1
|
Ghoshal D, Petersen I, Ringquist R, Kramer L, Bhatia E, Hu T, Richard A, Park R, Corbin J, Agarwal S, Thomas A, Ramirez S, Tharayil J, Downey E, Ketchum F, Ochal A, Sonthi N, Lonial S, Kochenderfer JN, Tran R, Zhu M, Lam WA, Coskun AF, Roy K. Multi-Niche Human Bone Marrow On-A-Chip for Studying the Interactions of Adoptive CAR-T Cell Therapies with Multiple Myeloma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.08.588601. [PMID: 38644993 PMCID: PMC11030357 DOI: 10.1101/2024.04.08.588601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Multiple myeloma (MM), a cancer of bone marrow plasma cells, is the second-most common hematological malignancy. However, despite immunotherapies like chimeric antigen receptor (CAR)-T cells, relapse is nearly universal. The bone marrow (BM) microenvironment influences how MM cells survive, proliferate, and resist treatment. Yet, it is unclear which BM niches give rise to MM pathophysiology. Here, we present a 3D microvascularized culture system, which models the endosteal and perivascular bone marrow niches, allowing us to study MM-stroma interactions in the BM niche and model responses to therapeutic CAR-T cells. We demonstrated the prolonged survival of cell line-based and patient-derived multiple myeloma cells within our in vitro system and successfully flowed in donor-matched CAR-T cells. We then measured T cell survival, differentiation, and cytotoxicity against MM cells using a variety of analysis techniques. Our MM-on-a-chip system could elucidate the role of the BM microenvironment in MM survival and therapeutic evasion and inform the rational design of next-generation therapeutics. TEASER A multiple myeloma model can study why the disease is still challenging to treat despite options that work well in other cancers.
Collapse
|
2
|
Hanetseder D, Levstek T, Teuschl-Woller AH, Frank JK, Schaedl B, Redl H, Marolt Presen D. Engineering of extracellular matrix from human iPSC-mesenchymal progenitors to enhance osteogenic capacity of human bone marrow stromal cells independent of their age. Front Bioeng Biotechnol 2023; 11:1214019. [PMID: 37600321 PMCID: PMC10434254 DOI: 10.3389/fbioe.2023.1214019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023] Open
Abstract
Regeneration of bone defects is often limited due to compromised bone tissue physiology. Previous studies suggest that engineered extracellular matrices enhance the regenerative capacity of mesenchymal stromal cells. In this study, we used human-induced pluripotent stem cells, a scalable source of young mesenchymal progenitors (hiPSC-MPs), to generate extracellular matrix (iECM) and test its effects on the osteogenic capacity of human bone-marrow mesenchymal stromal cells (BMSCs). iECM was deposited as a layer on cell culture dishes and into three-dimensional (3D) silk-based spongy scaffolds. After decellularization, iECM maintained inherent structural proteins including collagens, fibronectin and laminin, and contained minimal residual DNA. Young adult and aged BMSCs cultured on the iECM layer in osteogenic medium exhibited a significant increase in proliferation, osteogenic marker expression, and mineralization as compared to tissue culture plastic. With BMSCs from aged donors, matrix mineralization was only detected when cultured on iECM, but not on tissue culture plastic. When cultured in 3D iECM/silk scaffolds, BMSCs exhibited significantly increased osteogenic gene expression levels and bone matrix deposition. iECM layer showed a similar enhancement of aged BMSC proliferation, osteogenic gene expression, and mineralization compared with extracellular matrix layers derived from young adult or aged BMSCs. However, iECM increased osteogenic differentiation and decreased adipocyte formation compared with single protein substrates including collagen and fibronectin. Together, our data suggest that the microenvironment comprised of iECM can enhance the osteogenic activity of BMSCs, providing a bioactive and scalable biomaterial strategy for enhancing bone regeneration in patients with delayed or failed bone healing.
Collapse
Affiliation(s)
- Dominik Hanetseder
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Tina Levstek
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Andreas Herbert Teuschl-Woller
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
| | - Julia Katharina Frank
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Barbara Schaedl
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Darja Marolt Presen
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
3
|
Bernhard JC, Marolt Presen D, Li M, Monforte X, Ferguson J, Leinfellner G, Heimel P, Betti SL, Shu S, Teuschl-Woller AH, Tangl S, Redl H, Vunjak-Novakovic G. Effects of Endochondral and Intramembranous Ossification Pathways on Bone Tissue Formation and Vascularization in Human Tissue-Engineered Grafts. Cells 2022; 11:cells11193070. [PMID: 36231032 PMCID: PMC9564153 DOI: 10.3390/cells11193070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 12/03/2022] Open
Abstract
Bone grafts can be engineered by differentiating human mesenchymal stromal cells (MSCs) via the endochondral and intramembranous ossification pathways. We evaluated the effects of each pathway on the properties of engineered bone grafts and their capacity to drive bone regeneration. Bone-marrow-derived MSCs were differentiated on silk scaffolds into either hypertrophic chondrocytes (hyper) or osteoblasts (osteo) over 5 weeks of in vitro cultivation, and were implanted subcutaneously for 12 weeks. The pathways' constructs were evaluated over time with respect to gene expression, composition, histomorphology, microstructure, vascularization and biomechanics. Hypertrophic chondrocytes expressed higher levels of osteogenic genes and deposited significantly more bone mineral and proteins than the osteoblasts. Before implantation, the mineral in the hyper group was less mature than that in the osteo group. Following 12 weeks of implantation, the hyper group had increased mineral density but a similar overall mineral composition compared with the osteo group. The hyper group also displayed significantly more blood vessel infiltration than the osteo group. Both groups contained M2 macrophages, indicating bone regeneration. These data suggest that, similar to the body's repair processes, endochondral pathway might be more advantageous when regenerating large defects, whereas intramembranous ossification could be utilized to guide the tissue formation pattern with a scaffold architecture.
Collapse
Affiliation(s)
- Jonathan C. Bernhard
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Darja Marolt Presen
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Ming Li
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Xavier Monforte
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Department of Life Science Engineering, University of Applied Sciences Technikum Wien, 1200 Vienna, Austria
| | - James Ferguson
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Gabriele Leinfellner
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Patrick Heimel
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- School of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Susanna L. Betti
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Sharon Shu
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Andreas H. Teuschl-Woller
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Department of Life Science Engineering, University of Applied Sciences Technikum Wien, 1200 Vienna, Austria
| | - Stefan Tangl
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- School of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Correspondence: (H.R.); (G.V.-N.); Tel.: +43-(0)-59393-41961 (H.R.); +1-212-305-2304 (G.V.-N.); Fax: +43-(0)-59393-41982 (H.R.); +1-212-305-4692 (G.V.-N.)
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
- Department of Medicine, Columbia University, New York, NY 10032, USA
- College of Dental Medicine, Columbia University, New York, NY 10032, USA
- Correspondence: (H.R.); (G.V.-N.); Tel.: +43-(0)-59393-41961 (H.R.); +1-212-305-2304 (G.V.-N.); Fax: +43-(0)-59393-41982 (H.R.); +1-212-305-4692 (G.V.-N.)
| |
Collapse
|
4
|
Zhou YH, Guo Y, Zhu JY, Tang CY, Zhao YQ, Zhou HD. Spheroid co-culture of BMSCs with osteocytes yields ring-shaped bone-like tissue that enhances alveolar bone regeneration. Sci Rep 2022; 12:14636. [PMID: 36030312 PMCID: PMC9420131 DOI: 10.1038/s41598-022-18675-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/17/2022] [Indexed: 11/09/2022] Open
Abstract
Oral and maxillofacial bone defects severely impair appearance and function, and bioactive materials are urgently needed for bone regeneration. Here, we spheroid co-cultured green fluorescent protein (GFP)-labeled bone marrow stromal cells (BMSCs) and osteocyte-like MLO-Y4 cells in different ratios (3:1, 2:1, 1:1, 1:2, 1:3) or as monoculture. Bone-like tissue was formed in the 3:1, 2:1, and 1:1 co-cultures and MLO-Y4 monoculture. We found a continuous dense calcium phosphate structure and spherical calcium phosphate similar to mouse femur with the 3:1, 2:1, and 1:1 co-cultures, along with GFP-positive osteocyte-like cells encircled by an osteoid-like matrix similar to cortical bone. Flake-like calcium phosphate, which is more mature than spherical calcium phosphate, was found with the 3:1 and 2:1 co-cultures. Phosphorus and calcium signals were highest with 3:1 co-culture, and this bone-like tissue was ring-shaped. In a murine tooth extraction model, implantation of the ring-shaped bone-like tissue yielded more bone mass, osteoid and mineralized bone, and collagen versus no implantation. This tissue fabricated by spheroid co-culturing BMSCs with osteocytes yields an internal structure and mineral composition similar to mouse femur and could promote bone formation and maturation, accelerating regeneration. These findings open the way to new strategies in bone tissue engineering.
Collapse
Affiliation(s)
- Ying-Hui Zhou
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.,Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yue Guo
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.,Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Jia-Yu Zhu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Chen-Yi Tang
- Department of Nutrition, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Ya-Qiong Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Hou-De Zhou
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
5
|
Shi S, Zhang P, Chu X, Liu Y, Feng W, Zhou N, Shen J. Combination of Carbon Dots for the Design of Superhydrophobic Fluorescent Materials with Bioinspired Micro-Nano Multiscale Hierarchical Structure. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Zhang L, Zhang W, Hu Y, Fei Y, Liu H, Huang Z, Wang C, Ruan D, Heng BC, Chen W, Shen W. Systematic Review of Silk Scaffolds in Musculoskeletal Tissue Engineering Applications in the Recent Decade. ACS Biomater Sci Eng 2021; 7:817-840. [PMID: 33595274 DOI: 10.1021/acsbiomaterials.0c01716] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During the past decade, various novel tissue engineering (TE) strategies have been developed to maintain, repair, and restore the biomechanical functions of the musculoskeletal system. Silk fibroins are natural polymers with numerous advantageous properties such as good biocompatibility, high mechanical strength, and low degradation rate and are increasingly being recognized as a scaffolding material of choice in musculoskeletal TE applications. This current systematic review examines and summarizes the latest research on silk scaffolds in musculoskeletal TE applications within the past decade. Scientific databases searched include PubMed, Web of Science, Medline, Cochrane library, and Embase. The following keywords and search terms were used: musculoskeletal, tendon, ligament, intervertebral disc, muscle, cartilage, bone, silk, and tissue engineering. Our Review was limited to articles on musculoskeletal TE, which were published in English from 2010 to September 2019. The eligibility of the articles was assessed by two reviewers according to prespecified inclusion and exclusion criteria, after which an independent reviewer performed data extraction and a second independent reviewer validated the data obtained. A total of 1120 articles were reviewed from the databases. According to inclusion and exclusion criteria, 480 articles were considered as relevant for the purpose of this systematic review. Tissue engineering is an effective modality for repairing or replacing injured or damaged tissues and organs with artificial materials. This Review is intended to reveal the research status of silk-based scaffolds in the musculoskeletal system within the recent decade. In addition, a comprehensive translational research route for silk biomaterial from bench to bedside is described in this Review.
Collapse
Affiliation(s)
- Li Zhang
- Department of Orthopedic Surgery of The Second Affiliated Hospital and Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Department of Orthopaedics, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wei Zhang
- School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu 210096, China
| | - Yejun Hu
- Department of Orthopedic Surgery of The Second Affiliated Hospital and Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, Zhejiang 310000, China
| | - Yang Fei
- Department of Orthopedic Surgery of The Second Affiliated Hospital and Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, Zhejiang 310000, China
| | - Haoyang Liu
- School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu 210096, China
| | - Zizhan Huang
- Department of Orthopedic Surgery of The Second Affiliated Hospital and Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, Zhejiang 310000, China
| | - Canlong Wang
- Department of Orthopedic Surgery of The Second Affiliated Hospital and Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, Zhejiang 310000, China
| | - Dengfeng Ruan
- Department of Orthopedic Surgery of The Second Affiliated Hospital and Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, Zhejiang 310000, China
| | | | - Weishan Chen
- Department of Orthopedic Surgery of The Second Affiliated Hospital and Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, Zhejiang 310000, China
| | - Weiliang Shen
- Department of Orthopedic Surgery of The Second Affiliated Hospital and Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Department of Sports Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Sports System Disease Research and Accurate Diagnosis and Treatment of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, Zhejiang 310000, China.,China Orthopaedic Regenerative Medicine (CORMed), Chinese Medical Association, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Rahmani Del Bakhshayesh A, Babaie S, Tayefi Nasrabadi H, Asadi N, Akbarzadeh A, Abedelahi A. An overview of various treatment strategies, especially tissue engineering for damaged articular cartilage. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:1089-1104. [DOI: 10.1080/21691401.2020.1809439] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Azizeh Rahmani Del Bakhshayesh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soraya Babaie
- Department of Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Tayefi Nasrabadi
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nahideh Asadi
- Department of Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Akbarzadeh
- Department of Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Abedelahi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Ahmadi N, Kharaziha M, Labbaf S. Core-shell fibrous membranes of PVDF-Ba 0.9Ca 0.1TiO 3/PVA with osteogenic and piezoelectric properties for bone regeneration. ACTA ACUST UNITED AC 2019; 15:015007. [PMID: 31694002 DOI: 10.1088/1748-605x/ab5509] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The goal of this research was to promote the bioactivity and osteogenic characteristics of polyvinylidene fluoride(PVDF) fibrous membrane, while preserving its piezoelectric property for bone regeneration. In this regard, core-shell fibrous membrane of PVDF-Ba0.9Ca0.1TiO3/polyvinyl alcohol(PVA) was developed via emulsion electrospinning approach. While PVA was in the outer layer of fibers with thickness of 53 ± 18 nm, the Ba0.9Ca0.1TiO3 nanoparticles was uniformly dispersed in the PVDF core. The formation of PVA shell resulted in significant improvement of its hydrophilicity (3 times) and degradation rate, while piezoelectricity did noticeably modulate. In addition, incorporation of Ba0.9Ca0.1TiO3 nanopowder remarkably improved bioactivity, protein adsorption and mechanical properties of PVDF/PVA fibrous membranes. Finally, the osteogenic differentiation of mesenchymal stem cells on the nanocomposite fibrous membranes, in the absence of osteogenic supplements, was also observed. Overall, the results confirmed the promising potential of PVDF-Ba0.9Ca0.1TiO3/PVA fibrous membrane containing 1-2 wt% nanopowder for bone regeneration.
Collapse
Affiliation(s)
- Narges Ahmadi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | | | | |
Collapse
|
9
|
Marolt Presen D, Traweger A, Gimona M, Redl H. Mesenchymal Stromal Cell-Based Bone Regeneration Therapies: From Cell Transplantation and Tissue Engineering to Therapeutic Secretomes and Extracellular Vesicles. Front Bioeng Biotechnol 2019; 7:352. [PMID: 31828066 PMCID: PMC6890555 DOI: 10.3389/fbioe.2019.00352] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022] Open
Abstract
Effective regeneration of bone defects often presents significant challenges, particularly in patients with decreased tissue regeneration capacity due to extensive trauma, disease, and/or advanced age. A number of studies have focused on enhancing bone regeneration by applying mesenchymal stromal cells (MSCs) or MSC-based bone tissue engineering strategies. However, translation of these approaches from basic research findings to clinical use has been hampered by the limited understanding of MSC therapeutic actions and complexities, as well as costs related to the manufacturing, regulatory approval, and clinical use of living cells and engineered tissues. More recently, a shift from the view of MSCs directly contributing to tissue regeneration toward appreciating MSCs as "cell factories" that secrete a variety of bioactive molecules and extracellular vesicles with trophic and immunomodulatory activities has steered research into new MSC-based, "cell-free" therapeutic modalities. The current review recapitulates recent developments, challenges, and future perspectives of these various MSC-based bone tissue engineering and regeneration strategies.
Collapse
Affiliation(s)
- Darja Marolt Presen
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Andreas Traweger
- Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Spinal Cord Injury & Tissue Regeneration Center Salzburg, Institute of Tendon and Bone Regeneration, Paracelsus Medical University, Salzburg, Austria
| | - Mario Gimona
- GMP Unit, Spinal Cord Injury & Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
10
|
Theodoridis K, Aggelidou E, Manthou M, Demiri E, Bakopoulou A, Kritis A. Assessment of cartilage regeneration on 3D collagen-polycaprolactone scaffolds: Evaluation of growth media in static and in perfusion bioreactor dynamic culture. Colloids Surf B Biointerfaces 2019; 183:110403. [PMID: 31400614 DOI: 10.1016/j.colsurfb.2019.110403] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 12/22/2022]
Abstract
Efforts on bioengineering are directed towards the construction of biocompatible scaffolds and the determination of the most favorable microenvironment, which will better support cell proliferation and differentiation. Perfusion bioreactors are attracting growing attention as an effective, modern tool in tissue engineering. A natural biomaterial extensively used in regenerative medicine with outstanding biocompatibility, biodegradability and non-toxic characteristics, is collagen, a structural protein with undisputed beneficial characteristics. This is a study designed according to the above considerations. 3D printed polycaprolactone (PCL) scaffolds with rectangular pores were coated with collagen either as a coating on the scaffold's trabeculae, or as a gel-cell solution penetrating scaffolds' pores. We employed histological, molecular and imaging techniques to analyze colonization, proliferation and chondrogenic differentiation of Adipose Derived Mesenchymal Stem Cells (ADMSCs). Two different differentiation culture media were employed to test chondrogenic differentiation on gelated and non gelated PCL scaffolds in static and in perfusion bioreactors dynamic culture conditions. In dynamic culture, non gelated scaffolds combined with our in house TGF-β2 based medium, augmented chondrogenic differentiation performance, which overall was significantly less favorable compared to StemPro™ propriety medium. The beneficial mechanical stimulus of dynamic culture, appears to outgrow the disadvantage of the "weaker" TGF-β2 medium used for chondrogenic differentiation. Even though cells in static culture grew well on the scaffold, there was limited penetration inside the construct, so the purpose of the 3D culture was not fully served. In contrast dynamic culture achieved better penetration and uniform distribution of the cells within the scaffold.
Collapse
Affiliation(s)
- Konstantinos Theodoridis
- Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), Thessaloniki, Greece; cGMP Regenerative Medicine Facility, Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), Thessaloniki, Greece
| | - Eleni Aggelidou
- Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), Thessaloniki, Greece; cGMP Regenerative Medicine Facility, Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), Thessaloniki, Greece
| | - Marilena Manthou
- cGMP Regenerative Medicine Facility, Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), Thessaloniki, Greece; Laboratory of Histology, Embryology and Anthropology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), Thessaloniki, Greece
| | - Efterpi Demiri
- Department of Plastic Surgery, Medical School, Papageorgiou Hospital, Aristotle University of Thessaloniki (A.U.Th), Thessaloniki, Greece
| | - Athina Bakopoulou
- cGMP Regenerative Medicine Facility, Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), Thessaloniki, Greece; Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), GR-54124, Thessaloniki, Greece
| | - Aristeidis Kritis
- Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), Thessaloniki, Greece; cGMP Regenerative Medicine Facility, Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), Thessaloniki, Greece.
| |
Collapse
|
11
|
Larson BL, Yu SN, Park H, Estes BT, Moutos FT, Bloomquist CJ, Wu PB, Welter JF, Langer R, Guilak F, Freed LE. Chondrogenic, hypertrophic, and osteochondral differentiation of human mesenchymal stem cells on three-dimensionally woven scaffolds. J Tissue Eng Regen Med 2019; 13:1453-1465. [PMID: 31115161 DOI: 10.1002/term.2899] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/30/2019] [Accepted: 05/09/2019] [Indexed: 12/18/2022]
Abstract
The development of mechanically functional cartilage and bone tissue constructs of clinically relevant size, as well as their integration with native tissues, remains an important challenge for regenerative medicine. The objective of this study was to assess adult human mesenchymal stem cells (MSCs) in large, three-dimensionally woven poly(ε-caprolactone; PCL) scaffolds in proximity to viable bone, both in a nude rat subcutaneous pouch model and under simulated conditions in vitro. In Study I, various scaffold permutations-PCL alone, PCL-bone, "point-of-care" seeded MSC-PCL-bone, and chondrogenically precultured Ch-MSC-PCL-bone constructs-were implanted in a dorsal, ectopic pouch in a nude rat. After 8 weeks, only cells in the Ch-MSC-PCL constructs exhibited both chondrogenic and osteogenic gene expression profiles. Notably, although both tissue profiles were present, constructs that had been chondrogenically precultured prior to implantation showed a loss of glycosaminoglycan (GAG) as well as the presence of mineralization along with the formation of trabecula-like structures. In Study II of the study, the GAG loss and mineralization observed in Study I in vivo were recapitulated in vitro by the presence of either nearby bone or osteogenic culture medium additives but were prevented by a continued presence of chondrogenic medium additives. These data suggest conditions under which adult human stem cells in combination with polymer scaffolds synthesize functional and phenotypically distinct tissues based on the environmental conditions and highlight the potential influence that paracrine factors from adjacent bone may have on MSC fate, once implanted in vivo for chondral or osteochondral repair.
Collapse
Affiliation(s)
- Benjamin L Larson
- Institute for Medical Engineering and Science, David H. Koch Institute for Integrative Cancer Research, and Media Lab, Massachusetts Institute of Technology, Cambridge, MA
| | - Sarah N Yu
- Institute for Medical Engineering and Science, David H. Koch Institute for Integrative Cancer Research, and Media Lab, Massachusetts Institute of Technology, Cambridge, MA
| | - Hyoungshin Park
- Institute for Medical Engineering and Science, David H. Koch Institute for Integrative Cancer Research, and Media Lab, Massachusetts Institute of Technology, Cambridge, MA
| | | | | | | | - Patrick B Wu
- Institute for Medical Engineering and Science, David H. Koch Institute for Integrative Cancer Research, and Media Lab, Massachusetts Institute of Technology, Cambridge, MA
| | - Jean F Welter
- Skeletal Research Center and Case Center for Multimodal Evaluation of Engineered Cartilage, Department of Biology, Case Western Reserve University, Cleveland, OH
| | - Robert Langer
- Institute for Medical Engineering and Science, David H. Koch Institute for Integrative Cancer Research, and Media Lab, Massachusetts Institute of Technology, Cambridge, MA
| | - Farshid Guilak
- Cytex Therapeutics, Inc., Durham, NC.,Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO.,Shriners Hospitals for Children-St. Louis, St. Louis, MO.,Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO
| | - Lisa E Freed
- Institute for Medical Engineering and Science, David H. Koch Institute for Integrative Cancer Research, and Media Lab, Massachusetts Institute of Technology, Cambridge, MA
| |
Collapse
|
12
|
Wentao Z, Ya'nan H, Jian L, Kaipeng B, Peng S, Yu Z, Peng Z, Huanxiang Z, Feng Z, Yixin S. In vitro biocompatibility study of a water-rinsed biomimetic silk porous scaffold with olfactory ensheathing cells. Int J Biol Macromol 2019; 125:526-533. [DOI: 10.1016/j.ijbiomac.2018.11.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/06/2018] [Accepted: 11/06/2018] [Indexed: 12/25/2022]
|
13
|
Caballero Méndez L, Gaviria Arias D. Desarrollo y caracterización de películas de fibroina de seda para reparación condral. REVISTA COLOMBIANA DE BIOTECNOLOGÍA 2019. [DOI: 10.15446/rev.colomb.biote.v21n1.73137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
La fibroína de seda es una proteína que ha demostrado ser un biomaterial con gran potencial en medicina regenerativa, por suscaracterísticas de biocompatibilidad y su amplia posibilidad de modificación estructural permite ser usada como andamio favore-ciendo procesos de crecimiento, diferenciación celular y la regeneración del tejido afectado.En este estudio se utilizaron capullos de gusano de seda Bombyx moriL., para la fabricación de películas de fibroína, los capullos fueron desgomados utilizando Na2CO30,02M, la fibroína obtenida se disolvió con LiBr 9,3M, el cual fue eliminado mediante diáli-sis y finalmente la solución de fibroína fue concentrada mediante contradiálisis. La fibroína fue servida en cajas de poliestireno, se-cadas a 90°C/24 horas y esterilizadas con etanol al 70%. Células madre mesenquimales fueron sembradas sobre estas películas de fibroína e inducidas a diferenciación utilizando un medio condrogénico especifico. La diferenciación fue evaluada por triplicadoa los 14 y 21 días mediante extracción de ARN total, síntesis de ADN copia y amplificación por PCR de un grupo de genes específi-cos de cartílago empleando cebadores específicos.Se fabricaron películas de fibroína estables y resistentes que permitieron el crecimiento y la multiplicación celular, así como la dife-renciación condrogénica evidenciada por la expresión de genes condrogenicos, no se afectó la viabilidad ni el recuento celular, las células interactuaron con el andamio evidenciado por el área de tapizado formado sobre la superficie de la película de fibroína.Finalmente se concluye que la fibroína de seda es un biomaterial que puede servir de andamio potencial para la regeneración de lesiones articulares.
Collapse
|
14
|
Amirikia M, Ali Jorsaraei SG, Ali Shariatzadeh SM, Mehranjani MS. Differentiation of stem cells from the apical papilla into osteoblasts by the elastic modulus of porous silk fibroin scaffolds. Biologicals 2019; 57:1-8. [DOI: 10.1016/j.biologicals.2018.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 10/21/2018] [Accepted: 10/23/2018] [Indexed: 12/31/2022] Open
|
15
|
Kowalczewski CJ, Saul JM. Biomaterials for the Delivery of Growth Factors and Other Therapeutic Agents in Tissue Engineering Approaches to Bone Regeneration. Front Pharmacol 2018; 9:513. [PMID: 29896102 PMCID: PMC5986909 DOI: 10.3389/fphar.2018.00513] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/27/2018] [Indexed: 12/14/2022] Open
Abstract
Bone fracture followed by delayed or non-union typically requires bone graft intervention. Autologous bone grafts remain the clinical "gold standard". Recently, synthetic bone grafts such as Medtronic's Infuse Bone Graft have opened the possibility to pharmacological and tissue engineering strategies to bone repair following fracture. This clinically-available strategy uses an absorbable collagen sponge as a carrier material for recombinant human bone morphogenetic protein 2 (rhBMP-2) and a similar strategy has been employed by Stryker with BMP-7, also known as osteogenic protein-1 (OP-1). A key advantage to this approach is its "off-the-shelf" nature, but there are clear drawbacks to these products such as edema, inflammation, and ectopic bone growth. While there are clinical challenges associated with a lack of controlled release of rhBMP-2 and OP-1, these are among the first clinical examples to wed understanding of biological principles with biochemical production of proteins and pharmacological principles to promote tissue regeneration (known as regenerative pharmacology). After considering the clinical challenges with such synthetic bone grafts, this review considers the various biomaterial carriers under investigation to promote bone regeneration. This is followed by a survey of the literature where various pharmacological approaches and molecular targets are considered as future strategies to promote more rapid and mature bone regeneration. From the review, it should be clear that pharmacological understanding is a key aspect to developing these strategies.
Collapse
Affiliation(s)
| | - Justin M Saul
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, United States
| |
Collapse
|
16
|
Sang Y, Li M, Liu J, Yao Y, Ding Z, Wang L, Xiao L, Lu Q, Fu X, Kaplan DL. Biomimetic Silk Scaffolds with an Amorphous Structure for Soft Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2018; 10:9290-9300. [PMID: 29485270 DOI: 10.1021/acsami.7b19204] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Fine tuning physical cues of silk fibroin (SF) biomaterials to match specific requirements for different soft tissues would be advantageous. Here, amorphous SF nanofibers were used to fabricate scaffolds with better hierarchical extracellular matrix (ECM) mimetic microstructures than previous silk scaffolds. Kinetic control was introduced into the scaffold forming process, resulting in the direct production of water-stable scaffolds with tunable secondary structures and thus mechanical properties. These biomaterials remained with amorphous structures, offering softer properties than prior scaffolds. The fine mechanical tunability of these systems provides a feasible way to optimize physical cues for improved cell proliferation and enhanced neovascularization in vivo. Multiple physical cues, such as partly ECM mimetic structures and optimized stiffness, provided suitable microenvironments for tissue ingrowth, suggesting the possibility of actively designing bioactive SF biomaterials. These systems suggest a promising strategy to develop novel SF biomaterials for soft tissue repair and regenerative medicine.
Collapse
Affiliation(s)
| | - Meirong Li
- Healing and Cell Biology Laboratory, Institute of Basic Medicine Science , Chinese PLA General Hospital , Beijing 100853 , People's Republic of China
| | - Jiejie Liu
- Healing and Cell Biology Laboratory, Institute of Basic Medicine Science , Chinese PLA General Hospital , Beijing 100853 , People's Republic of China
| | | | | | | | | | | | - Xiaobing Fu
- Healing and Cell Biology Laboratory, Institute of Basic Medicine Science , Chinese PLA General Hospital , Beijing 100853 , People's Republic of China
| | - David L Kaplan
- Department of Biomedical Engineering , Tufts University , Medford , Massachusetts 02155 , United States
| |
Collapse
|
17
|
Abstract
Silk is a protein-based material which is predominantly produced by insects and spiders. Hundreds of millions of years of evolution have enabled these animals to utilize different, highly adapted silk types in a broad variety of applications. Silk occurs in several morphologies, such as sticky glue or in the shape of fibers and can, depending on the application by the respective animal, dissipate a high mechanical energy, resist heat and radiation, maintain functionality when submerged in water and withstand microbial settling. Hence, it's unsurprising that silk piqued human interest a long time ago, which catalyzed the domestication of silkworms for the production of silk to be used in textiles. Recently, scientific progress has enabled the development of analytic tools to gain profound insights into the characteristics of silk proteins. Based on these investigations, the biotechnological production of artificial and engineered silk has been accomplished, which allows the production of a sufficient amount of silk materials for several industrial applications. This chapter provides a review on the biotechnological production of various silk proteins from different species, as well as on the processing techniques to fabricate application-oriented material morphologies.
Collapse
Affiliation(s)
- Gregor Lang
- Research Group Biopolymer Processing, University of Bayreuth, Universitätsstr. 30, 95440, Bayreuth, Germany
| | - Heike Herold
- Department of Biomaterials, University of Bayreuth, Universitätsstr. 30, 95440, Bayreuth, Germany
| | - Thomas Scheibel
- Department of Biomaterials, University of Bayreuth, Universitätsstr. 30, 95440, Bayreuth, Germany.
| |
Collapse
|
18
|
Gupta P, Adhikary M, M JC, Kumar M, Bhardwaj N, Mandal BB. Biomimetic, Osteoconductive Non-mulberry Silk Fiber Reinforced Tricomposite Scaffolds for Bone Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2016; 8:30797-30810. [PMID: 27783501 DOI: 10.1021/acsami.6b11366] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Composite biomaterials as artificial bone graft materials are pushing the present frontiers of bioengineering. In this study, a biomimetic, osteoconductive tricomposite scaffold made of hydroxyapatite (HA) embedded in non-mulberry Antheraea assama (A. assama) silk fibroin fibers and its fibroin solution is explored for its osteogenic potential. Scaffolds were physico-chemically characterized for morphology, porosity, secondary structure conformation, water retention ability, biodegradability, and mechanical property. The results revealed a ∼5-fold increase in scaffold compressive modulus on addition of HA and silk fibers to liquid silk as compared to pure silk scaffolds while maintaining high scaffold porosity (∼90%) with slower degradation rates. X-ray diffraction (XRD) results confirmed deposition of HA crystals on composite scaffolds. Furthermore, the crystallite size of HA within scaffolds was strongly regulated by the intrinsic physical cues of silk fibroin. Fourier transform infrared (FTIR) spectroscopy studies indicated strong interactions between HA and silk fibroin. The fabricated tricomposite scaffolds supported enhanced cellular viability and function (ALP activity) for both MG63 osteosarcoma and human bone marrow stem cells (hBMSCs) as compared to pure silk scaffolds without fiber or HA addition. In addition, higher expression of osteogenic gene markers such as collagen I (Col-I), osteocalcin (OCN), osteopontin (OPN), and bone sialoprotein (BSP) further substantiated the applicability of HA composite silk scaffolds for bone related applications. Immunostaining studies confirmed localization of Col-I and BSP and were in agreement with real-time gene expression results. These findings demonstrate the osteogenic potential of developed biodegradable tricomposite scaffolds with the added advantage of the affordability of its components as bone graft substitute materials.
Collapse
Affiliation(s)
- Prerak Gupta
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati , Guwahati-781039, Assam, India
| | - Mimi Adhikary
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati , Guwahati-781039, Assam, India
| | - Joseph Christakiran M
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati , Guwahati-781039, Assam, India
| | - Manishekhar Kumar
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati , Guwahati-781039, Assam, India
| | - Nandana Bhardwaj
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST) , Guwahati-781035, Assam, India
| | - Biman B Mandal
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati , Guwahati-781039, Assam, India
| |
Collapse
|
19
|
Tissue-engineered 3D cancer-in-bone modeling: silk and PUR protocols. BONEKEY REPORTS 2016; 5:842. [PMID: 27790370 DOI: 10.1038/bonekey.2016.75] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/06/2016] [Indexed: 12/11/2022]
Abstract
Cancers that metastasize or grow in the bone marrow are typically considered incurable and cause extensive damage to the bone and bone marrow. The bone is a complex, dynamic, three-dimensional (3D) environment composed of a plethora of cells that may contribute to, or constrain, the growth of tumor cells and development of bone disease. The development of safe and effective drugs is currently hampered by pre-clinical two-dimensional (2D) models whose poor predictive power does not accurately predict the success or failure of therapeutics. These inadequate models often result in drugs proceeding through extensive pre-clinical studies only to fail clinically. Consistently, 3D co-culture systems prove superior to 2D mono-cultures in modeling in vivo cell phenotypes, disease progression and response to therapeutics. As a complex, multicellular, multidimensional bone microenvironment, 3D models allow for more accurate predictions of tumor growth, cell-cell and cell-matrix interactions, and resulting therapeutic responses. In this review we will discuss various 3D models available and describe step-by-step protocols for two of the most well-established 3D culture models for studying tumor-induced bone disease.
Collapse
|
20
|
Mozdzen LC, Thorpe S, Screen HR, Harley BA. The Effect of Gradations in Mineral Content, Matrix Alignment, and Applied Strain on Human Mesenchymal Stem Cell Morphology within Collagen Biomaterials. Adv Healthc Mater 2016; 5:1731-9. [PMID: 27245787 PMCID: PMC4978129 DOI: 10.1002/adhm.201600181] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/12/2016] [Indexed: 12/19/2022]
Abstract
The tendon-bone junction is a unique, mechanically dynamic, structurally graded anatomical zone, which transmits tensile loads between tendon and bone. Current surgical repair techniques rely on mechanical fixation and can result in high re-failure rates. A new class of collagen biomaterial that contains discrete mineralized and structurally aligned regions linked by a continuous interface to mimic the graded osteotendinous insertion has been recently described. Here the combined influence of graded biomaterial environment and increasing levels of applied strain (0%-20%) on mesenchymal stem cell (MSC) orientation and alignment have been reported. In osteotendinous scaffolds, which contain opposing gradients of mineral content and structural alignment characteristic of the native osteotendinous interface, MSC nuclear, and actin alignment is initially dictated by the local pore architecture, while applied tensile strain enhances cell alignment in the direction of strain. Comparatively, in layered scaffolds that do not contain any structural alignment cues, MSCs are randomly oriented in the unstrained condition, then become oriented in a direction perpendicular to applied strain. These findings provide an initial understanding of how scaffold architecture can provide significant, potentially competitive, feedback influencing MSC orientation under applied strain, and form the basis for future tissue engineering efforts to regenerate the osteotendinous enthesis.
Collapse
Affiliation(s)
- Laura C. Mozdzen
- 193 Roger Adams Laboratory, 600 S. Mathews St., Urbana, IL, 61801, USA
| | - Stephen Thorpe
- Queen Mary University of London, School of Engineering and Materials Science, Mile End Road, E1 4NS, London, UK
| | - Hazel R. Screen
- Queen Mary University of London, School of Engineering and Materials Science, Mile End Road, E1 4NS, London, UK
| | - Brendan A. Harley
- 110 Roger Adams Laboratory, 600 S. Mathews St, Urbana, IL, 61801, USA,
| |
Collapse
|
21
|
Bioengineered silk scaffolds in 3D tissue modeling with focus on mammary tissues. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 59:1168-1180. [DOI: 10.1016/j.msec.2015.10.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 09/04/2015] [Accepted: 10/02/2015] [Indexed: 02/07/2023]
|
22
|
Han H, Ning H, Liu S, Lu Q, Fan Z, Lu H, Lu G, Kaplan DL. Silk Biomaterials with Vascularization Capacity. ADVANCED FUNCTIONAL MATERIALS 2016; 26:421-436. [PMID: 27293388 PMCID: PMC4895924 DOI: 10.1002/adfm.201504160] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Functional vascularization is critical for the clinical regeneration of complex tissues such as kidney, liver or bone. The immobilization or delivery of growth factors has been explored to improve vascularization capacity of tissue engineered constructs, however, the use of growth factors has inherent problems such as the loss of signaling capability and the risk of complications such as immunological responses and cancer. Here, a new method of preparing water-insoluble silk protein scaffolds with vascularization capacity using an all aqueous process is reported. Acid was added temporally to tune the self-assembly of silk in lyophilization process, resulting in water insoluble scaffold formation directly. These biomaterials are mainly noncrystalline, offering improved cell proliferation than previously reported silk materials. These systems also have appropriate softer mechanical property that could provide physical cues to promote cell differentiation into endothelial cells, and enhance neovascularization and tissue ingrowth in vivo without the addition of growth factors. Therefore, silk-based degradable scaffolds represent an exciting biomaterial option, with vascularization capacity for soft tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Hongyan Han
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| | - Hongyan Ning
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| | - Shanshan Liu
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk, College of Textile and ClothingEngineering, Soochow University, Suzhou 215123, People's Republic of China
| | - Zhihai Fan
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215000, People's Republic of China
| | - Haijun Lu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215000, People's Republic of China
| | - Guozhong Lu
- Department of Burns and Plastic Surgery, The third Affiliated Hospital of Nantong University, Wuxi 214041, People's Republic of China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| |
Collapse
|
23
|
Reagan MR, Rosen CJ. Navigating the bone marrow niche: translational insights and cancer-driven dysfunction. Nat Rev Rheumatol 2015; 12:154-68. [PMID: 26607387 DOI: 10.1038/nrrheum.2015.160] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The bone marrow niche consists of stem and progenitor cells destined to become mature cells such as haematopoietic elements, osteoblasts or adipocytes. Marrow cells, influenced by endocrine, paracrine and autocrine factors, ultimately function as a unit to regulate bone remodelling and haematopoiesis. Current evidence highlights that the bone marrow niche is not merely an anatomic compartment; rather, it integrates the physiology of two distinct organ systems, the skeleton and the marrow. The niche has a hypoxic microenvironment that maintains quiescent haematopoietic stem cells (HSCs) and supports glycolytic metabolism. In response to biochemical cues and under the influence of neural, hormonal, and biochemical factors, marrow stromal elements, such as mesenchymal stromal cells (MSCs), differentiate into mature, functioning cells. However, disruption of the niche can affect cellular differentiation, resulting in disorders ranging from osteoporosis to malignancy. In this Review, we propose that the niche reflects the vitality of two tissues - bone and blood - by providing a unique environment for stem and stromal cells to flourish while simultaneously preventing disproportionate proliferation, malignant transformation or loss of the multipotent progenitors required for healing, functional immunity and growth throughout an organism's lifetime. Through a fuller understanding of the complexity of the niche in physiologic and pathologic states, the successful development of more-effective therapeutic approaches to target the niche and its cellular components for the treatment of rheumatic, endocrine, neoplastic and metabolic diseases becomes achievable.
Collapse
Affiliation(s)
- Michaela R Reagan
- Center for Molecular Medicine, Maine Medical Centre Research Institute, 81 Research Drive, Scarborough, Maine 04074, USA
| | - Clifford J Rosen
- Center for Molecular Medicine, Maine Medical Centre Research Institute, 81 Research Drive, Scarborough, Maine 04074, USA
| |
Collapse
|
24
|
Mottaghitalab F, Hosseinkhani H, Shokrgozar MA, Mao C, Yang M, Farokhi M. Silk as a potential candidate for bone tissue engineering. J Control Release 2015; 215:112-28. [DOI: 10.1016/j.jconrel.2015.07.031] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 02/07/2023]
|
25
|
Varkey A, Venugopal E, Sugumaran P, Janarthanan G, Pillai MM, Rajendran S, Bhattacharyya A. Impact of silk fibroin-based scaffold structures on human osteoblast MG63 cell attachment and proliferation. Int J Nanomedicine 2015; 10 Suppl 1:43-51. [PMID: 26491306 PMCID: PMC4599613 DOI: 10.2147/ijn.s82209] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The present study was carried out to investigate the impact of various types of silk fibroin (SF) scaffolds on human osteoblast-like cell (MG63) attachment and proliferation. SF was isolated from Bombyx mori silk worm cocoons after degumming. Protein concentration in the degummed SF solution was estimated using Bradford method. Aqueous SF solution was used to fabricate three different types of scaffolds, viz, electrospun nanofiber mat, sponge, and porous film. The structures of the prepared scaffolds were characterized using optical microscopy and field emission scanning electron microscopy. The changes in the secondary structure of the proteins and the thermal behavior of the scaffolds were determined by Fourier transform infrared spectroscopy and thermo-gravimetric analysis, respectively. The biodegradation rate of scaffolds was determined by incubating the scaffolds in simulated body fluid for 4 weeks. MG63 cells were seeded on the scaffolds and their attachment and proliferation onto the scaffolds were studied. The MTT assay was carried out to deduce the toxicity of the developed scaffolds. All the scaffolds were found to be biocompatible. The amount of collagen produced by the osteoblast-like cells growing on different scaffolds was estimated.
Collapse
Affiliation(s)
- Aneesia Varkey
- Advanced Textile and Polymer Research Laboratory, PSG Institute of Advanced Studies, Coimbatore, Tamil Nadu, India ; Tissue Engineering Laboratory, PSG Institute of Advanced Studies, Coimbatore, Tamil Nadu, India
| | - Elakkiya Venugopal
- Tissue Engineering Laboratory, PSG Institute of Advanced Studies, Coimbatore, Tamil Nadu, India
| | - Ponjanani Sugumaran
- Tissue Engineering Laboratory, PSG Institute of Advanced Studies, Coimbatore, Tamil Nadu, India
| | - Gopinathan Janarthanan
- Advanced Textile and Polymer Research Laboratory, PSG Institute of Advanced Studies, Coimbatore, Tamil Nadu, India
| | - Mamatha M Pillai
- Tissue Engineering Laboratory, PSG Institute of Advanced Studies, Coimbatore, Tamil Nadu, India
| | - Selvakumar Rajendran
- Tissue Engineering Laboratory, PSG Institute of Advanced Studies, Coimbatore, Tamil Nadu, India
| | - Amitava Bhattacharyya
- Advanced Textile and Polymer Research Laboratory, PSG Institute of Advanced Studies, Coimbatore, Tamil Nadu, India
| |
Collapse
|
26
|
Dararutana C, Ratanavaraporn J, Honsawek S, Kanokpanont S, Damrongsakkul S. Characteristics and Osteoconductivity of Bone Composite Scaffolds Made of Thai Silk Fibroin, Gelatin and Inorganic Compounds: A Comparative Study of β-Tricalcium Phosphate and Hydroxyapatite. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/masy.201400075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Chotika Dararutana
- Department of Chemical Engineering, Faculty of Engineering; Chulalongkorn University; PhayaThai Road Phatumwan Bangkok 10330 Thailand
| | - Juthamas Ratanavaraporn
- Biomedical Engineering Program, Faculty of Engineering; Chulalongkorn University; PhayaThai Road Phatumwan Bangkok 10330 Thailand
| | - Sittisak Honsawek
- Department of Biochemistry, Faculty of Medicine; Chulalongkorn University; Rama IV Road Phatumwan Bangkok 10330 Thailand
| | - Sorada Kanokpanont
- Department of Chemical Engineering, Faculty of Engineering; Chulalongkorn University; PhayaThai Road Phatumwan Bangkok 10330 Thailand
| | - Siriporn Damrongsakkul
- Department of Chemical Engineering, Faculty of Engineering; Chulalongkorn University; PhayaThai Road Phatumwan Bangkok 10330 Thailand
| |
Collapse
|
27
|
Costa PF, Hutmacher DW, Theodoropoulos C, Gomes ME, Reis RL, Vaquette C. Additively Manufactured Device for Dynamic Culture of Large Arrays of 3D Tissue Engineered Constructs. Adv Healthc Mater 2015; 4:864-73. [PMID: 25721231 DOI: 10.1002/adhm.201400591] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 01/08/2015] [Indexed: 11/05/2022]
Abstract
The ability to test large arrays of cell and biomaterial combinations in 3D environments is still rather limited in the context of tissue engineering and regenerative medicine. This limitation can be generally addressed by employing highly automated and reproducible methodologies. This study reports on the development of a highly versatile and upscalable method based on additive manufacturing for the fabrication of arrays of scaffolds, which are enclosed into individualized perfusion chambers. Devices containing eight scaffolds and their corresponding bioreactor chambers are simultaneously fabricated utilizing a dual extrusion additive manufacturing system. To demonstrate the versatility of the concept, the scaffolds, while enclosed into the device, are subsequently surface-coated with a biomimetic calcium phosphate layer by perfusion with simulated body fluid solution. 96 scaffolds are simultaneously seeded and cultured with human osteoblasts under highly controlled bidirectional perfusion dynamic conditions over 4 weeks. Both coated and noncoated resulting scaffolds show homogeneous cell distribution and high cell viability throughout the 4 weeks culture period and CaP-coated scaffolds result in a significantly increased cell number. The methodology developed in this work exemplifies the applicability of additive manufacturing as a tool for further automation of studies in the field of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Pedro F. Costa
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics; University of Minho, Avepark-Zona Industrial da Gandra; S. Cláudio do Barco; 4806-09 Caldas das Taipas, Guimarães Portugal
- ICVS/3B's-PT Government Associate Laboratory; Braga/Guimarães Portugal
| | - Dietmar W. Hutmacher
- Institute of Health and Biomedical Innovation; Queensland University of Technology; 60 Musk Avenue Kelvin Grove QLD 4059 Australia
| | - Christina Theodoropoulos
- Institute of Health and Biomedical Innovation; Queensland University of Technology; 60 Musk Avenue Kelvin Grove QLD 4059 Australia
| | - Manuela E. Gomes
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics; University of Minho, Avepark-Zona Industrial da Gandra; S. Cláudio do Barco; 4806-09 Caldas das Taipas, Guimarães Portugal
- ICVS/3B's-PT Government Associate Laboratory; Braga/Guimarães Portugal
| | - Rui L. Reis
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics; University of Minho, Avepark-Zona Industrial da Gandra; S. Cláudio do Barco; 4806-09 Caldas das Taipas, Guimarães Portugal
- ICVS/3B's-PT Government Associate Laboratory; Braga/Guimarães Portugal
| | - Cédryck Vaquette
- Institute of Health and Biomedical Innovation; Queensland University of Technology; 60 Musk Avenue Kelvin Grove QLD 4059 Australia
| |
Collapse
|
28
|
Pei Y, Liu X, Liu S, Lu Q, Liu J, Kaplan DL, Zhu H. A mild process to design silk scaffolds with reduced β-sheet structure and various topographies at the nanometer scale. Acta Biomater 2015; 13:168-76. [PMID: 25463497 DOI: 10.1016/j.actbio.2014.11.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 11/03/2014] [Accepted: 11/07/2014] [Indexed: 01/07/2023]
Abstract
Three-dimensional (3-D) porous silk scaffolds with good biocompatibility and minimal immunogenicity show promise in a range of tissue regeneration applications. However, the challenge remains to effectively fabricate their microstructures and mechanical properties to satisfy the specific requirements of different tissues. In this study, silk scaffolds were fabricated to form an extracellular matrix (ECM) mimetic nanofibrous architecture using a mild process. A slowly increasing concentration process was applied to regulate silk self-assembly into nanofibers in aqueous solution. Then glycerol was blended with the nanofiber solution and induced silk crystallization in the lyophilization process, endowing freeze-dried scaffolds with water stability. The glycerol was leached from the scaffolds, leaving a similar porous structure at the micrometer scale but different topographies at the nanoscale. Compared to previous salt-leached and methanol-annealed scaffolds, the present scaffolds showed lower β-sheet content, softer mechanical property and improved cell growth and differentiation behaviors, suggesting their promising future as platforms for controlling stem cell fate and soft tissue regeneration.
Collapse
|
29
|
Kharaziha M, Fathi MH, Edris H, Nourbakhsh N, Talebi A, Salmanizadeh S. PCL-forsterite nanocomposite fibrous membranes for controlled release of dexamethasone. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:5364. [PMID: 25578712 DOI: 10.1007/s10856-014-5364-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 09/12/2014] [Indexed: 06/04/2023]
Abstract
The well-known treatment of the alveolar bone defects is guided tissue regeneration (GTR). Engineered membranes combined with osteo-differentiation factors have been offered a promising strategy for GTR application. Recently, poly(ε-caprolactone) (PCL)-forsterite (PCL-F) nanocomposite fibrous membranes have been developed. However, PCL-F membranes could not promote bone tissue regeneration. The aim of this research is to encapsulate an osteogenic factor [dexamethasone (DEX)] in PCL-F membranes and evaluate the effects of forsterite nanopowder (particle size = 25-45 nm) and fiber organization on DEX delivery for GTR application. The hypothesis is that the release kinetic and profile of DEX could be controlled through variation of forsterite content (0, 5 and 10 wt%) and fiber arrangement (aligned and random). Results demonstrated while DEX release was sustained over a period of 4 weeks, its kinetic was governed by the membrane architecture and composition. For example, aligned PCL-F nanocomposite fibrous membrane consisting of 10 %(w/v) forsterite nanopowder exhibited the least initial burst release (13 % release in the first 12 h) and allowed sustained release of DEX. Additionally, forsterite nanopowder inclusion changed the kinetic of DEX release from Fickian diffusion to an anomalous transport. The bioactivity of released DEX was estimated using culturing the stem cells from human exfoliated deciduous teeth (SHED) on the membranes. Results demonstrated that proliferation and osteogenic differentiation of SHED could be governed by DEX release process. While DEX release from the membranes decreased SHED proliferation, stimulated the matrix mineralization. Our finding indicated that aligned PCL-F/DEX membrane could be used as a carrier for the sustained release of drugs relevant for GTR trophy.
Collapse
Affiliation(s)
- Mahshid Kharaziha
- Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, 8415683111, Isfahan, Iran,
| | | | | | | | | | | |
Collapse
|
30
|
Yan LP, Silva-Correia J, Oliveira MB, Vilela C, Pereira H, Sousa RA, Mano JF, Oliveira AL, Oliveira JM, Reis RL. Bilayered silk/silk-nanoCaP scaffolds for osteochondral tissue engineering: In vitro and in vivo assessment of biological performance. Acta Biomater 2015; 12:227-241. [PMID: 25449920 DOI: 10.1016/j.actbio.2014.10.021] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 09/12/2014] [Accepted: 10/15/2014] [Indexed: 12/29/2022]
Abstract
Novel porous bilayered scaffolds, fully integrating a silk fibroin (SF) layer and a silk-nano calcium phosphate (silk-nanoCaP) layer for osteochondral defect (OCD) regeneration, were developed. Homogeneous porosity distribution was achieved in the scaffolds, with calcium phosphate phase only retained in the silk-nanoCaP layer. The scaffold presented compressive moduli of 0.4MPa in the wet state. Rabbit bone marrow mesenchymal stromal cells (RBMSCs) were cultured on the scaffolds, and good adhesion and proliferation were observed. The silk-nanoCaP layer showed a higher alkaline phosphatase level than the silk layer in osteogenic conditions. Subcutaneous implantation in rabbits demonstrated weak inflammation. In a rabbit knee critical size OCD model, the scaffolds firmly integrated into the host tissue. Histological and immunohistochemical analysis showed that collagen II positive cartilage and glycosaminoglycan regeneration presented in the silk layer, and de novo bone ingrowths and vessel formation were observed in the silk-nanoCaP layer. These bilayered scaffolds can therefore be promising candidates for OCD regeneration.
Collapse
Affiliation(s)
- Le-Ping Yan
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, S. Cláudio de Barco, 4806-909 Taipas, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana Silva-Correia
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, S. Cláudio de Barco, 4806-909 Taipas, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Mariana B Oliveira
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, S. Cláudio de Barco, 4806-909 Taipas, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Carlos Vilela
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, S. Cláudio de Barco, 4806-909 Taipas, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Portugal; Orthopedic Department, Centro Hospitalar do Alto Ave, Guimarães, Portugal
| | - Hélder Pereira
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, S. Cláudio de Barco, 4806-909 Taipas, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Saúde Atlântica Sports Center-FC Porto Stadium, Minho University and Porto University Research Center, Porto, Portugal; Orthopedic Department, Centro Hospitalar Póvoa de Varzim, Vila do Conde, Portugal
| | - Rui A Sousa
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, S. Cláudio de Barco, 4806-909 Taipas, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João F Mano
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, S. Cláudio de Barco, 4806-909 Taipas, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana L Oliveira
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, S. Cláudio de Barco, 4806-909 Taipas, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; CBQF-Center for Biotechnology and Fine Chemistry, School of Biotechnology, Portuguese Catholic University, Porto 4200-072, Portugal
| | - Joaquim M Oliveira
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, S. Cláudio de Barco, 4806-909 Taipas, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Rui L Reis
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, S. Cláudio de Barco, 4806-909 Taipas, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
31
|
Sellgren KL, Ma T. Effects of flow configuration on bone tissue engineering using human mesenchymal stem cells in 3D chitosan composite scaffolds. J Biomed Mater Res A 2014; 103:2509-20. [DOI: 10.1002/jbm.a.35386] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 11/20/2014] [Accepted: 12/04/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Katelyn L. Sellgren
- Department of Chemical and Biomedical Engineering; FAMU-FSU College of Engineering, Florida State University; Tallahassee Florida 32310
| | - Teng Ma
- Department of Chemical and Biomedical Engineering; FAMU-FSU College of Engineering, Florida State University; Tallahassee Florida 32310
| |
Collapse
|
32
|
Bhardwaj N, Devi D, Mandal BB. Tissue-engineered cartilage: the crossroads of biomaterials, cells and stimulating factors. Macromol Biosci 2014; 15:153-82. [PMID: 25283763 DOI: 10.1002/mabi.201400335] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/25/2014] [Indexed: 02/06/2023]
Abstract
Damage to cartilage represents one of the most challenging tasks of musculoskeletal therapeutics due to its limited propensity for healing and regenerative capabilities. Lack of current treatments to restore cartilage tissue function has prompted research in this rapidly emerging field of tissue regeneration of functional cartilage tissue substitutes. The development of cartilaginous tissue largely depends on the combination of appropriate biomaterials, cell source, and stimulating factors. Over the years, various biomaterials have been utilized for cartilage repair, but outcomes are far from achieving native cartilage architecture and function. This highlights the need for exploration of suitable biomaterials and stimulating factors for cartilage regeneration. With these perspectives, we aim to present an overview of cartilage tissue engineering with recent progress, development, and major steps taken toward the generation of functional cartilage tissue. In this review, we have discussed the advances and problems in tissue engineering of cartilage with strong emphasis on the utilization of natural polymeric biomaterials, various cell sources, and stimulating factors such as biophysical stimuli, mechanical stimuli, dynamic culture, and growth factors used so far in cartilage regeneration. Finally, we have focused on clinical trials, recent innovations, and future prospects related to cartilage engineering.
Collapse
Affiliation(s)
- Nandana Bhardwaj
- Seri-Biotechnology Unit, Life Science Division, Institute of Advanced Study in Science and Technology, Guwahati, 781035, India
| | | | | |
Collapse
|
33
|
Li JJ, Kaplan DL, Zreiqat H. Scaffold-based regeneration of skeletal tissues to meet clinical challenges. J Mater Chem B 2014; 2:7272-7306. [PMID: 32261954 DOI: 10.1039/c4tb01073f] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The management and reconstruction of damaged or diseased skeletal tissues have remained a significant global healthcare challenge. The limited efficacy of conventional treatment strategies for large bone, cartilage and osteochondral defects has inspired the development of scaffold-based tissue engineering solutions, with the aim of achieving complete biological and functional restoration of the affected tissue in the presence of a supporting matrix. Nevertheless, significant regulatory hurdles have rendered the clinical translation of novel scaffold designs to be an inefficient process, mainly due to the difficulties of arriving at a simple, reproducible and effective solution that does not rely on the incorporation of cells and/or bioactive molecules. In the context of the current clinical situation and recent research advances, this review will discuss scaffold-based strategies for the regeneration of skeletal tissues, with focus on the contribution of bioactive ceramic scaffolds and silk fibroin, and combinations thereof, towards the development of clinically viable solutions.
Collapse
Affiliation(s)
- Jiao Jiao Li
- Biomaterials and Tissue Engineering Research Unit, School of AMME, University of Sydney, Sydney, NSW 2006, Australia.
| | | | | |
Collapse
|
34
|
|
35
|
Han F, Liu S, Liu X, Pei Y, Bai S, Zhao H, Lu Q, Ma F, Kaplan DL, Zhu H. Woven silk fabric-reinforced silk nanofibrous scaffolds for regenerating load-bearing soft tissues. Acta Biomater 2014; 10:921-30. [PMID: 24090985 DOI: 10.1016/j.actbio.2013.09.026] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 09/03/2013] [Accepted: 09/23/2013] [Indexed: 11/19/2022]
Abstract
Although three-dimensional (3-D) porous regenerated silk scaffolds with outstanding biocompatibility, biodegradability and low inflammatory reactions have promising application in different tissue regeneration, the mechanical properties of regenerated scaffolds, especially suture retention strength, must be further improved to satisfy the requirements of clinical applications. This study presents woven silk fabric-reinforced silk nanofibrous scaffolds aimed at dermal tissue engineering. To improve the mechanical properties, silk scaffolds prepared by lyophilization were reinforced with degummed woven silk fabrics. The ultimate tensile strength, elongation at break and suture retention strength of the scaffolds were significantly improved, providing suitable mechanical properties strong enough for clinical applications. The stiffness and degradation behaviors were then further regulated by different after-treatment processes, making the scaffolds more suitable for dermal tissue regeneration. The in vitro cell culture results indicated that these scaffolds maintained their excellent biocompatibility after being reinforced with woven silk fabrics. Without sacrifice of porous structure and biocompatibility, the fabric-reinforced scaffolds with better mechanical properties could facilitate future clinical applications of silk as matrices in skin repair.
Collapse
Affiliation(s)
- F Han
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China; Key Lab of Rubber-Plastics (QUST), Ministry of Education, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - S Liu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - X Liu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Y Pei
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - S Bai
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - H Zhao
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Q Lu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| | - F Ma
- Key Lab of Rubber-Plastics (QUST), Ministry of Education, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - D L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - H Zhu
- Research Center of Materials Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
36
|
Navone SE, Pascucci L, Dossena M, Ferri A, Invernici G, Acerbi F, Cristini S, Bedini G, Tosetti V, Ceserani V, Bonomi A, Pessina A, Freddi G, Alessandrino A, Ceccarelli P, Campanella R, Marfia G, Alessandri G, Parati EA. Decellularized silk fibroin scaffold primed with adipose mesenchymal stromal cells improves wound healing in diabetic mice. Stem Cell Res Ther 2014; 5:7. [PMID: 24423450 PMCID: PMC4055150 DOI: 10.1186/scrt396] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 10/21/2013] [Accepted: 01/06/2014] [Indexed: 01/13/2023] Open
Abstract
INTRODUCTION Silk fibroin (SF) scaffolds have been shown to be a suitable substrate for tissue engineering and to improve tissue regeneration when cellularized with mesenchymal stromal cells (MSCs). We here demonstrate, for the first time, that electrospun nanofibrous SF patches cellularized with human adipose-derived MSCs (Ad-MSCs-SF), or decellularized (D-Ad-MSCs-SF), are effective in the treatment of skin wounds, improving skin regeneration in db/db diabetic mice. METHODS The conformational and structural analyses of SF and D-Ad-MSCs-SF patches were performed by scanning electron microscopy, confocal microscopy, Fourier transform infrared spectroscopy and differential scanning calorimetry. Wounds were performed by a 5 mm punch biopsy tool on the mouse's back. Ad-MSCs-SF and D-Ad-MSCs-SF patches were transplanted and the efficacy of treatments was assessed by measuring the wound closure area, by histological examination and by gene expression profile. We further investigated the in vitro angiogenic properties of Ad-MSCs-SF and D-Ad-MSCs-SF patches by affecting migration of human umbilical vein endothelial cells (HUVECs), keratinocytes (KCs) and dermal fibroblasts (DFs), through the aortic ring assay and, finally, by evaluating the release of angiogenic factors. RESULTS We found that Ad-MSCs adhere and grow on SF, maintaining their phenotypic mesenchymal profile and differentiation capacity. Conformational and structural analyses on SF and D-Ad-MSCs-SF samples, showed that sterilization, decellularization, freezing and storing did not affect the SF structure. When grafted in wounds of diabetic mice, both Ad-MSCs-SF and D-Ad-MSCs-SF significantly improved tissue regeneration, reducing the wound area respectively by 40% and 35%, within three days, completing the process in around 10 days compared to 15-17 days of controls. RT2 gene profile analysis of the wounds treated with Ad-MSCs-SF and D-Ad-MSCs-SF showed an increment of genes involved in angiogenesis and matrix remodeling. Finally, Ad-MSCs-SF and D-Ad-MSCs-SF co-cultured with HUVECs, DFs and KCs, preferentially enhanced the HUVECs' migration and the release of angiogenic factors stimulating microvessel outgrowth in the aortic ring assay. CONCLUSIONS Our results highlight for the first time that D-Ad-MSCs-SF patches are almost as effective as Ad-MSCs-SF patches in the treatment of diabetic wounds, acting through a complex mechanism that involves stimulation of angiogenesis. Our data suggest a potential use of D-Ad-MSCs-SF patches in chronic diabetic ulcers in humans.
Collapse
Affiliation(s)
- Stefania Elena Navone
- The Cellular Neurobiology Laboratory, Cerebrovascular Diseases Unit, IRCCS Foundation Neurological Institute “C. Besta”, Milan, Italy
- Current address: Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milano, via Francesco Sforza, 28 20122 Milan, Italy
| | - Luisa Pascucci
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Marta Dossena
- The Cellular Neurobiology Laboratory, Cerebrovascular Diseases Unit, IRCCS Foundation Neurological Institute “C. Besta”, Milan, Italy
| | - Anna Ferri
- The Cellular Neurobiology Laboratory, Cerebrovascular Diseases Unit, IRCCS Foundation Neurological Institute “C. Besta”, Milan, Italy
| | - Gloria Invernici
- The Cellular Neurobiology Laboratory, Cerebrovascular Diseases Unit, IRCCS Foundation Neurological Institute “C. Besta”, Milan, Italy
| | - Francesco Acerbi
- Neurosurgery Department, IRCCS Foundation Neurological Institute “C. Besta”, Milan, Italy
| | - Silvia Cristini
- The Cellular Neurobiology Laboratory, Cerebrovascular Diseases Unit, IRCCS Foundation Neurological Institute “C. Besta”, Milan, Italy
| | - Gloria Bedini
- The Cellular Neurobiology Laboratory, Cerebrovascular Diseases Unit, IRCCS Foundation Neurological Institute “C. Besta”, Milan, Italy
| | - Valentina Tosetti
- The Cellular Neurobiology Laboratory, Cerebrovascular Diseases Unit, IRCCS Foundation Neurological Institute “C. Besta”, Milan, Italy
| | - Valentina Ceserani
- The Cellular Neurobiology Laboratory, Cerebrovascular Diseases Unit, IRCCS Foundation Neurological Institute “C. Besta”, Milan, Italy
| | - Arianna Bonomi
- Department of Public Health, Microbiology, Virology, University of Milan, Milan, Italy
| | - Augusto Pessina
- Department of Public Health, Microbiology, Virology, University of Milan, Milan, Italy
| | - Giuliano Freddi
- Innovhub-SSI, Div. Stazione Sperimentale per la Seta, Milan, Italy
| | | | - Piero Ceccarelli
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | | | - Giovanni Marfia
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milano, Milan, Italy
| | - Giulio Alessandri
- The Cellular Neurobiology Laboratory, Cerebrovascular Diseases Unit, IRCCS Foundation Neurological Institute “C. Besta”, Milan, Italy
| | - Eugenio Agostino Parati
- The Cellular Neurobiology Laboratory, Cerebrovascular Diseases Unit, IRCCS Foundation Neurological Institute “C. Besta”, Milan, Italy
| |
Collapse
|
37
|
Levin B, Rajkhowa R, Redmond SL, Atlas MD. Grafts in myringoplasty: utilizing a silk fibroin scaffold as a novel device. Expert Rev Med Devices 2014; 6:653-64. [DOI: 10.1586/erd.09.47] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Lee JK, Responte DJ, Cissell DD, Hu JC, Nolta JA, Athanasiou KA. Clinical translation of stem cells: insight for cartilage therapies. Crit Rev Biotechnol 2013; 34:89-100. [PMID: 24083452 DOI: 10.3109/07388551.2013.823596] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The limited regenerative capacity of articular cartilage and deficiencies of current treatments have motivated the investigation of new repair technologies. In vitro cartilage generation using primary cell sources is limited by cell availability and expansion potential. Pluripotent stem cells possess the capacity for chondrocytic differentiation and extended expansion, providing a potential future solution to cell-based cartilage regeneration. However, despite successes in producing cartilage using adult and embryonic stem cells, the translation of these technologies to the clinic has been severely limited. This review discusses recent advances in stem cell-based cartilage tissue engineering and the major current limitations to clinical translation of these products. Concerns regarding appropriate animal models and studies, stem cell manufacturing, and relevant regulatory processes and guidelines will be addressed. Understanding the significant hurdles limiting the clinical use of stem cell-based cartilage may guide future developments in the fields of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Jennifer K Lee
- Department of Biomedical Engineering, University of California , Davis, CA , USA
| | | | | | | | | | | |
Collapse
|
39
|
Clarke MS, Sundaresan A, Vanderburg CR, Banigan MG, Pellis NR. A three-dimensional tissue culture model of bone formation utilizing rotational co-culture of human adult osteoblasts and osteoclasts. Acta Biomater 2013; 9:7908-16. [PMID: 23664885 DOI: 10.1016/j.actbio.2013.04.051] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/28/2013] [Accepted: 04/30/2013] [Indexed: 10/26/2022]
Abstract
Living bone is a complex, three-dimensional composite material consisting of numerous cell types spatially organized within a mineralized extracellular matrix. To date, mechanistic investigation of the complex cellular level cross-talk between the major bone-forming cells involved in the response of bone to mechanical and biochemical stimuli has been hindered by the lack of a suitable in vitro model that captures the "coupled" nature of this response. Using a novel rotational co-culture approach, we have generated large (>4mm diameter), three-dimensional mineralized tissue constructs from a mixture of normal human primary osteoblast and osteoclast precursor cells without the need for any exogenous osteoconductive scaffolding material that might interfere with such cell-cell interactions. Mature, differentiated bone constructs consist of an outer region inhabited by osteoclasts and osteoblasts and a central region containing osteocytes encased in a self-assembled, porous mineralized extracellular matrix. Bone constructs exhibit morphological, mineral and biochemical features similar to remodeling human trabecular bone, including the expression of mRNA for SOST, BGLAP, ACP5, BMP-2, BMP-4 and BMP-7 within the construct and the secretion of BMP-2 protein into the medium. This "coupled" model of bone formation will allow the future investigation of various stimuli on the process of normal bone formation/remodeling as it relates to the cellular function of osteoblasts, osteoclasts and osteocytes in the generation of human mineralized tissue.
Collapse
|
40
|
Genipin-cross-linked poly(L-lysine)-based hydrogels: synthesis, characterization, and drug encapsulation. Colloids Surf B Biointerfaces 2013; 111:423-31. [PMID: 23872465 DOI: 10.1016/j.colsurfb.2013.06.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/11/2013] [Accepted: 06/12/2013] [Indexed: 01/22/2023]
Abstract
Genipin-cross-linked hydrogels composed of biodegradable and pH-sensitive cationic poly(L-lysine) (PLL), poly(L-lysine)-block-poly(L-alanine) (PLL-b-PLAla), and poly(L-lysine)-block-polyglycine (PLL-b-PGly) polypeptides were synthesized, characterized, and used as carriers for drug delivery. These polypeptide hydrogels can respond to pH-stimulus and their gelling and mechanical properties, degradation rate, and drug release behavior can be tuned by varying polypeptide composition and cross-linking degree. Comparing with natural polymers, the synthetic polypeptides with well-defined chain length and composition can warrant the preparation of the hydrogels with tunable properties to meet the criteria for specific biomedical applications. These hydrogels composed of natural building blocks exhibited good cell compatibility and enzyme degradability and can support cell attachment/proliferation. The evaluation of these hydrogels for in vitro drug release revealed that the controlled release profile was a biphasic pattern with a mild burst release and a moderate release rate thereafter, suggesting the drug molecules were encapsulated inside the gel matrix. With the versatility of polymer chemistry and conjugation of functional moieties, it is expected these hydrogels can be useful for biomedical applications such as polymer therapeutics and tissue engineering.
Collapse
|
41
|
Li JJ, Gil ES, Hayden RS, Li C, Roohani-Esfahani SI, Kaplan DL, Zreiqat H. Multiple silk coatings on biphasic calcium phosphate scaffolds: effect on physical and mechanical properties and in vitro osteogenic response of human mesenchymal stem cells. Biomacromolecules 2013; 14:2179-88. [PMID: 23745709 DOI: 10.1021/bm400303w] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ceramic scaffolds such as biphasic calcium phosphate (BCP) have been widely studied and used for bone regeneration, but their brittleness and low mechanical strength are major drawbacks. We report the first systematic study on the effect of silk coating in improving the mechanical and biological properties of BCP scaffolds, including (1) optimization of the silk coating process by investigating multiple coatings, and (2) in vitro evaluation of the osteogenic response of human mesenchymal stem cells (hMSCs) on the coated scaffolds. Our results show that multiple silk coatings on BCP ceramic scaffolds can achieve a significant coating effect to approach the mechanical properties of native bone tissue and positively influence osteogenesis by hMSCs over an extended period. The silk coating method developed in this study represents a simple yet effective means of reinforcement that can be applied to other types of ceramic scaffolds with similar microstructure to improve osteogenic outcomes.
Collapse
Affiliation(s)
- Jiao Jiao Li
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | | | | | | | | | | | | |
Collapse
|
42
|
Articular cartilage tissue regeneration—current research strategies and outlook for the future. Eur Surg 2013. [DOI: 10.1007/s10353-013-0217-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
43
|
Gardel LS, Correia-Gomes C, Serra LA, Gomes ME, Reis RL. A novel bidirectional continuous perfusion bioreactor for the culture of large-sized bone tissue-engineered constructs. J Biomed Mater Res B Appl Biomater 2013; 101:1377-86. [DOI: 10.1002/jbm.b.32955] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 02/11/2013] [Accepted: 02/25/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Leandro S. Gardel
- 3B's Research Groups: Biomaterials, Biodegradables and Biomimetics; Department of Polymer Engineering; University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; Taipas Guimarães Portugal
- ICVS/3B's PT Government Associated Lab; AvePark 4806-909 Braga Portugal
- Department of Clinic Veterinary; ICBAS-University of Porto; Porto Portugal
| | | | - Luís A. Serra
- Department of Ortophysiatric; General Hospital Santo António; Porto Portugal
| | - Manuela E. Gomes
- 3B's Research Groups: Biomaterials, Biodegradables and Biomimetics; Department of Polymer Engineering; University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; Taipas Guimarães Portugal
- ICVS/3B's PT Government Associated Lab; AvePark 4806-909 Braga Portugal
| | - Rui L. Reis
- 3B's Research Groups: Biomaterials, Biodegradables and Biomimetics; Department of Polymer Engineering; University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; Taipas Guimarães Portugal
- ICVS/3B's PT Government Associated Lab; AvePark 4806-909 Braga Portugal
| |
Collapse
|
44
|
Singh N, Rahatekar SS, Koziol KKK, Ng TS, Patil AJ, Mann S, Hollander AP, Kafienah W. Directing chondrogenesis of stem cells with specific blends of cellulose and silk. Biomacromolecules 2013; 14:1287-98. [PMID: 23534615 DOI: 10.1021/bm301762p] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Biomaterials that can stimulate stem cell differentiation without growth factor supplementation provide potent and cost-effective scaffolds for regenerative medicine. We hypothesize that a scaffold prepared from cellulose and silk blends can direct stem cell chondrogenic fate. We systematically prepared cellulose blends with silk at different compositions using an environmentally benign processing method based on ionic liquids as a common solvent. We tested the effect of blend compositions on the physical properties of the materials as well as on their ability to support mesenchymal stem cell (MSC) growth and chondrogenic differentiation. The stiffness and tensile strength of cellulose was significantly reduced by blending with silk. The characterized materials were tested using MSCs derived from four different patients. Growing MSCs on a specific blend combination of cellulose and silk in a 75:25 ratio significantly upregulated the chondrogenic marker genes SOX9, aggrecan, and type II collagen in the absence of specific growth factors. This chondrogenic effect was neither found with neat cellulose nor the cellulose/silk 50:50 blend composition. No adipogenic or osteogenic differentiation was detected on the blends, suggesting that the cellulose/silk 75:25 blend induced specific stem cell differentiation into the chondrogenic lineage without addition of the soluble growth factor TGF-β. The cellulose/silk blend we identified can be used both for in vitro tissue engineering and as an implantable device for stimulating endogenous stem cells to initiate cartilage repair.
Collapse
Affiliation(s)
- Nandita Singh
- School of Cellular and Molecular Medicine, Advanced Composites Centre for Innovation and Science (ACCIS), Aerospace Engineering, University of Bristol, Bristol BS8 1TD, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Tandon N, Marolt D, Cimetta E, Vunjak-Novakovic G. Bioreactor engineering of stem cell environments. Biotechnol Adv 2013; 31:1020-31. [PMID: 23531529 DOI: 10.1016/j.biotechadv.2013.03.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Revised: 12/02/2012] [Accepted: 03/11/2013] [Indexed: 12/31/2022]
Abstract
Stem cells hold promise to revolutionize modern medicine by the development of new therapies, disease models and drug screening systems. Standard cell culture systems have limited biological relevance because they do not recapitulate the complex 3-dimensional interactions and biophysical cues that characterize the in vivo environment. In this review, we discuss the current advances in engineering stem cell environments using novel biomaterials and bioreactor technologies. We also reflect on the challenges the field is currently facing with regard to the translation of stem cell based therapies into the clinic.
Collapse
Affiliation(s)
- Nina Tandon
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | | | | | | |
Collapse
|
46
|
Cranford SW, de Boer J, van Blitterswijk C, Buehler MJ. Materiomics: an -omics approach to biomaterials research. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:802-24. [PMID: 23297023 DOI: 10.1002/adma.201202553] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 10/13/2012] [Indexed: 05/20/2023]
Abstract
The past fifty years have seen a surge in the use of materials for clinical application, but in order to understand and exploit their full potential, the scientific complexity at both sides of the interface--the material on the one hand and the living organism on the other hand--needs to be considered. Technologies such as combinatorial chemistry, recombinant DNA as well as computational multi-scale methods can generate libraries with a very large number of material properties whereas on the other side, the body will respond to them depending on the biological context. Typically, biological systems are investigated using both holistic and reductionist approaches such as whole genome expression profiling, systems biology and high throughput genetic or compound screening, as already seen, for example, in pharmacology and genetics. The field of biomaterials research is only beginning to develop and adopt these approaches, an effort which we refer to as "materiomics". In this review, we describe the current status of the field, and its past and future impact on the biomedical sciences. We outline how materiomics sets the stage for a transformative change in the approach to biomaterials research to enable the design of tailored and functional materials for a variety of properties in fields as diverse as tissue engineering, disease diagnosis and de novo materials design, by combining powerful computational modelling and screening with advanced experimental techniques.
Collapse
Affiliation(s)
- Steven W Cranford
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Center for Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | | |
Collapse
|
47
|
Qian X, Yuan F, Zhimin Z, Anchun M. Dynamic perfusion bioreactor system for 3D culture of rat bone marrow mesenchymal stem cells on nanohydroxyapatite/polyamide 66 scaffoldin vitro. J Biomed Mater Res B Appl Biomater 2013; 101:893-901. [DOI: 10.1002/jbm.b.32894] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 12/04/2012] [Accepted: 12/11/2012] [Indexed: 11/11/2022]
|
48
|
Foss C, Merzari E, Migliaresi C, Motta A. Silk fibroin/hyaluronic acid 3D matrices for cartilage tissue engineering. Biomacromolecules 2012; 14:38-47. [PMID: 23134349 DOI: 10.1021/bm301174x] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In spite of commercially available products, the complete and sustained repair of damaged articular cartilage still presents various challenges. Among biomaterials proposed for cartilage repair, silk fibroin (SF) has been recently proposed as a material template for porous scaffolds cultured with chondrocytes and investigated in static and dynamic conditions. In addition to fibroin-based constructs, literature has reported that the combination of hyaluronic acid (HA) with other scaffold materials can protect the chondral phenotype and the cells in vitro response to the scaffold. In this study, the effect of the addition of HA on the physical properties of SF sponges, with and without cross-linking with genipin, was investigated. Salt-leached scaffolds were characterized in terms of morphology and structural and physical properties, as well as mechanical performance. Un-cross-linked sponges resulted in the physical separation of highly hydrophilic HA from the SF, while cross-linking prevented this phenomenon, resulting in a homogeneous blend. The presence of HA also influenced fibroin crystallinity and tended to decrease the cross-linking degree of the scaffolds when compared to the pure SF material.
Collapse
Affiliation(s)
- Cristina Foss
- BIOtech, Department of Industrial Engineering, University of Trento, via delle Regole 101, 38123 Mattarello, Trento, Italy
| | | | | | | |
Collapse
|
49
|
Joseph B, Raj SJ. Therapeutic applications and properties of silk proteins fromBombyx mori. FRONTIERS IN LIFE SCIENCE 2012. [DOI: 10.1080/21553769.2012.760491] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
50
|
Yang C, Liu Y, Li C, Zhang B. Repair of mandibular defects by bone marrow stromal cells expressing the basic fibroblast growth factor transgene combined with multi-pore mineralized Bio-Oss. Mol Med Rep 2012; 7:99-104. [PMID: 23139139 DOI: 10.3892/mmr.2012.1171] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Accepted: 11/01/2012] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to evaluate the effect of combining Bio‑Oss with bone marrow stromal cells (BMSCs) transfected with the basic fibroblast growth factor (bFGF) gene on bone regeneration during mandibular distraction of rabbits. BMSCs obtained from rabbits were transfected with bFGF gene‑encoding plasmids and proliferation rate and the differentiation marker alkaline phosphatase activity were measured. Following seeding into Bio‑Oss collagen and 9‑day culture in vitro, the surface morphology of the Bio‑Oss was assessed using scanning electron microscopy analysis. Three mandibular defects were induced in the lower border of the bilateral mandibular ramus in each New Zealand white rabbit (total n=6). Three scaffolds, group A (seeded with BMSCs/bFGF), B (seeded with BMSCs/pVAX1) and C (cell‑free), which had been cultured in vitro under standard cell culture conditions for 18 days, were implanted into mandibular defects under sterile conditions. Animals were sacrificed by anesthesia overdose 12 weeks following surgery and the scaffolds were extracted for bone mineral density and histological analyses. Results indicate that bFGF was successfully transfected into BMSCs. Proliferation and osteoblast differentiation of BMSCs were stimulated by bFGF in vitro. No differences were identified in surface morphology for Bio‑Oss loaded with variable groups of cells. At week 12 following implantation of Bio‑Oss scaffolds, mineralization of BMSCs in Bio‑Oss scaffolds was observed to be increased by bFGF. New bone and cartilage formation was revealed in hematoxylin and eosin‑stained sections in Bio‑Oss scaffolds and was most abundant in group A (BMSCs transfected with bFGF). In the current study, the bFGF gene was transfected into BMSCs and expressed successfully. bFGF promoted proliferation and differentiation of BMSCs in vitro and implantation of bFGF‑expressing BMSCs combined with Bio‑Oss enhanced new bone regeneration more effectively than traditional methods.
Collapse
Affiliation(s)
- Chunyan Yang
- Department of Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | | | | | | |
Collapse
|