. From this perspective, the eukaryotic enzyme could also be made refractory to macrolide antibiotics by chemically produced posttranslational modifications. Moreover, because the mitochondrial F1FO-ATPase activity stimulated by Ca2+ instead of by the natural modulator Mg2+ is most likely involved in mPTP formation, effectors preferentially targeting the Ca2+-activated enzyme may modulate the mPTP. If the enzyme involvement in the mPTP is confirmed, Ca2+-ATPase inhibitors may counteract conditions featured by an increased mPTP activity, such as neurodegenerative and cardiovascular diseases and physiological aging. Conversely, mPTP opening could be pharmacologically stimulated to selectively kill unwanted cells. On the basis of recent literature and promising lab findings, the action mechanism of F1 and FO inhibitors is considered. These molecules may act as enzyme modifiers and constitute new drugs to kill pathogens, improve compromised enzyme functions, and limit the deathly enzyme role in pathologies. The enzyme offers a wide spectrum of therapeutic strategies to fight at the molecular level diseases whose treatment is still insufficient or merely symptomatic.
Collapse
Affiliation(s)
- Salvatore Nesci
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, Bologna, Italy
| | - Fabiana Trombetti
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, Bologna, Italy
| | - Cristina Algieri
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, Bologna, Italy
| | - Alessandra Pagliarani
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, Bologna, Italy
| |
Collapse
|
21
|
Mitochondrial F-ATP Synthase and Its Transition into an Energy-Dissipating Molecular Machine. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8743257. [PMID: 31178976 PMCID: PMC6501240 DOI: 10.1155/2019/8743257] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/18/2019] [Indexed: 01/27/2023]
Abstract
The mitochondrial F-ATP synthase is the principal energy-conserving nanomotor of cells that harnesses the proton motive force generated by the respiratory chain to make ATP from ADP and phosphate in a process known as oxidative phosphorylation. In the energy-converting membranes, F-ATP synthase is a multisubunit complex organized into a membrane-extrinsic F1 sector and a membrane-intrinsic FO domain, linked by central and peripheral stalks. Due to its essential role in the cellular metabolism, malfunction of F-ATP synthase has been associated with a variety of pathological conditions, and the enzyme is now considered as a promising drug target for multiple disease conditions and for the regulation of energy metabolism. We discuss structural and functional features of mitochondrial F-ATP synthase as well as several conditions that partially or fully inhibit the coupling between the F1 catalytic activities and the FO proton translocation, thus decreasing the cellular metabolic efficiency and transforming the enzyme into an energy-dissipating structure through molecular mechanisms that still remain to be defined.
Collapse
|
22
|
Nesci S, Trombetti F, Ventrella V, Pagliarani A. From the Ca 2+-activated F 1F O-ATPase to the mitochondrial permeability transition pore: an overview. Biochimie 2018; 152:85-93. [PMID: 29964086 DOI: 10.1016/j.biochi.2018.06.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/26/2018] [Indexed: 01/02/2023]
Abstract
Based on recent advances on the Ca2+-activated F1FO-ATPase features, a novel multistep mechanism involving the mitochondrial F1FO complex in the formation and opening of the still enigmatic mitochondrial permeability transition pore (MPTP), is proposed. MPTP opening makes the inner mitochondrial membrane (IMM) permeable to ions and solutes and, through cascade events, addresses cell fate to death. Since MPTP forms when matrix Ca2+ concentration rises and ATP is hydrolyzed by the F1FO-ATPase, conformational changes, triggered by Ca2+ insertion in F1, may be transmitted to FO and locally modify the IMM curvature. These events would cause F1FO-ATPase dimer dissociation and MPTP opening.
Collapse
Affiliation(s)
- Salvatore Nesci
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, BO, Italy
| | - Fabiana Trombetti
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, BO, Italy
| | - Vittoria Ventrella
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, BO, Italy
| | - Alessandra Pagliarani
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, BO, Italy.
| |
Collapse
|
23
|
Nesci S, Trombetti F, Ventrella V, Pirini M, Pagliarani A. The inhibition of the mitochondrial F1FO-ATPase activity when activated by Ca2+ opens new regulatory roles for NAD. Biol Chem 2018; 399:197-202. [PMID: 28976891 DOI: 10.1515/hsz-2017-0209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/21/2017] [Indexed: 02/07/2023]
Abstract
The mitochondrial F1FO-ATPase is uncompetitively inhibited by NAD+ only when the natural cofactor Mg2+ is replaced by Ca2+, a mode putatively involved in cell death. The Ca2+-dependent F1FO-ATPase is also inhibited when NAD+ concentration in mitochondria is raised by acetoacetate. The enzyme inhibition by NAD+ cannot be ascribed to any de-ac(et)ylation or ADP-ribosylation by sirtuines, as it is not reversed by nicotinamide. Moreover, the addition of acetyl-CoA or palmitate, which would favor the enzyme ac(et)ylation, does not affect the F1FO-ATPase activity. Consistently, NAD+ may play a new role, not associated with redox and non-redox enzymatic reactions, in the Ca2+-dependent regulation of the F1FO-ATPase activity.
Collapse
Affiliation(s)
- Salvatore Nesci
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, via Tolara di Sopra 50, I-40064 Ozzano dell'Emilia (BO), Italy
| | - Fabiana Trombetti
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, via Tolara di Sopra 50, I-40064 Ozzano dell'Emilia (BO), Italy
| | - Vittoria Ventrella
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, via Tolara di Sopra 50, I-40064 Ozzano dell'Emilia (BO), Italy
| | - Maurizio Pirini
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, via Tolara di Sopra 50, I-40064 Ozzano dell'Emilia (BO), Italy
| | - Alessandra Pagliarani
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, via Tolara di Sopra 50, I-40064 Ozzano dell'Emilia (BO), Italy
| |
Collapse
|
24
|
New insight in a new entity: the mitochondrial permeability transition pore arises from the Ca 2+-activated F 1F O-ATPases. Sci Bull (Beijing) 2018; 63:143-145. [PMID: 36658996 DOI: 10.1016/j.scib.2017.12.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
25
|
Nesci S, Trombetti F, Ventrella V, Pagliarani A. Post-translational modifications of the mitochondrial F 1F O-ATPase. Biochim Biophys Acta Gen Subj 2017; 1861:2902-2912. [PMID: 28782624 DOI: 10.1016/j.bbagen.2017.08.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/27/2017] [Accepted: 08/03/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND The mitochondrial F1FO-ATPase has the main role in synthesizing most of ATP, thus providing energy to living cells, but it also works in reverse and hydrolyzes ATP, depending on the transmembrane electrochemical gradient. Within the same complex the vital role of the enzyme of life coexists with that of molecular switch to trigger programmed cell death. The two-faced vital/lethal role makes the enzyme complex an intriguing biochemical target to fight pathogens resistant to traditional therapies and diseases linked to mitochondrial dysfunctions. A variety of post-translational modifications (PTMs) of selected F1FO-ATPase aminoacids have been reported to affect the enzyme function. SCOPE OF REVIEW By reviewing the known PTMs of aminoacid side chains of both F1 and FO sectors according to the most recent advances, the main aim is to highlight how local chemical changes may constitute the molecular key leading to pathological or physiological events. MAJOR CONCLUSIONS PTMs represent the chemical tool to modulate the F1FO-ATPase activity in response to different stimuli. Some PTMs are required to ensure the enzyme catalysis or, conversely, to inactivate the enzyme function. Each covalent modification of the F1FO-ATPase, which occur in response to local changes, is the result of a selective molecular mechanism which, by translating a chemical modification into a biochemical effect, guarantees the enzyme tuning under changing conditions. GENERAL SIGNIFICANCE Once highlighted how the molecular mechanism works, some PTMs may be exploited to modulate the effect of drugs targeting the enzyme complex or constitute promising tools for F1FO-ATPase-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Salvatore Nesci
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, via Tolara di Sopra 50, 40064 Ozzano dell'Emilia, BO, Italy
| | - Fabiana Trombetti
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, via Tolara di Sopra 50, 40064 Ozzano dell'Emilia, BO, Italy
| | - Vittoria Ventrella
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, via Tolara di Sopra 50, 40064 Ozzano dell'Emilia, BO, Italy
| | - Alessandra Pagliarani
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, via Tolara di Sopra 50, 40064 Ozzano dell'Emilia, BO, Italy.
| |
Collapse
|
26
|
Nesci S. Mitochondrial permeability transition, F 1 F O -ATPase and calcium: an enigmatic triangle. EMBO Rep 2017; 18:1265-1267. [PMID: 28743710 PMCID: PMC5538758 DOI: 10.15252/embr.201744570] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In response to calcium mitochondria can undergo a permeability transition-a sudden increase of the permeability of the inner mitochondrial membrane to ions and solutes resulting in cell death. Salvatore Nesci discusses recent advances in the identification of the structure that forms the mitochondria permeability transition pore.
Collapse
Affiliation(s)
- Salvatore Nesci
- Department of Veterinary Medical Sciences (DIMEVET)University of BolognaOzzano Emilia (BO)Italy
| |
Collapse
|