1
|
Łasica A, Godlewska R, Gubernator J, Jakubiak-Augustyn A, Majewski P, Wyszyńska A. Application of a liposomal subunit vaccine in chickens for reduction of Campylobacter gut colonisation. J Vet Res 2024; 68:487-496. [PMID: 39776683 PMCID: PMC11702242 DOI: 10.2478/jvetres-2024-0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 10/28/2024] [Indexed: 01/11/2025] Open
Abstract
Introduction Campylobacter are the most common cause of food poisoning, which manifests itself in diarrhoea of varying severity. Additionally, because of the increasing number of people with immune deficiencies, more frequent serious complications of Campylobacter infections are being observed. The main source of infection is the consumption of contaminated poultry meat, which is a consequence of the insufficiency of current hygiene and biosecurity to control Campylobacter or eliminate it from the poultry food chain. Material and Methods Two hybrid proteins, presenting selected epitopes of the Campylobacter antigens CjaD and EF-Tu, were developed based on the highly immunogenic proteins CjaA and CjaC. Four groups of chickens were vaccinated with different preparations (a mixture of both hybrid proteins encapsulated in anionic or neutral liposomes) and different doses (a single dose given on the day of hatching or two doses given on days 1 and 14 of life). The number of Campylobacter was assessed in the intestinal contents of vaccinated birds. Results No statistically significant differences in colonisation levels were observed between chickens immunised with neutral liposomes containing hybrid proteins and their non-immunised counterparts, regardless of dosage regimen. Conclusion Although immunisation of chickens did not produce the expected results, the approach used has great potential, which is worth further investigation and development.
Collapse
Affiliation(s)
- Anna Łasica
- Department of Bacterial Genetics, Institute of Microbiology, Warszawa, Poland
| | - Renata Godlewska
- Department of Bacterial Genetics, Institute of Microbiology, Warszawa, Poland
| | - Jerzy Gubernator
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, 50-300Wrocław, Poland
| | - Anna Jakubiak-Augustyn
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, 50-300Wrocław, Poland
| | - Paweł Majewski
- Department of Animal Physiology, Institute of Functional Biology and Ecology, University of Warsaw, 02-096Warszawa, Poland
| | - Agnieszka Wyszyńska
- Department of Bacterial Genetics, Institute of Microbiology, Warszawa, Poland
| |
Collapse
|
2
|
Tan LY, Cunliffe G, Hogan MP, Yeo XY, Oh C, Jin B, Kang J, Park J, Kwon MS, Kim M, Jung S. Emergence of the brain-border immune niches and their contribution to the development of neurodegenerative diseases. Front Immunol 2024; 15:1380063. [PMID: 38863704 PMCID: PMC11165048 DOI: 10.3389/fimmu.2024.1380063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024] Open
Abstract
Historically, the central nervous system (CNS) was regarded as 'immune-privileged', possessing its own distinct immune cell population. This immune privilege was thought to be established by a tight blood-brain barrier (BBB) and blood-cerebrospinal-fluid barrier (BCSFB), which prevented the crossing of peripheral immune cells and their secreted factors into the CNS parenchyma. However, recent studies have revealed the presence of peripheral immune cells in proximity to various brain-border niches such as the choroid plexus, cranial bone marrow (CBM), meninges, and perivascular spaces. Furthermore, emerging evidence suggests that peripheral immune cells may be able to infiltrate the brain through these sites and play significant roles in driving neuronal cell death and pathology progression in neurodegenerative disease. Thus, in this review, we explore how the brain-border immune niches may contribute to the pathogenesis of neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). We then discuss several emerging options for harnessing the neuroimmune potential of these niches to improve the prognosis and treatment of these debilitative disorders using novel insights from recent studies.
Collapse
Affiliation(s)
- Li Yang Tan
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Grace Cunliffe
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Michael Patrick Hogan
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Xin Yi Yeo
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chansik Oh
- Department of Medical Science, College of Medicine, CHA University, Seongnam, Republic of Korea
| | - Bohwan Jin
- Department of Medical Science, College of Medicine, CHA University, Seongnam, Republic of Korea
| | - Junmo Kang
- Department of Medical Science, College of Medicine, CHA University, Seongnam, Republic of Korea
| | - Junho Park
- Department of Pharmacology, Research Institute for Basic Medical Science, School of Medicine, CHA University, Seongnam, Republic of Korea
| | - Min-Soo Kwon
- Department of Pharmacology, Research Institute for Basic Medical Science, School of Medicine, CHA University, Seongnam, Republic of Korea
| | - MinYoung Kim
- Rehabilitation and Regeneration Research Center, CHA University School of Medicine, Seongnam, Republic of Korea
- Department of Biomedical Science, CHA University School of Medicine, Seongnam, Republic of Korea
- Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Sangyong Jung
- Department of Medical Science, College of Medicine, CHA University, Seongnam, Republic of Korea
| |
Collapse
|
3
|
Danchuk O, Levchenko A, da Silva Mesquita R, Danchuk V, Cengiz S, Cengiz M, Grafov A. Meeting Contemporary Challenges: Development of Nanomaterials for Veterinary Medicine. Pharmaceutics 2023; 15:2326. [PMID: 37765294 PMCID: PMC10536669 DOI: 10.3390/pharmaceutics15092326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/30/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
In recent decades, nanotechnology has been rapidly advancing in various fields of human activity, including veterinary medicine. The review presents up-to-date information on recent advancements in nanotechnology in the field and an overview of the types of nanoparticles used in veterinary medicine and animal husbandry, their characteristics, and their areas of application. Currently, a wide range of nanomaterials has been implemented into veterinary practice, including pharmaceuticals, diagnostic devices, feed additives, and vaccines. The application of nanoformulations gave rise to innovative strategies in the treatment of animal diseases. For example, antibiotics delivered on nanoplatforms demonstrated higher efficacy and lower toxicity and dosage requirements when compared to conventional pharmaceuticals, providing a possibility to solve antibiotic resistance issues. Nanoparticle-based drugs showed promising results in the treatment of animal parasitoses and neoplastic diseases. However, the latter area is currently more developed in human medicine. Owing to the size compatibility, nanomaterials have been applied as gene delivery vectors in veterinary gene therapy. Veterinary medicine is at the forefront of the development of innovative nanovaccines inducing both humoral and cellular immune responses. The paper provides a brief overview of current topics in nanomaterial safety, potential risks associated with the use of nanomaterials, and relevant regulatory aspects.
Collapse
Affiliation(s)
- Oleksii Danchuk
- Institute of Climate-Smart Agriculture, National Academy of Agrarian Sciences, 24 Mayatska Road, Khlibodarske Village, 67667 Odesa, Ukraine;
| | - Anna Levchenko
- Department of Microbiology, Faculty of Veterinary Medicine, Ataturk University, Yakutiye, Erzurum 25240, Turkey;
| | | | - Vyacheslav Danchuk
- Ukrainian Laboratory of Quality and Safety of Agricultural Products, Mashynobudivna Str. 7, Chabany Village, 08162 Kyiv, Ukraine;
| | - Seyda Cengiz
- Milas Faculty of Veterinary Medicine, Mugla Sitki Kocman University, Mugla 48000, Turkey; (S.C.); (M.C.)
| | - Mehmet Cengiz
- Milas Faculty of Veterinary Medicine, Mugla Sitki Kocman University, Mugla 48000, Turkey; (S.C.); (M.C.)
| | - Andriy Grafov
- Department of Chemistry, University of Helsinki, A.I. Virtasen Aukio 1 (PL 55), 00560 Helsinki, Finland
| |
Collapse
|
4
|
Different Methods and Formulations of Drugs and Vaccines for Nasal Administration. Pharmaceutics 2022; 14:pharmaceutics14051073. [PMID: 35631663 PMCID: PMC9144811 DOI: 10.3390/pharmaceutics14051073] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 12/11/2022] Open
Abstract
Nasal drug delivery is advantageous when compared with other routes of drug delivery as it avoids the hepatic first-pass effect, blood–brain barrier penetration, and compliance issues with parenteral administration. However, nasal administration also has some limitations, such as its low bioavailability due to metabolism on the mucosal surface, and irreversible damage to the nasal mucosa due to the ingredients added into the formula. Moreover, the method of nasal administration is not applicable to all drugs. The current review presents the nasal anatomy and mucosal environment for the nasal delivery of vaccines and drugs, as well as presents various methods for enhancing nasal absorption, and different drug carriers and delivery devices to improve nasal drug delivery. It also presents future prospects on the nasal drug delivery of vaccines and drugs.
Collapse
|
5
|
Alqazlan N, Astill J, Raj S, Sharif S. Strategies for enhancing immunity against avian influenza virus in chickens: A review. Avian Pathol 2022; 51:211-235. [PMID: 35297706 DOI: 10.1080/03079457.2022.2054309] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Poultry infection with avian influenza viruses (AIV) is a continuous source of concern for poultry production and human health. Uncontrolled infection and transmission of AIV in poultry increases the potential for viral mutation and reassortment, possibly resulting in the emergence of zoonotic viruses. To this end, implementing strategies to disrupt the transmission of AIVs in poultry, including a wide array of traditional and novel methods, is much needed. Vaccination of poultry is a targeted approach to reduce clinical signs and shedding in infected birds. Strategies aimed at enhancing the effectiveness of AIV vaccines are multi-pronged and include methods directed towards eliciting immune responses in poultry. Strategies include producing vaccines of greater immunogenicity via vaccine type and adjuvant application and increasing bird responsiveness to vaccines by modification of the gastrointestinal tract (GIT) microbiome and dietary interventions. This review provides an in-depth discussion of recent findings surrounding novel AIV vaccines for poultry, including reverse genetics vaccines, vectors, protein vaccines and virus like particles, highlighting their experimental efficacy among other factors such as safety and potential for use in the field. In addition to the type of vaccine employed, vaccine adjuvants also provide an effective way to enhance AIV vaccine efficacy, therefore, research on different types of vaccine adjuvants and vaccine adjuvant delivery strategies is discussed. Finally, the poultry gastrointestinal microbiome is emerging as an important factor in the effectiveness of prophylactic treatments. In this regard, current findings on the effects of the chicken GIT microbiome on AIV vaccine efficacy are summarized here.
Collapse
Affiliation(s)
- Nadiyah Alqazlan
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Jake Astill
- Artemis Technologies Inc., Guelph, ON, N1L 1E3, Canada
| | - Sugandha Raj
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
6
|
Attia MA, Essa EA, Elebyary TT, Faheem AM, Elkordy AA. Brief on Recent Application of Liposomal Vaccines for Lower Respiratory Tract Viral Infections: From Influenza to COVID-19 Vaccines. Pharmaceuticals (Basel) 2021; 14:1173. [PMID: 34832955 PMCID: PMC8619292 DOI: 10.3390/ph14111173] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 12/11/2022] Open
Abstract
Vaccination is the most effective means of preventing infectious diseases and saving lives. Modern biotechnology largely enabled vaccine development. In the meantime, recent advances in pharmaceutical technology have resulted in the emergence of nanoparticles that are extensively investigated as promising miniaturized drug delivery systems. Scientists are particularly interested in liposomes as an important carrier for vaccine development. Wide acceptability of liposomes lies in their flexibility and versatility. Due to their unique vesicular structure with alternating aqueous and lipid compartments, liposomes can enclose both hydrophilic and lipophilic compounds, including antigens. Liposome composition can be tailored to obtain the desired immune response and adjuvant characteristics. During the current pandemic of COVID-19, many liposome-based vaccines have been developed with great success. This review covers a liposome-based vaccine designed particularly to combat viral infection of the lower respiratory tract (LRT), i.e., infection of the lung, specifically in the lower airways. Viruses such as influenza, respiratory syncytial virus (RSV), severe acute respiratory syndrome (SARS-CoV-1 and SARS-CoV-2) are common causes of LRT infections, hence this review mainly focuses on this category of viruses.
Collapse
Affiliation(s)
- Mohamed Ahmed Attia
- School of Pharmacy and Pharmaceutical Sciences, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland SR1 3SD, UK; (M.A.A.); (A.M.F.)
| | - Ebtessam Ahmed Essa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta 31511, Egypt; (E.A.E.); (T.T.E.)
| | - Toka Tarek Elebyary
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta 31511, Egypt; (E.A.E.); (T.T.E.)
| | - Ahmed Mostafa Faheem
- School of Pharmacy and Pharmaceutical Sciences, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland SR1 3SD, UK; (M.A.A.); (A.M.F.)
| | - Amal Ali Elkordy
- School of Pharmacy and Pharmaceutical Sciences, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland SR1 3SD, UK; (M.A.A.); (A.M.F.)
| |
Collapse
|
7
|
Cossette B, Kelly SH, Collier JH. Intranasal Subunit Vaccination Strategies Employing Nanomaterials and Biomaterials. ACS Biomater Sci Eng 2020; 7:1765-1779. [DOI: 10.1021/acsbiomaterials.0c01291] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Benjamin Cossette
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, North Carolina 27708, United States
| | - Sean H. Kelly
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, North Carolina 27708, United States
| | - Joel H. Collier
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, North Carolina 27708, United States
| |
Collapse
|
8
|
Emerging Role of Mucosal Vaccine in Preventing Infection with Avian Influenza A Viruses. Viruses 2020; 12:v12080862. [PMID: 32784697 PMCID: PMC7472103 DOI: 10.3390/v12080862] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022] Open
Abstract
Avian influenza A viruses (AIVs), as a zoonotic agent, dramatically impacts public health and the poultry industry. Although low pathogenic avian influenza virus (LPAIV) incidence and mortality are relatively low, the infected hosts can act as a virus carrier and provide a resource pool for reassortant influenza viruses. At present, vaccination is the most effective way to eradicate AIVs from commercial poultry. The inactivated vaccines can only stimulate humoral immunity, rather than cellular and mucosal immune responses, while failing to effectively inhibit the replication and spread of AIVs in the flock. In recent years, significant progresses have been made in the understanding of the mechanisms underlying the vaccine antigen activities at the mucosal surfaces and the development of safe and efficacious mucosal vaccines that mimic the natural infection route and cut off the AIVs infection route. Here, we discussed the current status and advancement on mucosal immunity, the means of establishing mucosal immunity, and finally a perspective for design of AIVs mucosal vaccines. Hopefully, this review will help to not only understand and predict AIVs infection characteristics in birds but also extrapolate them for distinction or applicability in mammals, including humans.
Collapse
|
9
|
Wilson HL, Gerdts V, Babiuk LA. Mucosal Vaccine Development for Veterinary and Aquatic Diseases. MUCOSAL VACCINES 2020. [PMCID: PMC7149622 DOI: 10.1016/b978-0-12-811924-2.00048-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Because most pathogens and food antigens enter the host via the mucosal surfaces, effective mucosal immunity is critical for maintaining homeostasis through immune regulation, tolerance, and induction of effective immune responses when needed. Thus the mucosa-associated lymphoid tissues represent an important target for vaccination. Indeed, more than 20 years of research have clearly demonstrated the benefits of mucosal vaccination versus systemic vaccination. Such benefits include local induction of secretory immunoglobulin A (SIgA) as well as activation and maturation of mucosal dendritic cells, homing of effector cells to the mucosal surfaces, expression of specific host defense peptides, and other innate effector molecules. In addition, mucosal vaccination offers the opportunity to induce colostral and lactogenic immunity during pregnancy and the possibility of avoiding neutralization of early life vaccines by maternal antibodies, both of which are critical for protecting the most susceptible from infectious diseases. Moreover, mucosal administration offers the advantage of inducing both effective systemic immunity and mucosal immunity, enhancing vaccine efficacy and providing improved protection. A number of animal vaccines are already administered via the mucosal surfaces, with many more to come over the next few years. It is gratifying to see that veterinary vaccine development has yet again taken a leadership role in exploring innovative approaches and technologies to mucosal vaccination. For the veterinary field, considerations for mucosal vaccine development and use necessarily include costs (often pennies per dose), mass delivery that preferably avoids animal restraint, and economic and trade considerations. In this chapter, we provide an overview of some of the existing vaccine technologies and discuss their advantages and disadvantages.
Collapse
|
10
|
Teixeira AF, Fernandes LG, Cavenague MF, Takahashi MB, Santos JC, Passalia FJ, Daroz BB, Kochi LT, Vieira ML, Nascimento AL. Adjuvanted leptospiral vaccines: Challenges and future development of new leptospirosis vaccines. Vaccine 2019; 37:3961-3973. [DOI: 10.1016/j.vaccine.2019.05.087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/16/2019] [Accepted: 05/21/2019] [Indexed: 12/26/2022]
|
11
|
Liu L, Fan W, Zhang H, Zhang S, Cui L, Wang M, Bai X, Yang W, Sun L, Yang L, Liu W, Li J. Interferon as a Mucosal Adjuvant for an Influenza Vaccine in Pigs. Virol Sin 2019; 34:324-333. [PMID: 30989429 DOI: 10.1007/s12250-019-00102-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 02/21/2019] [Indexed: 11/30/2022] Open
Abstract
Interferon, a natural protein that is produced by a variety of cells during viral infection, activates the transcription of multiple functional genes in cells, regulates synergy among various signaling pathways, and mediates many biological functions such as antiviral activity, immune regulation, and cell growth. However, clinical research on interferon in livestock is lacking. In this study, recombinant porcine interferon (PoIFNα) was used as an adjuvant, in combination with inactivated influenza virus, to vaccinate 6-week-old pigs via nasal infusion. The transcription of target genes was then monitored and the functions of PoIFNα were determined with respect to the activation of mucosal immunity. We found that a combination of low-dose PoIFNα and inactivated influenza virus could significantly up-regulate the expression of immunoregulatory cytokines such as IL-2, IL-18, IFN-γ, IL-6, and IL-10 by real-time PCR, suggesting the induction of a strong mucosal innate immune response after administration. In addition, low-dose PoIFNα can significant enhancing the transcription of genes encoding homing factors including CCR9 and CCR10 (P < 0.001), thereby resulting in the induction of higher levels of HA-specific antibodies (P < 0.05), which can be determined by ELISA and IFA. Post-immunization challenges with H1N1 virus demonstrated that PoIFNα, combined with inactivated influenza virus, could alleviate clinical signs in pigs during the early stages of viral infection. These studies reveal low-dose PoIFNα as a potential mucosal adjuvant for influenza virus in pigs.
Collapse
Affiliation(s)
- Lirong Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenhui Fan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - He Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shuang Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Liang Cui
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyuan Bai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenxian Yang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Limin Yang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
12
|
Pan SC, Hsieh SM, Lin CF, Hsu YS, Chang M, Chang SC. A randomized, double-blind, controlled clinical trial to evaluate the safety and immunogenicity of an intranasally administered trivalent inactivated influenza vaccine with adjuvant LTh(αK): A phase I study. Vaccine 2019; 37:1994-2003. [DOI: 10.1016/j.vaccine.2019.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 02/01/2019] [Accepted: 02/08/2019] [Indexed: 11/27/2022]
|
13
|
Rai M, Jamil B. Nanoformulations: A Valuable Tool in the Therapy of Viral Diseases Attacking Humans and Animals. Nanotheranostics 2019. [PMCID: PMC7121811 DOI: 10.1007/978-3-030-29768-8_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Various viruses can be considered as one of the most frequent causes of human diseases, from mild illnesses to really serious sicknesses that end fatally. Numerous viruses are also pathogenic to animals and plants, and many of them, mutating, become pathogenic also to humans. Several cases of affecting humans by originally animal viruses have been confirmed. Viral infections cause significant morbidity and mortality in humans, the increase of which is caused by general immunosuppression of the world population, changes in climate, and overall globalization. In spite of the fact that the pharmaceutical industry pays great attention to human viral infections, many of clinically used antivirals demonstrate also increased toxicity against human cells, limited bioavailability, and thus, not entirely suitable therapeutic profile. In addition, due to resistance, a combination of antivirals is needed for life-threatening infections. Thus, the development of new antiviral agents is of great importance for the control of virus spread. On the other hand, the discovery and development of structurally new antivirals represent risks. Therefore, another strategy is being developed, namely the reformulation of existing antivirals into nanoformulations and investigation of various metal and metalloid nanoparticles with respect to their diagnostic, prophylactic, and therapeutic antiviral applications. This chapter is focused on nanoscale materials/formulations with the potential to be used for the treatment or inhibition of the spread of viral diseases caused by human immunodeficiency virus, influenza A viruses (subtypes H3N2 and H1N1), avian influenza and swine influenza viruses, respiratory syncytial virus, herpes simplex virus, hepatitis B and C viruses, Ebola and Marburg viruses, Newcastle disease virus, dengue and Zika viruses, and pseudorabies virus. Effective antiviral long-lasting and target-selective nanoformulations developed for oral, intravenous, intramuscular, intranasal, intrarectal, intravaginal, and intradermal applications are discussed. Benefits of nanoparticle-based vaccination formulations with the potential to secure cross protection against divergent viruses are outlined as well.
Collapse
Affiliation(s)
- Mahendra Rai
- Department of Biotechnology, Nanobiotechnology Laboratory, Amravati, Maharashtra, India, Department of Chemistry, Federal University of Piauí, Teresina, Piauí Brazil
| | - Bushra Jamil
- Department of DMLS, University of Lahore, Islamabad, Pakistan
| |
Collapse
|
14
|
Jeon W, Kim YC, Hong M, Rejinold S, Park K, Yoon I, Yoo S, Lee H, Ahn J. Microcrystalline Cellulose for Delivery of Recombinant Protein-Based Antigen against Erysipelas in Mice. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7670505. [PMID: 29992162 PMCID: PMC6016178 DOI: 10.1155/2018/7670505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/06/2018] [Accepted: 05/03/2018] [Indexed: 11/17/2022]
Abstract
The study describes the development of a vaccine using microcrystalline cellulose (Avicel PH-101) as a delivery carrier of recombinant protein-based antigen against erysipelas. Recombinant SpaA, surface protective protein, from a gram-positive pathogen Erysipelothrix rhusiopathiae was fused to a cellulose-binding domain (CBD) from Trichoderma harzianum endoglucanase II through a S3N10 peptide. The fusion protein (CBD-SpaA) was expressed in Escherichia coli and was subsequently bound to Avicel PH-101. The antigenicity of CBD-SpaA bound to the Avicel was evaluated by enzyme-linked immunosorbent (ELISA) and confocal laser scanning microscope (CLSM) assays. For the examination of its immunogenicity, groups of mice were immunized with different constructs (soluble CBD-SpaA, Avicel coated with CBD-SpaA, whole bacterin of E. rhusiopathiae (positive control), and PBS (negative control)). In two weeks after immunization, mice were challenged with 1x107 CFU of E. rhusiopathiae and Avicel coated with CBD-SpaA induced protective immunity in mice. In conclusion, this study demonstrates the feasibility of microcrystalline cellulose as the delivery system of recombinant protein subunit vaccine against E. rhusiopathiae infection in mice.
Collapse
Affiliation(s)
- Wooyoung Jeon
- Biotechnology Process Engineering Center, KRIBB, Cheongju 363-883, Republic of Korea
| | - Yeu-Chun Kim
- Department of Chemical and Biomolecular Engineering, KAIST, Daejeon 305-701, Republic of Korea
| | - Minhee Hong
- Biotechnology Process Engineering Center, KRIBB, Cheongju 363-883, Republic of Korea
| | - Sanoj Rejinold
- Department of Chemical and Biomolecular Engineering, KAIST, Daejeon 305-701, Republic of Korea
| | - Kyoungmoon Park
- Biological and Chemical Engineering, Hongik University, Sejong 339-701, Republic of Korea
| | - Injoong Yoon
- Choong-Ang Vaccine Laboratory, Daejeon 305-348, Republic of Korea
| | - Sungsik Yoo
- Choong-Ang Vaccine Laboratory, Daejeon 305-348, Republic of Korea
| | - Hongweon Lee
- Biotechnology Process Engineering Center, KRIBB, Cheongju 363-883, Republic of Korea
- University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 305-350, Republic of Korea
| | - Jungoh Ahn
- Biotechnology Process Engineering Center, KRIBB, Cheongju 363-883, Republic of Korea
- University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 305-350, Republic of Korea
| |
Collapse
|
15
|
Abstract
Veterinary vaccine development has several similarities with human vaccine development to improve the overall health and well-being of species. However, veterinary goals lean more toward feasible large-scale administration methods and low cost to high benefit immunization. Since the respiratory mucosa is easily accessible and most infectious agents begin their infection cycle at the mucosa, immunization through the respiratory route has been a highly attractive vaccine delivery strategy against infectious diseases. Additionally, vaccines administered via the respiratory mucosa could lower costs by removing the need of trained medical personnel, and lowering doses yet achieving similar or increased immune stimulation. The respiratory route often brings challenges in antigen delivery efficiency with enough potency to induce immunity. Nanoparticle (NP) technology has been shown to enhance immune activation by producing higher antibody titers and protection. Although specific mechanisms between NPs and biological membranes are still under investigation, physical parameters such as particle size and shape, as well as biological tissue distribution including mucociliary clearance influence the protection and delivery of antigens to the site of action and uptake by target cells. For respiratory delivery, various biomaterials such as mucoadhesive polymers, lipids, and polysaccharides have shown enhanced antibody production or protection in comparison to antigen alone. This review presents promising NPs administered via the nasal or pulmonary routes for veterinary applications specifically focusing on livestock animals including poultry.
Collapse
|
16
|
Pinheiro AF, Roloff BC, da Silveira Moreira A, Berne MEA, Silva RA, Leite FPL. Identification of suitable adjuvant for vaccine formulation with the Neospora caninum antigen NcSRS2. Vaccine 2018; 36:1154-1159. [DOI: 10.1016/j.vaccine.2018.01.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 01/12/2018] [Accepted: 01/18/2018] [Indexed: 01/21/2023]
|
17
|
Wang Q, Zhang H, Huang J, Xia N, Li T, Xia Q. Self-double-emulsifying drug delivery system incorporated in natural hydrogels: a new way for topical application of vitamin C. J Microencapsul 2018; 35:90-101. [DOI: 10.1080/02652048.2018.1425752] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Qiang Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
- National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, Jiangsu, China
| | - Hong Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, Jiangsu, China
| | - Juan Huang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, Jiangsu, China
| | - Nan Xia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, Jiangsu, China
| | - Tong Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, Jiangsu, China
| | - Qiang Xia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
- National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, Jiangsu, China
| |
Collapse
|
18
|
Hashemi M, Omidi M, Muralidharan B, Tayebi L, Herpin MJ, Mohagheghi MA, Mohammadi J, Smyth HD, Milner TE. Layer-by-layer assembly of graphene oxide on thermosensitive liposomes for photo-chemotherapy. Acta Biomater 2018; 65:376-392. [PMID: 29109030 DOI: 10.1016/j.actbio.2017.10.040] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 01/07/2023]
Abstract
Stimuli responsive polyelectrolyte nanoparticles have been developed for chemo-photothermal destruction of breast cancer cells. This novel system, called layer by layer Lipo-graph (LBL Lipo-graph), is composed of alternate layers of graphene oxide (GO) and graphene oxide conjugated poly (l-lysine) (GO-PLL) deposited on cationic liposomes encapsulating doxorubicin. Various concentrations of GO and GO-PLL were examined and the optimal LBL Lipo-graph was found to have a particle size of 267.9 ± 13 nm, zeta potential of +43.9 ± 6.9 mV and encapsulation efficiency of 86.4 ± 4.7%. The morphology of LBL Lipo-graph was examined by cryogenic-transmission electron microscopy (Cryo-TEM), atomic force microcopy (AFM) and scanning electron microscopy (SEM). The buildup of LBL Lipo-graph was confirmed via ultraviolet-visible (UV-Vis) spectrophotometry, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) analysis. Infra-red (IR) response suggests that four layers are sufficient to induce a gel-to-liquid phase transition in response to near infra-red (NIR) laser irradiation. Light-matter interaction of LBL Lipo-graph was studied by calculating the absorption cross section in the frequency domain by utilizing Fourier analysis. Drug release assay indicates that the LBL Lipo-graph releases much faster in an acidic environment than a liposome control. A cytotoxicity assay was conducted to prove the efficacy of LBL Lipo-graph to destroy MD-MB-231 cells in response to NIR laser emission. Also, image stream flow cytometry and two photon microcopy provide supportive data for the potential application of LBL Lipo-graph for photothermal therapy. Study results suggest the novel dual-sensitive nanoparticles allow intracellular doxorubin delivery and respond to either acidic environments or NIR excitation. STATEMENT OF SIGNIFICANCE Stimuli sensitive hybrid nanoparticles have been synthesized using a layer-by-layer technique and demonstrated for dual chemo-photothermal destruction of breast cancer cells. The hybrid nanoparticles are composed of alternating layers of graphene oxide and graphene oxide conjugated poly-l-lysine coating the surface of a thermosensitive cationic liposome containing doxorubicin as a core. Data suggests that the hybrid nanoparticles may offer many advantages for chemo-photothermal therapy. Advantages include a decrease of the initial burst release which may result in the reduction in systemic toxicity, increase in pH responsivity around the tumor environment and improved NIR light absorption.
Collapse
|
19
|
Feng CL, Han YX, Guo HH, Ma XL, Wang ZQ, Wang LL, Zheng WS, Jiang JD. Self-assembling HA/PEI/dsRNA-p21 ternary complexes for CD44 mediated small active RNA delivery to colorectal cancer. Drug Deliv 2017; 24:1537-1548. [PMID: 28994324 PMCID: PMC8240987 DOI: 10.1080/10717544.2017.1386732] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 09/27/2017] [Indexed: 11/03/2022] Open
Abstract
Our previous work proved that sequence specific double strand RNA (dsRNA-p21) effectively activated p21 gene expression of colorectal cancer (CRC) cells and consequently suppressed CRC growth. However, efficient delivery system is a significant challenge to achieve sufficient therapy. In this study, a self-assembled HA/PEI/dsRNA-p21 ternary complex (TC-dsRNA-p21) was developed for the tumor-target delivery of dsRNA-p21 into CRC cells. Hyaluronic acid (HA) was introduced to shield the PEI/dsRNA-p21 binary complexes (BC-dsRNA-p21) for reducing the cytotoxicity of PEI and for increasing the tumor-targeted intracellular uptake by cancer cells through HA-CD44 mediated endocytosis. Comparing to the BC-dsRNA-p21, the TC-dsRNA-p21 showed increase in size, decrease in zeta potential, low cytotoxicity as well as high stability in physiological conditions due to the anionic shielding. Confocal microscopy analysis and flow cytometry confirmed that TC-dsRNA-p21 had high transfection efficiency in the CD44-abundant Lovo cells, as compared with binary complex. In vitro physiological experiment showed that, comparing to the control group, the TC-dsRNA-p21 effectively activated the expression of p21 mRNA and P21 protein, causing blockage of cell cycle at G0/G1 phase and suppression of cancer cell proliferation as well as colony formation. Furthermore, in vivo distribution experiment demonstrated that the TC-dsRNA-p21 could effectively accumulate at rectal wall for up to 10 h, following in situ application. These findings indicated that TC-dsRNA-p21 might hold great potential for delivering dsRNA-p21 to treat CRC.
Collapse
Affiliation(s)
- Chen-Lin Feng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Yan-Xing Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Hui-Hui Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Xiao-Lei Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Zhi-Qiang Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Lu-Lu Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Wen-Sheng Zheng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| |
Collapse
|
20
|
Elsayed I, Sayed S. Tailored nanostructured platforms for boosting transcorneal permeation: Box-Behnken statistical optimization, comprehensive in vitro, ex vivo and in vivo characterization. Int J Nanomedicine 2017; 12:7947-7962. [PMID: 29133980 PMCID: PMC5669792 DOI: 10.2147/ijn.s150366] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Ocular drug delivery systems suffer from rapid drainage, intractable corneal permeation and short dosing intervals. Transcorneal drug permeation could increase the drug availability and efficiency in the aqueous humor. The aim of this study was to develop and optimize nanostructured formulations to provide accurate doses, long contact time and enhanced drug permeation. Nanovesicles were designed based on Box-Behnken model and prepared using the thin film hydration technique. The formed nanodispersions were evaluated by measuring the particle size, polydispersity index, zeta potential, entrapment efficiency and gelation temperature. The obtained desirability values were utilized to develop an optimized nanostructured in situ gel and insert. The optimized formulations were imaged by transmission and scanning electron microscopes. In addition, rheological characters, in vitro drug diffusion, ex vivo and in vivo permeation and safety of the optimized formulation were investigated. The optimized insert formulation was found to have a relatively lower viscosity, higher diffusion, ex vivo and in vivo permeation, when compared to the optimized in situ gel. So, the lyophilized nanostructured insert could be considered as a promising carrier and transporter for drugs across the cornea with high biocompatibility and effectiveness.
Collapse
Affiliation(s)
- Ibrahim Elsayed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman, United Arab Emirates
| | - Sinar Sayed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
21
|
Application of xanthan gum as polysaccharide in tissue engineering: A review. Carbohydr Polym 2017; 180:128-144. [PMID: 29103488 DOI: 10.1016/j.carbpol.2017.10.009] [Citation(s) in RCA: 260] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 09/20/2017] [Accepted: 10/02/2017] [Indexed: 12/11/2022]
Abstract
Xanthan gum is a microbial high molecular weight exo-polysaccharide produced by Xanthomonas bacteria (a Gram-negative bacteria genus that exhibits several different species) and it has widely been used as an additive in various industrial and biomedical applications such as food and food packaging, cosmetics, water-based paints, toiletries, petroleum, oil-recovery, construction and building materials, and drug delivery. Recently, it has shown great potential in issue engineering applications and a variety of modification methods have been employed to modify xanthan gum as polysaccharide for this purpose. However, xanthan gum-based biomaterials need further modification for several targeted applications due to some disadvantages (e.g., processing and mechanical performance of xanthan gum), where modified xanthan gum will be well suited for tissue engineering products. In this review, the current scenario of the use of xanthan gum for various tissue engineering applications, including its origin, structure, properties, modification, and processing for the preparation of the hydrogels and/or the scaffolds is precisely reviewed.
Collapse
|
22
|
Liu W, Wei F, Ye A, Tian M, Han J. Kinetic stability and membrane structure of liposomes during in vitro infant intestinal digestion: Effect of cholesterol and lactoferrin. Food Chem 2017; 230:6-13. [DOI: 10.1016/j.foodchem.2017.03.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 12/17/2016] [Accepted: 03/04/2017] [Indexed: 11/29/2022]
|
23
|
Tumor-selective lipopolyplex encapsulated small active RNA hampers colorectal cancer growth in vitro and in orthotopic murine. Biomaterials 2017; 141:13-28. [PMID: 28666099 DOI: 10.1016/j.biomaterials.2017.06.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 06/21/2017] [Accepted: 06/21/2017] [Indexed: 02/06/2023]
Abstract
Small active RNA (saRNA)-induced gene activation (RNAa) is a novel strategy to treat cancer. Our previous work proved that the p21-saRNA-322 successfully hindered colorectal cancer growth by activating p21 gene. However, the barrier for successful saRNA therapy is lack of efficient drug delivery. In the present study, a rectal delivery system entitled p21-saRNA-322 encapsulated tumor-selective lipopolyplex (TSLPP-p21-saRNA-322) which consist of PEI/p21-saRNA-322 polyplex core and hyaluronan (HA) modulated lipid shell was developed to treat colorectal cancer. Our results showed that this system maintained at the rectum for more than 6 h and preferentially accumulated at tumor site. CD44 knock down experiment instructed that the superb cellular uptake of TSLPP-p21-saRNA-322 attributed to HA-CD44 recognition. An orthotopic model of bio-luminescence human colorectal cancer in mice was developed using microsurgery and TSLPP-p21-saRNA-322 demonstrated a superior antitumor efficacy in vitro and in vivo. Our results provide preclinical proof-of-concept for a novel method to treat colorectal cancer by rectal administration of TSLPP formulated p21-saRNA-322.
Collapse
|
24
|
The Use of Xanthan Gum as Vaccine Adjuvant: An Evaluation of Immunostimulatory Potential in BALB/c Mice and Cytotoxicity In Vitro. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3925024. [PMID: 28555192 PMCID: PMC5438839 DOI: 10.1155/2017/3925024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/11/2017] [Accepted: 04/16/2017] [Indexed: 11/17/2022]
Abstract
The successful production of new, safe, and effective vaccines that generate immunological memory is directly related to adjuvant feature, which is responsible for increasing and/or modulating the immune response. Several compounds display adjuvant activity, including carbohydrates. These compounds play important roles in the immune response, as well as having biocompatible properties in vaccine formulations. One such carbohydrate is xanthan gum, a polysaccharide that is produced by the plant-pathogenic bacterium Xanthomonas spp., which has adjuvant attributes. This study evaluated the immune response induced by xanthan gum associated with ovalbumin in BALB/c mice, which were subcutaneously immunized, in terms of antibody production (IgG1, IgG2a, IgG2b, and IgG3), and assessed the levels of IFN-γ in the splenocyte culture using indirect ELISA. Furthermore, we investigated in vitro cytotoxicity of xanthan in the embryo fibroblasts cell line of the NIH/3T3 mouse by MTT assay and propidium iodide uptake assay. The mice immunized with ovalbumin plus xanthan gum exhibited higher antibody IgG1 responses than control groups. Furthermore, the xanthan polysaccharide was capable of increasing the immunogenicity of antigens by producing IFN-γ and did not exhibit cytotoxicity effects in NIH/3T3 mouse fibroblast cells, considered a promising candidate for vaccine adjuvant.
Collapse
|
25
|
Oliveira TL, Bacelo KL, Schuch RA, Seixas FK, Collares T, Rodrigues OE, Vargas J, Nascimento ROD, Dellagostin OA, Hartwig DD. Immune response in hamsters immunised with a recombinant fragment of LigA from Leptospira interrogans, associated with carrier molecules. Mem Inst Oswaldo Cruz 2016; 111:712-716. [PMID: 27759768 PMCID: PMC5125051 DOI: 10.1590/0074-02760160214] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/29/2016] [Indexed: 12/11/2022] Open
Abstract
Immunisation with the C-terminal region of leptospiral immunoglobulin-like A protein
(LigANI) has shown promising results against leptospirosis. We evaluated the humoral
immune response and protection induced by LigANI associated with carboxyl
multi-walled carbon nanotubes (COOH-MWCNTs), CpG oligodeoxynucleotides (CpG ODNs), or
Alhydrogel. Animals immunised with CpG ODNs were unable to develop a humoral immune
response, whereas immunisation with LigANI and COOH-MWCNTs produced a high level of
IgG antibodies, similar to that with LigANI and Alhydrogel, but it was not
protective. The use of carbon nanotubes as an adjuvant in subunit vaccines against
leptospirosis is a novel approach for improving specific IgG production.
Collapse
Affiliation(s)
- Thaís L Oliveira
- Universidade Federal de Pelotas, Centro de Desenvolvimento Tecnológico, Programa de Pós-Graduação em Biotecnologia, Núcleo de Biotecnologia, Pelotas, RS, Brasil
| | - Kátia L Bacelo
- Universidade Federal de Pelotas, Centro de Desenvolvimento Tecnológico, Programa de Pós-Graduação em Biotecnologia, Núcleo de Biotecnologia, Pelotas, RS, Brasil
| | - Rodrigo A Schuch
- Universidade Federal de Pelotas, Centro de Desenvolvimento Tecnológico, Programa de Pós-Graduação em Biotecnologia, Núcleo de Biotecnologia, Pelotas, RS, Brasil
| | - Fabiana K Seixas
- Universidade Federal de Pelotas, Centro de Desenvolvimento Tecnológico, Programa de Pós-Graduação em Biotecnologia, Núcleo de Biotecnologia, Pelotas, RS, Brasil
| | - Tiago Collares
- Universidade Federal de Pelotas, Centro de Desenvolvimento Tecnológico, Programa de Pós-Graduação em Biotecnologia, Núcleo de Biotecnologia, Pelotas, RS, Brasil
| | - Oscar Ed Rodrigues
- Universidade Federal de Santa Maria, Departamento de Química, Santa Maria, RS, Brasil
| | - Josimar Vargas
- Universidade Federal de Santa Maria, Departamento de Química, Santa Maria, RS, Brasil
| | | | - Odir A Dellagostin
- Universidade Federal de Pelotas, Centro de Desenvolvimento Tecnológico, Programa de Pós-Graduação em Biotecnologia, Núcleo de Biotecnologia, Pelotas, RS, Brasil
| | - Daiane D Hartwig
- Universidade Federal de Pelotas, Centro de Desenvolvimento Tecnológico, Programa de Pós-Graduação em Biotecnologia, Núcleo de Biotecnologia, Pelotas, RS, Brasil.,Universidade Federal de Pelotas, Instituto de Biologia, Departamento de Microbiologia e Parasitologia, Pelotas, RS, Brasil
| |
Collapse
|
26
|
Wu Z, Hou J, Wang Y, Chai M, Xiong Y, Lu W, Pan J. Preparation and evaluation of amoxicillin loaded dual molecularly imprinted nanoparticles for anti- Helicobacter pylori therapy. Int J Pharm 2015; 496:1006-14. [DOI: 10.1016/j.ijpharm.2015.10.065] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/04/2015] [Accepted: 10/27/2015] [Indexed: 12/14/2022]
|
27
|
Jiang PL, Lin HJ, Wang HW, Tsai WY, Lin SF, Chien MY, Liang PH, Huang YY, Liu DZ. Galactosylated liposome as a dendritic cell-targeted mucosal vaccine for inducing protective anti-tumor immunity. Acta Biomater 2015; 11:356-67. [PMID: 25242652 DOI: 10.1016/j.actbio.2014.09.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 09/02/2014] [Accepted: 09/12/2014] [Indexed: 01/08/2023]
Abstract
Mucosal surfaces contain specialized dendritic cells (DCs) that are able to recognize foreign pathogens and mount protective immunity. We previously demonstrated that intranasal administration of targeted galactosylated liposomes can elicit mucosal and systemic antibody responses. In the present study, we assessed whether galactosylated liposomes could act as an effective DC-targeted mucosal vaccine that would be capable of inducing systemic anti-tumor immunity as well as antibody responses. We show that targeted galactosylated liposomes effectively facilitated antigen uptake by DCs beyond that mediated by unmodified liposomes both in vitro and in vivo. Targeted galactosylated liposomes induced higher levels of pro-inflammatory cytokines than unmodified liposomes in vitro. C57BL/6 mice thrice immunized intranasally with ovalbumin (OVA)-encapsulated galactosylated liposomes produced high levels of OVA-specific IgG antibodies in their serum. Spleen cells from mice receiving galactosylated liposomes were restimulated with OVA and showed significantly augmented levels of IFN-γ, IL-4, IL-5 and IL-6. In addition, intranasal administration of OVA-encapsulated beta-galactosylated liposomes resulted in complete protection against EG7 tumor challenge in C57BL/6 mice. Taken together, these results indicate that nasal administration of a galactosylated liposome vaccine mediates the development of an effective immunity against tumors and might be useful for further clinical anti-tumoral applications.
Collapse
|
28
|
Kumar A, Pandey AN, Jain SK. Nasal-nanotechnology: revolution for efficient therapeutics delivery. Drug Deliv 2014; 23:681-93. [PMID: 24901207 DOI: 10.3109/10717544.2014.920431] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CONTEXT In recent years, nanotechnology-based delivery systems have gained interest to overcome the problems of restricted absorption of therapeutic agents from the nasal cavity, depending upon the physicochemical properties of the drug and physiological properties of the human nose. OBJECTIVE The well-tolerated and non-invasive nasal drug delivery when combined with the nanotechnology-based novel formulations and carriers, opens the way for the effective systemic and brain targeting delivery of various therapeutic agents. To accomplish competent drug delivery, it is imperative to recognize the interactions among the nanomaterials and the nasal biological environment, targeting cell-surface receptors, drug release, multiple drug administration, stability of therapeutic agents and molecular mechanisms of cell signaling involved in patho-biology of the disease under consideration. METHODS Quite a few systems have been successfully formulated using nanomaterials for intranasal (IN) delivery. Carbon nanotubes (CNTs), chitosan, polylactic-co-glycolic acid (PLGA) and PLGA-based nanosystems have also been studied in vitro and in vivo for the delivery of several therapeutic agents which shown promising concentrations in the brain after nasal administration. RESULTS AND CONCLUSION The use of nanomaterials including peptide-based nanotubes and nanogels (NGs) for vaccine delivery via nasal route is a new approach to control the disease progression. In this review, the recent developments in nanotechnology utilized for nasal drug delivery have been discussed.
Collapse
Affiliation(s)
- Amrish Kumar
- a Department of Pharmaceutics , Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University) , Bilaspur , Chhattisgarh , India
| | - Aditya Nath Pandey
- a Department of Pharmaceutics , Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University) , Bilaspur , Chhattisgarh , India
| | - Sunil Kumar Jain
- a Department of Pharmaceutics , Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University) , Bilaspur , Chhattisgarh , India
| |
Collapse
|
29
|
Xanthan gum as an adjuvant in a subunit vaccine preparation against leptospirosis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:636491. [PMID: 24895594 PMCID: PMC4033433 DOI: 10.1155/2014/636491] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/11/2014] [Accepted: 04/11/2014] [Indexed: 02/02/2023]
Abstract
Leptospiral immunoglobulin-like (Lig) proteins are of great interest due to their ability to act as mediators of pathogenesis, serodiagnostic antigens, and immunogens. Purified recombinant LigA protein is the most promising subunit vaccine candidate against leptospirosis reported to date, however, as purified proteins are weak immunogens the use of a potent adjuvant is essential for the success of LigA as a subunit vaccine. In the present study, we compared xanthan pv. pruni (strain 106), aluminium hydroxide (alhydrogel), and CpG ODN as adjuvants in a LigA subunit vaccine preparation. Xanthan gum is a high molecular weight extracellular polysaccharide produced by fermentation of Xanthomonas spp., a plant-pathogenic bacterium genus. Preparations containing xanthan induced a strong antibody response comparable to that observed when alhydrogel was used. Upon challenge with a virulent strain of L. interrogans serovar Copenhageni, significant protection (Fisher test, P < 0.05) was observed in 100%, 100%, and 67% of hamsters immunized with rLigANI-xanthan, LigA-CpG-xanthan, and rLigANI-alhydrogel, respectively. Furthermore, xanthan did not cause cytotoxicity in Chinese hamster ovary (CHO) cells in vitro. The use of xanthan as an adjuvant is a novel alternative for enhancing the immunogenicity of vaccines against leptospirosis and possibly against other pathogens.
Collapse
|
30
|
Zhu R, Zhu Y, Zhang M, Xiao Y, Du X, Liu H, Wang S. The induction of maturation on dendritic cells by TiO2 and Fe(3)O(4)@TiO(2) nanoparticles via NF-κB signaling pathway. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 39:305-14. [PMID: 24863229 DOI: 10.1016/j.msec.2014.03.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 01/20/2014] [Accepted: 03/01/2014] [Indexed: 12/17/2022]
Abstract
Nanomaterials are increasingly used in many fields, including drug vectors and vaccine formulation. In this study, nano-TiO(2) and magnetic Fe(3)O(4)@TiO(2) were synthesized and their abilities to activate dendritic cells were investigated. The signaling pathway involved in their effects on the cellular functions was also explored. First, nano-TiO(2) and Fe(3)O(4)@TiO(2) were prepared with diameters of 82nm and 63nm, and zeta potentials of 41.5mV and 30.2mV, respectively. The magnetic property of Fe(3)O(4)@TiO(2) was detected to be 12.9emu/g. Both kinds of nanoparticles were proved to have good biocompatibility in vitro. Second, the exposure of nano-TiO2 and Fe(3)O(4)@TiO(2)caused an increased expression of TNF-α, CD86 and CD80, and besides, Fe(3)O(4)@TiO(2)showed a certain up-regulation on MHC-II. The cellular uptake of Ovalbumin on BMDCs could be strongly improved by nano-TiO2 and Fe(3)O(4)@TiO(2)as detected via flow cytometer and confocal observation. Further investigation revealed that nano-TiO(2) and Fe(3)O(4)@TiO(2)significantly increased the NF-κB expression in the nucleus, indicating that the NF-κB signaling pathway was involved in the dendritic cell maturation. Our results suggested that nano-TiO(2) and Fe(3)O(4)@TiO(2)may function as a useful vector to promote vaccine delivery in immune cells, and Fe(3)O(4)@TiO(2)provided a possibility to deliver and track vaccines via its magnetofection.
Collapse
Affiliation(s)
- Rongrong Zhu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, PR China
| | - Yanjing Zhu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, PR China
| | - Min Zhang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, PR China
| | - Yu Xiao
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, PR China
| | - Xiling Du
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, PR China
| | - Hui Liu
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, PR China.
| | - Shilong Wang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, PR China.
| |
Collapse
|
31
|
Gebril AM, Lamprou DA, Alsaadi MM, Stimson WH, Mullen AB, Ferro VA. Assessment of the antigen-specific antibody response induced by mucosal administration of a GnRH conjugate entrapped in lipid nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 10:971-9. [PMID: 24374362 DOI: 10.1016/j.nano.2013.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 11/28/2013] [Accepted: 12/18/2013] [Indexed: 01/14/2023]
Abstract
UNLABELLED Vaccines administered parenterally have been developed against gonadotrophin-releasing hormone (GnRH) for anti-fertility and anti-cancer purposes. The aim of this study was to demonstrate whether mucosal delivery using GnRH immunogens entrapped in lipid nanoparticles (LNP) could induce anti-GnRH antibody titers. Immunogens consisting of KLH (keyhole limpet hemocyanin) conjugated to either GnRH-I or GnRH-III analogues were entrapped in LNP. Loaded non-ionic surfactant vesicles (NISVs) were administered subcutaneously, while nasal delivery was achieved using NISV in xanthan gum and oral delivery using NISV containing deoxycholate (bilosomes). NISV and bilosomes had similar properties: they were spherical, in the nanometre size range, with a slightly negative zeta potential and surface properties that changed with protein loading and inclusion of xanthan gum. Following immunization in female BALB/c mice, systemic antibody responses were similar for both GnRH-I and GnRH-III immunization. Only nasal delivery proved to be successful in terms of producing systemic and mucosal antibodies. FROM THE CLINICAL EDITOR The main research question addressed in this study was whether mucosal delivery using gonadotrophin-releasing hormone immunogens entrapped in lipid nanoparticles could induce anti-GnRH antibody titers. Only nasal delivery proved to be successful in terms of producing systemic and mucosal antibodies with this approach.
Collapse
Affiliation(s)
- Ayman M Gebril
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, UK; Faculty of Veterinary Medicine, Omar Al-Mukhtar University, Al-Bayda, Libya
| | - Dimitrios A Lamprou
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, UK
| | - Manal M Alsaadi
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, UK
| | - William H Stimson
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, UK
| | - Alexander B Mullen
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, UK
| | - Valerie A Ferro
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, UK.
| |
Collapse
|
32
|
Peniche H, Reyes-Ortega F, Aguilar MR, Rodríguez G, Abradelo C, García-Fernández L, Peniche C, San Román J. Thermosensitive macroporous cryogels functionalized with bioactive chitosan/bemiparin nanoparticles. Macromol Biosci 2013; 13:1556-67. [PMID: 23956200 DOI: 10.1002/mabi.201300184] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/26/2013] [Indexed: 01/13/2023]
Abstract
Thermosensitive macroporous scaffolds of poly(N-isopropylacrylamide) (polyNIPA) loaded with chitosan/bemiparin nanoparticles are prepared by the free radical polymerization in cryogenic conditions. Chitosan/bemiparin nanoparticles of 102 ± 6.5 nm diameter are prepared by complex coacervation and loaded into polyNIPA cryogels. SEM image reveal the highly porous structure of cryogels and the integration of nanoparticles into the macroporous system. Volume phase transition temperature (VPT) and total freezing water content of cryogels are established by differential scanning calorimetry, and their porosity is determined by image-NMR. Swelling of cryogels (above and below the VPT) is highly dependent on nanoparticles concentration. In vitro release profile of bemiparin from cryogel is highly modulated by the presence of chitosan. Bemiparin released from nanoparticles preserves its biological activity, as shown by the BaF32 cell proliferation assay. Cryogels are not cytotoxic for the human fibroblast cells and present excellent properties for application on tissue engineering and controlled release of heparin.
Collapse
Affiliation(s)
- Hazel Peniche
- Centro de Biomateriales, Universidad de La Habana, 10400, Havana, Cuba
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Kang H, Wang H, Yu Q, Yang Q. A novel combined adjuvant strongly enhances mucosal and systemic immunity to low pathogenic avian influenza after oral immunization in ducks. Poult Sci 2013; 92:1543-51. [PMID: 23687150 DOI: 10.3382/ps.2012-03000] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As natural reservoirs of avian influenza viruses, waterfowl play an important role in the generation, spread, and enzootic transmission of avian influenza. To prevent avian influenza in waterfowl through a simple, noninvasive, and needle-free route, ducks were immunized orally with an inactivated avian influenza virus (H9N2, IAIV) combined with CpG DNA and high-dose glucose, and then the local and systemic immune responses of these ducks were investigated. In addition, the immune protection was assayed after viral challenge. After the oral administration of IAIV combined with CpG DNA and glucose, the expression levels of interleukin-2 and interleukin-6 in the small intestine tissues increased significantly in the early period after booster immunization relative to the levels after immunization with IAIV and a single adjuvant. Significant increases were also observed in the IgA and IgG antibody levels in the local intestinal tract tissues and serum at wk 3, 5, and 7 after the first immunization. Furthermore, enhanced hemagglutination inhibition titers were also detected in serum samples taken between the third and seventh weeks after immunization with IAIV and both adjuvants. In the viral challenge and transmission study, the prior administration of IAIV combined with both CpG DNA and glucose reduced the viral titers observed for the cloaca swabs and colon tissues of challenged ducks and prevented virus transmission between ducks. Our study suggests that the combination of CpG DNA and high-dose glucose can improve immunization with inactivated H9N2 virus by enhancing the local and systemic immune responses and reducing viral shedding.
Collapse
Affiliation(s)
- Haihong Kang
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, P.R. China
| | | | | | | |
Collapse
|
34
|
Liu W, Liu J, Liu W, Li T, Liu C. Improved physical and in vitro digestion stability of a polyelectrolyte delivery system based on layer-by-layer self-assembly alginate-chitosan-coated nanoliposomes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:4133-4144. [PMID: 23566223 DOI: 10.1021/jf305329n] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
To improve lipid membrane stability and prevent leakage of encapsulated food ingredients, a polyelectrolyte delivery system (PDS) based on sodium alginate (AL) and chitosan (CH) coated on the surface of nanoliposomes (NLs) has been prepared and optimized using a layer-by-layer self-assembly deposition technique. Morphology and FTIR observation confirmed PDS has been successfully coated by polymers. Physical stability studies (pH and heat treatment) indicated that the outer-layer polymers could protect the core (NLs) from damage, and PDS showed more intact structure than NLs. Further enzymic digestion stability studies (particle size, surface charge, free fatty acid, and model functional component release) demonstrated that PDS could better resist lipolytic degradation and facilitate a lower level of encapsulated component release in simulated gastrointestinal conditions. This work suggested that deposition of polyelectrolyte on the surface of NLs can stabilize liposomal structure, and PDS could be developed as a formulation for delivering functional food ingredients in the gastrointestinal tract.
Collapse
Affiliation(s)
- Weilin Liu
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, Jiangxi, People's Republic of China
| | | | | | | | | |
Collapse
|
35
|
Wang HW, Jiang PL, Lin SF, Lin HJ, Ou KL, Deng WP, Lee LW, Huang YY, Liang PH, Liu DZ. Application of galactose-modified liposomes as a potent antigen presenting cell targeted carrier for intranasal immunization. Acta Biomater 2013; 9:5681-8. [PMID: 23159567 DOI: 10.1016/j.actbio.2012.11.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 10/01/2012] [Accepted: 11/06/2012] [Indexed: 01/01/2023]
Abstract
The mucosal immune system produces secretory IgA (sIgA) as the first line of defense against invasion by foreign pathogens. Our aim was to develop a galactose-modified liposome as a targeted carrier which can be specifically recognized by macrophage, one of the most important antigen presenting cells. First, galactose was covalently conjugated with 1,2-didodecanoyl-sn-glycero-3-phosphoethanolamine (DLPE) to give a targeted ligand, a galactosyl lipid. The galactosyl lipid was then incorporated into a liposomal bilayer to form a galactosylated liposome carrier. Further, the ovalbumin (OVA) was encapsulated into the galactosylated liposome carriers and mice were intranasally immunized. Confocal laser scanning microscopy and flow cytometry analysis showed that the targeted galactosylated liposome carrier had a higher uptake rate than unmodified liposomes. The targeted galactosylated liposome induced higher levels of tumor necrosis factor-α and interleukin-6 production than unmodified liposomes (P<0.05). Furthermore, 6-week-old BALB/c female mice immunized with the OVA-encapsulated targeted galactosylated liposome had significantly higher OVA-specific s-IgA levels in the nasal and lung wash fluid (P<0.05). In addition, the targeted galactosylated liposome simultaneously augmented the serum IgG antibody response. In summary, the OVA-encapsulated targeted galactosylated liposome induced significantly higher mucosal IgA and systemic IgG antibody titers and is a potential antigen delivery carrier for further clinical applications.
Collapse
Affiliation(s)
- Hsiao-Wen Wang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Islam MA, Firdous J, Choi YJ, Yun CH, Cho CS. Design and application of chitosan microspheres as oral and nasal vaccine carriers: an updated review. Int J Nanomedicine 2012; 7:6077-93. [PMID: 23271909 PMCID: PMC3526152 DOI: 10.2147/ijn.s38330] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Chitosan, a natural biodegradable polymer, is of great interest in biomedical research due to its excellent properties including bioavailability, nontoxicity, high charge density, and mucoadhesivity, which creates immense potential for various pharmaceutical applications. It has gelling properties when it interacts with counterions such as sulfates or polyphosphates and when it crosslinks with glutaraldehyde. This characteristic facilitates its usefulness in the coating or entrapment of biochemicals, drugs, antigenic molecules as a vaccine candidate, and microorganisms. Therefore, chitosan together with the advance of nanotechnology can be effectively applied as a carrier system for vaccine delivery. In fact, chitosan microspheres have been studied as a promising carrier system for mucosal vaccination, especially via the oral and nasal route to induce enhanced immune responses. Moreover, the thiolated form of chitosan is of considerable interest due to its improved mucoadhesivity, permeability, stability, and controlled/extended release profile. This review describes the various methods used to design and synthesize chitosan microspheres and recent updates on their potential applications for oral and nasal delivery of vaccines. The potential use of thiolated chitosan microspheres as next-generation mucosal vaccine carriers is also discussed.
Collapse
Affiliation(s)
- Mohammad Ariful Islam
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | | | | | | | | |
Collapse
|
37
|
Giddam AK, Zaman M, Skwarczynski M, Toth I. Liposome-based delivery system for vaccine candidates: constructing an effective formulation. Nanomedicine (Lond) 2012; 7:1877-93. [DOI: 10.2217/nnm.12.157] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The discovery of liposomes in 1965 by Bangham and coworkers changed the prospects of drug delivery systems. Since then, the application of liposomes as vaccine delivery systems has been studied extensively. Liposomal vaccine delivery systems are made up of nano- or micro-sized vesicles consisting of phospholipid bilayers, in which the bioactive molecule is encapsulated/entrapped, adsorbed or surface coupled. In general, liposomes are not immunogenic on their own; thus, liposomes combined with immunostimulating ligands (adjuvants) or various other formulations have been used as vaccine delivery systems. A thorough understanding of formulation parameters allows the design of effective liposomal vaccine delivery systems. This article provides an overview of various factors that influence liposomal immunogenicity. In particular, the effects of vesicle size, surface charge, bilayer composition, lamellarity, pegylation and targeting of liposomes are described.
Collapse
Affiliation(s)
- Ashwini Kumar Giddam
- The University of Queensland, School of Chemistry & Molecular Biosciences, St Lucia, QLD 4072, Australia
| | - Mehfuz Zaman
- The University of Queensland, School of Chemistry & Molecular Biosciences, St Lucia, QLD 4072, Australia
| | - Mariusz Skwarczynski
- The University of Queensland, School of Chemistry & Molecular Biosciences, St Lucia, QLD 4072, Australia
| | - Istvan Toth
- The University of Queensland, School of Pharmacy, St Lucia, QLD 4072, Australia
| |
Collapse
|
38
|
Figueiredo L, Cadete A, Gonçalves LMD, Corvo ML, Almeida AJ. Intranasal immunisation of mice against Streptococcus equi using positively charged nanoparticulate carrier systems. Vaccine 2012; 30:6551-8. [PMID: 22947139 DOI: 10.1016/j.vaccine.2012.08.050] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 07/23/2012] [Accepted: 08/20/2012] [Indexed: 01/25/2023]
Abstract
In order to potentiate a strong immune response after mucosal vaccination with a low immunogenic S. equi enzymatic extract, two positively charged particulate delivery systems (liposomes and nanoparticles) were created. Positively surface charged particles were expected to efficiently bind to negatively charged cell membranes and facilitate antigen uptake. Phosphatidylcholine-cholesterol-stearylamine liposomes encapsulating S. equi antigens were prepared and dimensionated to 0.22±0.01μm with a polydispersity index <0.242, zeta potential of +12±4mV and an encapsulation efficiency of 13±3% (w/w). Chitosan nanoparticles were prepared by ionotropic gelation with sodium tripolyphosphate, presenting a particle size of 0.17±0.01μm with polydispersity index <0.362, zeta potential of +23±8mV and an encapsulation efficiency of 53±6% (w/w). Both encapsulation methods were recognised as innocuous once antigens structure remained intact after incorporation as assessed by SDS-PAGE. Intranasal immunisation of mice with both formulations successfully elicited mucosal, humoral and cellular immune responses. Mucosal stimulation was confirmed by increased sIgA levels in the lungs, being the chitosan nanoparticles more successful in this achievement probably due to their different mucoadhesive properties. Both formulations share the ability to induce Th1-mediated immune responses characterised by IFN-γ production and high IgG2a antibody titers as well as a Th2 immune response characterised mainly by IL-4 production and IgG1 antibodies.
Collapse
Affiliation(s)
- L Figueiredo
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculdade de Farmácia da Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | | | | | | | | |
Collapse
|
39
|
Kang H, Wang H, Yu Q, Yang Q. Effect of intranasal immunization with inactivated avian influenza virus on local and systemic immune responses in ducks. Poult Sci 2012; 91:1074-80. [DOI: 10.3382/ps.2011-01817] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
40
|
Shao H, Han G, Ling P, Zhu X, Liu F, Jin Y, Zhao L, Zhang T. Intra-articular injection of xanthan gum: A potential therapy for osteoarthritis. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/abb.2012.324063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Lin YF, Deng MC, Tseng LP, Jiang PR, Jan TR, Hsieh FI, Liu DZ. Adjuvant effect of liposome in chicken result from induction of nitric oxide. Biomed Mater 2011; 6:015011. [PMID: 21239850 DOI: 10.1088/1748-6041/6/1/015011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Intranasal delivery of liposome-encapsulated inactivated Newcastle Disease virus (NDV) is known to be an effective vaccine for inducing immunity in the respiratory tract from our previous reports. Four-week-old specific pathogen-free chickens were intranasally immunized with NDV entrapped in phosphatidylcholine-liposomes (PC-Lip). The mucosal levels of anti-NDV s-immunoglobulin A (IgA), serum IgG, a high hemagglutination inhibition titer (1:640), and the high survival rate with the PC-Lip vaccine were comparable to those of our previous report. The immune mechanisms of the PC-Lip adjuvant were determined by in vitro cellular experiments using the NO production of chicken spleen macrophages. The most important finding of this study was proving that macrophages were stimulated by PC-Lip via the extracellular regulated kinase (ERK) 1/2 and nuclear factor (NF)-κB activation pathways. This finding may be useful for developing potent mucosal vaccine delivery systems in the future.
Collapse
Affiliation(s)
- Yuh-Feng Lin
- Taipei Medical University-Shuang Ho Hospital, Taiwan
| | | | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Tiwari S, Agrawal GP, Vyas SP. Molecular basis of the mucosal immune system: from fundamental concepts to advances in liposome-based vaccines. Nanomedicine (Lond) 2010; 5:1617-40. [DOI: 10.2217/nnm.10.128] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The mucosal immune system, the primary portal for entry of most prevalent and devastating pathogens, is guarded by the special lymphoid tissues (mucosally associated lymphoid tissues) for immunity. Mucosal immune infection results in induction of IgA-manifested humoral immunity. Cell-mediated immunity may also be generated, marked by the presence of CD4+ Th1 and CD8+ cells. Furthermore, the immunity generated at the mucosal site is transported to the distal mucosal site as well as to systemic tissues. An understanding of the molecular basis of the mucosal immune system provides a unique platform for designing a mucosal vaccine. Coadministration of immunostimulatory molecules further accelerates functioning of the immune system. Mimicking receptor-mediated binding of the pathogen may be achieved by direct conjugation of antigen with an immunostimulatory molecule or encapsulation in a carrier followed by anchoring of a ligand having affinity to the cells of the mucosal immune system. Nanotechnology has played a significant role in mucosal vaccine development and among the available options liposomes are the most promising. Liposomes are phospholipid bilayered vesicles that can encapsulate protein as well as DNA-based vaccines and offer coencapsulation of adjuvant along with the antigen. At the same, time ligand-conjugated liposomes augment interaction of antigen with the cells of the mucosal immune system and thereby serve as suitable candidates for the mucosal delivery of vaccines. This article exhaustively explores strategies involved in the generation of mucosal immunity and also provides an insight to the progress that has been made in the development of liposome-based mucosal vaccine.
Collapse
Affiliation(s)
- Shailja Tiwari
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh 470003, India
| | - Govind P Agrawal
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh 470003, India
| | | |
Collapse
|
44
|
Cheng HC, Chang CY, Hsieh FI, Yeh JJ, Chien MY, Pan RN, Deng MC, Liu DZ. Effects of tremella–alginate–liposome encapsulation on oral delivery of inactivated H5N3 vaccine. J Microencapsul 2010; 28:55-61. [DOI: 10.3109/02652048.2010.523796] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
45
|
Heurtault B, Frisch B, Pons F. Liposomes as delivery systems for nasal vaccination: strategies and outcomes. Expert Opin Drug Deliv 2010; 7:829-44. [PMID: 20459361 DOI: 10.1517/17425247.2010.488687] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Among the particulate systems that have been envisaged in vaccine delivery, liposomes are very attractive. These phospholipid vesicles can indeed deliver a wide range of molecules. They have been shown to enhance considerably the immunogenicity of weak protein antigens or synthetic peptides. Also, they offer a wide range of pharmaceutical options for the design of vaccines. In the past decade, the nasal mucosa has emerged as an effective route for vaccine delivery, together with the opportunity to develop non-invasive approaches in vaccination. AREAS COVERED IN THIS REVIEW This review focuses on the recent strategies and outcomes that have been developed around the use of liposomes in nasal vaccination. WHAT THE READER WILL GAIN The various formulation parameters, including lipid composition, size, charge and mucoadhesiveness, that have been investigated in the design of liposomal vaccine candidates dedicated to nasal vaccination are outlined. Also, an overview of the immunological and protective responses obtained with the developed formulations is presented. TAKE HOME MESSAGE This review illustrates the high potential of liposomes as nasal vaccine delivery systems.
Collapse
Affiliation(s)
- Béatrice Heurtault
- Equipe de Biovectorologie, Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS/Université de Strasbourg, Faculté de Pharmacie, 74, route du Rhin, 67401 Illkirch Cedex, France.
| | | | | |
Collapse
|
46
|
Tiwari B, Agarwal A, Kharya AK, Lariya N, Saraogi G, Agrawal H, Agrawal GP. Immunoglobulin immobilized liposomal constructs for transmucosal vaccination through nasal route. J Liposome Res 2010; 21:181-93. [PMID: 20626315 DOI: 10.3109/08982104.2010.498003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The aim of the present investigation was to evaluate the prospective of surface-engineered vesicular carriers for mucosal immunization via the nasal route. IgG antibody was immobilized on the surface of hepatitis B surface antigen (HBsAg) antigen-loaded liposomes. The developed formulations were characterized on the basis of physicochemical parameters, such as morphology, particle size, polydispersity index, entrapment efficiency, and zeta potential. Liposomal formulations were then evaluated for in-process antigen stability and storage stability. In vivo studies were conducted to visualize targeting potential, localization pattern, and immunogenicity. In addition, immune response was compared with alum-HBsAg vaccine injected intramuscularly. The serum anti-HBsAg titer, obtained from the postnasal administration of IgG-coupled liposomes, was significantly higher than plain liposomes. Moreover, IgG-coupled liposomes generated both humoral (i.e., systemic and mucosal) and cellular immune responses upon nasal administration, while the alum-adsorbed antigen displayed neither cellular (cytokine level) nor mucosal (IgA) response. The formulation also displayed enhanced transmucosal transport, improved in vitro stability, and effective immunoadjuvant property. To conclude, IgG antibody-coupled liposomes may serve as novel carriers to augment the secretory immune response of antigen encapsulated in the liposomes, apparently by escalating liposome uptake via M cells, thereby rationalizing their use as a carrier adjuvant for nasal subunit vaccines.
Collapse
Affiliation(s)
- Brajesh Tiwari
- Department of Pharmaceutical Sciences, Pharmaceutics Research Laboratory, Dr. H.S. Gour University, Sagar, India
| | | | | | | | | | | | | |
Collapse
|