1
|
Zhang Y, Ru Y, Shi Z, Wang H, Zhang J, Wu J, Pang H, Feng H. Effects of different light conditions on transient expression and biomass in Nicotiana benthamiana leaves. Open Life Sci 2023; 18:20220732. [PMID: 37854318 PMCID: PMC10579877 DOI: 10.1515/biol-2022-0732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/02/2023] [Accepted: 08/27/2023] [Indexed: 10/20/2023] Open
Abstract
In the process of the production of recombinant proteins by using an Agrobacterium-mediated transient gene expression system, the effectiveness of the control of light conditions pre- and post-agroinfiltration on efficiency of transient expression is worth being evaluated. In this study, Nicotiana benthamiana plants were used as a bioreactor to investigate the effects of different light conditions pre- and post-agroinfiltration on the transient expression of green fluorescent protein (GFP). The results showed that the plants grown under light condition for 5 weeks had the highest level of transient expression among those grown for 4-8 weeks. In the pre-agroinfiltration, the level of transient expression of GFP was obviously decreased by the increase in light intensity or by the shortening of the photoperiod. Although the shortening of the photoperiod post-agroinfiltration also decreased the level of transient expression, moderate light intensity post-agroinfiltration was needed for higher level of transient expression efficiency. However, there was no strong correlation between the transient expression efficiency and plant growth. The results suggested that light condition was an important factor affecting the level of transient expression in plants. Hence, light conditions should be optimized to obtain higher productivity of recombinant protein from transient expression systems.
Collapse
Affiliation(s)
- Yuejing Zhang
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu, China
| | - Yi Ru
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou730046, Gansu, China
| | - Zhenzhen Shi
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Hanqi Wang
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu, China
| | - Ji Zhang
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu, China
- New Rural Development Research Institute, Northwest Normal University, Lanzhou, 730070, Gansu, China
| | - Jianping Wu
- New Rural Development Research Institute, Northwest Normal University, Lanzhou, 730070, Gansu, China
| | - Hailong Pang
- New Rural Development Research Institute, Northwest Normal University, Lanzhou, 730070, Gansu, China
| | - Hanqing Feng
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu, China
- New Rural Development Research Institute, Northwest Normal University, Lanzhou, 730070, Gansu, China
| |
Collapse
|
2
|
Xia Q, Zheng Y, Wang L, Chen X. Proposing Signaling Molecules as Key Optimization Targets for Intensifying the Phytochemical Biosynthesis Induced by Emerging Nonthermal Stress Pretreatments of Plant-Based Foods: A Focus on γ-Aminobutyric Acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12622-12644. [PMID: 37599447 DOI: 10.1021/acs.jafc.3c04413] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Emerging evidence has confirmed the role of emerging nonthermal stressors (e.g., electromagnetic fields, ultrasonication, plasma) in accumulating bioactive metabolites in plant-based food. However, the signal decoding mechanisms behind NonTt-driven phytochemical production remain unclear, hindering postharvest bioactive component intensification. This study aims to summarize the association between signaling molecules and bioactive secondary metabolite production under nonthermal conditions, demonstrating the feasibility of enhancing phytochemical accumulation through signaling molecule crosstalk manipulation. Nonthermal elicitors were found to be capable of inducing stress metabolisms and activating various signaling molecules, similar to conventional abiotic stress. A simplified pathway model for nonthermally induced γ-aminobutyric acid accumulation was proposed with reactive oxygen species and calcium signaling being versatile pathways responsive to nonthermal elicitors. Manipulating signal molecules/pathways under nonthermal conditions can intensify phytochemical biosynthesis. Further research is needed to integrate signaling molecule responses and metabolic network shifts in nonthermally stressed plant-based matrices, balancing quality modifications and intensification of food functionality potential.
Collapse
Affiliation(s)
- Qiang Xia
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
- College of Food and Pharmaceutical Sciences, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315832, China
| | - Yuanrong Zheng
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China
| | - Libin Wang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaojia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
| |
Collapse
|
3
|
Mellid-Carballal R, Gutierrez-Gutierrez S, Rivas C, Garcia-Fuentes M. Viral protein nanoparticles (Part 1): Pharmaceutical characteristics. Eur J Pharm Sci 2023; 187:106460. [PMID: 37156338 DOI: 10.1016/j.ejps.2023.106460] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/21/2023] [Accepted: 05/06/2023] [Indexed: 05/10/2023]
Abstract
Viral protein nanoparticles fill the gap between viruses and synthetic nanoparticles. Combining advantageous properties of both systems, they have revolutionized pharmaceutical research. Virus-like particles are characterized by a structure identical to viruses but lacking genetic material. Another type of viral protein nanoparticles, virosomes, are similar to liposomes but include viral spike proteins. Both systems are effective and safe vaccine candidates capable of overcoming the disadvantages of both traditional and subunit vaccines. Besides, their particulate structure, biocompatibility, and biodegradability make them good candidates as vectors for drug and gene delivery, and for diagnostic applications. In this review, we analyze viral protein nanoparticles from a pharmaceutical perspective and examine current research focused on their development process, from production to administration. Advances in synthesis, modification and formulation of viral protein nanoparticles are critical so that large-scale production of viral protein nanoparticle products becomes viable and affordable, which ultimately will increase their market penetration in the future. We will discuss their expression systems, modification strategies, formulation, biopharmaceutical properties, and biocompatibility.
Collapse
Affiliation(s)
- Rocio Mellid-Carballal
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidad de Santiago de Compostela, Spain
| | - Sara Gutierrez-Gutierrez
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidad de Santiago de Compostela, Spain
| | - Carmen Rivas
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Universidad de Santiago de Compostela, Spain; Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología (CNB)-CSIC, Spain
| | - Marcos Garcia-Fuentes
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidad de Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Universidad de Santiago de Compostela, Spain.
| |
Collapse
|
4
|
Massa S, Pagliarello R, Paolini F, Venuti A. Natural Bioactives: Back to the Future in the Fight against Human Papillomavirus? A Narrative Review. J Clin Med 2022; 11:jcm11051465. [PMID: 35268556 PMCID: PMC8911515 DOI: 10.3390/jcm11051465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 02/05/2023] Open
Abstract
Human papillomavirus (HPV) still represents an important threat to health worldwide. Better therapy in terms of further improvement of outcomes and attenuation of related side-effects is desirable. The pharmaceutical industry has always targeted natural substances-phytochemicals in particular-to identify lead compounds to be clinically validated and industrially produced as antiviral and anticancer drugs. In the field of HPV, numerous naturally occurring bioactives and dietary phytochemicals have been investigated as potentially valuable in vitro and in vivo. Interference with several pathways and improvement of the efficacy of chemotherapeutic agents have been demonstrated. Notably, some clinical trials have been conducted. Despite being endowed with general safety, these natural substances are in urgent need of further assessment to foresee their clinical exploitation. This review summarizes the basic research efforts conducted so far in the study of anti-HPV properties of bio-actives with insights into their mechanisms of action and highlights the variety of their natural origin in order to provide comprehensive mapping throughout the different sources. The clinical studies available are reported, as well, to highlight the need of uniformity and consistency of studies in the future to select those natural compounds that may be suited to clinical application.
Collapse
Affiliation(s)
- Silvia Massa
- Biotechnology Laboratory, Casaccia Research Center, Biotechnology and Agro-Industry Division, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123 Rome, Italy;
- Correspondence:
| | - Riccardo Pagliarello
- Biotechnology Laboratory, Casaccia Research Center, Biotechnology and Agro-Industry Division, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123 Rome, Italy;
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| | - Francesca Paolini
- HPV-Unit, Unità Operativa Semplice Dipartimentale (UOSD) Tumor Immunology and Immunotherapy, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (F.P.); (A.V.)
| | - Aldo Venuti
- HPV-Unit, Unità Operativa Semplice Dipartimentale (UOSD) Tumor Immunology and Immunotherapy, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (F.P.); (A.V.)
| |
Collapse
|
5
|
Paolino KM, Regules JA, Moon JE, Ruck RC, Bennett JW, Remich SA, Mills KT, Lin L, Washington CN, Fornillos GA, Lindsey CY, O'Brien KA, Shi M, Mark Jones R, Green BJ, Tottey S, Chichester JA, Streatfield SJ, Yusibov V. Safety and immunogenicity of a plant-derived recombinant protective antigen (rPA)-based vaccine against Bacillus anthracis: A Phase 1 dose-escalation study in healthy adults. Vaccine 2022; 40:1864-1871. [DOI: 10.1016/j.vaccine.2022.01.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/14/2021] [Accepted: 01/24/2022] [Indexed: 10/19/2022]
|
6
|
Citiulo F, Crosatti C, Cattivelli L, Biselli C. Frontiers in the Standardization of the Plant Platform for High Scale Production of Vaccines. PLANTS (BASEL, SWITZERLAND) 2021; 10:1828. [PMID: 34579360 PMCID: PMC8467261 DOI: 10.3390/plants10091828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022]
Abstract
The recent COVID-19 pandemic has highlighted the value of technologies that allow a fast setup and production of biopharmaceuticals in emergency situations. The plant factory system can provide a fast response to epidemics/pandemics. Thanks to their scalability and genome plasticity, plants represent advantageous platforms to produce vaccines. Plant systems imply less complicated production processes and quality controls with respect to mammalian and bacterial cells. The expression of vaccines in plants is based on transient or stable transformation systems and the recent progresses in genome editing techniques, based on the CRISPR/Cas method, allow the manipulation of DNA in an efficient, fast, and easy way by introducing specific modifications in specific sites of a genome. Nonetheless, CRISPR/Cas is far away from being fully exploited for vaccine expression in plants. In this review, an overview of the potential conjugation of the renewed vaccine technologies (i.e., virus-like particles-VLPs, and industrialization of the production process) with genome editing to produce vaccines in plants is reported, illustrating the potential advantages in the standardization of the plant platforms, with the overtaking of constancy of large-scale production challenges, facilitating regulatory requirements and expediting the release and commercialization of the vaccine products of genome edited plants.
Collapse
Affiliation(s)
- Francesco Citiulo
- GSK Vaccines Institute for Global Health, Via Fiorentina 1, 53100 Siena, Italy;
| | - Cristina Crosatti
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics, Via San Protaso 302, 29017 Fiorenzuola d’Arda, Italy; (C.C.); (L.C.)
| | - Luigi Cattivelli
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics, Via San Protaso 302, 29017 Fiorenzuola d’Arda, Italy; (C.C.); (L.C.)
| | - Chiara Biselli
- Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology, Viale Santa Margherita 80, 52100 Arezzo, Italy
| |
Collapse
|
7
|
Ward BJ, Séguin A, Couillard J, Trépanier S, Landry N. Phase III: Randomized observer-blind trial to evaluate lot-to-lot consistency of a new plant-derived quadrivalent virus like particle influenza vaccine in adults 18-49 years of age. Vaccine 2021; 39:1528-1533. [PMID: 33581920 DOI: 10.1016/j.vaccine.2021.01.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 12/22/2020] [Accepted: 01/02/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND The global reliance on eggs to produce most influenza vaccines has several limitations and new approaches to influenza vaccine production are needed. Herein we describe a phase 3, lot-to-lot consistency trial (NCT03321968) of a quadrivalent, recombinant, virus-like particle (VLP) influenza vaccine produced in plants. This platform is based on transient expression of proteins in Nicotiana benthamiana and yields VLPs bearing hemagglutinin (HA) protein trimers that are combined in a quadrivalent vaccine (QVLP). METHODS The HAs targeted in this study were A/California/07/2009 H1N1, A/Hong Kong/4801/2014 H3N2, B/Brisbane/60/08 and B/Phuket/3073/2013: recommended for the 2016-2017 Northern Hemisphere season. Healthy adults 18-49 years of age (n = 1200) were randomized 1:1:1 to receive a 0.5 mL intramuscular injection of QVLP (30 μg HA/strain) from three sequential lots. Local and systemic reactions were monitored for 21 days post-vaccination and blood was collected pre-vaccination and at day 21 (D21) after vaccination to measure hemagglutination inhibition (HI) antibodies. RESULTS Subject demographics were similar between groups and compliance with study procedures was 96.3%. The study population was 54.8% female, the mean age (±SD) was 29.9 ± 9.01 and the racial distribution was 77.8% Caucasian, 15.6% Asian, 5.8% Black/African American and 0.8% other. The HI responses met the Center for Biologics Evaluation and Research criteria for seroconversion (SCR ≥ 40%) and seroprotection rates (SPR ≥ 70%). The geometric mean fold rise in HI titers was ≥ 2.5 for all 4 strains for each lot. Lot-to-lot consistency was met with the 95% confidence intervals of the D21 mean geometric titre ratios falling between 0.67 and 1.5 for all four strains. No safety concerns were identified. Solicited adverse events were generally mild and transient: typical for what is reported after inactivated influenza vaccines. CONCLUSIONS This study supported earlier findings of the safety profile and immunogenicity of the plant-derived QVLP and demonstrated the consistency with which it can be produced.
Collapse
Affiliation(s)
- Brian J Ward
- Medicago Inc., 1020 route de l'Église office 600, Québec, QC G1V 3V9, Canada; Research Institute of the McGill University Health Centre, 1001 Decarie Street, EM3-3248, Montreal, QC H4A 3J1, Canada
| | - Annie Séguin
- Medicago Inc., 1020 route de l'Église office 600, Québec, QC G1V 3V9, Canada
| | - Julie Couillard
- Medicago Inc., 1020 route de l'Église office 600, Québec, QC G1V 3V9, Canada
| | - Sonia Trépanier
- Medicago Inc., 1020 route de l'Église office 600, Québec, QC G1V 3V9, Canada
| | - Nathalie Landry
- Medicago Inc., 1020 route de l'Église office 600, Québec, QC G1V 3V9, Canada.
| |
Collapse
|
8
|
Xisto MF, Dias RS, Feitosa-Araujo E, Prates JWO, da Silva CC, de Paula SO. Efficient Plant Production of Recombinant NS1 Protein for Diagnosis of Dengue. FRONTIERS IN PLANT SCIENCE 2020; 11:581100. [PMID: 33193526 PMCID: PMC7649140 DOI: 10.3389/fpls.2020.581100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/02/2020] [Indexed: 05/28/2023]
Abstract
Dengue fever is endemic in more than 120 countries, which account for 3.9 billion people at risk of infection worldwide. The absence of a vaccine with effective protection against the four serotypes of this virus makes differential molecular diagnosis the key step for the correct treatment of the disease. Rapid and efficient diagnosis prevents progression to a more severe stage of this disease. Currently, the limiting factor in the manufacture of dengue (DENV) diagnostic kits is the lack of large-scale production of the non-structural 1 (NS1) protein (antigen) to be used in the capture of antibodies from the blood serum of infected patients. In this work, we use plant biotechnology and genetic engineering as tools for the study of protein production for research and commercial purposes. Gene transfer, integration and expression in plants is a valid strategy for obtaining large-scale and low-cost heterologous protein production. The authors produced NS1 protein of the dengue virus serotype 2 (NS1DENV2) in the Arabidopsis thaliana plant. Transgenic plants obtained by genetic transformation expressed the recombinant protein that was purified and characterized for diagnostic use. The yield was 203 μg of the recombinant protein per gram of fresh leaf. By in situ immunolocalization, transgenic protein was observed within the plant tissue, located in aggregates bodies. These antigens showed high sensitivity and specificity to both IgM (84.29% and 91.43%, respectively) and IgG (83.08% and 87.69%, respectively). The study goes a step further to validate the use of plants as a strategy for obtaining large-scale and efficient protein production to be used in dengue virus diagnostic tests.
Collapse
Affiliation(s)
| | - Roberto Sousa Dias
- Department of General Biology, Federal University of Viçosa, Viçosa, Brazil
| | | | | | | | | |
Collapse
|
9
|
Trombetta CM, Marchi S, Manini I, Lazzeri G, Montomoli E. Challenges in the development of egg-independent vaccines for influenza. Expert Rev Vaccines 2019; 18:737-750. [DOI: 10.1080/14760584.2019.1639503] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | - Serena Marchi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Ilaria Manini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Giacomo Lazzeri
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- VisMederi srl, Siena, Italy
| |
Collapse
|
10
|
Mamedov T, Cicek K, Miura K, Gulec B, Akinci E, Mammadova G, Hasanova G. A Plant-Produced in vivo deglycosylated full-length Pfs48/45 as a Transmission-Blocking Vaccine Candidate against malaria. Sci Rep 2019; 9:9868. [PMID: 31285498 PMCID: PMC6614448 DOI: 10.1038/s41598-019-46375-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/27/2019] [Indexed: 12/25/2022] Open
Abstract
Pfs48/45 is a leading antigen candidate for a transmission blocking (TB) vaccine. However, efforts to produce affordable, safe and correctly folded full-length Pfs48/45 using different protein expression systems have not produced an antigen with satisfactory TB activity. Pfs48/45 has 16 cysteines involved in disulfide bond formation, and the correct formation is critical for proper folding and induction of TB antibodies. Moreover, Pfs48⁄45 is not a glycoprotein in the native hosts, but contains potential glycosylation sites, which are aberrantly glycosylated during expression in eukaryotic systems. Here, we demonstrate for the first time that full length, Endo H in vivo enzymatic deglycosylated Pfs48/45 antigen is produced at a high level in plants and is structurally stable at elevated temperatures. Sera from mice immunized with this antigen showed strong inhibition in SMFA. Thus, Endo H in vivo enzymatic deglycosylated Pfs48/45 is a promising candidate for the development of an affordable TB vaccine, which may have the potential to save millions.
Collapse
Affiliation(s)
- Tarlan Mamedov
- Akdeniz University, Department of Agricultural Biotechnology, Dumlupınar Boulevard 07058 Campus, Antalya, Turkey.
- Azerbaijan National Academy of Science, Department of Biology and Medical Science, 24 Istiglaliyyat Street, Baku, Azerbaijan.
| | - Kader Cicek
- Akdeniz University, Department of Agricultural Biotechnology, Dumlupınar Boulevard 07058 Campus, Antalya, Turkey
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD, USA
| | - Burcu Gulec
- Akdeniz University, Department of Agricultural Biotechnology, Dumlupınar Boulevard 07058 Campus, Antalya, Turkey
| | - Ersin Akinci
- Akdeniz University, Department of Agricultural Biotechnology, Dumlupınar Boulevard 07058 Campus, Antalya, Turkey
| | - Gunay Mammadova
- Akdeniz University, Department of Agricultural Biotechnology, Dumlupınar Boulevard 07058 Campus, Antalya, Turkey
| | - Gulnara Hasanova
- Akdeniz University, Department of Agricultural Biotechnology, Dumlupınar Boulevard 07058 Campus, Antalya, Turkey
| |
Collapse
|
11
|
Kopertekh L, Schiemann J. Transient Production of Recombinant Pharmaceutical Proteins in Plants: Evolution and Perspectives. Curr Med Chem 2019; 26:365-380. [DOI: 10.2174/0929867324666170718114724] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/07/2017] [Accepted: 06/07/2017] [Indexed: 11/22/2022]
Abstract
During the last two decades, the production of pharmaceutical proteins in plants
evolved from proof of concept to established technology adopted by several biotechnological
companies. This progress is particularly based on intensive research starting stable genetic
transformation and moving to transient expression. Due to its advantages in yield and
speed of protein production transient expression platforms became the leading plant-based
manufacturing technology. Current transient expression methods rely on Agrobacteriummediated
delivery of expression vectors into plant cells. In recent years, great advances have
been made in the improvement of expression vectors, host cell engineering as well as in the
development of commercial manufacturing processes. Several GMP-certified large-scale
production facilities exist around the world to utilize agroinfiltration method. A number of
pharmaceutical proteins produced by transient expression are currently in clinical development.
The great potential of transient expression platform in respect to rapid response to
emerging pandemics was demonstrated by the production of experimental ZMapp antibodies
against Ebola virus as well as influenza vaccines. This review is focused on current design,
status and future perspectives of plant transient expression system for the production
of biopharmaceutical proteins.
Collapse
Affiliation(s)
- Lilya Kopertekh
- Federal Research Centre for Cultivated Plants, Institute for Biosafety in Plant Biotechnology, Erwin-Baur- Str. 27, D-06484, Quedlinburg, Germany
| | - Joachim Schiemann
- Federal Research Centre for Cultivated Plants, Institute for Biosafety in Plant Biotechnology, Erwin-Baur- Str. 27, D-06484, Quedlinburg, Germany
| |
Collapse
|
12
|
Huang LH, Lin HY, Lyu YT, Gung CL, Huang CT. Development of a Transgenic Flammulina velutipes Oral Vaccine for Hepatitis B. Food Technol Biotechnol 2019; 57:105-112. [PMID: 31316282 PMCID: PMC6600300 DOI: 10.17113/ftb.57.01.19.5865] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Orally administered fungal vaccines show promise for the prevention of infectious diseases. Edible mushrooms are deemed appropriate hosts to produce oral vaccines due to their low production cost and low risk of gene contamination. However, their low expression level of antigens has limited the potential development of oral vaccines using mushrooms. The low expression level might result from impurity of the transgenic mycelia since dikaryotic mycelia are commonly used as transformation materials. In this study, stable transgenic hepatitis B virus surface antigen (HBsAg) in Flammulina velutipes transformants was obtained by Agrobacterium-mediated transformation, followed by fruiting and basidiospore mating. The formation of HBsAg was detected by western blot analysis. The expression levels of HBsAg in transgenic F. velutipes fruiting bodies were (129.3±15.1), (110.9±1.7) and (161.1±8.5) ng/g total soluble protein. However, the values may be underestimated due to incomplete protein extraction. Two of the four pigs in the experimental group produced positive anti-HBsAg-specific IgG after being fed the HBsAg transgenic F. velutipes fruiting bodies for 20 weeks, while no anti-HBsAg antibody was detected in the control group. One of the positive pigs had HBsAg titres of 5.36 and 14.9 mIU/mL in weeks 10 and 14, respectively, but expression faded thereafter. The other positive pig displayed HBsAg titres of 9.75, 17.86 and 39.87 mIU/mL in weeks 14, 18 and 20, respectively. The successful immunogenicity in pigs fed transgenic F. velutipes fruiting bodies demonstrated the potential of using the fungus as an oral vaccine.
Collapse
Affiliation(s)
- Li-Hsin Huang
- MycoMagic Biotechnology Co. Ltd., 8F-1, 12, Lane 270, Sec. 3, Beishen Road, New Taipei City, Taiwan
| | - Hao-Yeh Lin
- Department of Biochemical Science and Technology, National Taiwan University, 1, Sec. 4, Roosevelt Road, Taipei, Taiwan
| | - Ying-Tzu Lyu
- MycoMagic Biotechnology Co. Ltd., 8F-1, 12, Lane 270, Sec. 3, Beishen Road, New Taipei City, Taiwan
| | - Chiau-Ling Gung
- MycoMagic Biotechnology Co. Ltd., 8F-1, 12, Lane 270, Sec. 3, Beishen Road, New Taipei City, Taiwan
| | - Ching-Tsan Huang
- Department of Biochemical Science and Technology, National Taiwan University, 1, Sec. 4, Roosevelt Road, Taipei, Taiwan
| |
Collapse
|
13
|
Lee MF, Chiang CH, Li YL, Wang NM, Song PP, Lin SJ, Chen YH. Oral edible plant vaccine containing hypoallergen of American cockroach major allergen Per a 2 prevents roach-allergic asthma in a murine model. PLoS One 2018; 13:e0201281. [PMID: 30059516 PMCID: PMC6066233 DOI: 10.1371/journal.pone.0201281] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/05/2018] [Indexed: 11/21/2022] Open
Abstract
Background American cockroaches (Periplaneta americana) are an important indoor allergen source and a major risk factor for exacerbations and poor control of asthma. We previously reported that allergen components from American cockroaches exhibit varying levels of pathogenicity. Sensitization to major American cockroach allergen, Per a 2, correlated with more severe clinical phenotypes among patients with allergic airway diseases. Materials and methods In this study, we examined whether oral plant vaccine-encoding full-length Per a 2 clone-996 or its hypoallergenic clone-372 could exert a prophylactic role in Per a 2-sensitized mice. The cDNAs coding Per a 2–996 and Per a 2–372 were inserted into TuMV vector and expressed in Chinese cabbage. Adult female BALB/c mice were fed with the cabbage extracts for 21 days and subsequently underwent two-step sensitization with recombinant Per a 2. Results Per a 2-specific IgE measured by in-house ELISA in the sera of Per a 2-372-treated groups were significantly lower than in the control groups after allergen challenge but not the Per a 2-996-treated group. Moreover, Per a 2–372 vaccine markedly decreased airway hyper-responsiveness and infiltration of inflammatory cells into the lungs, as well as reduced mRNA expression of IL-4 and IL-13 in comparison with the control mice. Conclusion Our data suggest that oral administration of edible plant vaccine encoding Per a 2 hypo-allergen may be used as a prophylactic strategy against the development of cockroach allergy.
Collapse
Affiliation(s)
- Mey-Fann Lee
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chu-Hui Chiang
- Department of Plant Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Ying-Lan Li
- Institute of Biotechnology, National Changhua University of Education, Changhua, Taiwan
| | - Nancy M. Wang
- Institute of Biotechnology, National Changhua University of Education, Changhua, Taiwan
| | - Pei-Pong Song
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Shyh-Jye Lin
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Hsing Chen
- Division of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital, Taichung, Taiwan
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
14
|
Ding X, Liu D, Booth G, Gao W, Lu Y. Virus-Like Particle Engineering: From Rational Design to Versatile Applications. Biotechnol J 2018; 13:e1700324. [PMID: 29453861 DOI: 10.1002/biot.201700324] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/31/2018] [Indexed: 12/19/2022]
Abstract
As mimicking natural virus structures, virus-like particles (VLPs) have evolved to become a widely accepted technology used for humans which are safe, highly efficacious, and profitable. Several remarkable advantages have been achieved to revolutionize the molecule delivery for diverse applications in nanotechnology, biotechnology, and medicine. Here, the rational structure design, manufacturing process, functionalization strategy, and emerging applications of VLPs is reviewed. The situation and challenges in the VLP engineering, the key development orientation, and future applications have been discussed. To develop a good VLP design concept, the virus/VLP-host interactions need to be examined and the screening methods of the VLP stabilization factors need to be established. The functionalization toolbox can be expanded to fabricate smart, robust, and multifunctional VLPs. Novel robust VLP manufacturing platforms are required to deliver vaccines in resource-poor regions with a significant reduction in the production time and cost. The future applications of VLPs are always driven by the development of emerging technologies and new requirements of modern life.
Collapse
Affiliation(s)
- Xuanwei Ding
- Department of Chemical Engineering, Tsinghua University, Beijing, China.,Department of Microbiology, Shenyang Normal University, Shenyang, China
| | - Dong Liu
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - George Booth
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Wei Gao
- Department of Chemical Engineering, Tsinghua University, Beijing, China.,Department of Microbiology, Shenyang Normal University, Shenyang, China
| | - Yuan Lu
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
15
|
Masavuli MG, Wijesundara DK, Torresi J, Gowans EJ, Grubor-Bauk B. Preclinical Development and Production of Virus-Like Particles As Vaccine Candidates for Hepatitis C. Front Microbiol 2017; 8:2413. [PMID: 29259601 PMCID: PMC5723323 DOI: 10.3389/fmicb.2017.02413] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/22/2017] [Indexed: 12/16/2022] Open
Abstract
Hepatitis C Virus (HCV) infects 2% of the world’s population and is the leading cause of liver disease and liver transplantation. It poses a serious and growing worldwide public health problem that will only be partially addressed with the introduction of new antiviral therapies. However, these treatments will not prevent re-infection particularly in high risk populations. The introduction of a HCV vaccine has been predicted, using simulation models in a high risk population, to have a significant effect on reducing the incidence of HCV. A vaccine with 50 to 80% efficacy targeted to high-risk intravenous drug users could dramatically reduce HCV incidence in this population. Virus like particles (VLPs) are composed of viral structural proteins which self-assemble into non-infectious particles that lack genetic material and resemble native viruses. Thus, VLPs represent a safe and highly immunogenic vaccine delivery platform able to induce potent adaptive immune responses. Currently, many VLP-based vaccines have entered clinical trials, while licensed VLP vaccines for hepatitis B virus (HBV) and human papilloma virus (HPV) have been in use for many years. The HCV core, E1 and E2 proteins can self-assemble into immunogenic VLPs while inclusion of HCV antigens into heterogenous (chimeric) VLPs is also a promising approach. These VLPs are produced using different expression systems such as bacterial, yeast, mammalian, plant, or insect cells. Here, this paper will review HCV VLP-based vaccines and their immunogenicity in animal models as well as the different expression systems used in their production.
Collapse
Affiliation(s)
- Makutiro Ghislain Masavuli
- Virology Laboratory, Basil Hetzel Institute for Translational Medicine, Discipline of Surgery, University of Adelaide, Adelaide, SA, Australia
| | - Danushka K Wijesundara
- Virology Laboratory, Basil Hetzel Institute for Translational Medicine, Discipline of Surgery, University of Adelaide, Adelaide, SA, Australia
| | - Joseph Torresi
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Eric J Gowans
- Virology Laboratory, Basil Hetzel Institute for Translational Medicine, Discipline of Surgery, University of Adelaide, Adelaide, SA, Australia
| | - Branka Grubor-Bauk
- Virology Laboratory, Basil Hetzel Institute for Translational Medicine, Discipline of Surgery, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
16
|
Tottey S, Shoji Y, Jones RM, Chichester JA, Green BJ, Musiychuk K, Si H, Manceva SD, Rhee A, Shamloul M, Norikane J, Guimarães RC, Caride E, Silva ANMR, Simões M, Neves PCC, Marchevsky R, Freire MS, Streatfield SJ, Yusibov V. Plant-Produced Subunit Vaccine Candidates against Yellow Fever Induce Virus Neutralizing Antibodies and Confer Protection against Viral Challenge in Animal Models. Am J Trop Med Hyg 2017; 98:420-431. [PMID: 29231157 DOI: 10.4269/ajtmh.16-0293] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Yellow fever (YF) is a viral disease transmitted by mosquitoes and endemic mostly in South America and Africa with 20-50% fatality. All current licensed YF vaccines, including YF-Vax® (Sanofi-Pasteur, Lyon, France) and 17DD-YFV (Bio-Manguinhos, Rio de Janeiro, Brazil), are based on live attenuated virus produced in hens' eggs and have been widely used. The YF vaccines are considered safe and highly effective. However, a recent increase in demand for YF vaccines and reports of rare cases of YF vaccine-associated fatal adverse events have provoked interest in developing a safer YF vaccine that can be easily scaled up to meet this increased global demand. To this point, we have engineered the YF virus envelope protein (YFE) and transiently expressed it in Nicotiana benthamiana as a stand-alone protein (YFE) or as fusion to the bacterial enzyme lichenase (YFE-LicKM). Immunogenicity and challenge studies in mice demonstrated that both YFE and YFE-LicKM elicited virus neutralizing (VN) antibodies and protected over 70% of mice from lethal challenge infection. Furthermore, these two YFE-based vaccine candidates induced VN antibody responses with high serum avidity in nonhuman primates and these VN antibody responses were further enhanced after challenge infection with the 17DD strain of YF virus. These results demonstrate partial protective efficacy in mice of YFE-based subunit vaccines expressed in N. benthamiana. However, their efficacy is inferior to that of the live attenuated 17DD vaccine, indicating that formulation development, such as incorporating a more suitable adjuvant, may be required for product development.
Collapse
Affiliation(s)
- Stephen Tottey
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| | - Yoko Shoji
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| | - R Mark Jones
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| | | | - Brian J Green
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| | | | - Huaxin Si
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| | | | - Amy Rhee
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| | - Moneim Shamloul
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| | - Joey Norikane
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| | - Rosane C Guimarães
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fiocruz, Rio de Janeiro, Brazil
| | - Elena Caride
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fiocruz, Rio de Janeiro, Brazil
| | - Andrea N M R Silva
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fiocruz, Rio de Janeiro, Brazil
| | - Marisol Simões
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fiocruz, Rio de Janeiro, Brazil
| | - Patricia C C Neves
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fiocruz, Rio de Janeiro, Brazil
| | - Renato Marchevsky
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fiocruz, Rio de Janeiro, Brazil
| | - Marcos S Freire
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fiocruz, Rio de Janeiro, Brazil
| | | | - Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| |
Collapse
|
17
|
Fujiuchi N, Matsuda R, Matoba N, Fujiwara K. Effects of plant density on recombinant hemagglutinin yields in an Agrobacterium-mediated transient gene expression system using Nicotiana benthamiana plants. Biotechnol Bioeng 2017; 114:1762-1770. [PMID: 28369753 DOI: 10.1002/bit.26303] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/19/2017] [Accepted: 03/29/2017] [Indexed: 12/11/2022]
Abstract
Agrobacterium-mediated transient expression systems enable plants to rapidly produce a wide range of recombinant proteins. To achieve economically feasible upstream production and downstream processing, it is beneficial to obtain high levels of two yield-related quantities of upstream production: recombinant protein content per fresh mass of harvested biomass (g gFM-1 ) and recombinant protein productivity per unit area-time (g m-2 /month). Here, we report that the density of Nicotiana benthamiana plants during upstream production had significant impacts on the yield-related quantities of recombinant hemagglutinin (HA). The two quantities were smaller at a high plant density of 400 plants m-2 than at a low plant density of 100 plants m-2 . The smaller quantities at the high plant density were attributed to: (i) a lower HA content in young leaves, which usually have high HA accumulation potentials; (ii) a lower biomass allocation to the young leaves; and (iii) a high area-time requirement for plants. Thus, plant density is a key factor for improving upstream production in Agrobacterium-mediated transient expression systems. Biotechnol. Bioeng. 2017;114: 1762-1770. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Naomichi Fujiuchi
- Department of Biological and Environmental Engineering, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryo Matsuda
- Department of Biological and Environmental Engineering, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Nobuyuki Matoba
- Owensboro Cancer Research Program, James Graham Brown Cancer Center, University of Louisville School of Medicine, Owensboro, Kentucky
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Kazuhiro Fujiwara
- Department of Biological and Environmental Engineering, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
18
|
Mazalovska M, Varadinov N, Koynarski T, Minkov I, Teoharov P, Lomonossoff GP, Zahmanova G. Detection of Serum Antibodies to Hepatitis E Virus Based on HEV Genotype 3 ORF2 Capsid Protein Expressed in Nicotiana benthamiana. Ann Lab Med 2017; 37:313-319. [PMID: 28445010 PMCID: PMC5409023 DOI: 10.3343/alm.2017.37.4.313] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 12/08/2016] [Accepted: 03/08/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Hepatitis E virus (HEV) causes epidemics in developing countries and is primarily transmitted through the fecal-oral route. There have been recent reports on the zoonotic spread of the virus, and several animal species, primarily pigs, have been recognized as reservoirs of HEV. Because of its possible spread, there is an urgent need of a method for the cost-effective production of HEV proteins that can be used as diagnostic antigens for the serological detection of anti-HEV antibodies. METHODS The HEV open reading frame (ORF)2 protein was purified from plant tissue by using immobilized metal-anion chromatography (IMAC). The recombinant protein was used to develop an in-house ELISA for testing anti-HEV antibodies in both human and swine sera. Thirty-six serum samples collected from patients with serologically proven HEV infection with commercial kits were tested for anti-HEV IgG antibodies by using the plant-expressed protein. Forty-five serum samples collected from apparently healthy pigs in Bulgarian farms were also tested. RESULTS We confirmed the transient expression and purification of a truncated version of the HEV genotype 3 capsid protein in Nicotiana benthamiana and its usefulness as a diagnostic antigen. ELISA showed the presence of anti-HEV IgG antibodies in 29 of the 36 human samples. The in-house ELISA showed anti-HEV IgG antibodies in 34 of the 45 pigs. CONCLUSIONS We describe a method for the production of HEV ORF2 protein in N. benthamiana and the usefulness of this protein for the serological detection of anti-HEV antibodies in both humans and swine.
Collapse
Affiliation(s)
- Milena Mazalovska
- Department of Plant Physiology and Molecular Biology, University of Plovdiv "Paisii Hilendarski", Plovdiv, Bulgaria
| | - Nikola Varadinov
- Department of Plant Physiology and Molecular Biology, University of Plovdiv "Paisii Hilendarski", Plovdiv, Bulgaria
| | - Tsvetoslav Koynarski
- Department of Animal Genetics, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| | - Ivan Minkov
- Department of Plant Physiology and Molecular Biology, University of Plovdiv "Paisii Hilendarski", Plovdiv, Bulgaria
| | - Pavel Teoharov
- National Centre of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - George P Lomonossoff
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Gergana Zahmanova
- Department of Plant Physiology and Molecular Biology, University of Plovdiv "Paisii Hilendarski", Plovdiv, Bulgaria.
| |
Collapse
|
19
|
Giritch A, Klimyuk V, Gleba Y. 125 years of virology and ascent of biotechnologies based on viral expressio. CYTOL GENET+ 2017. [DOI: 10.3103/s0095452717020037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Kosobokova EN, Piniugina MV, Kosorukov VS. Synthesis of biologically active human interferon α-2b in Nicotiana benthamiana. APPL BIOCHEM MICRO+ 2017. [DOI: 10.1134/s0003683816070048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Fujiuchi N, Matsuda R, Matoba N, Fujiwara K. Removal of bacterial suspension water occupying the intercellular space of detached leaves after agroinfiltration improves the yield of recombinant hemagglutinin in a Nicotiana benthamiana transient gene expression system. Biotechnol Bioeng 2016; 113:901-6. [PMID: 26461274 DOI: 10.1002/bit.25854] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/02/2015] [Accepted: 10/08/2015] [Indexed: 11/07/2022]
Abstract
The use of detached leaves instead of whole plants provides an alternative means for recombinant protein production based on Agrobacterium tumefaciens-mediated transient gene overexpression. However, the process for high-level protein production in detached leaves has not yet been established. In this study, we focused on leaf handling and maintenance conditions immediately after infiltration with Agrobacterium suspension (agroinfiltration) to improve recombinant protein expression in detached Nicotiana benthamiana leaves. We demonstrated that the residual water of bacterial suspension in detached leaves had significant impact on the yield of recombinant influenza hemagglutinin (HA). Immediately after agroinfiltration, detached leaves were stored in a dehumidified chamber to allow bacterial suspension water occupying intercellular space to be removed by transpiration. We varied the duration of this water removal treatment from 0.7 to 4.4 h, which resulted in leaf fresh weights ranging from 0.94 to 1.28 g g(-1) relative to weights measured just before agroinfiltration. We used these relative fresh weights (RFWs) as an indicator of the amount of residual water. The detached leaves were then incubated in humidified chambers for 6 days. We found that the presence of residual water significantly decreased HA yield, with a clear inverse correlation observed between HA yield and RFW. We next compared HA yields in detached leaves with those obtained from intact leaves by whole-plant expression performed at the same time. The maximum HA yield obtained from a detached leaf with a RFW of approximately 1.0, namely, 800 μg gFW(-1), was comparable to the mean HA yield of 846 μg gFW(-1) generated in intact leaves. Our results indicate the necessity of removing bacterial suspension water from agroinfiltrated detached leaves in transient overexpression systems and point to a critical factor enabling the detached-leaf system as a viable recombinant protein factory.
Collapse
Affiliation(s)
- Naomichi Fujiuchi
- Department of Biological and Environmental Engineering, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan.
| | - Ryo Matsuda
- Department of Biological and Environmental Engineering, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Nobuyuki Matoba
- Owensboro Cancer Research Program, James Graham Brown Cancer Center, University of Louisville School of Medicine, Owensboro, Kentucky
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Kazuhiro Fujiwara
- Department of Biological and Environmental Engineering, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| |
Collapse
|
22
|
Arfi ZA, Hellwig S, Drossard J, Fischer R, Buyel JF. Polyclonal antibodies for specific detection of tobacco host cell proteins can be efficiently generated following RuBisCO depletion and the removal of endotoxins. Biotechnol J 2016; 11:507-18. [PMID: 26632519 DOI: 10.1002/biot.201500271] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 08/21/2015] [Accepted: 12/02/2015] [Indexed: 01/24/2023]
Abstract
The production of biopharmaceutical proteins in plants requires efficient downstream processing steps that remove impurities such as host cell proteins (HCPs) and adventitious endotoxins produced by bacteria during transient expression. We therefore strived to develop effective routines for endotoxin removal from plant extracts and the subsequent use of the extracts to generate antibodies detecting a broad set of HCPs. At first, we depleted the superabundant protein ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) for which PEG precipitation achieved the best results, preventing a dominant immune reaction against this protein. We found that a mixture of sera from rabbits immunized with pre-depleted or post-depleted extracts detected more HCPs than the individual sera used alone. We also developed a powerful endotoxin removal procedure using Polymyxin B for extracts from wild type plants or a combination of fiber-flow filtration and EndoTrap Blue for tobacco plants infiltrated with Agrobacterium tumefaciens. The antibodies we generated will be useful for quality and performance assessment in future process development and the methods we present can easily be transferred to other expression systems rendering them useful in the field of plant molecular farming.
Collapse
Affiliation(s)
- Zulfaquar Ahmad Arfi
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- BSV Bioscience GmbH, Baesweiler, Germany
| | - Stephan Hellwig
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Jürgen Drossard
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Johannes Felix Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany.
| |
Collapse
|
23
|
Shirbaghaee Z, Bolhassani A. Different applications of virus-like particles in biology and medicine: Vaccination and delivery systems. Biopolymers 2016; 105:113-32. [PMID: 26509554 PMCID: PMC7161881 DOI: 10.1002/bip.22759] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 10/25/2015] [Accepted: 10/25/2015] [Indexed: 12/17/2022]
Abstract
Virus-like particles (VLPs) mimic the whole construct of virus particles devoid of viral genome as used in subunit vaccine design. VLPs can elicit efficient protective immunity as direct immunogens compared to soluble antigens co-administered with adjuvants in several booster injections. Up to now, several prokaryotic and eukaryotic systems such as insect, yeast, plant, and E. coli were used to express recombinant proteins, especially for VLP production. Recent studies are also generating VLPs in plants using different transient expression vectors for edible vaccines. VLPs and viral particles have been applied for different functions such as gene therapy, vaccination, nanotechnology, and diagnostics. Herein, we describe VLP production in different systems as well as its applications in biology and medicine.
Collapse
Affiliation(s)
- Zeinab Shirbaghaee
- Department of Hepatitis and AIDSPasteur Institute of IranTehranIran
- Department of Immunology, School of Public HealthTehran University of Medical SciencesTehranIran
| | - Azam Bolhassani
- Department of Hepatitis and AIDSPasteur Institute of IranTehranIran
| |
Collapse
|
24
|
Li J, Stoddard TJ, Demorest ZL, Lavoie PO, Luo S, Clasen BM, Cedrone F, Ray EE, Coffman AP, Daulhac A, Yabandith A, Retterath AJ, Mathis L, Voytas DF, D'Aoust MA, Zhang F. Multiplexed, targeted gene editing in Nicotiana benthamiana for glyco-engineering and monoclonal antibody production. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:533-42. [PMID: 26011187 PMCID: PMC11389102 DOI: 10.1111/pbi.12403] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 04/20/2015] [Accepted: 04/21/2015] [Indexed: 05/28/2023]
Abstract
Biopharmaceutical glycoproteins produced in plants carry N-glycans with plant-specific residues core α(1,3)-fucose and β(1,2)-xylose, which can significantly impact the activity, stability and immunogenicity of biopharmaceuticals. In this study, we have employed sequence-specific transcription activator-like effector nucleases (TALENs) to knock out two α(1,3)-fucosyltransferase (FucT) and the two β(1,2)-xylosyltransferase (XylT) genes within Nicotiana benthamiana to generate plants with improved capacity to produce glycoproteins devoid of plant-specific residues. Among plants regenerated from N. benthamiana protoplasts transformed with TALENs targeting either the FucT or XylT genes, 50% (80 of 160) and 73% (94 of 129) had mutations in at least one FucT or XylT allele, respectively. Among plants regenerated from protoplasts transformed with both TALEN pairs, 17% (18 of 105) had mutations in all four gene targets, and 3% (3 of 105) plants had mutations in all eight alleles comprising both gene families; these mutations were transmitted to the next generation. Endogenous proteins expressed in the complete knockout line had N-glycans that lacked β(1,2)-xylose and had a significant reduction in core α(1,3)-fucose levels (40% of wild type). A similar phenotype was observed in the N-glycans of a recombinant rituximab antibody transiently expressed in the homozygous mutant plants. More importantly, the most desirable glycoform, one lacking both core α(1,3)-fucose and β(1,2)-xylose residues, increased in the antibody from 2% when produced in the wild-type line to 55% in the mutant line. These results demonstrate the power of TALENs for multiplexed gene editing. Furthermore, the mutant N. benthamiana lines provide a valuable platform for producing highly potent biopharmaceutical products.
Collapse
Affiliation(s)
- Jin Li
- Cellectis Plant Sciences Inc., New Brighton, MN, USA
| | | | | | | | - Song Luo
- Cellectis Plant Sciences Inc., New Brighton, MN, USA
| | | | | | - Erin E Ray
- Cellectis Plant Sciences Inc., New Brighton, MN, USA
| | | | | | - Ann Yabandith
- Cellectis Plant Sciences Inc., New Brighton, MN, USA
| | | | - Luc Mathis
- Cellectis Plant Sciences Inc., New Brighton, MN, USA
| | | | | | - Feng Zhang
- Cellectis Plant Sciences Inc., New Brighton, MN, USA
| |
Collapse
|
25
|
Liew PS, Hair-Bejo M. Farming of Plant-Based Veterinary Vaccines and Their Applications for Disease Prevention in Animals. Adv Virol 2015; 2015:936940. [PMID: 26351454 PMCID: PMC4550766 DOI: 10.1155/2015/936940] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/26/2015] [Indexed: 12/21/2022] Open
Abstract
Plants have been studied for the production of pharmaceutical compounds for more than two decades now. Ever since the plant-made poultry vaccine against Newcastle disease virus made a breakthrough and went all the way to obtain regulatory approval, research to use plants for expression and delivery of vaccine proteins for animals was intensified. Indeed, in view of the high production costs of veterinary vaccines, plants represent attractive biofactories and offer many promising advantages in the production of recombinant vaccine proteins. Furthermore, the possibility of conducting immunogenicity and challenge studies in target animals has greatly exaggerated the progress. Although there are no edible plant-produced animal vaccines in the market, plant-based vaccine technology has great potentials. In this review, development, uses, and advantages of plant-based recombinant protein production in various expression platforms are discussed. In addition, examples of plant-based veterinary vaccines showing strong indication in terms of efficacy in animal disease prevention are also described.
Collapse
Affiliation(s)
- Pit Sze Liew
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Mohd Hair-Bejo
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| |
Collapse
|
26
|
Putlyaev EV, Smirnov AA, Karpova OV, Atabekov JG. Double Subgenomic Promoter Control for a Target Gene Superexpression by a Plant Viral Vector. BIOCHEMISTRY. BIOKHIMIIA 2015; 80:1039-46. [PMID: 26547072 DOI: 10.1134/s000629791508009x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Several new deconstructed vectors based on a potexvirus genome sequence for efficient expression of heterologous proteins in plants were designed. The first obtained vector (AltMV-single), based on the Alternanthera mosaic virus (AltMV) strain MU genome, bears a typical architecture for deconstructed plant viral vectors, i.e. a triple gene block was deleted from the viral genome and the model gene of interest was placed under control of the first viral subgenomic promoter. To enhance the efficiency of expression, maintained by the AltMV-single, another vector (AltMV-double) was designed. In AltMV-double, the gene of interest was controlled by two viral subgenomic promoters located sequentially without a gap upstream of the target gene. It was found that AltMV-double provided a significantly higher level of accumulation of the target protein in plants than AltMV-single. Moreover, our data clearly show the requirement of the presence and functioning of both the subgenomic promoters for demonstrated high level of target protein expression by AltMV-double. Taken together, our results describe an additional possible way to enhance the efficiency of transient protein expression maintained in plants by a plant viral vector.
Collapse
Affiliation(s)
- E V Putlyaev
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | | | | | | |
Collapse
|
27
|
Krenek P, Samajova O, Luptovciak I, Doskocilova A, Komis G, Samaj J. Transient plant transformation mediated by Agrobacterium tumefaciens: Principles, methods and applications. Biotechnol Adv 2015; 33:1024-42. [PMID: 25819757 DOI: 10.1016/j.biotechadv.2015.03.012] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 03/05/2015] [Accepted: 03/19/2015] [Indexed: 12/20/2022]
Abstract
Agrobacterium tumefaciens is widely used as a versatile tool for development of stably transformed model plants and crops. However, the development of Agrobacterium based transient plant transformation methods attracted substantial attention in recent years. Transient transformation methods offer several applications advancing stable transformations such as rapid and scalable recombinant protein production and in planta functional genomics studies. Herein, we highlight Agrobacterium and plant genetics factors affecting transfer of T-DNA from Agrobacterium into the plant cell nucleus and subsequent transient transgene expression. We also review recent methods concerning Agrobacterium mediated transient transformation of model plants and crops and outline key physical, physiological and genetic factors leading to their successful establishment. Of interest are especially Agrobacterium based reverse genetics studies in economically important crops relying on use of RNA interference (RNAi) or virus-induced gene silencing (VIGS) technology. The applications of Agrobacterium based transient plant transformation technology in biotech industry are presented in thorough detail. These involve production of recombinant proteins (plantibodies, vaccines and therapeutics) and effectoromics-assisted breeding of late blight resistance in potato. In addition, we also discuss biotechnological potential of recombinant GFP technology and present own examples of successful Agrobacterium mediated transient plant transformations.
Collapse
Affiliation(s)
- Pavel Krenek
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| | - Olga Samajova
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| | - Ivan Luptovciak
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| | - Anna Doskocilova
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| | - George Komis
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| | - Jozef Samaj
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| |
Collapse
|
28
|
Yarbakht M, Jalali-Javaran M, Nikkhah M, Mohebodini M. Dicistronic expression of human proinsulin-protein A fusion in tobacco chloroplast. Biotechnol Appl Biochem 2015; 62:55-63. [PMID: 24716841 DOI: 10.1002/bab.1230] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 04/01/2014] [Indexed: 11/10/2022]
Abstract
Different expression systems such as bacteria and mammalian cells have been used to produce pharmaceutical proteins. In recent years, the use of plants as bioreactors offers efficient and economical systems in recombinant protein production. Furthermore, because of the large number of plastid copies in plants, chloroplast engineering functions as an effective method to increase recombinant protein expression. Because the commercially available insulin for treatment does not contain C-peptide, which is of great importance for type 1 diabetic patients, the current study introduces the human proinsulin gene fused with protein A into the tobacco chloroplast genome using the biolistic method. To achieve homoplasmy, three rounds of selection and regeneration of transforming cells were performed on the medium that contained spectinomycin antibiotic and hormones. The PCR analysis indicated the presence of the proinsulin gene in transplastomic plants. The reverse-transcription PCR analysis confirmed the expression of the proinsulin-protein A fusion at the transcription level. Immunoblot assays of leaf-derived protein extracts confirmed that the target gene expression is up to 0.2% of the total soluble protein. Our study showed that protein A fusion is not as efficient as other reported fusions. The transplastomic plants were also confirmed for homoplasmy using Southern blot analysis.
Collapse
Affiliation(s)
- Melina Yarbakht
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | | | | | | |
Collapse
|
29
|
Seid CA, Curti E, Jones RM, Hudspeth E, Rezende W, Pollet J, Center L, Versteeg L, Pritchard S, Musiychuk K, Yusibov V, Hotez PJ, Bottazzi ME. Expression, purification, and characterization of the Necator americanus aspartic protease-1 (Na-APR-1 (M74)) antigen, a component of the bivalent human hookworm vaccine. Hum Vaccin Immunother 2015; 11:1474-88. [PMID: 25905574 PMCID: PMC4514214 DOI: 10.1080/21645515.2015.1036207] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/13/2015] [Accepted: 03/27/2015] [Indexed: 11/08/2022] Open
Abstract
Over 400 million people living in the world's poorest developing nations are infected with hookworms, mostly of the genus Necator americanus. A bivalent human hookworm vaccine composed of the Necator americanus Glutathione S-Transferase-1 (Na-GST-1) and the Necator americanus Aspartic Protease-1 (Na-APR-1 (M74)) is currently under development by the Sabin Vaccine Institute Product Development Partnership (Sabin PDP). Both monovalent vaccines are currently in Phase 1 trials. Both Na-GST-1 and Na-APR-1 antigens are expressed as recombinant proteins. While Na-GST-1 was found to express with high yields in Pichia pastoris, the level of expression of Na-APR-1 in this host was too low to be suitable for a manufacturing process. When the tobacco plant Nicotiana benthamiana was evaluated as an expression system, acceptable levels of solubility, yield, and stability were attained. Observed expression levels of Na-APR-1 (M74) using this system are ∼300 mg/kg. Here we describe the achievements and obstacles encountered during process development as well as characterization and stability of the purified Na-APR-1 (M74) protein and formulated vaccine. The expression, purification and analysis of purified Na-APR-1 (M74) protein obtained from representative 5 kg reproducibility runs performed to qualify the Na-APR-1 (M74) production process is also presented. This process has been successfully transferred to a pilot plant and a 50 kg scale manufacturing campaign under current Good Manufacturing Practice (cGMP) has been performed. The 50 kg run has provided a sufficient amount of protein to support the ongoing hookworm vaccine development program of the Sabin PDP.
Collapse
Affiliation(s)
- Christopher A Seid
- Departments of Pediatrics and Molecular Virology and Microbiology; National School of Tropical Medicine; Baylor College of Medicine; Houston, TX, USA
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development; Houston, TX, USA
| | - Elena Curti
- Departments of Pediatrics and Molecular Virology and Microbiology; National School of Tropical Medicine; Baylor College of Medicine; Houston, TX, USA
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development; Houston, TX, USA
| | - R Mark Jones
- Fraunhofer Center for Molecular Biotechnology; Newark, DE, USA
| | - Elissa Hudspeth
- Departments of Pediatrics and Molecular Virology and Microbiology; National School of Tropical Medicine; Baylor College of Medicine; Houston, TX, USA
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development; Houston, TX, USA
| | - Wanderson Rezende
- Departments of Pediatrics and Molecular Virology and Microbiology; National School of Tropical Medicine; Baylor College of Medicine; Houston, TX, USA
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development; Houston, TX, USA
| | - Jeroen Pollet
- Departments of Pediatrics and Molecular Virology and Microbiology; National School of Tropical Medicine; Baylor College of Medicine; Houston, TX, USA
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development; Houston, TX, USA
| | - Lori Center
- Departments of Pediatrics and Molecular Virology and Microbiology; National School of Tropical Medicine; Baylor College of Medicine; Houston, TX, USA
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development; Houston, TX, USA
| | - Leroy Versteeg
- Departments of Pediatrics and Molecular Virology and Microbiology; National School of Tropical Medicine; Baylor College of Medicine; Houston, TX, USA
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development; Houston, TX, USA
| | - Sonya Pritchard
- Fraunhofer Center for Molecular Biotechnology; Newark, DE, USA
| | | | - Vidadi Yusibov
- Fraunhofer Center for Molecular Biotechnology; Newark, DE, USA
| | - Peter J Hotez
- Departments of Pediatrics and Molecular Virology and Microbiology; National School of Tropical Medicine; Baylor College of Medicine; Houston, TX, USA
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development; Houston, TX, USA
- Department of Biology; Baylor University; Waco, TX, USA
| | - Maria Elena Bottazzi
- Departments of Pediatrics and Molecular Virology and Microbiology; National School of Tropical Medicine; Baylor College of Medicine; Houston, TX, USA
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development; Houston, TX, USA
- Department of Biology; Baylor University; Waco, TX, USA
| |
Collapse
|
30
|
Yusibov V, Kushnir N, Streatfield SJ. Advances and challenges in the development and production of effective plant-based influenza vaccines. Expert Rev Vaccines 2014; 14:519-35. [PMID: 25487788 DOI: 10.1586/14760584.2015.989988] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Influenza infections continue to present a major threat to public health. Traditional modes of influenza vaccine manufacturing are failing to satisfy the global demand because of limited scalability and long production timelines. In contrast, subunit vaccines (SUVs) can be produced in heterologous expression systems in shorter times and at higher quantities. Plants are emerging as a promising platform for SUV production due to time efficiency, scalability, lack of harbored mammalian pathogens and possession of the machinery for eukaryotic post-translational protein modifications. So far, several organizations have utilized plant-based transient expression systems to produce SUVs against influenza, including vaccines based on virus-like particles. Plant-produced influenza SUV candidates have been extensively evaluated in animal models and some have shown safety and immunogenicity in clinical trials. Here, the authors review ongoing efforts and challenges to producing influenza SUV candidates in plants and discuss the likelihood of bringing these products to the market.
Collapse
Affiliation(s)
- Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology, 9 Innovation Way, Suite 200, Newark, DE 19711, USA
| | | | | |
Collapse
|
31
|
Shoji Y, Prokhnevsky A, Leffet B, Vetter N, Tottey S, Satinover S, Musiychuk K, Shamloul M, Norikane J, Jones RM, Chichester JA, Green BJ, Streatfield SJ, Yusibov V. Immunogenicity of H1N1 influenza virus-like particles produced in Nicotiana benthamiana. Hum Vaccin Immunother 2014; 11:118-23. [PMID: 25483524 PMCID: PMC4514423 DOI: 10.4161/hv.34365] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 07/09/2014] [Indexed: 12/15/2022] Open
Abstract
The H1N1 influenza pandemic of 2009 stimulated interest in developing safe and effective subunit influenza vaccines using rapid and cost-effective recombinant technologies that can avoid dependence on hens' eggs supply and live viruses for production. Among alternative approaches to subunit vaccine development, virus-like particles (VLPs) represent an attractive strategy due to their safety and immunogenicity. Previously, we have produced a recombinant monomeric hemagglutinin (HA) protein derived from the A/California/04/09 (H1N1) strain of influenza virus in a plant-based transient expression system and demonstrated immunogenicity and safety of this monomeric HA in animal models and human volunteers. In an effort to produce higher potency influenza vaccine in plants, we have designed and generated enveloped VLPs using the ectodomain of HA from the A/California/04/09 strain and heterologous sequences. The resulting H1 HA VLPs (HAC-VLPs) elicited robust hemagglutination inhibition antibody responses in mice at doses lower than 1 µg in the presence or absence of Alhydrogel adjuvant. These results suggest enhanced immunogenicity of recombinant HA in the form of an enveloped VLP over soluble antigen.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Aluminum Hydroxide/administration & dosage
- Animals
- Antibodies, Viral/blood
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Antigens, Viral/metabolism
- Hemagglutination Inhibition Tests
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/metabolism
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Influenza Vaccines/isolation & purification
- Mice, Inbred BALB C
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Nicotiana/genetics
- Vaccines, Virus-Like Particle/administration & dosage
- Vaccines, Virus-Like Particle/genetics
- Vaccines, Virus-Like Particle/immunology
- Vaccines, Virus-Like Particle/isolation & purification
Collapse
Affiliation(s)
- Yoko Shoji
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | - Alex Prokhnevsky
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | - Brett Leffet
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | - Nancy Vetter
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | - Stephen Tottey
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | - Shama Satinover
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | | | - Moneim Shamloul
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | - Joey Norikane
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | - R Mark Jones
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | | | - Brian J Green
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | | | - Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| |
Collapse
|
32
|
Shamloul M, Trusa J, Mett V, Yusibov V. Optimization and utilization of Agrobacterium-mediated transient protein production in Nicotiana. J Vis Exp 2014:51204. [PMID: 24796351 PMCID: PMC4174718 DOI: 10.3791/51204] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Agrobacterium-mediated transient protein production in plants is a promising approach to produce vaccine antigens and therapeutic proteins within a short period of time. However, this technology is only just beginning to be applied to large-scale production as many technological obstacles to scale up are now being overcome. Here, we demonstrate a simple and reproducible method for industrial-scale transient protein production based on vacuum infiltration of Nicotiana plants with Agrobacteria carrying launch vectors. Optimization of Agrobacterium cultivation in AB medium allows direct dilution of the bacterial culture in Milli-Q water, simplifying the infiltration process. Among three tested species of Nicotiana, N. excelsiana (N. benthamiana × N. excelsior) was selected as the most promising host due to the ease of infiltration, high level of reporter protein production, and about two-fold higher biomass production under controlled environmental conditions. Induction of Agrobacterium harboring pBID4-GFP (Tobacco mosaic virus-based) using chemicals such as acetosyringone and monosaccharide had no effect on the protein production level. Infiltrating plant under 50 to 100 mbar for 30 or 60 sec resulted in about 95% infiltration of plant leaf tissues. Infiltration with Agrobacterium laboratory strain GV3101 showed the highest protein production compared to Agrobacteria laboratory strains LBA4404 and C58C1 and wild-type Agrobacteria strains at6, at10, at77 and A4. Co-expression of a viral RNA silencing suppressor, p23 or p19, in N. benthamiana resulted in earlier accumulation and increased production (15-25%) of target protein (influenza virus hemagglutinin).
Collapse
Affiliation(s)
| | - Jason Trusa
- Fraunhofer USA Center for Molecular Biotechnology
| | - Vadim Mett
- Fraunhofer USA Center for Molecular Biotechnology
| | | |
Collapse
|
33
|
Edible Rabies Vaccines. COMMERCIAL PLANT-PRODUCED RECOMBINANT PROTEIN PRODUCTS 2014. [PMCID: PMC7120656 DOI: 10.1007/978-3-662-43836-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Rabies has been one of the most feared diseases throughout history. Human rabies remains an important public health problem in many developing countries. The WHO reports that more than 55,000 people die of this disease every year. Most of these cases occur in developing countries. In most Latin American countries, the major reservoirs of rabies are the dog and the hematophagous bat (Desmodus rotundus), which is present in the tropical and subtropical areas from Northern Mexico to Northern Argentina and Chile and transmits the disease to cattle. One of the better options for controlling rabies is vaccination. The expression of rabies virus G protein in different plant systems for developing an oral rabies vaccine could reduce costs of production and distribution and would be convenient for developing countries where the disease is endemic.
Collapse
|
34
|
Klimyuk V, Pogue G, Herz S, Butler J, Haydon H. Production of recombinant antigens and antibodies in Nicotiana benthamiana using 'magnifection' technology: GMP-compliant facilities for small- and large-scale manufacturing. Curr Top Microbiol Immunol 2014; 375:127-54. [PMID: 22527176 DOI: 10.1007/82_2012_212] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
This review describes the adaptation of the plant virus-based transient expression system, magnICON(®) for the at-scale manufacturing of pharmaceutical proteins. The system utilizes so-called "deconstructed" viral vectors that rely on Agrobacterium-mediated systemic delivery into the plant cells for recombinant protein production. The system is also suitable for production of hetero-oligomeric proteins like immunoglobulins. By taking advantage of well established R&D tools for optimizing the expression of protein of interest using this system, product concepts can reach the manufacturing stage in highly competitive time periods. At the manufacturing stage, the system offers many remarkable features including rapid production cycles, high product yield, virtually unlimited scale-up potential, and flexibility for different manufacturing schemes. The magnICON system has been successfully adaptated to very different logistical manufacturing formats: (1) speedy production of multiple small batches of individualized pharmaceuticals proteins (e.g. antigens comprising individualized vaccines to treat NonHodgkin's Lymphoma patients) and (2) large-scale production of other pharmaceutical proteins such as therapeutic antibodies. General descriptions of the prototype GMP-compliant manufacturing processes and facilities for the product formats that are in preclinical and clinical testing are provided.
Collapse
Affiliation(s)
- Victor Klimyuk
- Icon Genetics, Weinbergweg 22, 06120, Halle (Saale), Germany,
| | | | | | | | | |
Collapse
|
35
|
Jones RM, Chichester JA, Mett V, Jaje J, Tottey S, Manceva S, Casta LJ, Gibbs SK, Musiychuk K, Shamloul M, Norikane J, Mett V, Streatfield SJ, van de Vegte-Bolmer M, Roeffen W, Sauerwein RW, Yusibov V. A plant-produced Pfs25 VLP malaria vaccine candidate induces persistent transmission blocking antibodies against Plasmodium falciparum in immunized mice. PLoS One 2013; 8:e79538. [PMID: 24260245 PMCID: PMC3832600 DOI: 10.1371/journal.pone.0079538] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 09/20/2013] [Indexed: 11/18/2022] Open
Abstract
Malaria transmission blocking vaccines (TBVs) are considered an effective means to control and eventually eliminate malaria. The Pfs25 protein, expressed predominantly on the surface of the sexual and sporogonic stages of Plasmodium falciparum including gametes, zygotes and ookinetes, is one of the primary targets for TBV. It has been demonstrated that plants are an effective, highly scalable system for the production of recombinant proteins, including virus-like particles (VLPs). We engineered VLPs (Pfs25-CP VLP) comprising Pfs25 fused to the Alfalfa mosaic virus coat protein (CP) and produced these non-enveloped hybrid VLPs in Nicotiana benthamiana plants using a Tobacco mosaic virus-based ‘launch’ vector. Purified Pfs25-CP VLPs were highly consistent in size (19.3±2.4 nm in diameter) with an estimated 20–30% incorporation of Pfs25 onto the VLP surface. Immunization of mice with one or two doses of Pfs25-CP VLPs plus Alhydrogel® induced serum antibodies with complete transmission blocking activity through the 6 month study period. These results support the evaluation of Pfs25-CP VLP as a potential TBV candidate and the feasibility of the ‘launch’ vector technology for the production of VLP-based recombinant vaccines against infectious diseases.
Collapse
Affiliation(s)
- R. Mark Jones
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Jessica A. Chichester
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Vadim Mett
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Jennifer Jaje
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Stephen Tottey
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Slobodanka Manceva
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Louis J. Casta
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Sandra K. Gibbs
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Konstantin Musiychuk
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Moneim Shamloul
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Joey Norikane
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Valentina Mett
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Stephen J. Streatfield
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | | | - Will Roeffen
- Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | | | - Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
- * E-mail:
| |
Collapse
|
36
|
Hristodorov D, Fischer R, Linden L. With or without sugar? (A)glycosylation of therapeutic antibodies. Mol Biotechnol 2013; 54:1056-68. [PMID: 23097175 DOI: 10.1007/s12033-012-9612-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Antibodies and antibody-based drugs are currently the fastest-growing class of therapeutics. Over the last three decades, more than 30 therapeutic monoclonal antibodies and derivatives thereof have been approved for and successfully applied in diverse indication areas including cancer, organ transplants, autoimmune/inflammatory disorders, and cardiovascular disease. The isotype of choice for antibody therapeutics is human IgG, whose Fc region contains a ubiquitous asparagine residue (N297) that acts as an acceptor site for N-linked glycans. The nature of these glycans can decisively influence the therapeutic performance of a recombinant antibody, and their absence or modification can lead to the loss of Fc effector functions, greater immunogenicity, and unfavorable pharmacokinetic profiles. However, recent studies have shown that aglycosylated antibodies can be genetically engineered to display novel or enhanced effector functions and that favorable pharmacokinetic properties can be preserved. Furthermore, the ability to produce aglycosylated antibodies in lower eukaryotes and bacteria offers the potential to broaden and simplify the production platforms and avoid the problem of antibody heterogeneity, which occurs when mammalian cells are used for production. In this review, we discuss the importance of Fc glycosylation focusing on the use of aglycosylated and glyco-engineered antibodies as therapeutic proteins.
Collapse
Affiliation(s)
- Dmitrij Hristodorov
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Forckenbeckstrasse 6, 52074 Aachen, Germany
| | | | | |
Collapse
|
37
|
Hristodorov D, Fischer R, Joerissen H, Müller-Tiemann B, Apeler H, Linden L. Generation and comparative characterization of glycosylated and aglycosylated human IgG1 antibodies. Mol Biotechnol 2013; 53:326-35. [PMID: 22427250 DOI: 10.1007/s12033-012-9531-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Monoclonal antibodies (mAbs) are the fastest growing class of biopharmaceuticals reflecting their diverse applications in research and the clinic. The correct glycosylation of mAbs is required to elicit effector functions such as complement-dependent and antibody-dependent cell-mediated cytotoxicity, although these may be undesirable for the treatment of certain chronic diseases. To gain insight into the properties of glycan-deficient mAbs, we generated and characterized six different aglycosylated human IgG1 mAbs (carrying the N297A mutation) and compared them to their glycosylated counterparts. We found no differences in solubility or heterogeneity, and all mAbs the remained stable in stress tests at 4 and 37 °C. Surface plasmon resonance spectroscopy showed no differences in binding affinity, and the in vivo terminal serum half-life and plasma clearance were similar in rats. However, differential scanning calorimetry revealed that the aglycosylated mAbs contained a less stable C(H)2 domain and they were also significantly more susceptible to pH-induced aggregation. We conclude that aglycosylated mAbs are functionally equivalent to their glycosylated counterparts and could be particularly suitable for certain therapeutic applications, such as the treatment of chronic diseases.
Collapse
Affiliation(s)
- Dmitrij Hristodorov
- GDD-GB-BRG-Cell & Protein Science, Purification & Research Analytics, Bayer Healthcare AG, Wuppertal, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Mamedov T, Yusibov V. In vivo deglycosylation of recombinant proteins in plants by co-expression with bacterial PNGase F. Bioengineered 2013; 4:338-42. [PMID: 23328084 PMCID: PMC3813534 DOI: 10.4161/bioe.23449] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 12/25/2012] [Accepted: 12/30/2012] [Indexed: 11/19/2022] Open
Abstract
At present, several eukaryotic expression systems including yeast, insect and mammalian cells and plants are used for the production of recombinant proteins. Proteins with potential N-glycosylation sites are efficiently glycosylated when expressed in these systems. However, the ability of the eukaryotic expression systems to glycosylate may be not desirable for some proteins. If target proteins that do not carry N-linked glycans in the native host contain potential N-linked glycosylation sites, they can be aberrantly glycosylated in the eukaryotic expression systems, thus, potentially impairing biological activity. Recently, we have developed a strategy of enzymatic deglycosylation of proteins in vivo by co-introducing bacterial PNGase F via agroinfiltration followed by transient expression in plants. (1) Here, we summarize our work on this topic and its potential implications.
Collapse
Affiliation(s)
- Tarlan Mamedov
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | - Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| |
Collapse
|
39
|
Chichester JA, Manceva SD, Rhee A, Coffin MV, Musiychuk K, Mett V, Shamloul M, Norikane J, Streatfield SJ, Yusibov V. A plant-produced protective antigen vaccine confers protection in rabbits against a lethal aerosolized challenge with Bacillus anthracis Ames spores. Hum Vaccin Immunother 2013; 9:544-52. [PMID: 23324615 PMCID: PMC3891710 DOI: 10.4161/hv.23233] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 11/21/2012] [Indexed: 11/19/2022] Open
Abstract
The potential use of Bacillus anthracis as a bioterrorism weapon threatens the security of populations globally, requiring the immediate availability of safe, efficient and easily delivered anthrax vaccine for mass vaccination. Extensive research efforts have been directed toward the development of recombinant subunit vaccines based on protective antigen (PA), the principal virulence factor of B. anthracis. Among the emerging technologies for the production of these vaccine antigens is our launch vector-based plant transient expression system. Using this system, we have successfully engineered, expressed, purified and characterized full-length PA (pp-PA83) in Nicotiana benthamiana plants using agroinfiltration. This plant-produced antigen elicited high toxin neutralizing antibody titers in mice and rabbits after two vaccine administrations with Alhydrogel. In addition, immunization with this vaccine candidate protected 100% of rabbits from a lethal aerosolized B. anthracis challenge. The vaccine effects were dose-dependent and required the presence of Alhydrogel adjuvant. In addition, the vaccine antigen formulated with Alhydrogel was stable and retained immunogenicity after two-week storage at 4°C, the conditions intended for clinical use. These results support the testing of this vaccine candidate in human volunteers and the utility of our plant expression system for the production of a recombinant anthrax vaccine.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Aerosols
- Aluminum Hydroxide/administration & dosage
- Animals
- Anthrax/immunology
- Anthrax/prevention & control
- Anthrax Vaccines/administration & dosage
- Anthrax Vaccines/immunology
- Antibodies, Bacterial/blood
- Antibodies, Neutralizing/blood
- Antigens, Bacterial/administration & dosage
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Antigens, Bacterial/isolation & purification
- Bacterial Toxins/administration & dosage
- Bacterial Toxins/genetics
- Bacterial Toxins/immunology
- Bacterial Toxins/isolation & purification
- Disease Models, Animal
- Inhalation Exposure
- Mice, Inbred BALB C
- Plants, Genetically Modified/genetics
- Rabbits
- Survival Analysis
- Nicotiana/genetics
- Treatment Outcome
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
| | | | - Amy Rhee
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | - Megan V. Coffin
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | | | - Vadim Mett
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | - Moneim Shamloul
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | - Joey Norikane
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | | | - Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| |
Collapse
|
40
|
Shoji Y, Jones RM, Mett V, Chichester JA, Musiychuk K, Sun X, Tumpey TM, Green BJ, Shamloul M, Norikane J, Bi H, Hartman CE, Bottone C, Stewart M, Streatfield SJ, Yusibov V. A plant-produced H1N1 trimeric hemagglutinin protects mice from a lethal influenza virus challenge. Hum Vaccin Immunother 2013; 9:553-60. [PMID: 23296194 PMCID: PMC3891711 DOI: 10.4161/hv.23234] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 12/03/2012] [Indexed: 11/19/2022] Open
Abstract
The increased worldwide awareness of seasonal and pandemic influenza, including pandemic H1N1 virus, has stimulated interest in the development of economic platforms for rapid, large-scale production of safe and effective subunit vaccines. In recent years, plants have demonstrated their utility as such a platform and have been used to produce vaccine antigens against various infectious diseases. Previously, we have produced in our transient plant expression system a recombinant monomeric hemagglutinin (HA) protein (HAC1) derived from A/California/04/09 (H1N1) strain of influenza virus and demonstrated its immunogenicity and safety in animal models and human volunteers. In the current study, to mimic the authentic HA structure presented on the virus surface and to improve stability and immunogenicity of the HA antigen, we generated trimeric HA by introducing a trimerization motif from a heterologous protein into the HA sequence. Here, we describe the engineering, production in Nicotiana benthamiana plants, and characterization of the highly purified recombinant trimeric HA protein (tHA-BC) from A/California/04/09 (H1N1) strain of influenza virus. The results demonstrate the induction of serum hemagglutination inhibition antibodies by tHA-BC and its protective efficacy in mice against a lethal viral challenge. In addition, the immunogenic and protective doses of tHA-BC were much lower compared with monomeric HAC1. Further investigation into the optimum vaccine dose and/or regimen as well as the stability of trimerized HA is necessary to determine whether trimeric HA is a more potent vaccine antigen than monomeric HA.
Collapse
MESH Headings
- Animals
- Antibodies, Bacterial/blood
- Disease Models, Animal
- Hemagglutination Inhibition Tests
- Hemagglutinin Glycoproteins, Influenza Virus/administration & dosage
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/isolation & purification
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/immunology
- Mice, Inbred BALB C
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/prevention & control
- Plants, Genetically Modified/genetics
- Protein Engineering
- Protein Multimerization
- Survival Analysis
- Nicotiana/genetics
- Treatment Outcome
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Yoko Shoji
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | - R. Mark Jones
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | - Vadim Mett
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | | | | | - Xiangjie Sun
- Influenza Division; National Center for Immunization and Respiratory Diseases; Centers for Disease Control and Prevention; Atlanta, GA USA
| | - Terrence M. Tumpey
- Influenza Division; National Center for Immunization and Respiratory Diseases; Centers for Disease Control and Prevention; Atlanta, GA USA
| | - Brian J. Green
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | - Moneim Shamloul
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | - Joey Norikane
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | - Hong Bi
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | | | - Cory Bottone
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | - Michelle Stewart
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | | | - Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| |
Collapse
|
41
|
Gleba YY, Tusé D, Giritch A. Plant viral vectors for delivery by Agrobacterium. Curr Top Microbiol Immunol 2013; 375:155-92. [PMID: 23949286 DOI: 10.1007/82_2013_352] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Plant viral vectors delivered by Agrobacterium are the basis of several manufacturing processes that are currently in use for producing a wide range of proteins for multiple applications, including vaccine antigens, antibodies, protein nanoparticles such as virus-like particles (VLPs), and other protein and protein-RNA scaffolds. Viral vectors delivered by agrobacterial T-DNA transfer (magnifection) have also become important tools in research. In recent years, essential advances have been made both in the development of second-generation vectors designed using the 'deconstructed virus' approach, as well as in the development of upstream manufacturing processes that are robust and fully scalable. The strategy relies on Agrobacterium as a vector to deliver DNA copies of one or more viral RNA/DNA replicons; the bacteria are delivered into leaves by vacuum infiltration, and the viral machinery takes over from the point of T-DNA transfer to the plant cell nucleus, driving massive RNA and protein production and, if required, cell-to-cell spread of the replicons. Among the most often used viral backbones are those of the RNA viruses Tobacco mosaic virus (TMV), Potato virus X (PVX) and Cowpea mosaic virus (CPMV), and the DNA geminivirus Bean yellow dwarf virus. Prototypes of industrial processes that provide for high yield, rapid scale up and fast manufacturing cycles have been designed, and several GMP-compliant and GMP-certified manufacturing facilities are in place. These efforts have been successful as evidenced by the fact that several antibodies and vaccine antigens produced by magnifection are currently in clinical development.
Collapse
Affiliation(s)
- Yuri Y Gleba
- Nomad Bioscience GmbH, Weinbergweg 22, Halle (Saale), Germany,
| | | | | |
Collapse
|
42
|
Kushnir N, Streatfield SJ, Yusibov V. Virus-like particles as a highly efficient vaccine platform: diversity of targets and production systems and advances in clinical development. Vaccine 2012; 31:58-83. [PMID: 23142589 PMCID: PMC7115575 DOI: 10.1016/j.vaccine.2012.10.083] [Citation(s) in RCA: 432] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 10/13/2012] [Accepted: 10/25/2012] [Indexed: 12/16/2022]
Abstract
Virus-like particles (VLPs) are a class of subunit vaccines that differentiate themselves from soluble recombinant antigens by stronger protective immunogenicity associated with the VLP structure. Like parental viruses, VLPs can be either non-enveloped or enveloped, and they can form following expression of one or several viral structural proteins in a recombinant heterologous system. Depending on the complexity of the VLP, it can be produced in either a prokaryotic or eukaryotic expression system using target-encoding recombinant vectors, or in some cases can be assembled in cell-free conditions. To date, a wide variety of VLP-based candidate vaccines targeting various viral, bacterial, parasitic and fungal pathogens, as well as non-infectious diseases, have been produced in different expression systems. Some VLPs have entered clinical development and a few have been licensed and commercialized. This article reviews VLP-based vaccines produced in different systems, their immunogenicity in animal models and their status in clinical development.
Collapse
Affiliation(s)
- Natasha Kushnir
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE 19711, USA
| | | | | |
Collapse
|
43
|
Lotter-Stark HCT, Rybicki EP, Chikwamba RK. Plant made anti-HIV microbicides--a field of opportunity. Biotechnol Adv 2012; 30:1614-26. [PMID: 22750509 PMCID: PMC7132877 DOI: 10.1016/j.biotechadv.2012.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 06/10/2012] [Accepted: 06/20/2012] [Indexed: 12/15/2022]
Abstract
HIV remains a significant global burden and without an effective vaccine, it is crucial to develop microbicides to halt the initial transmission of the virus. Several microbicides have been researched with various levels of success. Amongst these, the broadly neutralising antibodies and peptide lectins are promising in that they can immediately act on the virus and have proven efficacious in in vitro and in vivo protection studies. For the purpose of development and access by the relevant population groups, it is crucial that these microbicides be produced at low cost. For the promising protein and peptide candidate molecules, it appears that current production systems are overburdened and expensive to establish and maintain. With recent developments in vector systems for protein expression coupled with downstream protein purification technologies, plants are rapidly gaining credibility as alternative production systems. Here we evaluate the advances made in host and vector system development for plant expression as well as the progress made in expressing HIV neutralising antibodies and peptide lectins using plant-based platforms.
Collapse
|
44
|
Stable plastid transformation for high-level recombinant protein expression: promises and challenges. J Biomed Biotechnol 2012; 2012:158232. [PMID: 23093835 PMCID: PMC3474547 DOI: 10.1155/2012/158232] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 08/10/2012] [Accepted: 08/24/2012] [Indexed: 12/22/2022] Open
Abstract
Plants are a promising expression system for the production of recombinant proteins. However, low protein productivity remains a major obstacle that limits extensive commercialization of whole plant and plant cell bioproduction platform. Plastid genetic engineering offers several advantages, including high levels of transgenic expression, transgenic containment via maternal inheritance, and multigene expression in a single transformation event. In recent years, the development of optimized expression strategies has given a huge boost to the exploitation of plastids in molecular farming. The driving forces behind the high expression level of plastid bioreactors include codon optimization, promoters and UTRs, genotypic modifications, endogenous enhancer and regulatory elements, posttranslational modification, and proteolysis. Exciting progress of the high expression level has been made with the plastid-based production of two particularly important classes of pharmaceuticals: vaccine antigens, therapeutic proteins, and antibiotics and enzymes. Approaches to overcome and solve the associated challenges of this culture system that include low transformation frequencies, the formation of inclusion bodies, and purification of recombinant proteins will also be discussed.
Collapse
|
45
|
Mamedov T, Ghosh A, Jones RM, Mett V, Farrance CE, Musiychuk K, Horsey A, Yusibov V. Production of non-glycosylated recombinant proteins in Nicotiana benthamiana plants by co-expressing bacterial PNGase F. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:773-82. [PMID: 22520228 DOI: 10.1111/j.1467-7652.2012.00694.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Application of tools of molecular biology and genomics is increasingly leading towards the development of recombinant protein-based biologics. As such, it is leading to an increased diversity of targets that have important health applications and require more flexible approaches for expression because of complex post-translational modifications. For example, Plasmodium parasites may have complex post-translationally modified proteins such as Pfs48/45 that do not carry N-linked glycans (Exp. Parasitol. 1998; 90, 165.) but contain potential N-linked glycosylation sites that can be aberrantly glycosylated during expression in mammalian and plant systems. Therefore, it is important to develop strategies for producing non-glycosylated forms of these targets to preserve biological activity and native conformation. In this study, we are describing in vivo deglycosylation of recombinant N-glycosylated proteins as a result of their transient co-expression with bacterial PNGase F (Peptide: N-glycosidase F). In addition, we show that the recognition of an in vivo deglycosylated plant-produced malaria vaccine candidate, Pfs48F1, by monoclonal antibodies I, III and V raised against various epitopes (I, III and V) of native Pfs48/45 of Plasmodium falciparum, was significantly stronger compared to that of the glycosylated form of plant-produced Pfs48F1. To our knowledge, neither in vivo enzymatic protein deglycosylation has been previously achieved in any eukaryotic system, including plants, nor has bacterial PNGase F been expressed in the plant system. Thus, here, we report for the first time the expression in plants of an active bacterial enzyme PNGase F and the production of recombinant proteins of interest in a non-glycosylated form.
Collapse
Affiliation(s)
- Tarlan Mamedov
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Redkiewicz P, Więsyk A, Góra-Sochacka A, Sirko A. Transgenic tobacco plants as production platform for biologically active human interleukin 2 and its fusion with proteinase inhibitors. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:806-14. [PMID: 22564275 DOI: 10.1111/j.1467-7652.2012.00698.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Transgenic plants offer a low-cost approach for the production of pharmaceutically important and commercially valuable recombinant proteins. Our studies were focused on the plant-based production of human interleukin 2 (hIL-2) and its fusion with proteinase inhibitors, either SPI2 from Galleria mellonella or CMTI from Cucurbita maxima. Finally, five plant expression cassettes were obtained. Three of them contained the single cDNA encoding CMTI I, SPI2 and hIL-2, respectively, while two of them contained the translational fusion, SPI2::hIL-2 and CMTI::hIL-2. In all cases, the transgenes were controlled by the RbcS1 promoter and terminator and the recombinant proteins were targeted to the endoplasmic reticulum. After tobacco transformation, five groups of transgenic plants were obtained and analysed. The level of recombinant proteins was estimated either by Western blot or by ELISA. The biological activity of plant-produced hIL-2 alone or in a fusion with SPI2 or CMTI was confirmed using the mammalian cells proliferation assay. The activities of proteinase inhibitors were confirmed in proteolysis assay using azocoll as a substrate. The usefulness of using proteinase inhibitor CMTI I in a fusion with hIL-2 as a protective agent against trypsin digestion was demonstrated.
Collapse
Affiliation(s)
- Patrycja Redkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | | | | |
Collapse
|
47
|
Shoji Y, Farrance CE, Bautista J, Bi H, Musiychuk K, Horsey A, Park H, Jaje J, Green BJ, Shamloul M, Sharma S, Chichester JA, Mett V, Yusibov V. A plant-based system for rapid production of influenza vaccine antigens. Influenza Other Respir Viruses 2012; 6:204-10. [PMID: 21974811 PMCID: PMC4941669 DOI: 10.1111/j.1750-2659.2011.00295.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Influenza virus is a globally important respiratory pathogen that causes a high degree of annual morbidity and mortality. Significant antigenic drift results in emergence of new, potentially pandemic, virus variants. The best prophylactic option for controlling emerging virus strains is to manufacture and administer pandemic vaccines in sufficient quantities and to do so in a timely manner without impacting the regular seasonal influenza vaccine capacity. Current, egg-based, influenza vaccine production is well established and provides an effective product, but has limited capacity and speed. OBJECTIVES To satisfy the additional global demand for emerging influenza vaccines, high-performance cost-effective technologies need to be developed. Plants have a potential as an economic and efficient large-scale production platform for vaccine antigens. METHODS In this study, a plant virus-based transient expression system was used to produce hemagglutinin (HA) proteins from the three vaccine strains used during the 2008-2009 influenza season, A/Brisbane/59/07 (H1N1), A/Brisbane/10/07 (H3N2), and B/Florida/4/06, as well as from the recently emerged novel H1N1 influenza A virus, A/California/04/09. RESULTS The recombinant plant-based HA proteins were engineered and produced in Nicotiana benthamiana plants within 2 months of obtaining the genetic sequences specific to each virus strain. These antigens expressed at the rate of 400-1300 mg/kg of fresh leaf tissue, with >70% solubility. Immunization of mice with these HA antigens induced serum anti-HA IgG and hemagglutination inhibition antibody responses at the levels considered protective against these virus infections. CONCLUSIONS These results demonstrate the feasibility of our transient plant expression system for the rapid production of influenza vaccine antigens.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/immunology
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Gene Expression
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Humans
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Mice
- Mice, Inbred BALB C
- Orthomyxoviridae/genetics
- Orthomyxoviridae/immunology
- Nicotiana/genetics
- Nicotiana/metabolism
Collapse
Affiliation(s)
- Yoko Shoji
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| | | | - James Bautista
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| | - Hong Bi
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| | | | - April Horsey
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| | - HeeWoo Park
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| | - Jennifer Jaje
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| | - Brian J. Green
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| | - Moneim Shamloul
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| | - Satish Sharma
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| | | | - Vadim Mett
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| | - Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| |
Collapse
|
48
|
Production of foreign proteins using plastid transformation. Biotechnol Adv 2012; 30:387-97. [DOI: 10.1016/j.biotechadv.2011.07.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 05/10/2011] [Accepted: 07/25/2011] [Indexed: 12/19/2022]
|
49
|
Knapp E, Flores R, Scheiblin D, Scheiblin D, Modla S, Czymmek K, Czymmek K, Yusibov V. A cryohistological protocol for preparation of large plant tissue sections for screening intracellular fluorescent protein expression. Biotechniques 2012; 52:31-7. [PMID: 22229725 DOI: 10.2144/000113778] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 11/29/2011] [Indexed: 11/23/2022] Open
Abstract
In this study, we have developed a robust cryohistological method that allows imaging of virtually any type of plant cell or tissue while preserving fluorescent protein signals and maintaining excellent cellular and subcellular morphology. This method involves modified fixation of plant tissues (i.e., leaves, stems, and petioles), infiltration in a sucrose gradient, freezing, and collection of cryosections directly onto a cryoadhesive tape. Using this method followed by microscopic analysis, we demonstrated a localized accumulation of green fluorescent protein (GFP) in Nicotiana benthamiana plants agroinfiltrated with the movement-incompetent tobacco mosaic virus-based vector and systemic accumulation of GFP in plants infiltrated with the movement-competent vector. Overall, this simple cryohistological procedure reduced sample preparation time and allowed processing of tissue sections for high-resolution imaging of targeted fluorescent proteins in all plant tissues.
Collapse
Affiliation(s)
- Elisabeth Knapp
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE 19711, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Despite significant efforts in many countries, there is still no commercially viable dengue vaccine. Currently, attention is focused on the development of either live attenuated vaccines or live attenuated chimaeric vaccines using a variety of backbones. Alternate vaccine approaches, such as whole inactivated virus and subunit vaccines are in the early stages of development, and are each associated with different problems. Subunit vaccines offer the advantage of providing a uniform antigen of well-defined nature, without the added risk of introducing any genetic material into the person being inoculated. Preliminary trials of subunit vaccines (using dengue E protein) in rhesus monkeys have shown promising results. However, the primary disadvantages of dengue subunit vaccines are the low levels of expression of dengue proteins in mammalian or insect cells, as well as the added unknown risks of antigens produced from mammalian cells containing other potential sources of contamination. In the past two decades, plants have emerged as an alternative platform for expression of biopharmaceutical products, including antigens of bacterial, fungal or viral origin. In the present minireview, we highlight the current plant expression technologies used for expression of biopharmaceutical products, with an emphasis on plants as a production system for dengue subunit vaccines.
Collapse
|