1
|
Bashiri Z, Khosrowpour Z, Moghaddaszadeh A, Jafari D, Alizadeh S, Nasiri H, Parsaei H, Keshtkaran Z, Abdollahpour‐Alitappeh M, Bargrizaneh F, Rezaei B, Simorgh S, Gholipourmalekabadi M. Optimizations of Placenta Extracellular Matrix-Loaded Silk Fibroin/Alginate 3D-Printed Scaffolds Structurally and Functionally for Bone Tissue Engineering. Eng Life Sci 2025; 25:e202400085. [PMID: 39801563 PMCID: PMC11717148 DOI: 10.1002/elsc.202400085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/09/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Recent interest has been focused on extracellular matrix (ECM)-based scaffolds totreat critical-sized bone injuries. In this study, urea was used to decellularize and solubilize human placenta tissue. Then, different concentrations of ECM were composited with 8% alginate (Alg) and 12% silk fibroin (SF) for printing in order to produce a natural 3D construct that resembled bone tissue. The physical and biological features of the printed structures were evaluated entirely in vitro. Finally, a rat model was employed to examine the optimal 3D printed scaffold (5% ECM) as a bone transplant for the healing of cranial bone lesions. The present investigation demonstrated that decellularizing placental tissue fragments led to efficient removal of cell debris. In addition, a remarkable improvement in the printed scaffolds' mechanical and biological properties was observed by increasing the ECM concentration. The histology studies and real-time PCR results demonstrated the acceleration of bone regeneration in the bone lesions treated with 5%ECM-SF/Alg at 4 and 8 weeks after implantation. Overall, these results proved that the placental ECM-printed scaffolds could potentially construct biomimetic grafts to reconstruct significant bone defects and now promise to proceed with clinical studies.
Collapse
Affiliation(s)
- Zahra Bashiri
- Endometrium and Endometriosis Research CenterHamadan University of Medical SciencesHamadanIran
- Department of Anatomy, School of MedicineIran University of Medical SciencesTehranIran
- Omid Fertility & Infertility ClinicHamedanIran
| | - Zahra Khosrowpour
- Department of PediatricsUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Ali Moghaddaszadeh
- Departement of Biomedical Engineering, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Davod Jafari
- Oncopathology Research CenterIran University of Medical SciencesTehranIran
| | | | - Hajar Nasiri
- Cellular and Molecular Research CenterIran University of Medical SciencesTehranIran
| | - Houman Parsaei
- Nervous System Stem Cells Research CenterSemnan University of Medical SciencesSemnanIran
| | - Zahra Keshtkaran
- Community Based Psychiatric Care Research Center, Department of Nursing, School of Nursing and MidwiferyShiraz University of Medical SciencesShirazIran
| | | | - Farshad Bargrizaneh
- Student Research Committee, School of Health Management and Information SciencesShiraz Universiy of Medical SciencesShirazIran
| | - Behzad Rezaei
- Department of Surgery, School of MedicineLarestan University of Medical SciencesLarestanIran
| | - Sara Simorgh
- Cellular and Molecular Research CenterIran University of Medical SciencesTehranIran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in MedicineIran University of Medical SciencesTehranIran
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research CenterIran University of Medical SciencesTehranIran
- Department of Medical Biotechnology, Faculty of Allied MedicineIran University of Medical SciencesTehranIran
| |
Collapse
|
2
|
Larue L, Michely L, Grande D, Belbekhouche S. Design of Collagen and Gelatin-based Electrospun Fibers for Biomedical Purposes: An Overview. ACS Biomater Sci Eng 2024; 10:5537-5549. [PMID: 39092811 DOI: 10.1021/acsbiomaterials.4c00948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Collagen and gelatin are essential natural biopolymers commonly utilized in biomaterials and tissue engineering because of their excellent physicochemical and biocompatibility properties. They can be used either in combination with other biomacromolecules or particles or even exclusively for the enhancement of bone regeneration or for the development of biomimetic scaffolds. Collagen or gelatin derivatives can be transformed into nanofibrous materials with porous micro- or nanostructures and superior mechanical properties and biocompatibility using electrospinning technology. Specific attention was recently paid to electrospun mats of such biopolymers, due to their high ratio of surface area to volume, as well as their biocompatibility, biodegradability, and low immunogenicity. The fiber mats with submicro- and nanometer scale can replicate the extracellular matrix structure of human tissues and organs, making them highly suitable for use in tissue engineering due to their exceptional bioaffinity. The drawbacks may include rapid degradation and complete dissolution in aqueous media. The use of gelatin/collagen electrospun nanofibers in this form is thus greatly restricted for biomedicine. Therefore, the cross-linking of these fibers is necessary for controlling their aqueous solubility. This led to enhanced biological characteristics of the fibers, rendering them excellent options for various biomedical uses. The objective of this review is to highlight the key research related to the electrospinning of collagen and gelatin, as well as their applications in the biomedical field. The review features a detailed examination of the electrospinning fiber mats, showcasing their varying structures and performances resulting from diverse solvents, electrospinning processes, and cross-linking methods. Judiciously selected examples from literature will be presented to demonstrate major advantages of such biofibers. The current developments and difficulties in this area of research are also being addressed.
Collapse
Affiliation(s)
- Laura Larue
- Université Paris Est Creteil, CNRS, Institut de Chimie et des Matériaux Paris-Est (ICMPE), UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
| | - Laurent Michely
- Université Paris Est Creteil, CNRS, Institut de Chimie et des Matériaux Paris-Est (ICMPE), UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
| | - Daniel Grande
- Université Paris Est Creteil, CNRS, Institut de Chimie et des Matériaux Paris-Est (ICMPE), UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
| | - Sabrina Belbekhouche
- Université Paris Est Creteil, CNRS, Institut de Chimie et des Matériaux Paris-Est (ICMPE), UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
| |
Collapse
|
3
|
Kosowska K, Korycka P, Jankowska-Snopkiewicz K, Gierałtowska J, Czajka M, Florys-Jankowska K, Dec M, Romanik-Chruścielewska A, Małecki M, Westphal K, Wszoła M, Klak M. Graphene Oxide (GO)-Based Bioink with Enhanced 3D Printability and Mechanical Properties for Tissue Engineering Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:760. [PMID: 38727354 PMCID: PMC11085087 DOI: 10.3390/nano14090760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
Currently, a major challenge in material engineering is to develop a cell-safe biomaterial with significant utility in processing technology such as 3D bioprinting. The main goal of this work was to optimize the composition of a new graphene oxide (GO)-based bioink containing additional extracellular matrix (ECM) with unique properties that may find application in 3D bioprinting of biomimetic scaffolds. The experimental work evaluated functional properties such as viscosity and complex modulus, printability, mechanical strength, elasticity, degradation and absorbability, as well as biological properties such as cytotoxicity and cell response after exposure to a biomaterial. The findings demonstrated that the inclusion of GO had no substantial impact on the rheological properties and printability, but it did enhance the mechanical properties. This enhancement is crucial for the advancement of 3D scaffolds that are resilient to deformation and promote their utilization in tissue engineering investigations. Furthermore, GO-based hydrogels exhibited much greater swelling, absorbability and degradation compared to non-GO-based bioink. Additionally, these biomaterials showed lower cytotoxicity. Due to its properties, it is recommended to use bioink containing GO for bioprinting functional tissue models with the vascular system, e.g., for testing drugs or hard tissue models.
Collapse
Affiliation(s)
- Katarzyna Kosowska
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (P.K.); (K.J.-S.); (J.G.); (M.C.); (K.F.-J.); (M.D.); (A.R.-C.); (K.W.); (M.W.)
- Polbionica Sp. z o.o., 01-793 Warsaw, Poland
| | - Paulina Korycka
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (P.K.); (K.J.-S.); (J.G.); (M.C.); (K.F.-J.); (M.D.); (A.R.-C.); (K.W.); (M.W.)
| | - Kamila Jankowska-Snopkiewicz
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (P.K.); (K.J.-S.); (J.G.); (M.C.); (K.F.-J.); (M.D.); (A.R.-C.); (K.W.); (M.W.)
| | - Joanna Gierałtowska
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (P.K.); (K.J.-S.); (J.G.); (M.C.); (K.F.-J.); (M.D.); (A.R.-C.); (K.W.); (M.W.)
| | - Milena Czajka
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (P.K.); (K.J.-S.); (J.G.); (M.C.); (K.F.-J.); (M.D.); (A.R.-C.); (K.W.); (M.W.)
- Polbionica Sp. z o.o., 01-793 Warsaw, Poland
| | - Katarzyna Florys-Jankowska
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (P.K.); (K.J.-S.); (J.G.); (M.C.); (K.F.-J.); (M.D.); (A.R.-C.); (K.W.); (M.W.)
| | - Magdalena Dec
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (P.K.); (K.J.-S.); (J.G.); (M.C.); (K.F.-J.); (M.D.); (A.R.-C.); (K.W.); (M.W.)
- Polbionica Sp. z o.o., 01-793 Warsaw, Poland
| | - Agnieszka Romanik-Chruścielewska
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (P.K.); (K.J.-S.); (J.G.); (M.C.); (K.F.-J.); (M.D.); (A.R.-C.); (K.W.); (M.W.)
| | - Maciej Małecki
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warsaw, Poland;
- Laboratory of Gene Therapy, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warsaw, Poland
| | - Kinga Westphal
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (P.K.); (K.J.-S.); (J.G.); (M.C.); (K.F.-J.); (M.D.); (A.R.-C.); (K.W.); (M.W.)
- Center for Alzheimer’s and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, 6124 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Michał Wszoła
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (P.K.); (K.J.-S.); (J.G.); (M.C.); (K.F.-J.); (M.D.); (A.R.-C.); (K.W.); (M.W.)
- Polbionica Sp. z o.o., 01-793 Warsaw, Poland
- Medispace Medical Centre, 01-044 Warsaw, Poland
| | - Marta Klak
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (P.K.); (K.J.-S.); (J.G.); (M.C.); (K.F.-J.); (M.D.); (A.R.-C.); (K.W.); (M.W.)
- Polbionica Sp. z o.o., 01-793 Warsaw, Poland
| |
Collapse
|
4
|
Bashiri Z, Movahedin M, Pirhajati V, Asgari H, Koruji M. Ultrastructural study: in vitro and in vivo differentiation of mice spermatogonial stem cells. ZYGOTE 2024; 32:87-95. [PMID: 38149356 DOI: 10.1017/s096719942300062x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Mouse testicular tissue is composed of seminiferous tubules and interstitial tissue. Mammalian spermatogenesis is divided into three stages: spermatocytogenesis (mitotic divisions) in which spermatogonial stem cells (SSCs) turn into spermatocytes, followed by two consecutive meiotic divisions in which spermatocytes form spermatids. Spermatids differentiate into spermatozoa during spermiogenesis. Various factors affect the process of spermatogenesis and the organization of cells in the testis. Any disorder in different stages of spermatogenesis will have negative effects on male fertility. The aim of the current study was to compare the in vitro and in vivo spermatogenesis processes before and after transplantation to azoospermic mice using ultrastructural techniques. In this study, mice were irradiated with single doses of 14 Gy 60Co radiation. SSCs isolated from neonatal mice were cultured in vitro for 1 week and were injected into the seminiferous tubule recipient's mice. Testicular cells of neonatal mice were cultured in the four groups on extracellular matrix-based 3D printing scaffolds. The transplanted testes (8 weeks after transplantation) and cultured testicular cells in vitro (after 3 weeks) were then processed for transmission electron microscopy studies. Our study's findings revealed that the morphology and ultrastructure of testicular cells after transplantation and in vitro culture are similar to those of in vivo spermatogenesis, indicating that spermatogenic cell nature is unaltered in vitro.
Collapse
Affiliation(s)
- Zahra Bashiri
- Stem cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Omid Fertility & Infertility Clinic, Hamedan, Iran
| | - Mansoureh Movahedin
- Department of Anatomical Sciences, Medical Sciences Faculty, Tarbiat Modares University, Tehran, Iran
| | - Vahid Pirhajati
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Asgari
- Stem cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Morteza Koruji
- Stem cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Kafili G, Kabir H, Jalali Kandeloos A, Golafshan E, Ghasemi S, Mashayekhan S, Taebnia N. Recent advances in soluble decellularized extracellular matrix for heart tissue engineering and organ modeling. J Biomater Appl 2023; 38:577-604. [PMID: 38006224 PMCID: PMC10676626 DOI: 10.1177/08853282231207216] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
Despite the advent of tissue engineering (TE) for the remodeling, restoring, and replacing damaged cardiovascular tissues, the progress is hindered by the optimal mechanical and chemical properties required to induce cardiac tissue-specific cellular behaviors including migration, adhesion, proliferation, and differentiation. Cardiac extracellular matrix (ECM) consists of numerous structural and functional molecules and tissue-specific cells, therefore it plays an important role in stimulating cell proliferation and differentiation, guiding cell migration, and activating regulatory signaling pathways. With the improvement and modification of cell removal methods, decellularized ECM (dECM) preserves biochemical complexity, and bio-inductive properties of the native matrix and improves the process of generating functional tissue. In this review, we first provide an overview of the latest advancements in the utilization of dECM in in vitro model systems for disease and tissue modeling, as well as drug screening. Then, we explore the role of dECM-based biomaterials in cardiovascular regenerative medicine (RM), including both invasive and non-invasive methods. In the next step, we elucidate the engineering and material considerations in the preparation of dECM-based biomaterials, namely various decellularization techniques, dECM sources, modulation, characterizations, and fabrication approaches. Finally, we discuss the limitations and future directions in fabrication of dECM-based biomaterials for cardiovascular modeling, RM, and clinical translation.
Collapse
Affiliation(s)
- Golara Kafili
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran
| | - Hannaneh Kabir
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA, USA
| | | | - Elham Golafshan
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran
| | - Sara Ghasemi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Shohreh Mashayekhan
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Nayere Taebnia
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
6
|
Tang Y, Jia Z, Li X, Zhao X, Zhang S, Luo L, Xia L, Fang Z, Zhang Y, Chen M. Mechanism of wound repair in diabetic rats using nanosilver-free alginate dressing. J Wound Care 2023; 32:cli-clx. [PMID: 37561702 DOI: 10.12968/jowc.2023.32.sup8.cli] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
OBJECTIVE Nanosilver-alginate dressing can effectively promote the healing of diabetic wounds in rats. However, due to the potential toxicity of nanosilver, its widespread application in hard-to-heal wound healing is limited. In the present study, the role and potential mechanism of nanosilver-free alginate gel (NSFAG) in the healing process of diabetic wounds were explored. METHOD A diabetic rat skin wound model was established, and wounds were treated with saline (NC group), nanosilver gel (NSG group) or nanosilver-free alginate gel (NSFAG group) for seven consecutive days. RESULTS NSFAG significantly promoted wound healing and increased the content of protein and hydroxyproline in granulation tissues, and was superior to NSG (p<0.05). Immunohistochemical analyses revealed that the skin wound tissue structure of the NSFAG group was intact, and the number of skin appendages in the dermis layer was significantly higher compared with the NC group and the NSG group (p<0.05). Western blot analysis found that the protein expression of the epidermal stem cell marker molecules CK19 and CK14 as well the proliferation marker of keratinocytes Ki67 in the NSFAG group was significantly higher compared with the NC group or NSG group (p<0.05). Additionally, the proliferation marker of keratinocytes Ki67 in the NSFAG group was significantly higher compared with the NC or NSG group (p<0.05). Immunofluorescence staining analyses indicated that the CK19- and CK14-positive cells were mainly distributed around the epidermis and the newly formed appendages in the NSFAG group, and this result was not observed in the NC or NSG groups. CONCLUSION The present findings demonstrate that NSFAG can effectively accelerate wound healing in diabetic rats by promoting epidermal stem cell proliferation and differentiation into skin cells, as well as formation of granulation tissue, suggesting that it can be a potential dressing for diabetic wounds.
Collapse
Affiliation(s)
- Ying Tang
- Department of Endocrinology, First Affiliated Hospital of Anhui Medical University, Hefei 230032, People's Republic of China
| | - Zeguo Jia
- Department of Endocrinology, First Affiliated Hospital of Anhui Medical University, Hefei 230032, People's Republic of China
| | - Xueting Li
- Department of Endocrinology, First Affiliated Hospital of Anhui Medical University, Hefei 230032, People's Republic of China
| | - Xiaotong Zhao
- Department of Endocrinology, First Affiliated Hospital of Anhui Medical University, Hefei 230032, People's Republic of China
| | - Shiqi Zhang
- Department of Endocrinology, First Affiliated Hospital of Anhui Medical University, Hefei 230032, People's Republic of China
| | - Li Luo
- Department of Endocrinology, First Affiliated Hospital of Anhui Medical University, Hefei 230032, People's Republic of China
| | - Li Xia
- Department of Endocrinology, First Affiliated Hospital of Anhui Medical University, Hefei 230032, People's Republic of China
| | - Zhaohui Fang
- Institute of Traditional Chinese Medicine Diabetes Prevention, Anhui Academy of Traditional Chinese Medicine, People's Republic of China
| | - Yuanzhi Zhang
- Hefei Institute of Physical Science, Chinese Academy of Sciences, People's Republic of China
| | - Mingwei Chen
- Department of Endocrinology, First Affiliated Hospital of Anhui Medical University, Hefei 230032, People's Republic of China
- Institute of Traditional Chinese Medicine Diabetes Prevention, Anhui Academy of Traditional Chinese Medicine, People's Republic of China
| |
Collapse
|
7
|
Zhang R, Li B, Li H. Extracellular-Matrix Mechanics Regulate the Ocular Physiological and Pathological Activities. J Ophthalmol 2023; 2023:7626920. [PMID: 37521908 PMCID: PMC10386902 DOI: 10.1155/2023/7626920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023] Open
Abstract
The extracellular matrix (ECM) is a noncellular structure that plays an indispensable role in a series of cell life activities. Accumulating studies have demonstrated that ECM stiffness, a type of mechanical forces, exerts a pivotal influence on regulating organogenesis, tissue homeostasis, and the occurrence and development of miscellaneous diseases. Nevertheless, the role of ECM stiffness in ophthalmology is rarely discussed. In this review, we focus on describing the important role of ECM stiffness and its composition in multiple ocular structures (including cornea, retina, optic nerve, trabecular reticulum, and vitreous) from a new perspective. The abnormal changes in ECM can trigger physiological and pathological activities of the eye, suggesting that compared with different biochemical factors, the transmission and transduction of force signals triggered by mechanical cues such as ECM stiffness are also universal in different ocular cells. We expect that targeting ECM as a therapeutic approach or designing advanced ECM-based technologies will have a broader application prospect in ophthalmology.
Collapse
Affiliation(s)
- Ran Zhang
- Department of Ophthalmology & Optometry, North Sichuan Medical College, Nanchong 637000, Sichuan, China
- Department of Ophthalmology, Central Hospital of Suining City, Suining 629000, Sichuan, China
| | - Bo Li
- Department of Ophthalmology, Central Hospital of Suining City, Suining 629000, Sichuan, China
| | - Heng Li
- Department of Ophthalmology & Optometry, North Sichuan Medical College, Nanchong 637000, Sichuan, China
- Department of Ophthalmology, Central Hospital of Suining City, Suining 629000, Sichuan, China
| |
Collapse
|
8
|
Chen J, Zhang D, Wu LP, Zhao M. Current Strategies for Engineered Vascular Grafts and Vascularized Tissue Engineering. Polymers (Basel) 2023; 15:polym15092015. [PMID: 37177162 PMCID: PMC10181238 DOI: 10.3390/polym15092015] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Blood vessels not only transport oxygen and nutrients to each organ, but also play an important role in the regulation of tissue regeneration. Impaired or occluded vessels can result in ischemia, tissue necrosis, or even life-threatening events. Bioengineered vascular grafts have become a promising alternative treatment for damaged or occlusive vessels. Large-scale tubular grafts, which can match arteries, arterioles, and venules, as well as meso- and microscale vasculature to alleviate ischemia or prevascularized engineered tissues, have been developed. In this review, materials and techniques for engineering tubular scaffolds and vasculature at all levels are discussed. Examples of vascularized tissue engineering in bone, peripheral nerves, and the heart are also provided. Finally, the current challenges are discussed and the perspectives on future developments in biofunctional engineered vessels are delineated.
Collapse
Affiliation(s)
- Jun Chen
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
- Center for Chemical Biology and Drug Discovery, Laboratory of Computational Biomedicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Di Zhang
- Center for Chemical Biology and Drug Discovery, Laboratory of Computational Biomedicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Lin-Ping Wu
- Center for Chemical Biology and Drug Discovery, Laboratory of Computational Biomedicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Ming Zhao
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
9
|
Visser D, Rogg K, Fuhrmann E, Marzi J, Schenke-Layland K, Hartmann H. Electrospinning of collagen: enzymatic and spectroscopic analyses reveal solvent-independent disruption of the triple-helical structure. J Mater Chem B 2023; 11:2207-2218. [PMID: 36786208 DOI: 10.1039/d2tb02602c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Electrospinning has become a well-established method for creating nanofibrous meshes for tissue-engineering applications. The incorporation of natural extracellular components, such as electrospun pure collagen nanofibers, has proven to be particularly challenging, as electrospun collagen nanofibers do not constitute native collagen fibers anymore. In this study, we show that this detrimental effect is not only limited to fluorinated solvents, as previously thought. Rat tail collagen was dissolved in acetic acid and ethanol and electrospun at various temperatures. Electrospun collagen mats were analyzed using circular dichroism, enzymatic digestion, SDS-PAGE, western blotting, and Raman spectroscopy and compared to heat-denaturated and electrospun collagen in HFIP. Our data suggest that even non-fluorinated electrospinning solvents, such as acid-based solvents, do not yield structurally intact fibers. Interestingly, neither epithelial cells nor fibroblasts displayed a different cellular response to electrospun collagen compared to collagen-coated polyurethane scaffolds in F-actin staining and metabolic analysis using fluorescent lifetime imaging. The disruption of the structural integrity of collagen might therefore be underestimated based on the cell-material interactions alone. These observations expose the larger than anticipated vulnerability of collagen in the electrospinning process. Based on these findings, the influence of the electrospinning process on the distinct biochemical properties of collagen should always be considered, when ECM-mimicking fibrous constructs are manufactured.
Collapse
Affiliation(s)
- Dmitri Visser
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany.
| | - Katharina Rogg
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany.
| | - Ellena Fuhrmann
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany.
| | - Julia Marzi
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany. .,Institute of Biomedical Engineering, Department for Medical Technologies & Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Katja Schenke-Layland
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany. .,Institute of Biomedical Engineering, Department for Medical Technologies & Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Hanna Hartmann
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany.
| |
Collapse
|
10
|
Berechet MD, Gaidau C, Nešić A, Constantinescu RR, Simion D, Niculescu O, Stelescu MD, Sandulache I, Râpă M. Antioxidant and Antimicrobial Properties of Hydrolysed Collagen Nanofibers Loaded with Ginger Essential Oil. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1438. [PMID: 36837065 PMCID: PMC9965637 DOI: 10.3390/ma16041438] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Hydrolysed collagen obtained from bovine leather by-products were loaded with ginger essential oil and processed by the electrospinning technique for obtaining bioactive nanofibers. Particle size measurements of hydrolysed collagen, GC-MS analysis of ginger essential oil (EO), and structural and SEM examinations of collagen nanofibers loaded with ginger essential oil collected on waxed paper, cotton, and leather supports were performed. Antioxidant and antibacterial activities against Staphylococcus aureus and Escherichia coli and antifungal activity against Candida albicans were also determined. Data show that the hydrolysed collagen nanofibers loaded with ginger EO can be used in the medical, pharmaceutical, cosmetic, or niche fields.
Collapse
Affiliation(s)
- Mariana Daniela Berechet
- The National Research & Development Institute for Textiles and Leather, 16 Lucretiu Patrascanu Street, 030508 Bucharest, Romania
| | - Carmen Gaidau
- The National Research & Development Institute for Textiles and Leather, 16 Lucretiu Patrascanu Street, 030508 Bucharest, Romania
| | - Aleksandra Nešić
- Faculty of Technology, University of Novi Sad, 21102 Novi Sad, Serbia
| | - Rodica Roxana Constantinescu
- The National Research & Development Institute for Textiles and Leather, 16 Lucretiu Patrascanu Street, 030508 Bucharest, Romania
| | - Demetra Simion
- The National Research & Development Institute for Textiles and Leather, 16 Lucretiu Patrascanu Street, 030508 Bucharest, Romania
| | - Olga Niculescu
- The National Research & Development Institute for Textiles and Leather, 16 Lucretiu Patrascanu Street, 030508 Bucharest, Romania
| | - Maria Daniela Stelescu
- The National Research & Development Institute for Textiles and Leather, 16 Lucretiu Patrascanu Street, 030508 Bucharest, Romania
| | - Irina Sandulache
- The National Research & Development Institute for Textiles and Leather, 16 Lucretiu Patrascanu Street, 030508 Bucharest, Romania
| | - Maria Râpă
- Faculty of Materials Science and Engineering, Polytechnic University of Bucharest, 060042 Bucharest, Romania
| |
Collapse
|
11
|
Recent Advances in Metal-Organic Framework (MOF) Asymmetric Membranes/Composites for Biomedical Applications. Symmetry (Basel) 2023. [DOI: 10.3390/sym15020403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Metal-organic frameworks (MOFs) are a new class of porous crystalline materials composed of metal and organic material. MOFs have fascinating properties, such as fine tunability, large specific surface area, and high porosity. MOFs are widely used for environmental protection, biosensors, regenerative medicine, medical engineering, cell therapy, catalysts, and drug delivery. Recent studies have reported various significant properties of MOFs for biomedical applications, such as drug detection and delivery. In contrast, MOFs have limitations such as low stability and low specificity in binding to the target. MOF-based membranes improve the stability and specificity of conventional MOFs by increasing the surface area and developing the possibility of MOF-ligand binding, while conjugated membranes dramatically increase the area of active functional groups. This special property makes them attractive for drug and biosensor fabrication, as both the spreading and solubility components of the porosity can be changed. Asymmetric membranes are a structure with high potential in the biomedical field, due to the different characteristics on its two surfaces, the possibility of adjusting various properties such as the size of porosity, transfer rate and selectivity, and surface properties such as hydrophilicity and hydrophobicity. MOF assisted asymmetric membranes can provide a platform with different properties and characteristics in the biomedical field. The latest version of MOF materials/membranes has several potential applications, especially in medical engineering, cell therapy, drug delivery, and regenerative medicine, which will be discussed in this review, along with their advantages, disadvantages, and challenges.
Collapse
|
12
|
Kort-Mascort J, Flores-Torres S, Peza-Chavez O, Jang JH, Pardo LA, Tran SD, Kinsella J. Decellularized ECM hydrogels: prior use considerations, applications, and opportunities in tissue engineering and biofabrication. Biomater Sci 2023; 11:400-431. [PMID: 36484344 DOI: 10.1039/d2bm01273a] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Tissue development, wound healing, pathogenesis, regeneration, and homeostasis rely upon coordinated and dynamic spatial and temporal remodeling of extracellular matrix (ECM) molecules. ECM reorganization and normal physiological tissue function, require the establishment and maintenance of biological, chemical, and mechanical feedback mechanisms directed by cell-matrix interactions. To replicate the physical and biological environment provided by the ECM in vivo, methods have been developed to decellularize and solubilize tissues which yield organ and tissue-specific bioactive hydrogels. While these biomaterials retain several important traits of the native ECM, the decellularizing process, and subsequent sterilization, and solubilization result in fragmented, cleaved, or partially denatured macromolecules. The final product has decreased viscosity, moduli, and yield strength, when compared to the source tissue, limiting the compatibility of isolated decellularized ECM (dECM) hydrogels with fabrication methods such as extrusion bioprinting. This review describes the physical and bioactive characteristics of dECM hydrogels and their role as biomaterials for biofabrication. In this work, critical variables when selecting the appropriate tissue source and extraction methods are identified. Common manual and automated fabrication techniques compatible with dECM hydrogels are described and compared. Fabrication and post-manufacturing challenges presented by the dECM hydrogels decreased mechanical and structural stability are discussed as well as circumvention strategies. We further highlight and provide examples of the use of dECM hydrogels in tissue engineering and their role in fabricating complex in vitro 3D microenvironments.
Collapse
Affiliation(s)
| | | | - Omar Peza-Chavez
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada.
| | - Joyce H Jang
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada.
| | | | - Simon D Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Joseph Kinsella
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
13
|
Biomimetic nanofiber-enabled rapid creation of skin grafts. Nanomedicine (Lond) 2023. [DOI: 10.1016/b978-0-12-818627-5.00009-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
14
|
Abbasi K, Tavakolizadeh S, Hadi A, Hosseini M, Soufdoost RS, Heboyan A, Alam M, Fani‐Hanifeh S. The wound healing effect of collagen/adipose-derived stem cells (ADSCs) hydrogel: In vivo study. Vet Med Sci 2022; 9:282-289. [PMID: 36571812 PMCID: PMC9856998 DOI: 10.1002/vms3.1059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The complex wound healing process involves activating and synchronizing intracellular, intercellular, and extracellular components. Adipose tissue is attracting attention to promote wound healing. Within subcutaneous adipose tissue, stromal vascular cells and their subsets release growth factors and cytokines critical for neovascularization and wound repair. OBJECTIVES This study evaluated human placental collagen/adipose-derived stem cells (ADSCs) hydrogel for wound healing in rats. METHODS In this study, ADSCs were harvested, cultured, and mixed with placental collagen. Twelve rats were used, and their backs were excised three times each. Group one received collagen/ADSCs, group two collagen, and group three non-filled (control) excisions. The healing processes were assessed by histological analysis, taking photographs, and calculating the percentage of wound contraction in mentioned times. RESULTS Histopathological analysis revealed that the content of fibroblasts, follicles of the hair, and angiogenesis in group one was significantly more than in other groups. Group one had a significant result compared with the collagen and control groups. In group one, significant wound healing and wound contraction were observed with 52% and 80% wound contraction at 7 and 14 days, respectively. CONCLUSION Collagen/ADSCs can be considered a suitable candidate hydrogel in wound healing with a high potential for enhancing wound repairing.
Collapse
Affiliation(s)
- Kamyar Abbasi
- Department of ProsthodonticsSchool of DentistryShahid Beheshti University of Medical SciencesTehranIran
| | - Sara Tavakolizadeh
- Department of ProsthodonticsSchool of DentistryShahid Beheshti University of Medical SciencesTehranIran
| | - Alireza Hadi
- Department of ProsthodonticsSchool of DentistryShahid Beheshti University of Medical SciencesTehranIran
| | - Maryam Hosseini
- Dental Research Center, Research Institute of Dental Sciences, School of DentistryShahid Beheshti University of Medical SciencesTehranIran
| | | | - Artak Heboyan
- Department of ProsthodonticsFaculty of StomatologyYerevan State Medical University after Mkhitar HeratsiYerevanArmenia
| | - Mostafa Alam
- Department of Oral and Maxillofacial SurgerySchool of DentistryShahid Beheshti University of Medical SciencesTehranIran
| | - Sadaf Fani‐Hanifeh
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| |
Collapse
|
15
|
Hann SY, Cui H, Chen G, Boehm M, Esworthy T, Zhang LG. 3D printed biomimetic flexible blood vessels with iPS cell-laden hierarchical multilayers. BIOMEDICAL ENGINEERING ADVANCES 2022; 4:100065. [PMID: 36582411 PMCID: PMC9794201 DOI: 10.1016/j.bea.2022.100065] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Successful recovery from vascular diseases has typically relied on the surgical repair of damaged blood vessels (BVs), with the majority of current approaches involving the implantation of autologous BVs, which is plagued by donor site tissue damage. Researchers have attempted to develop artificial vessels as an alternative solution to traditional approaches to BV repair. However, the manufacturing of small-diameter (< 6 mm) BVs is still considered one of the biggest challenges due to its difficulty in the precise fabrication and the replication of biomimetic architectures. In this study, we successfully developed 3D printed flexible small-diameter BVs that consist of smooth muscle cells and a vascularized endothelium. In the developed artificial BV, a rubber-like elastomer was printed as the outermost layer of the vessel, which demonstrated enhanced mechanical properties, while and human induced pluripotent stem cell (iPSC)-derived vascular smooth muscle cells (iSMCs) and endothelial cells (iECs) embedded fibrinogen solutions were coaxially extruded with thrombin solution to form cell-laden fibrin gel inner layers. Our results showed that the 3D BVs possessed proper mechanical properties, and the cells in the fibrin layers substantially proliferated over time to form a stable BV construct. Our study demonstrated that the 3D printed flexible small-diameter BV using iPSCs could be a promising platform for the treatment of vascular diseases.
Collapse
Affiliation(s)
- Sung Yun Hann
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Haitao Cui
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Guibin Chen
- Laboratory of Cardiovascular Regenerative Medicine, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Manfred Boehm
- Laboratory of Cardiovascular Regenerative Medicine, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Timothy Esworthy
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
- Department of Electrical and Computer Engineering, The George Washington University, Washington, DC 20052, USA
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
- Department of Medicine, The George Washington University Medical Center, Washington, DC 20052, USA
| |
Collapse
|
16
|
Karakaya E, Erdogan YK, Arslan TS, Arslan YE, Odabas S, Ercan B, Emregul E, Derkus B. Decellularized Bone Extracellular Matrix-Coated Electrospun PBAT Microfibrous Membranes with Cell Instructive Ability and Improved Bone Tissue Forming Capacity. Macromol Biosci 2022; 22:e2200303. [PMID: 36129099 DOI: 10.1002/mabi.202200303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/23/2022] [Indexed: 01/15/2023]
Abstract
Current approaches to develop bone tissue engineering scaffolds have some limitations and shortcomings. They mainly suffer from combining mechanical stability and bioactivity on the same platform. Synthetic polymers are able to produce mechanically stable sturctures with fibrous morphology when they are electrospun, however, they cannot exhibit bioactivity, which is crucial for tissue engineering and regenerative medicine. One current strategy to bring bioactivity in synthetic materials is to combine extracellular matrix (ECM)-sourced materials with biologically inert synthetic materials. ECM-sourced materials without any modifications are mechanically unstable; therefore, reinforcing them with mechanically stable platforms is indispensable. In order to overcome this bifacial problem, we have demonstrated that poly(butylene adipate-co-terephthalate) (PBAT) electrospun microfibrous membranes can be successfully modified with decellularized bone ECM to endow fibers with bioactive hydrogel and mimic natural micro-features of the native bone tissue. The developed structures have been shown to support osteogenesis, confirmed by histochemical staining and gene expression studies. Furthermore, ECM-coated PBAT fibers, when they were aligned, supplied an improved level of osteogenesis. The strategy demonstrated can be adapted to any other tissues, and the emerging microfibrous, mechanically stable, and bioactive materials can find implications in the specific fields of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Ece Karakaya
- Personalized Medicine and Biosensing Research (PMBR) Laboratory, Department of Chemistry, Faculty of Science, Ankara University, Ankara, 06560, Turkey
| | - Yasar Kemal Erdogan
- Biomedical Engineering Program, Middle East Technical University, Ankara, 06800, Turkey.,Department of Biomedical Engineering, Isparta University of Applied Science, Isparta, 32260, Turkey
| | - Tugba Sezgin Arslan
- Personalized Medicine and Biosensing Research (PMBR) Laboratory, Department of Chemistry, Faculty of Science, Ankara University, Ankara, 06560, Turkey
| | - Yavuz Emre Arslan
- Regenerative Biomaterials Laboratory, Department of Bioengineering, Faculty of Engineering, Canakkale Onsekiz Mart University, Canakkale, 17100, Turkey
| | - Sedat Odabas
- Biomaterials and Tissue Engineering Laboratory (BteLAB), Department of Chemistry, Faculty of Science, Ankara University, Besevler, Ankara, 06560, Turkey
| | - Batur Ercan
- Biomedical Engineering Program, Middle East Technical University, Ankara, 06800, Turkey.,Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara, 06800, Turkey
| | - Emel Emregul
- Personalized Medicine and Biosensing Research (PMBR) Laboratory, Department of Chemistry, Faculty of Science, Ankara University, Ankara, 06560, Turkey
| | - Burak Derkus
- Stem Cell Research Lab, Department of Chemistry, Faculty of Science, Ankara University, Besevler, Ankara, 06560, Turkey
| |
Collapse
|
17
|
Lu X, Zou H, Liao X, Xiong Y, Hu X, Cao J, Pan J, Li C, Zheng Y. Construction of PCL-collagen@PCL@PCL-gelatin three-layer small diameter artificial vascular grafts by electrospinning. Biomed Mater 2022; 18. [PMID: 36374009 DOI: 10.1088/1748-605x/aca269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/14/2022] [Indexed: 11/16/2022]
Abstract
The demand for artificial vascular grafts in clinical applications is increasing, and it is urgent to design a tissue-engineered vascular graft with good biocompatibility and sufficient mechanical strength. In this study, three-layer small diameter artificial vascular grafts were constructed by electrospinning. Polycaprolactone (PCL) and collagen (COL) were used as the inner layer to provide good biocompatibility and cell adhesion, the middle layer was PCL to improve the mechanical properties, and gelatin (GEL) and PCL were used to construct the outer layer for further improving the mechanical properties and biocompatibility of the vascular grafts in the human body environment. The electrospun artificial vascular graft had good biocompatibility and mechanical properties. Its longitudinal maximum stress reached 2.63 ± 0.12 MPa, which exceeded the maximum stress that many natural blood vessels could withstand. The fiber diameter of the vascular grafts was related to the proportion of components that made up the vascular grafts. In the inner structure of the vascular grafts, the hydrophilicity of the vascular grafts was enhanced by the addition of COL to the PCL, and human umbilical vein endothelial cells (HUVECs) adhered more easily to the vascular grafts. In particular, the cytocompatibility and proliferation of HUVECs on the scaffold with an inner structure PCL:COL = 2:1 was superior to other ratios of vascular grafts. The vascular grafts did not cause hemolysis of red blood cells. Thus, the bionic PCL-COL@PCL@PCL-GEL composite graft is a promising material for vascular tissue engineering.
Collapse
Affiliation(s)
- Xingjian Lu
- Department of Physics, and Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Hao Zou
- Department of Physics, and Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Xiaokun Liao
- Department of Physics, and Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Yue Xiong
- Department of Physics, and Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Xiaoyan Hu
- Department of Physics, and Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Jun Cao
- Department of Physics, and Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Jiaqi Pan
- Department of Physics, and Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Chaorong Li
- Department of Physics, and Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Yingying Zheng
- Department of Physics, and Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| |
Collapse
|
18
|
Zhu J, Li Z, Zou Y, Lu G, Ronca A, D’Amora U, Liang J, Fan Y, Zhang X, Sun Y. Advanced application of collagen-based biomaterials in tissue repair and restoration. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2022. [DOI: 10.1186/s42825-022-00102-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AbstractIn tissue engineering, bioactive materials play an important role, providing structural support, cell regulation and establishing a suitable microenvironment to promote tissue regeneration. As the main component of extracellular matrix, collagen is an important natural bioactive material and it has been widely used in scientific research and clinical applications. Collagen is available from a wide range of animal origin, it can be produced by synthesis or through recombinant protein production systems. The use of pure collagen has inherent disadvantages in terms of physico-chemical properties. For this reason, a processed collagen in different ways can better match the specific requirements as biomaterial for tissue repair. Here, collagen may be used in bone/cartilage regeneration, skin regeneration, cardiovascular repair and other fields, by following different processing methods, including cross-linked collagen, complex, structured collagen, mineralized collagen, carrier and other forms, promoting the development of tissue engineering. This review summarizes a wide range of applications of collagen-based biomaterials and their recent progress in several tissue regeneration fields. Furthermore, the application prospect of bioactive materials based on collagen was outlooked, aiming at inspiring more new progress and advancements in tissue engineering research.
Graphical Abstract
Collapse
|
19
|
Wang Y, Li G, Yang L, Luo R, Guo G. Development of Innovative Biomaterials and Devices for the Treatment of Cardiovascular Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201971. [PMID: 35654586 DOI: 10.1002/adma.202201971] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Cardiovascular diseases have become the leading cause of death worldwide. The increasing burden of cardiovascular diseases has become a major public health problem and how to carry out efficient and reliable treatment of cardiovascular diseases has become an urgent global problem to be solved. Recently, implantable biomaterials and devices, especially minimally invasive interventional ones, such as vascular stents, artificial heart valves, bioprosthetic cardiac occluders, artificial graft cardiac patches, atrial shunts, and injectable hydrogels against heart failure, have become the most effective means in the treatment of cardiovascular diseases. Herein, an overview of the challenges and research frontier of innovative biomaterials and devices for the treatment of cardiovascular diseases is provided, and their future development directions are discussed.
Collapse
Affiliation(s)
- Yunbing Wang
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
| | - Gaocan Li
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
| | - Li Yang
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
| | - Rifang Luo
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
| | - Gaoyang Guo
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
| |
Collapse
|
20
|
Bose S, Padilla V, Salinas A, Ahmad F, Lodge TP, Ellison CJ, Lozano K. Hierarchical Design Strategies to Produce Internally Structured Nanofibers. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2132509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Saptasree Bose
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Victoria Padilla
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Alexandra Salinas
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Fariha Ahmad
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Timothy P. Lodge
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Christopher J. Ellison
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Karen Lozano
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, Texas, USA
| |
Collapse
|
21
|
Development of New Bio-Composite of PEO/Silk Fibroin Blends Loaded with Piezoelectric Material. Polymers (Basel) 2022; 14:polym14194209. [PMID: 36236157 PMCID: PMC9571570 DOI: 10.3390/polym14194209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/18/2022] Open
Abstract
New bio-composite nanofibers composed of polyethylene oxide (PEO)/silk fibroin (SF)/barium titanate (BaTiO3) are introduced in this study. The SF solution was added to the PEO solution to form a PEO/SF blend with different weight percentages (5, 10, 15, 20 wt.%). The PEO/15 wt.% SF blend was selected to continue the experimental plan based on the optimum nanofiber morphology. Different wt.% of BaTiO3 particles (0.2, 0.4, 0.8, 1 wt.%) were added to the PEO/15 wt.% SF blend solution, and the suspensions obtained were introduced to an electrospinning device. The fabricated tissue was characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and Fourier-transform infrared (FTIR) spectroscopy. The zeta potential of the solution and the piezoelectric performance of the fabricated tissue were characterized. A newly designed pizoTester was used to investigate piezoelectric properties. The results showed that a well-organized, smooth PEO/15 wt.% SF/0.2 wt.% BaTiO3 nanofiber composite with low bead contents was obtained. Improved properties and electrical coupling were achieved in the newly introduced material. Electrospun PEO/15 wt.% SF/0.2 wt.% BaTiO3 mats increased the output voltage (1150 mV) compared to pristine PEO and PEO/SF composite fibers (410 and 290 mV, respectively) upon applying 20 N force at 5 Hz frequency. The observed enhancement in piezoelectric properties suggests that the prepared composite could be a promising material in cardiac tissue engineering (CTE).
Collapse
|
22
|
Singh YP, Dasgupta S. Gelatin-based electrospun and lyophilized scaffolds with nano scale feature for bone tissue engineering application: review. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1704-1758. [PMID: 35443894 DOI: 10.1080/09205063.2022.2068943] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The rebuilding of the normal functioning of the damaged human body bone tissue is one of the main objectives of bone tissue engineering (BTE). Fabricated scaffolds are mostly treated as artificial supports and as materials for regeneration of neo bone tissues and must closely biomimetic the native extracellular matrix of bone. The materials used for developing scaffolds should be biodegradable, nontoxic, and biocompatible. For the resurrection of bone disorder, specifically natural and synthetic polymers such as chitosan, PCL, gelatin, PGA, PLA, PLGA, etc. meet the requirements for serving their functions as artificial bone substitute materials. Gelatin is one of the potential candidates which could be blended with other polymers or composites to improve its physicochemical, mechanical, and biological performances as a bone graft. Scaffolds are produced by several methods including electrospinning, self-assembly, freeze-drying, phase separation, fiber drawing, template synthesis, etc. Among them, freeze-drying and electrospinning are among the popular, simplest, versatile, and cost-effective techniques. The design and preparation of freeze-dried and electrospun scaffolds are of intense research over the last two decades. Freeze-dried and electrospun scaffolds offer a distinctive architecture at the micro to nano range with desired porosity and pore interconnectivity for selective movement of small biomolecules and play its role as an appropriate matrix very similar to the natural bone extracellular matrix. This review focuses on the properties and functionalization of gelatin-based polymer and its composite in the form of bone scaffolds fabricated primarily using lyophilization and electrospinning technique and their applications in BTE.
Collapse
Affiliation(s)
- Yogendra Pratap Singh
- Department of Ceramic Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Sudip Dasgupta
- Department of Ceramic Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| |
Collapse
|
23
|
Yu KF, Lu TY, Li YCE, Teng KC, Chen YC, Wei Y, Lin TE, Cheng NC, Yu J. Design and Synthesis of Stem Cell-Laden Keratin/Glycol Chitosan Methacrylate Bioinks for 3D Bioprinting. Biomacromolecules 2022; 23:2814-2826. [PMID: 35438970 DOI: 10.1021/acs.biomac.2c00191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
With the advancements in tissue engineering and three-dimensional (3D) bioprinting, physiologically relevant three-dimensional structures with suitable mechanical and bioactive properties that mimic the biological tissue can be designed and fabricated. However, the available bioinks are less than demanded. In this research, the readily available biomass sources, keratin and glycol chitosan, were selected to develop a UV-curable hydrogel that is feasible for the 3D bioprinting process. Keratin methacrylate and glycol chitosan methacrylate were synthesized, and a hybrid bioink was created by combining this protein-polysaccharide cross-linked hydrogel. While human hair keratin could provide biological functions, the other composition, glycol chitosan, could further enhance the mechanical strength of the construct. The mechanical properties, degradation profile, swelling behavior, cell viability, and proliferation were investigated with various ratios of keratin methacrylate to glycol chitosan methacrylate. The composition of 2% (w/v) keratin methacrylate and 2% (w/v) chitosan methacrylate showed a significantly higher cell number and swelling percentage than other compositions and was designated as the bioink for 3D printing afterward. The feasibility of stem cell loading in the selected formula was examined with an extrusion-based bioprinter. The cells and spheroids can be successfully printed with the synthesized bioink into a specific shape and cultured. This work provides a potential option for bioinks and delivers insights into personalization research on stem cell-laden biofabricated hydrogels in the future.
Collapse
Affiliation(s)
- Kai-Fu Yu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Ting-Yu Lu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan.,Materials Science and Engineering Program, University of California, San Diego La Jolla, California 92093, United States
| | - Yi-Chen Ethan Li
- Department of Chemical Engineering, Feng Chia University, Taichung 407, Taiwan
| | - Kuang-Chih Teng
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Yin-Chuan Chen
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Yang Wei
- Department of Chemical Engineering & Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan
| | - Tzu-En Lin
- Department of Electronics and Electrical Engineering, National Yang-Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Nai-Chen Cheng
- Department of Surgery, National Taiwan University Hospital, Taipei City 100, Taiwan
| | - Jiashing Yu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
24
|
Mudigonda J, Xu D, Amedi A, Lane BA, Corporan D, Wang V, Padala M. A Biohybrid Material With Extracellular Matrix Core and Polymeric Coating as a Cell Honing Cardiovascular Tissue Substitute. Front Cardiovasc Med 2022; 9:807255. [PMID: 35402573 PMCID: PMC8987446 DOI: 10.3389/fcvm.2022.807255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveTo investigate the feasibility of a hybrid material in which decellularized pericardial extracellular matrix is functionalized with polymeric nanofibers, for use as a cardiovascular tissue substitute.BackgroundA cardiovascular tissue substitute, which is gradually resorbed and is replaced by host's native tissue, has several advantages. Especially in children and young adults, a resorbable material can be useful in accommodating growth, but also enable rapid endothelialization that is necessary to avoid thrombotic complications. In this study, we report a hybrid material, wherein decellularized pericardial matrix is functionalized with a layer of polymeric nanofibers, to achieve the mechanical strength for implantation in the cardiovascular system, but also have enhanced cell honing capacity.MethodsPericardial sacs were decellularized with sodium deoxycholate, and polycaprolactone-chitosan fibers were electrospun onto the matrix. Tissue-polymer interaction was evaluated using spectroscopic methods, and the mechanical properties of the individual components and the hybrid material were quantified. In-vitro blood flow loop studies were conducted to assess hemocompatibility and cell culture methods were used to assess biocompatibility.ResultsEncapsulation of the decellularized matrix with 70 μm thick matrix of polycaprolactone-chitosan nanofibers, was feasible and reproducible. Spectroscopy of the cross-section depicted new amide bond formation and C–O–C stretch at the interface. An average peel strength of 56.13 ± 11.87 mN/mm2 was measured, that is sufficient to withstand a high shear of 15 dynes/cm2 without delamination. Mechanical strength and extensibility ratio of the decellularized matrix alone were 18,000 ± 4,200 KPa and 0.18 ± 0.03% whereas that of the hybrid was higher at 20,000 ± 6,600 KPa and 0.35 ± 0.20%. Anisotropy index and stiffness of the biohybrid were increased as well. Neither thrombus formation, nor platelet adhesion or hemolysis was measured in the in-vitro blood flow loop studies. Cellular adhesion and survival were adequate in the material.ConclusionEncapsulating a decellularized matrix with a polymeric nanofiber coating, has favorable attributes for use as a cardiovascular tissue substitute.
Collapse
Affiliation(s)
- Jahnavi Mudigonda
- Structural Heart Research & Innovation Laboratory, Carlyle Fraser Heart Center, Emory University Hospital Midtown, Atlanta, GA, United States
- Division of Cardiothoracic Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Dongyang Xu
- Structural Heart Research & Innovation Laboratory, Carlyle Fraser Heart Center, Emory University Hospital Midtown, Atlanta, GA, United States
- Division of Cardiothoracic Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Alan Amedi
- Structural Heart Research & Innovation Laboratory, Carlyle Fraser Heart Center, Emory University Hospital Midtown, Atlanta, GA, United States
- Division of Cardiothoracic Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Brooks A. Lane
- Structural Heart Research & Innovation Laboratory, Carlyle Fraser Heart Center, Emory University Hospital Midtown, Atlanta, GA, United States
- Division of Cardiothoracic Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Daniella Corporan
- Structural Heart Research & Innovation Laboratory, Carlyle Fraser Heart Center, Emory University Hospital Midtown, Atlanta, GA, United States
- Division of Cardiothoracic Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Vivian Wang
- Structural Heart Research & Innovation Laboratory, Carlyle Fraser Heart Center, Emory University Hospital Midtown, Atlanta, GA, United States
| | - Muralidhar Padala
- Structural Heart Research & Innovation Laboratory, Carlyle Fraser Heart Center, Emory University Hospital Midtown, Atlanta, GA, United States
- Division of Cardiothoracic Surgery, Emory University School of Medicine, Atlanta, GA, United States
- *Correspondence: Muralidhar Padala
| |
Collapse
|
25
|
Owida HA, Al-Nabulsi JI, Alnaimat F, Al-Ayyad M, Turab NM, Al Sharah A, Shakur M. Recent Applications of Electrospun Nanofibrous Scaffold in Tissue Engineering. Appl Bionics Biomech 2022; 2022:1953861. [PMID: 35186119 PMCID: PMC8849965 DOI: 10.1155/2022/1953861] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/12/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Tissue engineering is a relatively new area of research that combines medical, biological, and engineering fundamentals to create tissue-engineered constructs that regenerate, preserve, or slightly increase the functions of tissues. To create mature tissue, the extracellular matrix should be imitated by engineered structures, allow for oxygen and nutrient transmission, and release toxins during tissue repair. Numerous recent studies have been devoted to developing three-dimensional nanostructures for tissue engineering. One of the most effective of these methods is electrospinning. Numerous nanofibrous scaffolds have been constructed over the last few decades for tissue repair and restoration. The current review gives an overview of attempts to construct nanofibrous meshes as tissue-engineered scaffolds for various tissues such as bone, cartilage, cardiovascular, and skin tissues. Also, the current article addresses the recent improvements and difficulties in tissue regeneration using electrospinning.
Collapse
Affiliation(s)
- Hamza Abu Owida
- Medical Engineering Department, Faculty of Engineering, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Jamal I. Al-Nabulsi
- Medical Engineering Department, Faculty of Engineering, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Feras Alnaimat
- Medical Engineering Department, Faculty of Engineering, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Muhammad Al-Ayyad
- Medical Engineering Department, Faculty of Engineering, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Nidal M. Turab
- Department of Networks and Information Security, Faculty of Information Technology, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Ashraf Al Sharah
- Computer Engineering, Faculty of Engineering, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Murad Shakur
- Medical Engineering Department, Faculty of Engineering, Al-Ahliyya Amman University, Amman 19328, Jordan
| |
Collapse
|
26
|
Shen C, Liu J, Lu Q, Wang G, Wang Z, Liu L. Pre-Vascularized Electrospun Graphene Oxide–Gelatin Chamber for Intestinal Wall Defect Repair. Int J Nanomedicine 2022; 17:681-695. [PMID: 35210768 PMCID: PMC8858016 DOI: 10.2147/ijn.s353029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/01/2022] [Indexed: 01/04/2023] Open
Affiliation(s)
- Chentao Shen
- Department of Gastrointestinal Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
- GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Jian Liu
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic Of China
- Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, People’s Republic of China
| | - Qiyi Lu
- Department of Gastrointestinal Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
- GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Guihua Wang
- Department of Gastrointestinal Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
- GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Zhenxing Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic Of China
- Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, People’s Republic of China
| | - Lu Liu
- Department of Gastrointestinal Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
- GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
- Correspondence: Lu Liu; Zhenxing Wang, Tel +86-13476226821; +86-13476231986, Fax +86-27-83662640; +86-27-85726240, Email ;
| |
Collapse
|
27
|
Pezeshki-Modaress M, Akbarzadeh M, Ebrahimibagha D, Zandi M, Ghadimi T, Sadeghi A, Rajabi S. Fabrication and In Vitro Evaluation of A Chondroitin Sulphate-Polycaprolactone Composite Nanofibrous Scaffold for Potential Use in Dermal Tissue Engineering. CELL JOURNAL 2022; 24:36-43. [PMID: 35182063 PMCID: PMC8876262 DOI: 10.22074/cellj.2022.7655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/06/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Poly(ε-caprolactone) (PCL) has considerable mechanical and biological properties that make it a good candidate for tissue engineering applications. PCL alongside proteins and polysaccharides, like gelatin (GEL) and chondroitin sulphate (CS), can be used to fabricate composite scaffolds that provide mechanical and biological requirements for skin tissue engineering scaffolds. The aim of this study was fabricating novel composite nanofibrous scaffold containing various ratios of GEL/CS and PCL using co-electrospinning process. MATERIALS AND METHODS In this experimental study, PCL mixed with a GEL/CS blend has limitations in miscibility and the lack of a common solvent. Here, we electrospun PCL and GEL/CS coincide separately on the same drum by using different nozzles to create composite nanofibrous scaffolds with different ratios (2:1, 1:1 and 1:2) of GEL to CSPCL, and we mixed them at the micro/nanoscale. Morphology, porosity, phosphate-buffered saline (PBS) absorption, chemical structure, mechanical property and in vitro bioactivity of the prepared composite scaffolds were analysed. RESULTS Scanning electron microscopy (SEM) images showed beadless nanofibres at all ratios of GEL to CS-PCL. The composite scaffolds (2:1, 1:1 and 1:2) had increased porosity compared to the PCL nanofibrous scaffolds, in addition to a significant increase in PBS absorption. The mechanical properties of the composite scaffolds were investigated under different conditions. The results demonstrated that all of the composite specimens had better strength when compared with the GEL/CS nanofibres. The increase in PCL ratio led to an increase in tensile strength of the nanofibres. Human dermal fibroblasts (HDF) were cultured on the fabricated composite scaffolds and evaluated by 3-(4,5-dimethylthiazol- 2-yl)-5-(3 carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) analysis and SEM. The results showed the bioactivity of these nanofibres and the potential for these scaffolds to be used for skin tissue engineering applications. CONCLUSION The fabricated co-electrospun composite scaffolds had higher porosity and PBS absorption in comparison with the PCL nanofibrous scaffolds, in addition to significant improvements in mechanical properties under wet and dry conditions compared to the GEL/CS scaffold.
Collapse
Affiliation(s)
| | - Mohadeseh Akbarzadeh
- Department of Biomaterials, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Dariush Ebrahimibagha
- Hard Tissue Engineering Research Centre, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic
Azad University, Tehran, Iran
| | - Mojgan Zandi
- Department of Biomaterials, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Tayyeb Ghadimi
- Burn Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Sadeghi
- Soft Tissue Engineering Research Centre, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic
Azad University, Tehran, Iran
| | - Sarah Rajabi
- Department of Cell Engineering, Cell Science Research Centre, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran,P.O. Box: 16635-148Department of Cell EngineeringCell Science Research CentreRoyan Institute for Stem Cell Biology and TechnologyACECRTehranIran
| |
Collapse
|
28
|
Conductive polycaprolactone/gelatin/polyaniline nanofibres as functional scaffolds for cardiac tissue regeneration. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2021.105064] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Pien N, Pezzoli D, Van Hoorick J, Copes F, Vansteenland M, Albu M, De Meulenaer B, Mantovani D, Van Vlierberghe S, Dubruel P. Development of photo-crosslinkable collagen hydrogel building blocks for vascular tissue engineering applications: A superior alternative to methacrylated gelatin? MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112460. [PMID: 34702535 DOI: 10.1016/j.msec.2021.112460] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 09/08/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022]
Abstract
The present work targets the development of collagen-based hydrogel precursors, functionalized with photo-crosslinkable methacrylamide moieties (COL-MA), for vascular tissue engineering (vTE) applications. The developed materials were physico-chemically characterized in terms of crosslinking kinetics, degree of modification/conversion, swelling behavior, mechanical properties and in vitro cytocompatibility. The collagen derivatives were benchmarked to methacrylamide-modified gelatin (GEL-MA), due to its proven track record in the field of tissue engineering. To the best of our knowledge, this is the first paper in its kind comparing these two methacrylated biopolymers for vTE applications. For both gelatin and collagen, two derivatives with varying degrees of substitutions (DS) were developed by altering the added amount of methacrylic anhydride (MeAnH). This led to photo-crosslinkable derivatives with a DS of 74 and 96% for collagen, and a DS of 73 and 99% for gelatin. The developed derivatives showed high gel fractions (i.e. 74% and 84%, for the gelatin derivatives; 87 and 83%, for the collagen derivatives) and an excellent crosslinking efficiency. Furthermore, the results indicated that the functionalization of collagen led to hydrogels with tunable mechanical properties (i.e. storage moduli of [4.8-9.4 kPa] for the developed COL-MAs versus [3.9-8.4 kPa] for the developed GEL-MAs) along with superior cell-biomaterial interactions when compared to GEL-MA. Moreover, the developed photo-crosslinkable collagens showed superior mechanical properties compared to extracted native collagen. Therefore, the developed photo-crosslinkable collagens demonstrate great potential as biomaterials for vTE applications.
Collapse
Affiliation(s)
- Nele Pien
- Polymer Chemistry & Biomaterials Research Group, Centre of Macromolecular Chemistry (CMaC), Ghent University, Krijgslaan 281 S4bis, 9000 Gent, Belgium; Laboratory for Biomaterials and Bioengineering, CRC-I, Laval University, Pavillon Pouliot, Québec G1V 0A6, Canada
| | - Daniele Pezzoli
- Laboratory for Biomaterials and Bioengineering, CRC-I, Laval University, Pavillon Pouliot, Québec G1V 0A6, Canada
| | - Jasper Van Hoorick
- Polymer Chemistry & Biomaterials Research Group, Centre of Macromolecular Chemistry (CMaC), Ghent University, Krijgslaan 281 S4bis, 9000 Gent, Belgium
| | - Francesco Copes
- Laboratory for Biomaterials and Bioengineering, CRC-I, Laval University, Pavillon Pouliot, Québec G1V 0A6, Canada
| | - Margot Vansteenland
- Research Group Food Chemistry and Human Nutrition, Department of Food Safety and Food Quality, Ghent University, Coupure Links 653, Block B, 9000 Gent, Belgium
| | - Madalina Albu
- Department of Collagen Research, National Research & Development Institute for Textiles and Leather, Str. Patrascanu Lucretiu, 16, Bucuresti-Sector 3, Bucuresti 030508, București, Romania
| | - Bruno De Meulenaer
- Research Group Food Chemistry and Human Nutrition, Department of Food Safety and Food Quality, Ghent University, Coupure Links 653, Block B, 9000 Gent, Belgium
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, CRC-I, Laval University, Pavillon Pouliot, Québec G1V 0A6, Canada
| | - Sandra Van Vlierberghe
- Polymer Chemistry & Biomaterials Research Group, Centre of Macromolecular Chemistry (CMaC), Ghent University, Krijgslaan 281 S4bis, 9000 Gent, Belgium
| | - Peter Dubruel
- Polymer Chemistry & Biomaterials Research Group, Centre of Macromolecular Chemistry (CMaC), Ghent University, Krijgslaan 281 S4bis, 9000 Gent, Belgium.
| |
Collapse
|
30
|
Piccirillo G, Feuerer N, Carvajal Berrio DA, Layland SL, Reimer Hinderer S, Bochicchio B, Schenke-Layland K. Hyaluronic Acid-Functionalized Hybrid Gelatin-Poly-L-Lactide Scaffolds with Tunable Hydrophilicity. Tissue Eng Part C Methods 2021; 27:589-604. [PMID: 34693733 DOI: 10.1089/ten.tec.2021.0178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this study, we describe the production of hybrid gelatin-poly-L-lactide electrospun scaffolds whose hydrophilicity was controlled by binding increasing concentrations of hyaluronic acid (HA). We show that cross-linking has advantages over coating when aiming to functionalize the scaffolds with HA. The here described scaffolds structurely mimicked the complexity of the extracellular matrix, and when excited by second harmonic generation, they produced a signal that is typical of collagen-containing biological fibers. Fluorescence lifetime imaging microscopy (FLIM) was used to marker-independently monitor the growth of human dermal fibroblasts on the electrospun scaffolds using reduced (phosphorylated) nicotinamide adenine dinucleotide as target. Benefitting from the different fluorescence lifetimes of the polymer and the endogenous cellular fluorophore, we were able to distinguish and separate the signals produced by the cells from the signals generated by the electrospun scaffolds. FLIM further allowed the detection of metabolic differences in the cells seeded on the HA-functionalized scaffolds compared with cells that were cultured on nonfunctionalized control scaffolds.
Collapse
Affiliation(s)
- Germano Piccirillo
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Nora Feuerer
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Tübingen, Germany.,NMI Natural and Medical Sciences Institute at the University Tübingen, Reutlingen, Germany
| | - Daniel A Carvajal Berrio
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," Eberhard Karls University Tübingen, Tübingen, Germany
| | - Shannon L Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Svenja Reimer Hinderer
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Tübingen, Germany.,NMI Natural and Medical Sciences Institute at the University Tübingen, Reutlingen, Germany
| | | | - Katja Schenke-Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Tübingen, Germany.,NMI Natural and Medical Sciences Institute at the University Tübingen, Reutlingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," Eberhard Karls University Tübingen, Tübingen, Germany.,Department of Medicine/Cardiology, Cardiovascular Research Laboratories, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
31
|
Lust ST, Shanahan CM, Shipley RJ, Lamata P, Gentleman E. Design considerations for engineering 3D models to study vascular pathologies in vitro. Acta Biomater 2021; 132:114-128. [PMID: 33652164 PMCID: PMC7611653 DOI: 10.1016/j.actbio.2021.02.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/28/2021] [Accepted: 02/18/2021] [Indexed: 12/15/2022]
Abstract
Many cardiovascular diseases (CVD) are driven by pathological remodelling of blood vessels, which can lead to aneurysms, myocardial infarction, ischaemia and strokes. Aberrant remodelling is driven by changes in vascular cell behaviours combined with degradation, modification, or abnormal deposition of extracellular matrix (ECM) proteins. The underlying mechanisms that drive the pathological remodelling of blood vessels are multifaceted and disease specific; however, unravelling them may be key to developing therapies. Reductionist models of blood vessels created in vitro that combine cells with biomaterial scaffolds may serve as useful analogues to study vascular disease progression in a controlled environment. This review presents the main considerations for developing such in vitro models. We discuss how the design of blood vessel models impacts experimental readouts, with a particular focus on the maintenance of normal cellular phenotypes, strategies that mimic normal cell-ECM interactions, and approaches that foster intercellular communication between vascular cell types. We also highlight how choice of biomaterials, cellular arrangements and the inclusion of mechanical stimulation using fluidic devices together impact the ability of blood vessel models to mimic in vivo conditions. In the future, by combining advances in materials science, cell biology, fluidics and modelling, it may be possible to create blood vessel models that are patient-specific and can be used to develop and test therapies. STATEMENT OF SIGNIFICANCE: Simplified models of blood vessels created in vitro are powerful tools for studying cardiovascular diseases and understanding the mechanisms driving their progression. Here, we highlight the key structural and cellular components of effective models and discuss how including mechanical stimuli allows researchers to mimic native vessel behaviour in health and disease. We discuss the primary methods used to form blood vessel models and their limitations and conclude with an outlook on how blood vessel models that incorporate patient-specific cells and flows can be used in the future for personalised disease modelling.
Collapse
Affiliation(s)
- Suzette T Lust
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, United Kingdom; School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Catherine M Shanahan
- School of Cardiovascular Medicine and Sciences, King's College London, London SE5 9NU, United Kingdom
| | - Rebecca J Shipley
- Institute of Healthcare Engineering and Department of Mechanical Engineering, University College London, London WC1E 7JE, United Kingdom
| | - Pablo Lamata
- School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Eileen Gentleman
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, United Kingdom.
| |
Collapse
|
32
|
Bazgir M, Zhang W, Zhang X, Elies J, Saeinasab M, Coates P, Youseffi M, Sefat F. Degradation and Characterisation of Electrospun Polycaprolactone (PCL) and Poly(lactic-co-glycolic acid) (PLGA) Scaffolds for Vascular Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4773. [PMID: 34500862 PMCID: PMC8432541 DOI: 10.3390/ma14174773] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022]
Abstract
The current study aimed to evaluate the characteristics and the effects of degradation on the structural properties of Poly(lactic-co-glycolic acid) (PLGA)- and polycaprolactone (PCL)-based nanofibrous scaffolds. Six scaffolds were prepared by electrospinning, three with PCL 15% (w/v) and three with PLGA 10% (w/v), with electrospinning processing times of 30, 60 and 90 min. Both types of scaffolds displayed more robust mechanical properties with increased spinning times. The tensile strength of both scaffolds with 90-min electrospun membranes did not show a significant difference in their strengths, as the PCL and PLGA scaffolds measured at 1.492 MPa ± 0.378 SD and 1.764 MPa ± 0.7982 SD, respectively. All membranes were shown to be hydrophobic under a wettability test. A degradation behaviour study was performed by immersing all scaffolds in phosphate-buffered saline (PBS) solution at room temperature for 12 weeks and for 4 weeks at 37 °C. The effects of degradation were monitored by taking each sample out of the PBS solution every week, and the structural changes were investigated under a scanning electron microscope (SEM). The PCL and PLGA scaffolds showed excellent fibre structure with adequate degradation, and the fibre diameter, measured over time, showed slight increase in size. Therefore, as an example of fibre water intake and progressive degradation, the scaffold's percentage weight loss increased each week, further supporting the porous membrane's degradability. The pore size and the porosity percentage of all scaffolds decreased substantially over the degradation period. The conclusion drawn from this experiment is that PCL and PLGA hold great promise for tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Morteza Bazgir
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford BD7 1DP, UK; (M.B.); (M.Y.)
| | - Wei Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China;
- Advanced Polymer Materials Research Center, Sichuan University, Shishi 362700, China
| | - Ximu Zhang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing 401174, China;
| | - Jacobo Elies
- Faculty of Life Sciences, School of Pharmacy and Medical Sciences, University of Bradford, Bradford BD7 1DP, UK;
| | - Morvarid Saeinasab
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran;
| | - Phil Coates
- Interdisciplinary Research Centre in Polymer Science and Technology (Polymer IRC), University of Bradford, Bradford BD7 1DP, UK;
| | - Mansour Youseffi
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford BD7 1DP, UK; (M.B.); (M.Y.)
| | - Farshid Sefat
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford BD7 1DP, UK; (M.B.); (M.Y.)
- Interdisciplinary Research Centre in Polymer Science and Technology (Polymer IRC), University of Bradford, Bradford BD7 1DP, UK;
| |
Collapse
|
33
|
Zulkiflee I, Fauzi MB. Gelatin-Polyvinyl Alcohol Film for Tissue Engineering: A Concise Review. Biomedicines 2021; 9:biomedicines9080979. [PMID: 34440183 PMCID: PMC8391561 DOI: 10.3390/biomedicines9080979] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 01/29/2023] Open
Abstract
The field of biomaterials has been steadily expanding as a large number of pharmaceutical and manufacturing companies invest in research in order to commercialize biomaterial products. Various three-dimensional biomaterials have been explored including film, hydrogel, sponge, microspheres etc., depending on different applications. Thus, gelatin and polyvinyl alcohol (PVA) are widely used as a natural- and synthetic-based biomaterial, respectively, for tissue engineering and clinical settings. The combination of these materials has proven its synergistic effects in wound-healing applications. Therefore, this review aims to highlight the hybrid gelatin and PVA thin film development and evaluate its potential characteristics for tissue engineering applications from existing published evidence (within year 2010–2020). The primary key factor for polymers mixing technology might improve the quality and the efficacy of the intended polymers. This review provides a concise overview of the current knowledge for hybrid gelatin and PVA with the method of fabricating and mixing technology into thin films. Additionally, the findings guided to an optimal fabrication method and scrutinised characterisation parameters of fabricated gelatin-PVA thin film. In conclusion, hybrid gelatin-PVA thin film has higher potential as a treatment for various biomedical and clinical applications.
Collapse
|
34
|
Basnett P, Matharu RK, Taylor CS, Illangakoon U, Dawson JI, Kanczler JM, Behbehani M, Humphrey E, Majid Q, Lukasiewicz B, Nigmatullin R, Heseltine P, Oreffo ROC, Haycock JW, Terracciano C, Harding SE, Edirisinghe M, Roy I. Harnessing Polyhydroxyalkanoates and Pressurized Gyration for Hard and Soft Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32624-32639. [PMID: 34228435 DOI: 10.1021/acsami.0c19689] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Organ dysfunction is a major cause of morbidity and mortality. Transplantation is typically the only definitive cure, challenged by the lack of sufficient donor organs. Tissue engineering encompasses the development of biomaterial scaffolds to support cell attachment, proliferation, and differentiation, leading to tissue regeneration. For efficient clinical translation, the forming technology utilized must be suitable for mass production. Herein, uniaxial polyhydroxyalkanoate scaffolds manufactured by pressurized gyration, a hybrid scalable spinning technique, are successfully used in bone, nerve, and cardiovascular applications. Chorioallantoic membrane and in vivo studies provided evidence of vascularization, collagen deposition, and cellular invasion for bone tissue engineering. Highly efficient axonal outgrowth was observed in dorsal root ganglion-based 3D ex vivo models. Human induced pluripotent stem cell derived cardiomyocytes exhibited a mature cardiomyocyte phenotype with optimal calcium handling. This study confirms that engineered polyhydroxyalkanoate-based gyrospun fibers provide an exciting and unique toolbox for the development of scalable scaffolds for both hard and soft tissue regeneration.
Collapse
Affiliation(s)
- Pooja Basnett
- School of Life Sciences, University of Westminster, London W1W 6UW, U.K
| | - Rupy K Matharu
- Department of Mechanical Engineering, University College London, London WC1E 7JE, U.K
| | - Caroline S Taylor
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, U.K
| | - Upulitha Illangakoon
- Department of Mechanical Engineering, University College London, London WC1E 7JE, U.K
| | - Jonathan I Dawson
- Centre for Human Development, Stem Cells and Regeneration, University of Southampton, Southampton SO16 6YD, U.K
| | - Janos M Kanczler
- Centre for Human Development, Stem Cells and Regeneration, University of Southampton, Southampton SO16 6YD, U.K
| | - Mehrie Behbehani
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, U.K
| | - Eleanor Humphrey
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, U.K
| | - Qasim Majid
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, U.K
| | | | - Rinat Nigmatullin
- School of Life Sciences, University of Westminster, London W1W 6UW, U.K
| | - Phoebe Heseltine
- Department of Mechanical Engineering, University College London, London WC1E 7JE, U.K
| | - Richard O C Oreffo
- Centre for Human Development, Stem Cells and Regeneration, University of Southampton, Southampton SO16 6YD, U.K
| | - John W Haycock
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, U.K
| | - Cesare Terracciano
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, U.K
| | - Sian E Harding
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, U.K
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London, London WC1E 7JE, U.K
| | - Ipsita Roy
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, U.K
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, U.K
| |
Collapse
|
35
|
Rodriguez-Cabello JC, Gonzalez De Torre I, González-Pérez M, González-Pérez F, Montequi I. Fibrous Scaffolds From Elastin-Based Materials. Front Bioeng Biotechnol 2021; 9:652384. [PMID: 34336798 PMCID: PMC8323661 DOI: 10.3389/fbioe.2021.652384] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/25/2021] [Indexed: 11/28/2022] Open
Abstract
Current cutting-edge strategies in biomaterials science are focused on mimicking the design of natural systems which, over millions of years, have evolved to exhibit extraordinary properties. Based on this premise, one of the most challenging tasks is to imitate the natural extracellular matrix (ECM), due to its ubiquitous character and its crucial role in tissue integrity. The anisotropic fibrillar architecture of the ECM has been reported to have a significant influence on cell behaviour and function. A new paradigm that pivots around the idea of incorporating biomechanical and biomolecular cues into the design of biomaterials and systems for biomedical applications has emerged in recent years. Indeed, current trends in materials science address the development of innovative biomaterials that include the dynamics, biochemistry and structural features of the native ECM. In this context, one of the most actively studied biomaterials for tissue engineering and regenerative medicine applications are nanofiber-based scaffolds. Herein we provide a broad overview of the current status, challenges, manufacturing methods and applications of nanofibers based on elastin-based materials. Starting from an introduction to elastin as an inspiring fibrous protein, as well as to the natural and synthetic elastin-based biomaterials employed to meet the challenge of developing ECM-mimicking nanofibrous-based scaffolds, this review will follow with a description of the leading strategies currently employed in nanofibrous systems production, which in the case of elastin-based materials are mainly focused on supramolecular self-assembly mechanisms and the use of advanced manufacturing technologies. Thus, we will explore the tendency of elastin-based materials to form intrinsic fibers, and the self-assembly mechanisms involved. We will describe the function and self-assembly mechanisms of silk-like motifs, antimicrobial peptides and leucine zippers when incorporated into the backbone of the elastin-based biomaterial. Advanced polymer-processing technologies, such as electrospinning and additive manufacturing, as well as their specific features, will be presented and reviewed for the specific case of elastin-based nanofiber manufacture. Finally, we will present our perspectives and outlook on the current challenges facing the development of nanofibrous ECM-mimicking scaffolds based on elastin and elastin-like biomaterials, as well as future trends in nanofabrication and applications.
Collapse
Affiliation(s)
- Jose Carlos Rodriguez-Cabello
- BIOFORGE, University of Valladolid, Valladolid, Spain
- Center for Biomedical Research in the Network in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Israel Gonzalez De Torre
- BIOFORGE, University of Valladolid, Valladolid, Spain
- Center for Biomedical Research in the Network in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Miguel González-Pérez
- BIOFORGE, University of Valladolid, Valladolid, Spain
- Center for Biomedical Research in the Network in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Fernando González-Pérez
- BIOFORGE, University of Valladolid, Valladolid, Spain
- Center for Biomedical Research in the Network in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Irene Montequi
- BIOFORGE, University of Valladolid, Valladolid, Spain
- Center for Biomedical Research in the Network in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
36
|
Ciarfaglia N, Laezza A, Lods L, Lonjon A, Dandurand J, Pepe A, Bochicchio B. Thermal and dynamic mechanical behavior of poly(lactic acid) (PLA)‐based electrospun scaffolds for tissue engineering. J Appl Polym Sci 2021. [DOI: 10.1002/app.51313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Nicola Ciarfaglia
- CIRIMAT, Physique des polymères Université Paul Sabatier Toulouse France
- Laboratory of Bioinspired Materials Università degli Study della Basilicata Potenza Italy
| | - Antonio Laezza
- Laboratory of Bioinspired Materials Università degli Study della Basilicata Potenza Italy
| | - Louise Lods
- CIRIMAT, Physique des polymères Université Paul Sabatier Toulouse France
| | - Antoine Lonjon
- CIRIMAT, Physique des polymères Université Paul Sabatier Toulouse France
| | - Jany Dandurand
- CIRIMAT, Physique des polymères Université Paul Sabatier Toulouse France
| | - Antonietta Pepe
- Laboratory of Bioinspired Materials Università degli Study della Basilicata Potenza Italy
| | - Brigida Bochicchio
- Laboratory of Bioinspired Materials Università degli Study della Basilicata Potenza Italy
| |
Collapse
|
37
|
Ulag S, Ilhan E, Demirhan R, Sahin A, Yilmaz BK, Aksu B, Sengor M, Ficai D, Titu AM, Ficai A, Gunduz O. Propolis-Based Nanofiber Patches to Repair Corneal Microbial Keratitis. Molecules 2021; 26:molecules26092577. [PMID: 33925130 PMCID: PMC8125036 DOI: 10.3390/molecules26092577] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 11/20/2022] Open
Abstract
In this research, polyvinyl-alcohol (PVA)/gelatin (GEL)/propolis (Ps) biocompatible nanofiber patches were fabricated via electrospinning technique. The controlled release of Propolis, surface wettability behaviors, antimicrobial activities against the S. aureus and P. aeruginosa, and biocompatibility properties with the mesenchymal stem cells (MSCs) were investigated in detail. By adding 0.5, 1, and 3 wt.% GEL into the 13 wt.% PVA, the morphological and mechanical results suggested that 13 wt.% PVA/0.5 wt.% GEL patch can be an ideal matrix for 3 and 5 wt.% propolis addition. Morphological results revealed that the diameters of the electrospun nanofiber patches were increased with GEL (from 290 nm to 400 nm) and Ps addition and crosslinking process cause the formation of thicker nanofibers. The tensile strength and elongation at break enhancement were also determined for 13 wt.% PVA/0.5 wt.% GEL/3 wt.% Ps patch. Propolis was released quickly in the first hour and arrived at a plateau. Cell culture and contact angle results confirmed that the 3 wt.% addition of propolis reinforced mesenchymal stem cell proliferation and wettability properties of the patches. The antimicrobial activity demonstrated that propolis loaded patches had antibacterial activity against the S. aureus, but for P. aeruginosa, more studies should be performed.
Collapse
Affiliation(s)
- Songul Ulag
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, 34722 Istanbul, Turkey; (S.U.); (E.I.); (R.D.); (M.S.)
- Metallurgical and Materials Engineering, Institute of Pure and Applied Sciences, Marmara University, 34722 Istanbul, Turkey
| | - Elif Ilhan
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, 34722 Istanbul, Turkey; (S.U.); (E.I.); (R.D.); (M.S.)
- Department of Bioengineering, Institute of Pure and Applied Sciences, Marmara University, 34722 Istanbul, Turkey
| | - Ramazan Demirhan
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, 34722 Istanbul, Turkey; (S.U.); (E.I.); (R.D.); (M.S.)
| | - Ali Sahin
- Department of Biochemistry, Faculty of Medicine, Marmara University, 34718 Istanbul, Turkey; (A.S.); (B.K.Y.)
- Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34722 Istanbul, Turkey
| | - Betul Karademir Yilmaz
- Department of Biochemistry, Faculty of Medicine, Marmara University, 34718 Istanbul, Turkey; (A.S.); (B.K.Y.)
- Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34722 Istanbul, Turkey
| | - Burak Aksu
- Department of Medical Microbiology, Marmara University School of Medicine, 34854 Istanbul, Turkey;
| | - Mustafa Sengor
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, 34722 Istanbul, Turkey; (S.U.); (E.I.); (R.D.); (M.S.)
- Metallurgical and Materials Engineering Faculty of Technology, Marmara University, 34722 Istanbul, Turkey
| | - Denisa Ficai
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania;
- National Centre for Micro- and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Aurel Mihail Titu
- Industrial Engineering and Management Department, Faculty of Engineering, Lucian Blaga University of Sibiu, 550025 Sibiu, Romania;
- Academy of Romanian Scientists, 050094 Bucharest, Romania
| | - Anton Ficai
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania;
- National Centre for Micro- and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 050094 Bucharest, Romania
- Correspondence: (A.F.); (O.G.)
| | - Oguzhan Gunduz
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, 34722 Istanbul, Turkey; (S.U.); (E.I.); (R.D.); (M.S.)
- Metallurgical and Materials Engineering Faculty of Technology, Marmara University, 34722 Istanbul, Turkey
- Correspondence: (A.F.); (O.G.)
| |
Collapse
|
38
|
Asgari F, Asgari HR, Najafi M, Eftekhari BS, Vardiani M, Gholipourmalekabadi M, Koruji M. Optimization of decellularized human placental macroporous scaffolds for spermatogonial stem cells homing. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:47. [PMID: 33891169 PMCID: PMC8065005 DOI: 10.1007/s10856-021-06517-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 03/19/2021] [Indexed: 06/08/2023]
Abstract
Decellularized scaffolds have been found to be excellent platforms for tissue engineering applications. The attempts are still being made to optimize a decellularization protocol with successful removal of the cells with minimal damages to extracellular matrix components. We examined twelve decellularization procedures using different concentrations of Sodium dodecyl sulfate and Triton X-100 (alone or in combination), and incubation time points of 15 or 30 min. Then, the potential of the decellularized scaffold as a three-dimensional substrate for colony formation capacity of mouse spermatogonial stem cells was determined. The morphological, degradation, biocompatibility, and swelling properties of the samples were fully characterized. The 0.5%/30 SDS/Triton showed optimal decellularization with minimal negative effects on ECM (P ≤ 0.05). The swelling ratios increased with the increase of SDS and Triton concentration and incubation time. Only 0.5%/15 and 30 SDS showed a significant decrease in the SSCs viability compared with other groups (P < 0.05). The SSCs colony formation was clearly observed under SEM and H&E stained slides. The cells infiltrated into the subcutaneously implanted scaffold at days 7 and 30 post-implantation with no sign of graft rejection. Our data suggest the %0.5/30 SDS/Triton as an excellent platform for tissue engineering and reproductive biology applications.
Collapse
Affiliation(s)
- Fatemeh Asgari
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Asgari
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Najafi
- Biochemistry Department, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Centre, Iran University of Medicine Sciences, Tehran, Iran
| | - Behnaz Sadat Eftekhari
- Biomaterials Group, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
- Department of Physiology and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, USA
| | - Mina Vardiani
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran, Tehran, Iran
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Centre, Iran University of Medicine Sciences, Tehran, Iran.
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Morteza Koruji
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
39
|
Preparation and characterization of polyurethane/chitosan/CNT nanofibrous scaffold for cardiac tissue engineering. Int J Biol Macromol 2021; 180:590-598. [PMID: 33711373 DOI: 10.1016/j.ijbiomac.2021.03.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/07/2021] [Accepted: 03/01/2021] [Indexed: 12/11/2022]
Abstract
Myocardial infarction of cardiomyocytes is a leading cause of heart failure (HF) worldwide. Since heart has very limited regeneration capacity, cardiac tissue engineering (TE) to produce a bioactive scaffold is considered. In this study, a series of polyurethane solutions (5-7%wt) in aqueous acetic acid were prepared using electrospinning. A variety of Polyurethane (PU)/Chitosan (Cs)/carbon nanotubes (CNT) composite nanofibrous scaffolds with random and aligned orientation were fabricated to structurally mimic the extracellular matrix (ECM). Electrospun nanofibers were then characterized using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), water contact angle, degradation studies, tensile tests, electrical resistance measurement and cell viability assay. The biocompatibility of electrospun random and aligned nanofibrous scaffolds with H9C2 Cells was confirmed. The results revealed that fabricated PU/Cs/CNT composite nanofibrous scaffolds were electro-conductive and aligned nanofibers could be considered as promising scaffolds with nano-scale features for regeneration of infarcted myocardium.
Collapse
|
40
|
Roshandel M, Dorkoosh F. Cardiac tissue engineering, biomaterial scaffolds, and their fabrication techniques. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5273] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Marjan Roshandel
- School of Chemical Engineering, College of Engineering University of Tehran Tehran Iran
| | - Farid Dorkoosh
- Department of Pharmaceutics, Faculty of Pharmacy Tehran University of Medical Sciences Tehran Iran
- Medical Biomaterial Research Centre (MBRC) Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
41
|
Dimopoulos A, Markatos DN, Mitropoulou A, Panagiotopoulos I, Koletsis E, Mavrilas D. A novel polymeric fibrous microstructured biodegradable small-caliber tubular scaffold for cardiovascular tissue engineering. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:21. [PMID: 33649939 PMCID: PMC7921057 DOI: 10.1007/s10856-021-06490-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Increasing morbidity of cardiovascular diseases in modern society has made it crucial to develop artificial small-caliber cardiovascular grafts for surgical intervention of diseased natural arteries, as alternatives to the gold standard autologous implants. Synthetic small-caliber grafts are still not in use due to increased risk of restenosis, lack of lumen re-endothelialization and mechanical mismatch, leading sometimes either to graft failure or to unsuccessful remodeling and pathology of the distal parts of the anastomosed healthy vascular tissues. In this work, we aimed to synthesize small-caliber polymeric (polycaprolactone) tissue-engineered vascular scaffolds that mimic the structure and biomechanics of natural vessels. Electrospinning was implemented to prepare microstructured polymeric membranes with controlled axis-parallel fiber alignment. Consequently, we designed small-caliber multilayer anisotropic biodegradable nanofibrous tubular scaffolds, giving attention to their radial compliance. Polycaprolactone scaffold morphology and mechanical properties were assessed, quantified, and compared with those of native vessels and commercial synthetic grafts. Results showed a highly hydrophobic scaffold material with a three-layered tubular morphology, 4-mm internal diameter/0.25 ± 0.09-mm thickness, consisting of predominantly axially aligned thin (1.156 ± 0.447 μm), homogeneous and continuous microfibers, with adequate (17.702 ± 5.369 μm) pore size, potentially able to promote cell infiltration in vivo. In vitro accelerated degradation showed a 5% mass loss within 17-25 weeks. Mechanical anisotropy was attained as a result, almost one order of magnitude difference of the elastic modulus (18 ± 3 MPa axially/1 ± 0.3 MPa circumferentially), like that of natural arterial walls. Furthermore, a desirable radial compliance (5.04 ± 0.82%, within the physiological pressure range) as well as cyclic stability of the tubular scaffold was achieved. Finally, cytotoxicity evaluation of the polymeric scaffolds revealed that the materials were nontoxic and did not release substances harmful to living cells (over 80% cell viability achieved).
Collapse
Affiliation(s)
- Andreas Dimopoulos
- Department of Mechanical Engineering and Aeronautics, Laboratory of Biomechanics and Biomedical Engineering, University of Patras, Patras, GR, Greece
| | - Dionysios N Markatos
- Department of Mechanical Engineering and Aeronautics, Laboratory of Biomechanics and Biomedical Engineering, University of Patras, Patras, GR, Greece
| | - Athina Mitropoulou
- Department of Mechanical Engineering and Aeronautics, Laboratory of Biomechanics and Biomedical Engineering, University of Patras, Patras, GR, Greece
| | - Ioannis Panagiotopoulos
- University Hospital, Cardiothoracic Surgery Clinic, University of Patras, Patras, GR, Greece
| | - Efstratios Koletsis
- University Hospital, Cardiothoracic Surgery Clinic, University of Patras, Patras, GR, Greece
| | - Dimosthenis Mavrilas
- Department of Mechanical Engineering and Aeronautics, Laboratory of Biomechanics and Biomedical Engineering, University of Patras, Patras, GR, Greece.
| |
Collapse
|
42
|
Boroumand S, Haeri A, Nazeri N, Rabbani S. Review Insights In Cardiac Tissue Engineering: Cells, Scaffolds, and Pharmacological Agents. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:467-496. [PMID: 35194460 PMCID: PMC8842618 DOI: 10.22037/ijpr.2021.114730.15012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Heart failure (HF) is one of the most important cardiovascular diseases (CVD), causing many die every year. Cardiac tissue engineering is a multidisciplinary field for creating functional tissues to improve the cardiac function of the damaged heart and get hope for end-stage patients. Recent works have focused on creating engineered cardiac tissue ex-vivo. Simultaneously, new approaches are used to study ways of induction of regeneration in the damaged heart after injury. The heart as a complex physiological pump consists of many cells such as cardiomyocytes (80–90% of the heart volume). These cardiomyocytes are elongated, aligned, and have beating properties. To create the heart muscle, which should be functional, soft and elastic scaffolds are required to resemble the native heart tissue. These mechanical characteristics are not compatible with all materials and should be well selected. Some scaffolds promote the viability and differentiation of stem cells. Each material has advantages and disadvantages with relevant influence behavior for cells. In this review, we present an overview of the general approaches developed to generate functional cardiac tissues, discussing the different cell sources, biomaterials, pharmacological agents, and engineering strategies in this manner. Moreover, we discuss the main challenges in cardiac tissue engineering that cause difficulties to construct heart muscle. We trust that researchers interested in developing cardiac tissue engineering will find the information reviewed here useful. Furthermore, we think that providing a unified framework will further the development of human engineered cardiac tissue constructs.
Collapse
Affiliation(s)
- Safieh Boroumand
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Azadeh Haeri
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran. ,Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Niloofar Nazeri
- Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran.,Corresponding author: E-mail:
| |
Collapse
|
43
|
Fibroblast cell derived extracellular matrix containing electrospun scaffold as a hybrid biomaterial to promote in vitro endothelial cell expansion and functionalization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111659. [DOI: 10.1016/j.msec.2020.111659] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 01/19/2023]
|
44
|
Asgari F, Khosravimelal S, Koruji M, Aliakbar Ahovan Z, Shirani A, Hashemi A, Ghasemi Hamidabadi H, Chauhan NPS, Moroni L, Reis RL, Kundu SC, Gholipourmalekabadi M. Long-term preservation effects on biological properties of acellular placental sponge patches. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 121:111814. [PMID: 33579458 DOI: 10.1016/j.msec.2020.111814] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/18/2020] [Accepted: 12/14/2020] [Indexed: 11/30/2022]
Abstract
Decellularization, preservation protocol and storage time influence the biomechanical and biological properties of allografts and xenografts. Here, we examined the consequences of storage time on the antibacterial, angiogenic and biocompatibility properties of the decellularized placental sponge (DPS) in vitro and in vivo. The DPS samples were preserved for one, three and six months at -20 °C. The decellularized scaffolds showed uniform morphology with interconnected pores compared with not decellularized sponges. Storage time did not interfere with collagen and vascular endothelial growth factor contents, and cytobiocompatibility for Hu02 fibroblast cells. Chorioallantoic membrane assay and subcutaneous implantation indicated a decreased new vessel formation and neovascularization in six months DPS sample compared with other experimental groups. The number of CD4+ and CD68+ cells infiltrated into the six months DPS on the implanted site showed a significant increase compared with one and three months sponges. The antibacterial activities and angiogenic properties of the DPS decreased over storage time. Three months preservation at -20 °C is suggested as the optimal storage period to retain its antibacterial activity and high stimulation of new vessel formation. This storage protocol could be considered for preservation of similar decellularized placenta-derived products with the aim of retaining their biological properties.
Collapse
Affiliation(s)
- Fatemeh Asgari
- Stem cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sadjad Khosravimelal
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Morteza Koruji
- Stem cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Aliakbar Ahovan
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Shirani
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Hashemi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hatef Ghasemi Hamidabadi
- Immunogenetic Research Center, Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Lorenzo Moroni
- Complex Tissue Regeneration Department, Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands
| | - Rui L Reis
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradable and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Guimaraes, Portugal
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradable and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Guimaraes, Portugal.
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
45
|
Janagama D, Hui SK. 3-D Cell Culture Systems in Bone Marrow Tissue and Organoid Engineering, and BM Phantoms as In Vitro Models of Hematological Cancer Therapeutics-A Review. MATERIALS 2020; 13:ma13245609. [PMID: 33316977 PMCID: PMC7763362 DOI: 10.3390/ma13245609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/24/2020] [Accepted: 10/29/2020] [Indexed: 12/15/2022]
Abstract
We review the state-of-the-art in bone and marrow tissue engineering (BMTE) and hematological cancer tissue engineering (HCTE) in light of the recent interest in bone marrow environment and pathophysiology of hematological cancers. This review focuses on engineered BM tissue and organoids as in vitro models of hematological cancer therapeutics, along with identification of BM components and their integration as synthetically engineered BM mimetic scaffolds. In addition, the review details interaction dynamics of various BM and hematologic cancer (HC) cell types in co-culture systems of engineered BM tissues/phantoms as well as their relation to drug resistance and cytotoxicity. Interaction between hematological cancer cells and their niche, and the difference with respect to the healthy niche microenvironment narrated. Future perspectives of BMTE for in vitro disease models, BM regeneration and large scale ex vivo expansion of hematopoietic and mesenchymal stem cells for transplantation and therapy are explained. We conclude by overviewing the clinical application of biomaterials in BM and HC pathophysiology and its challenges and opportunities.
Collapse
|
46
|
Torabi M, Abazari MF, Zare Karizi S, Kohandani M, Hajati‐Birgani N, Norouzi S, Nejati F, Mohajerani A, Rahmati T, Mokhames Z. Efficient cardiomyocyte differentiation of induced pluripotent stem cells on
PLGA
nanofibers enriched by platelet‐rich plasma. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Maryam Torabi
- Department of Biotechnology College of Science, University of Tehran Tehran Iran
| | - Mohammad Foad Abazari
- Research Center for Clinical Virology Tehran University of Medical Sciences Tehran Iran
| | - Shohreh Zare Karizi
- Department of Biology, Varamin Pishva Branch Islamic Azad University Pishva Iran
| | - Mina Kohandani
- Department of Biology, Faculty of Biological Sciences Islamic Azad University, East Tehran Branch Tehran Iran
| | - Nazanin Hajati‐Birgani
- Department of Biology, Faculty of Science and Research Islamic Azad University Tehran Iran
| | - Sara Norouzi
- Department of Biology, Faculty of Science and Research Islamic Azad University Tehran Iran
| | - Fatemeh Nejati
- Institute of Molecular Biology Vrije Universiteit Brussel Brussels Belgium
| | - Alireza Mohajerani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute Tehran University of Medical Sciences Tehran Iran
| | - Tahereh Rahmati
- SinaCell Research and Product Center Pardis Technology Park Tehran Iran
| | - Zakiye Mokhames
- Department of Molecular Diagnostic, Emam Ali Educational and Therapeutic Center Alborz University of Medical Sciences Karaj Iran
| |
Collapse
|
47
|
Jayani T, Sanjeev B, Marimuthu S, Uthandi S. Bacterial Cellulose Nano Fiber (BCNF) as carrier support for the immobilization of probiotic, Lactobacillus acidophilus 016. Carbohydr Polym 2020; 250:116965. [PMID: 33049863 DOI: 10.1016/j.carbpol.2020.116965] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 08/11/2020] [Accepted: 08/15/2020] [Indexed: 01/22/2023]
Abstract
The present study was conducted to develop bacterial cellulose nanofibers (BCNF) and to evaluate its ability as a carrier material for the incorporation of the probiotic bacteria Lactobacillus acidophilus 016. Bacterial cellulose (5%) dissolved in trifluoroacetic acid (TFA) solution was amended with an equal volume of polyvinyl alcohol (PVA) solution to produce nanofibers via electrospinning. Fourier-transform infrared spectra of BCNF confirmed the absence of TFA used in the dissolution process. Mechanical properties, including tensile strength, surface area, pore-volume, and pore diameter, and thermal analysis of BCNF revealed that the nanofibers could be incorporated in food for the delivery of probiotics. L. acidophilus 016 was successfully immobilized onto the BCNF through the adsorption-incubation technique. SEM micrograph revealed that the immobilized bacteria sustained without any damage during the storage for up to 24 days. Further, the viability studies confirmed the survival of 71% population during the storage at 35 °C. These observations recommended the possibility of BCNF based probiotics for various commercial applications.
Collapse
Affiliation(s)
- T Jayani
- Biocatalysts Laboratoty, Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - B Sanjeev
- Biocatalysts Laboratoty, Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - S Marimuthu
- Department of Nanoscience and Technology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Sivakumar Uthandi
- Biocatalysts Laboratoty, Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, 641003, India.
| |
Collapse
|
48
|
Whole Organ Engineering: Approaches, Challenges, and Future Directions. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10124277] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
End-stage organ failure remains a leading cause of morbidity and mortality across the globe. The only curative treatment option currently available for patients diagnosed with end-stage organ failure is organ transplantation. However, due to a critical shortage of organs, only a fraction of these patients are able to receive a viable organ transplantation. Those patients fortunate enough to receive a transplant must then be subjected to a lifelong regimen of immunosuppressant drugs. The concept of whole organ engineering offers a promising alternative to organ transplantation that overcomes these limitations. Organ engineering is a discipline that merges developmental biology, anatomy, physiology, and cellular interactions with enabling technologies such as advanced biomaterials and biofabrication to create bioartificial organs that recapitulate native organs in vivo. There have been numerous developments in bioengineering of whole organs over the past two decades. Key technological advancements include (1) methods of whole organ decellularization and recellularization, (2) three-dimensional bioprinting, (3) advanced stem cell technologies, and (4) the ability to genetically modify tissues and cells. These advancements give hope that organ engineering will become a commercial reality in the next decade. In this review article, we describe the foundational principles of whole organ engineering, discuss key technological advances, and provide an overview of current limitations and future directions.
Collapse
|
49
|
Advances in the Research of Bioinks Based on Natural Collagen, Polysaccharide and Their Derivatives for Skin 3D Bioprinting. Polymers (Basel) 2020; 12:polym12061237. [PMID: 32485901 PMCID: PMC7362214 DOI: 10.3390/polym12061237] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 12/22/2022] Open
Abstract
The skin plays an important role in protecting the human body, and wound healing must be set in motion immediately following injury or trauma to restore the normal structure and function of skin. The extracellular matrix component of the skin mainly consists of collagen, glycosaminoglycan (GAG), elastin and hyaluronic acid (HA). Recently, natural collagen, polysaccharide and their derivatives such as collagen, gelatin, alginate, chitosan and pectin have been selected as the matrix materials of bioink to construct a functional artificial skin due to their biocompatible and biodegradable properties by 3D bioprinting, which is a revolutionary technology with the potential to transform both research and medical therapeutics. In this review, we outline the current skin bioprinting technologies and the bioink components for skin bioprinting. We also summarize the bioink products practiced in research recently and current challenges to guide future research to develop in a promising direction. While there are challenges regarding currently available skin bioprinting, addressing these issues will facilitate the rapid advancement of 3D skin bioprinting and its ability to mimic the native anatomy and physiology of skin and surrounding tissues in the future.
Collapse
|
50
|
Yao T, Baker MB, Moroni L. Strategies to Improve Nanofibrous Scaffolds for Vascular Tissue Engineering. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E887. [PMID: 32380699 PMCID: PMC7279151 DOI: 10.3390/nano10050887] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/19/2020] [Accepted: 04/24/2020] [Indexed: 12/25/2022]
Abstract
The biofabrication of biomimetic scaffolds for tissue engineering applications is a field in continuous expansion. Of particular interest, nanofibrous scaffolds can mimic the mechanical and structural properties (e.g., collagen fibers) of the natural extracellular matrix (ECM) and have shown high potential in tissue engineering and regenerative medicine. This review presents a general overview on nanofiber fabrication, with a specific focus on the design and application of electrospun nanofibrous scaffolds for vascular regeneration. The main nanofiber fabrication approaches, including self-assembly, thermally induced phase separation, and electrospinning are described. We also address nanofibrous scaffold design, including nanofiber structuring and surface functionalization, to improve scaffolds' properties. Scaffolds for vascular regeneration with enhanced functional properties, given by providing cells with structural or bioactive cues, are discussed. Finally, current in vivo evaluation strategies of these nanofibrous scaffolds are introduced as the final step, before their potential application in clinical vascular tissue engineering can be further assessed.
Collapse
Affiliation(s)
| | | | - Lorenzo Moroni
- Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, Universiteitssingel 40, 6229ER Maastricht, The Netherlands; (T.Y.); (M.B.B.)
| |
Collapse
|