1
|
Su DD, Gervais V, Ulrich S, Barboiu M. Complexation Preferences of Dynamic Constitutional Frameworks as Adaptive Gene Vectors. Chemistry 2023; 29:e202203062. [PMID: 36345945 PMCID: PMC10108089 DOI: 10.1002/chem.202203062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/10/2022]
Abstract
The growing applications of therapeutic nucleic acids requires the concomitant development of vectors that are optimized to complex one type of nucleic acid, forming nanoparticles suitable for further trafficking and delivery. While fine-tuning a vector by molecular engineering to obtain a particular nanoscale organization at the nanoparticle level can be a challenging endeavor, we turned the situation around and instead screened the complexation preferences of dynamic constitutional frameworks toward different types of DNAs. Dynamic constitutional frameworks (DCF) are recently-identified vectors by our group that can be prepared in a versatile manner through dynamic covalent chemistry. Herein, we designed and synthesized 40 new DCFs that vary in hydrophilic/hydrophobic balance, number of cationic headgroups. The results of DNA complexation obtained through gel electrophoresis and fluorescent displacement assays reveal binding preferences of different DCFs toward different DNAs. The formation of compact spherical architectures with an optimal diameter of 100-200 nm suggests that condensation into nanoparticles is more effective for longer PEG chains and PEI groups that induce a better binding performance in the presence of DNA targets.
Collapse
Affiliation(s)
- Dan-Dan Su
- Institut Européen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM-CNRS, Place E. Bataillon CC047, Montpellier, 34095, France.,Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM, 34095, Montpellier, France
| | - Virginie Gervais
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM, 34095, Montpellier, France
| | - Mihail Barboiu
- Institut Européen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM-CNRS, Place E. Bataillon CC047, Montpellier, 34095, France
| |
Collapse
|
2
|
Zhou H, Liu H, Zhang Y, Xin Y, Huang C, Li M, Zhao X, Ding P, Liu Z. "PFH/AGM-CBA/HSV-TK/LIPOSOME-Affibody": Novel Targeted Nano Ultrasound Contrast Agents for Ultrasound Imaging and Inhibited the Growth of ErbB2-Overexpressing Gastric Cancer Cells. Drug Des Devel Ther 2022; 16:1515-1530. [PMID: 35611358 PMCID: PMC9124479 DOI: 10.2147/dddt.s351623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/04/2022] [Indexed: 12/26/2022] Open
Abstract
Objective Gastric cancer is one of the most lethal malignancies in the world. However, the current research on the diagnosis and treatment of nano-ultrasound contrast agents in the field of tumor is mostly focused on breast cancer, ovarian cancer, prostate cancer, liver cancer, etc. Due to the interference of gas in the stomach, there is no report on the treatment of gastric cancer. Herpes simplex virus thymidine kinase/ganciclovir (HSV-TK/GCV) therapy system is the most mature tumor suicide gene in cancer treatment. At the same time, in order to improve its safety and efficiency, we designed a gastric tumor targeted ultrasound-triggered phase-transition nano ultrasound contrast agent PFH/AGM-CBA/HSV-TK/Liposome (PAHL)-Affibody complex. Methods In our study, guanidinylated SS-PAAs polymer poly(agmatine/N, N′-cystamine-bis-acrylamide) (AGM-CBA) was used as a nuclear localization vector of suicide gene to form a polyplex, perfluorohexane (PFH) was used as ultrasound contrast agent, liposomes were used to encapsulate perfluorohexane droplets and the polyplexes of AGM-CBA/HSV-TK, and affibody molecules were conjugated to the prepared PAHL in order to obtain a specific targeting affinity to human epidermal growth factor receptor type 2 (ErbB2) at gastric cancer cells. With the aid of ultrasound targeted microbubble destruction technology and the nuclear localization effect of AGM-CBA vector, the transfection efficiency of the suicide gene in gastric cancer cells was significantly increased, leading to significant apoptosis of gastric cancer cells. Results It was shown that PAHL-Affibody complex was nearly spherical with an average diameter of 560 ± 28.9 nm, having higher and specific affinity to ErbB2 (+) gastric cells. In vitro experiments further confirmed that PAHL could target gastric cancer cells expressing ErbB2. In a contrast-enhanced ultrasound scanning study, the prepared ultrasound-triggered phase-change nano-ultrasound contrast agent, PAHL, showed improved ultrasound enhancement effects. With the application of the low-frequency ultrasound, the gene transfection efficiency of PAHL was significantly improved, thereby inducing significant apoptosis in gastric cancer cells. Conclusion This study constructs PFH/AGM-CBA/HSV-TK/Liposome-Affibody nano ultrasound contrast agent, which provides new ideas for the treatment strategy of ErbB2-positive gastric cancer and provides some preliminary experimental basis for its inhibitory effect.
Collapse
Affiliation(s)
- Houren Zhou
- Ultrasound Department, The Second Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Hui Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Yue Zhang
- Ultrasound Department, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Ying Xin
- Ultrasound Department, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Chi Huang
- Ultrasound Department, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Mingzhong Li
- School of Pharmacy, De Montfort University, Leicester, LE1 9BH, UK
| | - Xiaoyun Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Pingtian Ding
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Zhijun Liu
- Ultrasound Department, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
3
|
Jiang X, Fu J, Zhong J, Li X, Wang H, Zhong S, Wei Y, Zhao X, Chen X, Zhou Y, Du L, Ye G, Zhao J, Huang Y. Guanidinylated Cyclic Synthetic Polypeptides Can Effectively Deliver siRNA by Mimicking the Biofunctions of Both Cell-Penetrating Peptides and Nuclear Localization Signal Peptides. ACS Macro Lett 2021; 10:767-773. [PMID: 35549206 DOI: 10.1021/acsmacrolett.1c00236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Preventing endosomal entrapment of gene/vector nanocomplexes (NCs) remains a challenge for highly effective siRNA delivery. To address this problem, guanidinylated cyclic synthetic polypeptides (GCSPs) were synthesized using an efficient and easy method. GCSPs can condense siRNAs into NCs with an encapsulation efficiency of approximately 90%, over twice the effectiveness of Lipofectamine2000 (Lipo2000). The NCs can also mediate luciferase knockdown in HeLa cells with a silencing efficiency of 80%, nearly 2- and 1.1-fold that of Lipo2000 and PEI, respectively. More importantly, the NCs can enter cells by mimicking the bioactivity of cell-penetrating peptides (CPPs). NCs can also exert a nuclear localized function similar to nuclear localization signal peptides (NLSPs). Both biofunctions are helpful for preventing the common endosomal entrapment of NCs and greatly enhance the efficiency of siRNA delivery.
Collapse
Affiliation(s)
- Xinlin Jiang
- The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Jijun Fu
- The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Junyang Zhong
- The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xin Li
- The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - He Wang
- Center of Cancer Research, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Songjing Zhong
- The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yinhui Wei
- The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiaoya Zhao
- The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xing Chen
- School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Yi Zhou
- The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Lingran Du
- The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Guodong Ye
- The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Jing Zhao
- The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yugang Huang
- The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
4
|
Zhao J, Ullah I, Gao B, Guo J, Ren XK, Xia S, Zhang W, Feng Y. Agmatine-grafted bioreducible poly(l-lysine) for gene delivery with low cytotoxicity and high efficiency. J Mater Chem B 2021; 8:2418-2430. [PMID: 32115589 DOI: 10.1039/c9tb02641j] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Bioreducible cationic polymers have gained considerable attention in gene delivery due to their low cytotoxicity and high efficiency. In the present work, we reported a cationic polymer, poly(disulfide-l-lysine)-g-agmatine (denoted as SSL-AG), and evaluated its ability to transfer pEGFP-ZNF580 plasmid (pZNF580) into human umbilical vein endothelial cells (HUVECs). This SSL-AG polymeric carrier efficiently condensed pZNF580 into positively charged particles (<200 nm) through electrostatic interaction. This carrier also exhibited excellent buffering capacity in the physiological environment, good pDNA protection against enzymatic degradation and rapid pDNA release in a highly reducing environment mainly because of the responsive cleavage of disulfide bonds in the polymer backbone. The hemolysis assay and in vitro cytotoxicity assay suggested that the SSL-AG carrier and corresponding gene complexes possessed both good hemocompatibility and great cell viability in HUVECs. The cellular uptake of the SSL-AG/Cy5-oligonucleotide group was 3.6 times that of the poly(l-lysine)/Cy5-oligonucleotide group, and its mean fluorescence intensity value was even higher than that of the PEI 25 kDa/Cy5-oligonucleotide group. Further, the intracellular trafficking results demonstrated that the SSL-AG/Cy5-oligonucleotide complexes exhibited a high nucleus co-localization rate (CLR) value (36.0 ± 2.8%, 3.4 times that of the poly (l-lysine)/Cy5-oligonucleotide group, 1.6 times that of the poly(disulfide-l-lysine)-g-butylenediamine/Cy5-oligonucleotide group) at 24 h, while the endo/lysosomal CLR value was relatively low. This suggested that SSL-AG successfully delivered plasmid into HUVECs with high cellular uptake, rapid endosomal escape and efficient nuclear accumulation owing to the structural advantages of the bioreducible and agmatine groups. In vitro transfection assay also verified the enhanced transfection efficiency in the SSL-AG/pZNF580 group. Furthermore, the results of CCK-8, cell migration and in vitro/vivo angiogenesis assays revealed that pZNF580 delivered by SSL-AG could effectively enhance the proliferation, migration and vascularization of HUVECs. In a word, the SSL-AG polymer has great potential as a safe and efficient gene carrier for gene therapy.
Collapse
Affiliation(s)
- Jing Zhao
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China. and Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China
| | - Ihsan Ullah
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China.
| | - Bin Gao
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China. and Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China
| | - Jintang Guo
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China. and Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China
| | - Xiang-Kui Ren
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China. and Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Shihai Xia
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital, Logistics University of People's Armed Police Force, Chenglin Road 220, Tianjin 300162, China
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology, Logistics University of People's Armed Police Force, Chenglin Road 220, Tianjin 300162, China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China. and Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
5
|
Gu Y, Chen X, Zhang H, Wang H, Chen H, Huang S, Xu Y, Zhang Y, Wu X, Chen J. Study on the cellular internalization mechanisms and in vivo anti-bone metastasis prostate cancer efficiency of the peptide T7-modified polypeptide nanoparticles. Drug Deliv 2020; 27:161-169. [PMID: 31913730 PMCID: PMC6968257 DOI: 10.1080/10717544.2019.1709923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/17/2019] [Accepted: 12/24/2019] [Indexed: 01/12/2023] Open
Abstract
Bone-metastasis prostate cancer (BMPCa)-targeting gene therapy is gaining increasing concern in recent years. The peptide T7-modified polypeptide nanoparticles for delivery DNA (CRD-PEG-T7/pPMEPA1) was prepared as our previous study. However, the feasibility of CRD-PEG-T7/pPMEPA1 for BMPCa treatment, the mechanisms underlying cellular uptake, anti-BMPCa effect, and administration safety requires further research. LNCaP cells treated with endocytosis inhibitors and excessive T7 under different culture condition were carried out to investigate the mechanisms of cellular uptake of the CRD-PEG-T7-pPMEPA1. A transwell assay was applied to evaluate the cell migration ability. Besides, the tumor volume and survival rates of the PCa xenograft mice model were recorded to estimate the anti-tumor effect. In addition, the weight profiles of the PCa tumor-bearing mice, the blood chemistry, and the HE analysis of visceral organs and tumor was conducted to investigate the administration safety of CRD-PEG-T7/pPMEPA1. The results showed that PCa cellular uptake was decreased after treating with excessive free T7, endocytosis inhibitors and lower incubation temperature. Besides, CRD-PEG-T7/pPMEPA1 could inhibit the LNCaP cells chemotaxis and tumor growth. In addition, the survival duration of the PCa tumor-bearing mice treating with CRD-PEG-T7/pPMEPA1 was significantly prolonged with any systemic toxicity or damage to the organs. In conclusion, this research proposes a promising stratagem for treatment BMPCa by providing the biocompatible and effective carrier for delivery DNA therapeutic agents.
Collapse
Affiliation(s)
- Yongwei Gu
- Department of Pharmacy, Fujian University of
Traditional Chinese Medicine, Fuzhou, China
- School of Pharmacy, Second Military Medical
University, Shanghai, China
| | - Xinmei Chen
- Department of Pharmacy, Fujian University of
Traditional Chinese Medicine, Fuzhou, China
| | - Haiyan Zhang
- Department of Pharmacy, Fujian University of
Traditional Chinese Medicine, Fuzhou, China
| | - Heyi Wang
- Department of Pharmacy, Inner Mongolia Medical
University, Huhhot, China
| | - Hang Chen
- Department of Pharmacy, Fujian University of
Traditional Chinese Medicine, Fuzhou, China
| | - Sifan Huang
- Department of Pharmacy, Fujian University of
Traditional Chinese Medicine, Fuzhou, China
| | - Youfa Xu
- Shanghai Wei Er Biopharmaceutical Technology
Co., Ltd, Shanghai, China
| | - Yuansheng Zhang
- Shanghai Wei Er Biopharmaceutical Technology
Co., Ltd, Shanghai, China
| | - Xin Wu
- School of Pharmacy, Second Military Medical
University, Shanghai, China
- Shanghai Wei Er Biopharmaceutical Technology
Co., Ltd, Shanghai, China
| | - Jianming Chen
- Department of Pharmacy, Fujian University of
Traditional Chinese Medicine, Fuzhou, China
- Department of Pharmacy, Inner Mongolia Medical
University, Huhhot, China
| |
Collapse
|
6
|
Charbe NB, Amnerkar ND, Ramesh B, Tambuwala MM, Bakshi HA, Aljabali AA, Khadse SC, Satheeshkumar R, Satija S, Metha M, Chellappan DK, Shrivastava G, Gupta G, Negi P, Dua K, Zacconi FC. Small interfering RNA for cancer treatment: overcoming hurdles in delivery. Acta Pharm Sin B 2020; 10:2075-2109. [PMID: 33304780 PMCID: PMC7714980 DOI: 10.1016/j.apsb.2020.10.005] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/24/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
In many ways, cancer cells are different from healthy cells. A lot of tactical nano-based drug delivery systems are based on the difference between cancer and healthy cells. Currently, nanotechnology-based delivery systems are the most promising tool to deliver DNA-based products to cancer cells. This review aims to highlight the latest development in the lipids and polymeric nanocarrier for siRNA delivery to the cancer cells. It also provides the necessary information about siRNA development and its mechanism of action. Overall, this review gives us a clear picture of lipid and polymer-based drug delivery systems, which in the future could form the base to translate the basic siRNA biology into siRNA-based cancer therapies.
Collapse
Key Words
- 1,3-propanediol, PEG-b-PDMAEMA-b-Ppy
- 2-propylacrylicacid, PAH-b-PDMAPMA-b-PAH
- APOB, apolipoprotein B
- AQP-5, aquaporin-5
- AZEMA, azidoethyl methacrylate
- Atufect01, β-l-arginyl-2,3-l-diaminopropionicacid-N-palmityl-N-oleyl-amide trihydrochloride
- AuNPs, gold nanoparticles
- B-PEI, branched polyethlenimine
- BMA, butyl methacrylate
- CFTR, cystic fibrosis transmembrane conductance regulator gene
- CHEMS, cholesteryl hemisuccinate
- CHOL, cholesterol
- CMC, critical micelles concentration
- Cancer
- DC-Chol, 3β-[N-(N′,N′-dimethylaminoethane)carbamoyl]cholesterol
- DMAEMA, 2-dimethylaminoethyl methacrylate
- DNA, deoxyribonucleic acid
- DOPC, dioleylphosphatidyl choline
- DOPE, dioleylphosphatidyl ethanolamine
- DOTAP, N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium methyl-sulfate
- DOTMA, N-[1-(2,3-dioleyloxy)propy]-N,N,N-trimethylammoniumchloride
- DOX, doxorubicin
- DSGLA, N,N-dis-tearyl-N-methyl-N-2[N′-(N2-guanidino-l-lysinyl)] aminoethylammonium chloride
- DSPC, 1,2-distearoyl-sn-glycero-3-phosphocholine
- DSPE, 1,2-distearoyl-sn-glycero-3-phosphorylethanolamine
- DSPE-MPEG, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (ammonium salt)
- DSPE-PEG-Mal: 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[maleimide(polyethylene glycol)-2000] (mmmonium salt), EPR
- Liposomes
- Micelles
- N-acetylgalactosamine, HIF-1α
- Nanomedicine
- PE-PCL-b-PNVCL, pentaerythritol polycaprolactone-block-poly(N-vinylcaprolactam)
- PLA, poly-l-arginine
- PLGA, poly lactic-co-glycolic acid
- PLK-1, polo-like kinase 1
- PLL, poly-l-lysine
- PPES-b-PEO-b-PPES, poly(4-(phenylethynyl)styrene)-block-PEO-block-poly(4-(phenylethynyl)styrene)
- PTX, paclitaxel
- PiRNA, piwi-interacting RNA
- Polymer
- RES, reticuloendothelial system
- RGD, Arg-Gly-Asp peptide
- RISC, RNA-induced silencing complex
- RNA, ribonucleic acid
- RNAi, RNA interference
- RNAse III, ribonuclease III enzyme
- SEM, scanning electron microscope
- SNALP, stable nucleic acid-lipid particles
- SiRNA, short interfering rNA
- Small interfering RNA (siRNA)
- S–Au, thio‒gold
- TCC, transitional cell carcinoma
- TEM, transmission electron microscopy
- Tf, transferrin
- Trka, tropomyosin receptor kinase A
- USPIO, ultra-small superparamagnetic iron oxide nanoparticles
- UV, ultraviolet
- VEGF, vascular endothelial growth factor
- ZEBOV, Zaire ebola virus
- enhanced permeability and retention, Galnac
- hypoxia-inducible factor-1α, KSP
- kinesin spindle protein, LDI
- lipid-protamine-DNA/hyaluronic acid, MDR
- lysine ethyl ester diisocyanate, LPD/LPH
- messenger RNA, MTX
- methotrexate, NIR
- methoxy polyethylene glycol-polycaprolactone, mRNA
- methoxypoly(ethylene glycol), MPEG-PCL
- micro RNA, MPEG
- multiple drug resistance, MiRNA
- nanoparticle, NRP-1
- near-infrared, NP
- neuropilin-1, PAA
- poly(N,N-dimethylacrylamide), PDO
- poly(N-isopropyl acrylamide), pentaerythritol polycaprolactone-block-poly(N-isopropylacrylamide)
- poly(acrylhydrazine)-block-poly(3-dimethylaminopropyl methacrylamide)-block-poly(acrylhydrazine), PCL
- poly(ethylene glycol)-block-poly(2-dimethylaminoethyl methacrylate)-block poly(pyrenylmethyl methacrylate), PEG-b-PLL
- poly(ethylene glycol)-block-poly(l-lysine), PEI
- poly(ethylene oxide)-block-poly(2-(diethylamino)ethyl methacrylate)-stat-poly(methoxyethyl methacrylate), PEO-b-PCL
- poly(ethylene oxide)-block-poly(Ε-caprolactone), PE-PCL-b-PNIPAM
- poly(Ε-caprolactone), PCL-PEG
- poly(Ε-caprolactone)-polyethyleneglycol-poly(l-histidine), PCL-PEI
- polycaprolactone-polyethyleneglycol, PCL-PEG-PHIS
- polycaprolactone-polyethylenimine, PDMA
- polyethylenimine, PEO-b-P(DEA-Stat-MEMA
Collapse
Affiliation(s)
- Nitin Bharat Charbe
- Departamento de Quimica Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Sri Adichunchunagiri College of Pharmacy, Sri Adichunchunagiri University, BG Nagar, Karnataka 571418, India
| | - Nikhil D. Amnerkar
- Adv V. R. Manohar Institute of Diploma in Pharmacy, Nagpur, Maharashtra 441110, India
| | - B. Ramesh
- Sri Adichunchunagiri College of Pharmacy, Sri Adichunchunagiri University, BG Nagar, Karnataka 571418, India
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| | - Hamid A. Bakshi
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| | - Alaa A.A. Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid 21163, Jordan
| | - Saurabh C. Khadse
- Department of Pharmaceutical Chemistry, R.C. Patel Institute of Pharmaceutical Education and Research, Dist. Dhule, Maharashtra 425 405, India
| | - Rajendran Satheeshkumar
- Departamento de Quimica Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Saurabh Satija
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411 Punjab, India
| | - Meenu Metha
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411 Punjab, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Garima Shrivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur 302017, India
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) and School of Biomedical Sciences and Pharmacy, University of Newcastle, NSW 2308, Australia
| | - Flavia C. Zacconi
- Departamento de Quimica Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 4860, Chile
| |
Collapse
|
7
|
Zhang X, Fan J, Lee CS, Kim S, Chen C, Lee M. Supramolecular Hydrogels Based on Nanoclay and Guanidine-Rich Chitosan: Injectable and Moldable Osteoinductive Carriers. ACS APPLIED MATERIALS & INTERFACES 2020; 12:16088-16096. [PMID: 32175721 PMCID: PMC7161535 DOI: 10.1021/acsami.0c01241] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Supramolecular hydrogels have great potential as biomaterials for tissue engineering applications or vehicles for delivering therapeutic agents. Herein, a self-healing and pro-osteogenic hydrogel system is developed based on the self-assembly of laponite nanosheets and guanidinylated chitosan, where laponite works as a physical crosslinker with osteoinductive properties to form a network structure with a cationic guanidine group on chitosan chains. The hydrogels can be prepared with varying ratios of chitosan to laponite and display self-healing and injectable properties because of supramolecular forces as well as osteoinductive activity due to nanoclay. They enhance cell adhesion and promote osteogenic differentiation of mesenchymal stem cells by activating the Wnt/β-catenin signaling pathway. In addition, the hydrogel is used as a malleable carrier for the demineralized bone matrix (DBM). The loading of the DBM does not affect the self-healing and injectable natures of hydrogels while enhancing the osteogenic capacity, indicating that advanced allograft bone formulations with carriers can facilitate handling and bone healing. This work provides the first demonstration of therapeutic supramolecular design for the treatment of bone defects.
Collapse
Affiliation(s)
- Xiao Zhang
- Division of Advanced Prosthodontics, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, California 90095, United States
| | - Jiabing Fan
- Division of Advanced Prosthodontics, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, California 90095, United States
| | - Chung-Sung Lee
- Division of Advanced Prosthodontics, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, California 90095, United States
| | - Soyon Kim
- Division of Advanced Prosthodontics, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, California 90095, United States
| | - Chen Chen
- Division of Advanced Prosthodontics, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, California 90095, United States
| | - Min Lee
- Division of Advanced Prosthodontics, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California at Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| |
Collapse
|
8
|
Xing H, Cheng L, Lu M, Liu H, Lang L, Yang T, Zhao X, Xu H, Yang L, Ding P. A biodegradable poly(amido amine) based on the antimicrobial polymer polyhexamethylene biguanide for efficient and safe gene delivery. Colloids Surf B Biointerfaces 2019; 182:110355. [DOI: 10.1016/j.colsurfb.2019.110355] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/05/2019] [Accepted: 07/07/2019] [Indexed: 01/16/2023]
|
9
|
Liu S, Gao Y, Zhou D, Zeng M, Alshehri F, Newland B, Lyu J, O'Keeffe-Ahern J, Greiser U, Guo T, Zhang F, Wang W. Highly branched poly(β-amino ester) delivery of minicircle DNA for transfection of neurodegenerative disease related cells. Nat Commun 2019; 10:3307. [PMID: 31341171 PMCID: PMC6656726 DOI: 10.1038/s41467-019-11190-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 06/24/2019] [Indexed: 11/08/2022] Open
Abstract
Current therapies for most neurodegenerative disorders are only symptomatic in nature and do not change the course of the disease. Gene therapy plays an important role in disease modifying therapeutic strategies. Herein, we have designed and optimized a series of highly branched poly(β-amino ester)s (HPAEs) containing biodegradable disulfide units in the HPAE backbone (HPAESS) and guanidine moieties (HPAESG) at the extremities. The optimized polymers are used to deliver minicircle DNA to multipotent adipose derived stem cells (ADSCs) and astrocytes, and high transfection efficiency is achieved (77% in human ADSCs and 52% in primary astrocytes) whilst preserving over 90% cell viability. Furthermore, the top-performing candidate mediates high levels of nerve growth factor (NGF) secretion from astrocytes, causing neurite outgrowth from a model neuron cell line. This synergistic gene delivery system provides a viable method for highly efficient non-viral transfection of ADSCs and astrocytes.
Collapse
Affiliation(s)
- Shuai Liu
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, 4, Dublin, Ireland
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Yongsheng Gao
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, 4, Dublin, Ireland
| | - Dezhong Zhou
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, 4, Dublin, Ireland.
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, 710049, Xi'an, China.
| | - Ming Zeng
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, 4, Dublin, Ireland
| | - Fatma Alshehri
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, 4, Dublin, Ireland
| | - Ben Newland
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, CF103AT, Cardiff, UK
| | - Jing Lyu
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, 4, Dublin, Ireland
| | - Jonathan O'Keeffe-Ahern
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, 4, Dublin, Ireland
| | - Udo Greiser
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, 4, Dublin, Ireland
| | - Tianying Guo
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, China.
| | - Fengzhi Zhang
- School of Pharmaceutical Science, Zhejiang University of Technology, 310014, Hangzhou, China
| | - Wenxin Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, 4, Dublin, Ireland.
- Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China.
| |
Collapse
|
10
|
Liu H, Sun Y, Lang L, Yang T, Zhao X, Cai C, Liu Z, Ding P. Nuclear localization signal peptide enhances transfection efficiency and decreases cytotoxicity of poly(agmatine/N,N'-cystamine-bis-acrylamide)/pDNA complexes. J Cell Biochem 2019; 120:16967-16977. [PMID: 31099062 DOI: 10.1002/jcb.28958] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 11/08/2022]
Abstract
At present, nonviral gene vectors develop rapidly, especially cationic polymers. A series of bioreducible poly(amide amine) (PAA) polymers containing guanidino groups have been synthesized by our research team. These novel polymer vectors demonstrated significantly higher transfection efficiency and lower cytotoxicity than polyethylenimine (PEI)-25kDa. However, compared with viral gene vectors, relatively low transfection efficiency, and high cytotoxicity are still critical problems confronting these polymers. In this study, poly(agmatine/N,N'-cystamine-bis-acrylamide) p(AGM-CBA) was selected as a model polymer, nuclear localization signal (NLS) peptide PV7 (PKKKRKV) with good biocompatibility and nuclear localization effect was introduced to investigate its impact on transfection efficiency and cytotoxicity. NLS peptide-mediated in vitro transfection was performed in NIH 3T3 cells by directly incorporating NLS peptide with the complexes of p(AGM-CBA)/pDNA. Meanwhile, the transfection efficiency and cytotoxicity of these complexes were evaluated. The results showed that the transfection efficiency could be increased by 5.7 times under the appropriate proportion, and the cytotoxicity brought by the polymer vector could be significantly reduced.
Collapse
Affiliation(s)
- Hui Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yanping Sun
- School of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, China
| | - Lang Lang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Tianzhi Yang
- School of Pharmacy, Husson University, Bangor, Maine, USA
| | - Xiaoyun Zhao
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Cuifang Cai
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhijun Liu
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, China
| | - Pingtian Ding
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
11
|
Amphoteric poly(amido amine)s with adjustable balance between transfection efficiency and cytotoxicity for gene delivery. Colloids Surf B Biointerfaces 2019; 175:10-17. [DOI: 10.1016/j.colsurfb.2018.11.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/24/2018] [Accepted: 11/19/2018] [Indexed: 01/31/2023]
|
12
|
Xing H, Lu M, Yang T, Liu H, Sun Y, Zhao X, Xu H, Yang L, Ding P. Structure-function relationships of nonviral gene vectors: Lessons from antimicrobial polymers. Acta Biomater 2019; 86:15-40. [PMID: 30590184 DOI: 10.1016/j.actbio.2018.12.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/22/2018] [Accepted: 12/21/2018] [Indexed: 01/13/2023]
Abstract
In recent years, substantial advances have been achieved in the design and synthesis of nonviral gene vectors. However, lack of effective and biocompatible vectors still remains a major challenge that hinders their application in clinical settings. In the past decade, there has been a rapid expansion of cationic antimicrobial polymers, due to their potent, rapid, and broad-spectrum biocidal activity against resistant microbes, and biocompatible features. Given that antimicrobial polymers share common features with nonviral gene vectors in various aspects, such as membrane affinity, functional groups, physicochemical characteristics, and unique macromolecular architectures, these polymers may provide us with inspirations to overcome challenges in the design of novel vectors toward more safe and efficient gene delivery in clinic. Building off these observations, we provide here an overview of the structure-function relationships of polymers for both antimicrobial applications and gene delivery by elaborating some key structural parameters, including functional groups, charge density, hydrophobic/hydrophilic balance, MW, and macromolecular architectures. By borrowing a leaf from antimicrobial agents, great advancement in the development of newer nonviral gene vectors with high transfection efficiency and biocompatibility will be more promising. STATEMENT OF SIGNIFICANCE: The development of gene delivery is still in the preclinical stage for the lack of effective and biocompatible vectors. Given that antimicrobial polymers share common features with gene vectors in various aspects, such as membrane affinity, functional groups, physicochemical characteristics, and unique macromolecular architectures, these polymers may provide us with inspirations to overcome challenges in the design of novel vectors toward more safe and efficient gene delivery in clinic. In this review, we systematically summarized the structure-function relationships of antimicrobial polymers and gene vectors, with which the design of more advanced nonviral gene vectors is anticipated to be further boosted in the future.
Collapse
Affiliation(s)
- Haonan Xing
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Mei Lu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Tianzhi Yang
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, Husson University, Bangor, ME, USA
| | - Hui Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yanping Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaoyun Zhao
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Hui Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Li Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China.
| | - Pingtian Ding
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
13
|
Yu QY, Guo Y, Zhang J, Huang Z, Yu XQ. Zn(ii) coordination to cyclen-based polycations for enhanced gene delivery. J Mater Chem B 2019; 7:451-459. [DOI: 10.1039/c8tb02414f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Zn2+ coordination greatly improved the gene transfection efficiency of cyclen-based polycations.
Collapse
Affiliation(s)
- Qing-Ying Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Yu Guo
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Ji Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Zheng Huang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| |
Collapse
|
14
|
Abstract
Recently greater emphasis has been given to combination therapy for generating synergistic effects of treating cancer. Recent studies on thiol-sensitive nanocarriers for the delivery of drug or gene have shown promising results. In this review, we will examine the rationale and advantage in using nanocarriers for the combined delivery of different anticancer drugs and biologics. Here, we also discuss the role of nanocarriers, particularly redox-sensitive polymers in evading or inhibiting the efflux pump in cancer and how they modulate the sensitivity of cancer cells. The review aims to provide a good understanding of the new pattern of cancer treatment and key concerns for designing nanomedicine of synergistic combinations for cancer therapy.
Collapse
|
15
|
Facile synthesis of semi-library of low charge density cationic polyesters from poly(alkylene maleate)s for efficient local gene delivery. Biomaterials 2018; 178:559-569. [DOI: 10.1016/j.biomaterials.2018.03.050] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/15/2018] [Accepted: 03/29/2018] [Indexed: 12/20/2022]
|
16
|
Zhang J, Wang C, Lu M, Xing H, Yang T, Cai C, Zhao X, Wei M, Yu J, Ding P. Intracellular distribution and internalization pathways of guanidinylated bioresponsive poly(amido amine)s in gene delivery. Asian J Pharm Sci 2018; 13:360-372. [PMID: 32104410 PMCID: PMC7032094 DOI: 10.1016/j.ajps.2018.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 11/26/2017] [Accepted: 02/26/2018] [Indexed: 12/11/2022] Open
Abstract
Guanidinylated bioresponsive poly(amido amine)s polymers, CAR-CBA and CHL-CBA, were synthesized by Michael-type addition reaction between guanidine hydrochloride (CAR) or chlorhexidine (CHL) and N,N'-cystaminebisacrylamide (CBA). Previous studies have shown that both polymers had high transfection efficiencies as gene delivery carriers. In this study, we investigated the nucleolus localization abilities and cellular internalization pathways of these two polymers in gene delivery. Each polymer condensed plasmid DNA (pDNA) and formed nanoparticle complexes, and then their transfection studies were performed in MCF-7 cells. Both complexes were found enriched in nucleolus after cellular transfection, and their transfection efficiencies were significantly improved when transfection was performed on MCF-7 cells arrested at M phase. The transfection efficiency of CAR-CBA-pDNA was inhibited by chlorpromazine, and cell endosomes were disrupted after being exposed to CAR-CBA-pDNA. In regards to CHL-CBA-pDNA, its transfection efficiency was not affected by three types of endocytosis inhibitors used in the study, and CHL-CBA-pDNA showed no effect on endosomes. Cellular lactate dehydrogenase release and membrane morphology were changed after cells were transfected by the two complexes. The results indicated that both CAR-CBA and CHL-CBA polymers demonstrated good nucleolus localization abilities. It was beneficial for transfection when cells were arrested at M phase. CAR-CBA-pDNA cellular internalization was involved with clathrin-mediated endocytosis pathway, and escaping from endosomal entrapment, while the cellular uptake of CHL-CBA-pDNA occurs via clathrin- and caveolae-independent mechanism.
Collapse
Key Words
- AFM, atomic force microscopy
- CAR, guanidine hydrochloride
- CBA, N,N’-cystaminebisacrylamide
- CHL, chlorhexidine
- CPPs, cell- penetrating peptides
- Cell cycle status
- DAPI, 2-(4-Amidinophenyl)-6-indolecarbamidine dihydrochloride
- DLS, dynamic light scattering
- DMEM, Dulbecco's Modification of Eagle's medium
- DiI, 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate
- EGFP, enhanced green fluorescent protein
- Gua-SS-PAAs, guanidinylated disulfide containing poly(amido amine) polymers
- Guanidinylated poly(amido amine)s polymers
- Internalization pathways
- LDH, Lactate dehydrogenase
- NMR, nuclear magnetic resonance
- NOR, nucleolar organizing region
- Nucleolus localization
- OD, optical density
- PAAs, poly(amido, amine)s
- SS-PAAs, disulfide containing poly(amido, amine)
- pDNA, plasmid DNA
- rRNA, ribosomal RNA
Collapse
Affiliation(s)
- Jinmin Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Chunxi Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Mei Lu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Haonan Xing
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Tianzhi Yang
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, Husson University, Bangor, ME, 04401, USA
| | - Cuifang Cai
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiaoyun Zhao
- Department of Microbiology and Cell Biology, School of life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Jiankun Yu
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Pingtian Ding
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| |
Collapse
|
17
|
Zhou J, Mohamed Wali AR, Ma S, He Y, Yue D, Tang JZ, Gu Z. Tailoring the Supramolecular Structure of Guanidinylated Pullulan toward Enhanced Genetic Photodynamic Therapy. Biomacromolecules 2018; 19:2214-2226. [PMID: 29689167 DOI: 10.1021/acs.biomac.8b00273] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the progress of designing a gene carrier system, what is urgently needed is a balance of excellent safety and satisfactory efficiency. Herein, a straightforward and versatile synthesis of a cationic guanidine-decorated dendronized pullulan (OGG3P) for efficient genetic photodynamic therapy was proposed. OGG3P was able to block the mobility of DNA from a weight ratio of 2. However, G3P lacking guanidine residues could not block DNA migration until at a weight ratio of 15, revealing guanidination could facilitate DNA condensation via specific guanidinium-phosphate interactions. A zeta potential plateau (∼+23 mV) of OGG3P complexes indicated the nonionic hydrophilic hydroxyl groups in pullulan might neutralize the excessive detrimental cationic charges. There was no obvious cytotoxicity and hemolysis, but also enhancement of transfection efficiency with regard to OGG3P in comparison with that of native G3P in Hela and HEK293T cells. More importantly, we found that the uptake efficiency in Hela cells between OGG3P and G3P complexes was not markedly different. However, guanidination caused changes in uptake pathway and led to macropinocytosis pathway, which may be a crucial reason for improved transfection efficiency. After introducing a therapeutic pKillerRed-mem plasmid, OGG3P complexes achieved significantly enhanced KillerRed protein expression and ROS production under irradiation. ROS-induced cancer cells proliferation suppression was also confirmed. This study highlights the guanidine-decorated dendronized pullulan could emerge as a reliable nonviral gene carrier to specifically deliver therapeutic genes.
Collapse
Affiliation(s)
- Jie Zhou
- National Engineering Research Center for Biomaterials , Sichuan University , No. 29, Wangjiang Road , Chengdu 610065 , Sichuan , People's Republic of China
| | - Aisha Roshan Mohamed Wali
- School of Pharmacy, Faculty of Science and Engineering , University of Wolverhampton , Wulfruna Street , Wolverhampton WV1 1LY , United Kingdom
| | - Shengnan Ma
- National Engineering Research Center for Biomaterials , Sichuan University , No. 29, Wangjiang Road , Chengdu 610065 , Sichuan , People's Republic of China
| | - Yiyan He
- College of Materials Science and Engineering , Nanjing Tech University , 30 South Puzhu Road , Nanjing 211816 , People's Republic of China
| | - Dong Yue
- National Engineering Research Center for Biomaterials , Sichuan University , No. 29, Wangjiang Road , Chengdu 610065 , Sichuan , People's Republic of China
| | - James Zhenggui Tang
- School of Pharmacy, Faculty of Science and Engineering , University of Wolverhampton , Wulfruna Street , Wolverhampton WV1 1LY , United Kingdom
| | - Zhongwei Gu
- National Engineering Research Center for Biomaterials , Sichuan University , No. 29, Wangjiang Road , Chengdu 610065 , Sichuan , People's Republic of China.,College of Materials Science and Engineering , Nanjing Tech University , 30 South Puzhu Road , Nanjing 211816 , People's Republic of China
| |
Collapse
|
18
|
Wang J, Zaidi SSA, Hasnain A, Guo J, Ren X, Xia S, Zhang W, Feng Y. Multitargeting Peptide-Functionalized Star-Shaped Copolymers with Comblike Structure and a POSS-Core To Effectively Transfect Endothelial Cells. ACS Biomater Sci Eng 2018; 4:2155-2168. [DOI: 10.1021/acsbiomaterials.8b00235] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jun Wang
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
| | - Syed Saqib Ali Zaidi
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
| | - Ali Hasnain
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
| | - Jintang Guo
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin 300350, China
| | - Xiangkui Ren
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin 300350, China
| | - Shihai Xia
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital, Logistics University of People’s Armed Police Force, 220 Chenglin Road, Tianjin 300162, China
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology, Logistics University of Chinese People’s Armed Police Force, 220 Chenglin Road, Tianjin 300162, China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin 300350, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
19
|
Dréan M, Debuigne A, Jérôme C, Goncalves C, Midoux P, Rieger J, Guégan P. Poly(N-methylvinylamine)-Based Copolymers for Improved Gene Transfection. Macromol Biosci 2018; 18:e1700353. [DOI: 10.1002/mabi.201700353] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/14/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Mathilde Dréan
- Institut Parisien de Chimie Moléculaire (IPCM); Sorbonne Université, CNRS; 4 Place Jussieu 75005 Paris France
- Center for Education and Research on Macromolecules (CERM); CESAM Research Unit; University of Liege (ULg); Sart-Tilman, Allée de la Chimie 3, Bat. B6a 4000 Liège Belgium
| | - Antoine Debuigne
- Center for Education and Research on Macromolecules (CERM); CESAM Research Unit; University of Liege (ULg); Sart-Tilman, Allée de la Chimie 3, Bat. B6a 4000 Liège Belgium
| | - Christine Jérôme
- Center for Education and Research on Macromolecules (CERM); CESAM Research Unit; University of Liege (ULg); Sart-Tilman, Allée de la Chimie 3, Bat. B6a 4000 Liège Belgium
| | - Cristine Goncalves
- Centre Biophysique Moléculaire; UPR4301 CNRS; Rue Charles Sadron; 45071 Orléans Cedex 2 France
| | - Patrick Midoux
- Centre Biophysique Moléculaire; UPR4301 CNRS; Rue Charles Sadron; 45071 Orléans Cedex 2 France
| | - Jutta Rieger
- Institut Parisien de Chimie Moléculaire (IPCM); Sorbonne Université, CNRS; 4 Place Jussieu 75005 Paris France
| | - Philippe Guégan
- Institut Parisien de Chimie Moléculaire (IPCM); Sorbonne Université, CNRS; 4 Place Jussieu 75005 Paris France
| |
Collapse
|
20
|
Ardeleanu R, Dascalu AI, Neamtu A, Peptanariu D, Uritu CM, Maier SS, Nicolescu A, Simionescu BC, Barboiu M, Pinteala M. Multivalent polyrotaxane vectors as adaptive cargo complexes for gene therapy. Polym Chem 2018. [DOI: 10.1039/c7py01256j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The philosophy to design and construct polyrotaxane carriers, as efficient gene delivery systems.
Collapse
Affiliation(s)
- Rodinel Ardeleanu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers
- “Petru Poni” Institute of Macromolecular Chemistry
- 700487 Iasi
- Romania
| | - Andrei I. Dascalu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers
- “Petru Poni” Institute of Macromolecular Chemistry
- 700487 Iasi
- Romania
| | - Andrei Neamtu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers
- “Petru Poni” Institute of Macromolecular Chemistry
- 700487 Iasi
- Romania
- Regional Institute of Oncology (IRO)
| | - Dragos Peptanariu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers
- “Petru Poni” Institute of Macromolecular Chemistry
- 700487 Iasi
- Romania
| | - Cristina M. Uritu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers
- “Petru Poni” Institute of Macromolecular Chemistry
- 700487 Iasi
- Romania
| | - Stelian S. Maier
- Centre of Advanced Research in Bionanoconjugates and Biopolymers
- “Petru Poni” Institute of Macromolecular Chemistry
- 700487 Iasi
- Romania
- Department of Textile and Leather Chemical Engineering
| | - Alina Nicolescu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers
- “Petru Poni” Institute of Macromolecular Chemistry
- 700487 Iasi
- Romania
| | - Bogdan C. Simionescu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers
- “Petru Poni” Institute of Macromolecular Chemistry
- 700487 Iasi
- Romania
- Department of Natural and Synthetic Polymers
| | - Mihail Barboiu
- Adaptive Supramolecular Nanosystems Group
- Institut
- Européen des Membranes
- ENSCM/UMII/UMR-CNRS 5635
- 34095 Montpellier, Cedex 5
| | - Mariana Pinteala
- Centre of Advanced Research in Bionanoconjugates and Biopolymers
- “Petru Poni” Institute of Macromolecular Chemistry
- 700487 Iasi
- Romania
| |
Collapse
|
21
|
Budhathoki-Uprety J, Langenbacher RE, Jena PV, Roxbury D, Heller DA. A Carbon Nanotube Optical Sensor Reports Nuclear Entry via a Noncanonical Pathway. ACS NANO 2017; 11:3875-3882. [PMID: 28398031 PMCID: PMC5511501 DOI: 10.1021/acsnano.7b00176] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Single-walled carbon nanotubes are of interest in biomedicine for imaging and molecular sensing applications and as shuttles for various cargos such as chemotherapeutic drugs, peptides, proteins, and oligonucleotides. Carbon nanotube surface chemistry can be modulated for subcellular targeting while preserving photoluminescence for label-free visualization in complex biological environments, making them attractive materials for such studies. The cell nucleus is a potential target for many pathologies including cancer and infectious diseases. Understanding mechanisms of nanomaterial delivery to the nucleus may facilitate diagnostics, drug development, and gene-editing tools. Currently, there are no systematic studies to understand how these nanomaterials gain access to the nucleus. Herein, we developed a carbon nanotube based hybrid material that elucidate a distinct mechanism of nuclear translocation of a nanomaterial in cultured cells. We developed a nuclear-targeted probe via cloaking photoluminescent single-walled carbon nanotubes in a guanidinium-functionalized helical polycarbodiimide. We found that the nuclear entry of the nanotubes was mediated by the import receptor importin β without the aid of importin α and not by the more common importin α/β pathway. Additionally, the nanotube photoluminescence exhibited distinct red-shifting upon entry to the nucleus, potentially functioning as a reporter of the importin β-mediated nuclear transport process. This work delineates a noncanonical mechanism for nanomaterial delivery to the nucleus and provides a reporter for the study of nucleus-related pathologies.
Collapse
Affiliation(s)
| | - Rachel E. Langenbacher
- Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Weill Cornell Medical College, New York, New York 10065, United States
| | - Prakrit V. Jena
- Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Daniel Roxbury
- Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Daniel A. Heller
- Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Weill Cornell Medical College, New York, New York 10065, United States
| |
Collapse
|
22
|
Ullah I, Muhammad K, Akpanyung M, Nejjari A, Neve AL, Guo J, Feng Y, Shi C. Bioreducible, hydrolytically degradable and targeting polymers for gene delivery. J Mater Chem B 2017; 5:3253-3276. [PMID: 32264392 DOI: 10.1039/c7tb00275k] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recently, synthetic gene carriers have been intensively developed owing to their promising application in gene therapy and considered as a suitable alternative to viral vectors because of several benefits. But cationic polymers still face some problems like low transfection efficiency, cytotoxicity, and poor cell recognition and internalization. The emerging engineered and smart polymers can respond to some changes in the biological environment like pH change, ionic strength change and redox potential, which is beneficial for cellular uptake. Redox-sensitive disulfide based and hydrolytically degradable cationic polymers serve as gene carriers with excellent transfection efficiency and good biocompatibility owing to degradation in the cytoplasm. Additionally, biodegradable polymeric micelles with cell-targeting function are recently emerging gene carriers, especially for the transfection of endothelial cells. In this review, some strategies for gene carriers based on these bioreducible and hydrolytically degradable polymers will be illustrated.
Collapse
Affiliation(s)
- Ihsan Ullah
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Puskas JE, Sen S. Synthesis of Biodegradable Polyisobutylene Disulfides by Living Reversible Recombination Radical Polymerization (R3P): Macrocycles? Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b02397] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Judit E. Puskas
- Chemical and Biomolecular
Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Sanghamitra Sen
- Chemical and Biomolecular
Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
24
|
Liu S, Sun Z, Zhou D, Guo T. Alkylated branched poly(β-amino esters) demonstrate strong DNA encapsulation, high nanoparticle stability and robust gene transfection efficacy. J Mater Chem B 2017; 5:5307-5310. [DOI: 10.1039/c7tb00996h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Branching leads to alkylated poly(β-amino esters) with stronger DNA binding, higher nanoparticle stability, higher cellular uptake and better gene transfection performance.
Collapse
Affiliation(s)
- Shuai Liu
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
| | - Zhibing Sun
- Guangzhou Vocational College of Technology & Business
- Guangzhou
- China
| | - Dezhong Zhou
- Charles Institute of Dermatology
- School of Medicine
- University College Dublin
- Dublin 4
- Ireland
| | - Tianying Guo
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
| |
Collapse
|
25
|
Zhou D, Gao Y, O'Keeffe Ahern J, A S, Xu Q, Huang X, Greiser U, Wang W. Development of Branched Poly(5-Amino-1-pentanol-co-1,4-butanediol Diacrylate) with High Gene Transfection Potency Across Diverse Cell Types. ACS APPLIED MATERIALS & INTERFACES 2016; 8:34218-34226. [PMID: 27998152 DOI: 10.1021/acsami.6b12078] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
One of the most significant challenges in the development of polymer materials for gene delivery is to understand how topological structure influences their transfection properties. Poly(5-amino-1-pentanol-co-1,4-butanediol diacrylate) (C32) has proven to be the top-performing gene delivery vector developed to date. Here, we report the development of branched poly(5-amino-1-pentanol-co-1,4-butanediol diacrylate) (HC32) as a novel gene vector and elucidate how the topological structure affects gene delivery properties. We found that the branched structure has a big impact on gene transfection efficiency resulting in a superior transfection efficiency of HC32 in comparison to C32 with a linear structure. Mechanistic investigations illustrated that the branched structure enhanced DNA binding, leading to the formation of toroidal polyplexes with smaller size and higher cationic charge. Importantly, the branched structure offers HC32 a larger chemical space for terminal functionalization (e.g., guanidinylation) to further enhance the transfection. Moreover, the optimized HC32 is capable of transfecting a diverse range of cell types including cells that are known to be difficult to transfect such as stem cells and astrocytes with high efficiency. Our study provides a new insight into the rational design of poly(β-amino ester) (PAE) based polymers for gene delivery.
Collapse
Affiliation(s)
- Dezhong Zhou
- Charles Institute of Dermatology, University College Dublin , Belfield, Dublin 4, Ireland
| | - Yongsheng Gao
- Charles Institute of Dermatology, University College Dublin , Belfield, Dublin 4, Ireland
| | | | - Sigen A
- Charles Institute of Dermatology, University College Dublin , Belfield, Dublin 4, Ireland
| | - Qian Xu
- Charles Institute of Dermatology, University College Dublin , Belfield, Dublin 4, Ireland
| | - Xiaobei Huang
- Charles Institute of Dermatology, University College Dublin , Belfield, Dublin 4, Ireland
- College of Materials Science and Engineering, Sichuan University , Chengdu 610064, Sichuan, China
| | - Udo Greiser
- Charles Institute of Dermatology, University College Dublin , Belfield, Dublin 4, Ireland
| | - Wenxin Wang
- School of Materials Science and Engineering, Tianjin University , Tianjin 300072, China
- Charles Institute of Dermatology, University College Dublin , Belfield, Dublin 4, Ireland
| |
Collapse
|
26
|
Yu J, Zhang J, Xing H, Sun Y, Yang Z, Yang T, Cai C, Zhao X, Yang L, Ding P. Novel guanidinylated bioresponsive poly(amidoamine)s designed for short hairpin RNA delivery. Int J Nanomedicine 2016; 11:6651-6666. [PMID: 27994462 PMCID: PMC5154728 DOI: 10.2147/ijn.s115773] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Two different disulfide (SS)-containing poly(amidoamine) (PAA) polymers were constructed using guanidino (Gua)-containing monomers (ie, arginine [Arg] and agmatine [Agm]) and N,N′-cystamine bisacrylamide (CBA) by Michael-addition polymerization. In order to characterize these two Gua-SS-PAA polymers and investigate their potentials as short hairpin RNA (shRNA)-delivery carriers, pSilencer 4.1-CMV FANCF shRNA was chosen as a model plasmid DNA to form complexes with these two polymers. The Gua-SS-PAAs and plasmid DNA complexes were determined with particle sizes less than 90 nm and positive ζ-potentials under 20 mV at nucleic acid:polymer weight ratios lower than 1:24. Bioresponsive release of plasmid DNA was observed from both newly constructed complexes. Significantly lower cytotoxicity was observed for both polymer complexes compared with polyethylenimine and Lipofectamine 2000, two widely used transfection reagents as reference carriers. Arg-CBA showed higher transfection efficiency and gene-silencing efficiency in MCF7 cells than Agm-CBA and the reference carriers. In addition, the cellular uptake of Arg-CBA in MCF7 cells was found to be higher and faster than Agm-CBA and the reference carriers. Similarly, plasmid DNA transport into the nucleus mediated by Arg-CBA was more than that by Agm-CBA and the reference carriers. The study suggested that guanidine and carboxyl introduced into Gua-SS-PAAs polymers resulted in a better nuclear localization effect, which played a key role in the observed enhancement of transfection efficiency and low cytotoxicity. Overall, two newly synthesized Gua-SS-PAAs polymers demonstrated great potential to be used as shRNA carriers for gene-therapy applications.
Collapse
Affiliation(s)
- Jiankun Yu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Jinmin Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Haonan Xing
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yanping Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhen Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Tianzhi Yang
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, Husson University, Bangor, ME, USA
| | - Cuifang Cai
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaoyun Zhao
- Department of Microbiology and Cell Biology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Li Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Pingtian Ding
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
27
|
Wu Z, Zhan S, Fan W, Ding X, Wu X, Zhang W, Fu Y, Huang Y, Huang X, Chen R, Li M, Xu N, Zheng Y, Ding B. Peptide-Mediated Tumor Targeting by a Degradable Nano Gene Delivery Vector Based on Pluronic-Modified Polyethylenimine. NANOSCALE RESEARCH LETTERS 2016; 11:122. [PMID: 26932761 PMCID: PMC4773318 DOI: 10.1186/s11671-016-1337-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/23/2016] [Indexed: 05/29/2023]
Abstract
Polyethylenimine (PEI) is considered to be a promising non-viral gene delivery vector. To solve the toxicity versus efficacy and tumor-targeting challenges of PEI used as gene delivery vector, we constructed a novel non-viral vector DR5-TAT-modified Pluronic-PEI (Pluronic-PEI-DR5-TAT), which was based on the attachment of low-molecular-weight polyethylenimine (LMW-PEI) to the amphiphilic polymer Pluronic to prepare Pluronic-modified LMW-PEI (Pluronic-PEI). This was then conjugated to a multifunctional peptide containing a cell-penetrating peptide (TAT) and a synthetic peptide that would bind to DR5-a receptor that is overexpressed in cancer cells. The vector showed controlled degradation, favorable DNA condensation and protection performance. The Pluronic-PEI-DR5-TAT/DNA complexes at an N/P ratio of 15:1 were spherical nanoparticles of 122 ± 11.6 nm and a zeta potential of about 22 ± 2.8 mV. In vitro biological characterization results indicated that Pluronic-PEI-DR5-TAT/DNA complexes had a higher specificity for the DR5 receptor and were taken up more efficiently by tumor cells than normal cells, compared to complexes formed with PEI 25 kDa or Pluronic-PEI. Thus, the novel complexes showed much lower cytotoxicity to normal cells and higher gene transfection efficiency in tumor cells than that exhibited by PEI 25 kDa and Pluronic-PEI. In summary, our novel, degradable non-viral tumor-targeting vector is a promising candidate for use in gene therapy.
Collapse
Affiliation(s)
- Zhaoyong Wu
- Department of Pharmacy, Jiaxing Maternal and Child Health Care Hospital, Affiliated Hospital of Jiaxing University, Jiaxing, People's Republic of China
| | - Shuyu Zhan
- Department of Pharmaceutics, Medical College of Jiaxing University, Jiaxing, People's Republic of China
| | - Wei Fan
- Department of Pharmacy, The 425th Hospital of PLA, Sanya, People's Republic of China
| | - Xueying Ding
- Department of Pharmaceutics, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Xin Wu
- Department of Pharmaceutics, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Wei Zhang
- Department of Pharmacy, Shanghai Pulmonary Hospital, Shanghai, People's Republic of China
| | - Yinghua Fu
- Department of Pharmaceutics, Medical College of Jiaxing University, Jiaxing, People's Republic of China
| | - Yueyan Huang
- Department of Pharmaceutics, Medical College of Jiaxing University, Jiaxing, People's Republic of China
| | - Xuan Huang
- Department of Pharmaceutics, Medical College of Jiaxing University, Jiaxing, People's Republic of China
| | - Rubing Chen
- Department of Pharmaceutics, Medical College of Jiaxing University, Jiaxing, People's Republic of China
| | - Mingjuan Li
- Department of Pharmaceutics, Medical College of Jiaxing University, Jiaxing, People's Republic of China
| | - Ningyin Xu
- Department of Pharmaceutics, Medical College of Jiaxing University, Jiaxing, People's Republic of China
| | - Yongxia Zheng
- Department of Pharmaceutics, Medical College of Jiaxing University, Jiaxing, People's Republic of China.
| | - Baoyue Ding
- Department of Pharmaceutics, Medical College of Jiaxing University, Jiaxing, People's Republic of China.
| |
Collapse
|
28
|
Zhang J, Yu J, Jiang J, Chen X, Sun Y, Yang Z, Yang T, Cai C, Zhao X, Ding P. Uptake Pathways of Guandinylated Disulfide Containing Polymers as Nonviral Gene Carrier Delivering DNA to Cells. J Cell Biochem 2016; 118:903-913. [PMID: 27764887 DOI: 10.1002/jcb.25769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 10/18/2016] [Indexed: 12/16/2022]
Abstract
Polymers of guanidinylated disulfide containing poly(amido amine)s (Gua-SS-PAAs), have shown high transfection efficiency and low cytotoxicity. Previously, we synthesized two Gua-SS-PAA polymers, using guanidino containing monomers (i.e., arginine and agmatine, denoted as ARG and AGM, respectively) and N,N'-cystaminebisacrylamide (CBA). In this study, these two polymers, AGM-CBA and ARG-CBA were complexed with plasmid DNA, and their uptake pathway was investigated. Complexes distribution in MCF-7 cells, and changes on cell endosomes/lysosomes and membrane after the cells were exposed to complexes were tested. In addition, how the transfection efficiency changed with the cell cycle status as well as endocytosis inhibitors were studied. The polymers of AGM-CBA and ARG-CBA can avoid endosomal/lysosomal trap, therefore, greatly delivering plasmid DNA (pDNA) to the cell nucleoli. It is the guanidine groups in the polymers that enhanced complexes' permeation through cell membrane with slight membrane damage, and targeting to the nucleoli. J. Cell. Biochem. 118: 903-913, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jinmin Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiankun Yu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingzheng Jiang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiao Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yanping Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhen Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tianzhi Yang
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, Husson University, Bangor, Maine
| | - Cuifang Cai
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaoyun Zhao
- Department of Microbiology and Cell Biology, School of life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Pingtian Ding
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
29
|
Sun Y, Xian L, Yu J, Yang T, Zhang J, Yang Z, Jiang J, Cai C, Zhao X, Yang L, Ding P. Structure-Function Correlations of Poly(Amido Amine)s for Gene Delivery. Macromol Biosci 2016; 17. [DOI: 10.1002/mabi.201600297] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/27/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Yanping Sun
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang 110016 China
| | - Lei Xian
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang 110016 China
| | - Jiankun Yu
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang 110016 China
| | - Tianzhi Yang
- Department of Basic Pharmaceutical Sciences; School of Pharmacy; Husson University; Bangor ME 04401-2929 USA
| | - Jinmin Zhang
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang 110016 China
| | - Zhen Yang
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang 110016 China
| | - Jingzheng Jiang
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang 110016 China
| | - Cuifang Cai
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang 110016 China
| | - Xiaoyun Zhao
- Department of Microbiology and Cell Biology; School of life Science and Biopharmaceutics; Shenyang Pharmaceutical University; Shenyang 110016 China
| | - Li Yang
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang 110016 China
| | - Pingtian Ding
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang 110016 China
| |
Collapse
|
30
|
Yu J, Zhang J, Xing H, Yang Z, Cai C, Zhang C, Zhao X, Wei M, Yang L, Ding P. Guanidinylated bioresponsive poly(amido amine)s designed for intranuclear gene delivery. Int J Nanomedicine 2016; 11:4011-24. [PMID: 27574429 PMCID: PMC4993266 DOI: 10.2147/ijn.s109406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Guanidinylated poly(amido amine)s with multiple disulfide linkages (Gua-SS-PAAs) were designed and constructed as nonviral gene carriers. The main chains of these novel carriers were synthesized based on monomers containing guanidino groups (guanidine hydrochloride and chlorhexidine), which could avoid complicated side-chain-modification reactions while introducing the guanidino groups. The synthesized Gua-SS-PAAs polymers were characterized by 1H nuclear magnetic resonance, molecular weight, and polydispersity. Furthermore, Gua-SS-PAAs polymers were complexed with pDNA, and the properties of the complexes were determined, including entrapment efficiency, particle size, ζ-potential, atomic force microscopy images, stability, DNA complexation ability, reduction sensitivity, cytotoxicity, and transfection efficiency. The new Gua-SS-PAAs carriers exhibited higher transfection efficiency and lower cytotoxicity compared with two widely used gene delivery carriers, polyethylenimine and lipofectamine 2000. Furthermore, the relationship between the side-chain structure and morphological/biological properties was extrapolated, and the results showed that guanidine in the side chain aids in the improvement of transfection efficiency. In addition, the introduction of guanidino group might confer the new carriers with nuclear localization function compared to carriers without it.
Collapse
Affiliation(s)
- Jiankun Yu
- School of Pharmacy, Shenyang Pharmaceutical University
| | - Jinmin Zhang
- School of Pharmacy, Shenyang Pharmaceutical University
| | - Haonan Xing
- School of Pharmacy, Shenyang Pharmaceutical University
| | - Zhen Yang
- School of Pharmacy, Shenyang Pharmaceutical University
| | - Cuifang Cai
- School of Pharmacy, Shenyang Pharmaceutical University
| | - Conglu Zhang
- School of Pharmacy, Shenyang Pharmaceutical University
| | - Xiaoyun Zhao
- School of Pharmacy, Shenyang Pharmaceutical University
| | - Minjie Wei
- School of Pharmacy, China Medical University, Shenyang, People's Republic of China
| | - Li Yang
- School of Pharmacy, Shenyang Pharmaceutical University
| | - Pingtian Ding
- School of Pharmacy, Shenyang Pharmaceutical University
| |
Collapse
|
31
|
Luan CR, Liu YH, Zhang J, Yu QY, Huang Z, Wang B, Yu XQ. Low Molecular Weight Oligomers with Aromatic Backbone as Efficient Nonviral Gene Vectors. ACS APPLIED MATERIALS & INTERFACES 2016; 8:10743-10751. [PMID: 27077449 DOI: 10.1021/acsami.6b01561] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A series of oligomers were synthesized via ring-opening polymerization. Although the molecular weights of these oligomers are only ∼2.5 kDa, they could efficiently bind and condense DNA into nanoparticles. These oligomers gave comparable transfection efficiency (TE) to PEI 25 kDa, while their TE could even increase with the presence of serum, and up to 65 times higher TE than PEI was obtained. The excellent serum tolerance was also confirmed by TEM, flow cytometry, and BSA adsorption assay. Moreover, structure-activity relationship studies revealed some interesting factors. First, oligomers containing aromatic rings in the backbone showed better DNA binding ability. These materials could bring more DNA cargo into the cells, leading to much better TE. Second, the isomerism of the disubstituted phenyl group on the oligomer backbone has large effect on the transfection. The ortho-disubstituted ones gave at least 1 order of magnitude higher TE than meta- or para-disubstituted oligomers. Gel electrophoresis involving DNase and heparin indicated that the difficulty to release DNA might contribute to the lower TE of the latter. Such clues may help us to design novel nonviral gene vectors with high efficiency and biocompatibility.
Collapse
Affiliation(s)
- Chao-Ran Luan
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University , Chengdu 610064, People's Republic of China
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University , Chengdu 610064, People's Republic of China
| | - Ji Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University , Chengdu 610064, People's Republic of China
| | - Qing-Ying Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University , Chengdu 610064, People's Republic of China
| | - Zheng Huang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University , Chengdu 610064, People's Republic of China
| | - Bing Wang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University , Chengdu 610064, People's Republic of China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University , Chengdu 610064, People's Republic of China
| |
Collapse
|
32
|
Liu S, Yang J, Ren H, O'Keeffe-Ahern J, Zhou D, Zhou H, Chen J, Guo T. Multifunctional oligomer incorporation: a potent strategy to enhance the transfection activity of poly(l-lysine). Biomater Sci 2016; 4:522-32. [DOI: 10.1039/c5bm00530b] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The multifunctional oligomer incorporation strategy is used for the first time to evaluate target effects by the ligand modified oligomer assembly, forming complexes with DNA and polycations.
Collapse
Affiliation(s)
- Shuai Liu
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
| | - Jixiang Yang
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
| | - Hongqi Ren
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
| | | | - Dezhong Zhou
- Charles Institute of Dermotology
- University College Dublin
- Dublin 4
- Ireland
| | - Hao Zhou
- Department of Biochemistry and Molecular Biology
- College of Life Science
- Nankai University
- Tianjin 300071
- China
| | - Jiatong Chen
- Department of Biochemistry and Molecular Biology
- College of Life Science
- Nankai University
- Tianjin 300071
- China
| | - Tianying Guo
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
| |
Collapse
|
33
|
Cui PF, Zhuang WR, Qiao JB, Zhang JL, He YJ, Luo CQ, Jin QR, Xing L, Jiang HL. Histone-inspired biomimetic polymeric gene vehicles with excellent biocompatibility and enhanced transfection efficacy. Polym Chem 2016. [DOI: 10.1039/c6py01703g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Histone-inspired biomimetic polymeric gene vectors show great biocompatibility and enhanced transfection efficacy.
Collapse
Affiliation(s)
- Peng-Fei Cui
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Wan-Ru Zhuang
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Jian-Bin Qiao
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Jia-Liang Zhang
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Yu-Jing He
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Cheng-Qiong Luo
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Qing-Ri Jin
- College of Animal Science and Technology
- Zhejiang A&F University
- Lin'an
- China
| | - Lei Xing
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| |
Collapse
|
34
|
Tang M, Dong H, Li Y, Ren T. Harnessing the PEG-cleavable strategy to balance cytotoxicity, intracellular release and the therapeutic effect of dendrigraft poly-l-lysine for cancer gene therapy. J Mater Chem B 2016; 4:1284-1295. [DOI: 10.1039/c5tb02224j] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The disulfide-bridged PEG-cleavable strategy was developed to balance cytotoxicity, cellular release and the therapeutic effect of dendrigraft poly-l-lysine for gene therapy.
Collapse
Affiliation(s)
- Min Tang
- School of Material Science and Engineering and Institute for Biomedical Engineering & Nano Science
- Tongji University
- Shanghai
- P. R. China
| | - Haiqing Dong
- Shanghai East Hospital
- The Institute for Biomedical Engineering & Nano Science (iNANO)
- Tongji University School of Medicine
- Shanghai 200092
- P. R. China
| | - Yongyong Li
- Shanghai East Hospital
- The Institute for Biomedical Engineering & Nano Science (iNANO)
- Tongji University School of Medicine
- Shanghai 200092
- P. R. China
| | - Tianbin Ren
- School of Material Science and Engineering and Institute for Biomedical Engineering & Nano Science
- Tongji University
- Shanghai
- P. R. China
| |
Collapse
|
35
|
Dong J, Liu M, Zhang K, Cao Y, Jiang B, Zu G, Pei R. Biocleavable Oligolysine-Grafted Poly(disulfide amine)s as Magnetic Resonance Imaging Probes. Bioconjug Chem 2015; 27:151-8. [DOI: 10.1021/acs.bioconjchem.5b00569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jingjin Dong
- Key
Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- Nano
Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Min Liu
- Key
Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Kunchi Zhang
- Key
Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yi Cao
- Key
Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Bin Jiang
- Key
Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Guangyue Zu
- Key
Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Renjun Pei
- Key
Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
36
|
Won YW, Ankoné M, Engbersen JFJ, Feijen J, Kim SW. Poly(Amido Amine)s Containing Agmatine and Butanol Side Chains as Efficient Gene Carriers. Macromol Biosci 2015; 16:619-26. [PMID: 26663734 DOI: 10.1002/mabi.201500369] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/03/2015] [Indexed: 12/28/2022]
Abstract
A new type of bioreducible poly(amido amine) copolymer is synthesized by the Michael addition polymerization of cystamine bisacrylamide (CBA) with 4-aminobutylguanidine (agmatine, AGM) and 4-aminobutanol (ABOL). Since the positively charged guanidinium groups of AGM and the hydroxybutyl groups of ABOL in the side chains have shown to improve the overall transfection efficiency of poly(amido amine)s, it is hypothesized that poly(CBA-ABOL/AGM) synthesized at the optimal ratio of both components would result in high transfection efficiency and minimal toxicity. In this study, a series of the poly(CBA-ABOL/AGM) copolymers is synthesized as gene carriers. The polymers are characterized and luciferase transfection efficiencies of the polymers in various cell lines are investigated to select the ideal ratio between AGM and ABOL. The poly(CBA-ABOL/AGM) containing 80% AGM and 20% ABOL has shown the best transfection efficiency with the lowest cytotoxicity, indicating that this polymer is very promising as a potent and nontoxic gene carrier.
Collapse
Affiliation(s)
- Young-Wook Won
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah, USA
- Division of Cardiothoracic Surgery, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Marc Ankoné
- Department of Biomedical Chemistry, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Johan F J Engbersen
- Department of Biomedical Chemistry, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Jan Feijen
- Department of Biomedical Chemistry, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Sung Wan Kim
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
37
|
Xu C, Huang Y, Wu J, Tang L, Hong Y. Triggerable Degradation of Polyurethanes for Tissue Engineering Applications. ACS APPLIED MATERIALS & INTERFACES 2015; 7:20377-88. [PMID: 26312436 PMCID: PMC10965041 DOI: 10.1021/acsami.5b06242] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Tissue engineered and bioactive scaffolds with different degradation rates are required for the regeneration of diverse tissues/organs. To optimize tissue regeneration in different tissues, it is desirable that the degradation rate of scaffolds can be manipulated to comply with various stages of tissue regeneration. Unfortunately, the degradation of most degradable polymers relies solely on passive controlled degradation mechanisms. To overcome this challenge, we report a new family of reduction-sensitive biodegradable elastomeric polyurethanes containing various amounts of disulfide bonds (PU-SS), in which degradation can be initiated and accelerated with the supplement of a biological product: antioxidant-glutathione (GSH). The polyurethanes can be processed into films and electrospun fibrous scaffolds. Synthesized materials exhibited robust mechanical properties and high elasticity. Accelerated degradation of the materials was observed in the presence of GSH, and the rate of such degradation depends on the amount of disulfide present in the polymer backbone. The polymers and their degradation products exhibited no apparent cell toxicity while the electrospun scaffolds supported fibroblast growth in vitro. The in vivo subcutaneous implantation model showed that the polymers prompt minimal inflammatory responses, and as anticipated, the polymer with the higher disulfide bond amount had faster degradation in vivo. This new family of polyurethanes offers tremendous potential for directed scaffold degradation to promote maximal tissue regeneration.
Collapse
Affiliation(s)
- Cancan Xu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yihui Huang
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jinglei Wu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Liping Tang
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
38
|
Choi JY, Ryu K, Lee GJ, Kim K, Kim TI. Agmatine-Containing Bioreducible Polymer for Gene Delivery Systems and Its Dual Degradation Behavior. Biomacromolecules 2015; 16:2715-25. [DOI: 10.1021/acs.biomac.5b00590] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ji-yeong Choi
- Department of Biosystems & Biomaterials Science and Engineering, College of Agriculture and Life Sciences, and §Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-921, Republic of Korea
| | - Kitae Ryu
- Department of Biosystems & Biomaterials Science and Engineering, College of Agriculture and Life Sciences, and §Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-921, Republic of Korea
| | - Gyeong Jin Lee
- Department of Biosystems & Biomaterials Science and Engineering, College of Agriculture and Life Sciences, and §Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-921, Republic of Korea
| | - Kyunghwan Kim
- Department of Biosystems & Biomaterials Science and Engineering, College of Agriculture and Life Sciences, and §Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-921, Republic of Korea
| | - Tae-il Kim
- Department of Biosystems & Biomaterials Science and Engineering, College of Agriculture and Life Sciences, and §Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-921, Republic of Korea
| |
Collapse
|
39
|
Lee GJ, Ryu K, Kim K, Choi JY, Kim TI. Crosslinked Polypropylenimine Dendrimers With Bioreducible Linkages for Gene Delivery Systems and Their Reductive Degradation Behaviors. Macromol Biosci 2015; 15:1595-604. [DOI: 10.1002/mabi.201500141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/03/2015] [Indexed: 12/23/2022]
Affiliation(s)
- Gyeong Jin Lee
- Department of Biosystems & Biomaterials Science and Engineering, College of Agriculture and Life Sciences; Seoul National University; 1 Gwanak-ro Gwanak-gu Seoul 151-921 Republic of Korea
| | - Kitae Ryu
- Department of Biosystems & Biomaterials Science and Engineering, College of Agriculture and Life Sciences; Seoul National University; 1 Gwanak-ro Gwanak-gu Seoul 151-921 Republic of Korea
| | - Kyunghwan Kim
- Department of Biosystems & Biomaterials Science and Engineering, College of Agriculture and Life Sciences; Seoul National University; 1 Gwanak-ro Gwanak-gu Seoul 151-921 Republic of Korea
| | - Ji-yeong Choi
- Department of Biosystems & Biomaterials Science and Engineering, College of Agriculture and Life Sciences; Seoul National University; 1 Gwanak-ro Gwanak-gu Seoul 151-921 Republic of Korea
| | - Tae-il Kim
- Department of Biosystems & Biomaterials Science and Engineering, College of Agriculture and Life Sciences; Seoul National University; 1 Gwanak-ro Gwanak-gu Seoul 151-921 Republic of Korea
- Research Institute of Agriculture and Life Sciences; Seoul National University; 1 Gwanak-ro Gwanak-gu Seoul 151-921 Republic of Korea
| |
Collapse
|
40
|
deRonde BM, Tew GN. Development of protein mimics for intracellular delivery. Biopolymers 2015; 104:265-80. [PMID: 25858701 PMCID: PMC4516575 DOI: 10.1002/bip.22658] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/24/2015] [Accepted: 03/30/2015] [Indexed: 12/19/2022]
Abstract
Designing delivery agents for therapeutics is an ongoing challenge. As treatments and desired cargoes become more complex, the need for improved delivery vehicles becomes critical. Excellent delivery vehicles must ensure the stability of the cargo, maintain the cargo's solubility, and promote efficient delivery and release. In order to address these issues, many research groups have looked to nature for design inspiration. Proteins, such as HIV-1 trans-activator of transcription (TAT) and Antennapedia homeodomain protein, are capable of crossing cellular membranes. However, due to the complexities of their structures, they are synthetically challenging to reproduce in the laboratory setting. Being able to incorporate the key features of these proteins that enable cell entry into simpler scaffolds opens up a wide range of opportunities for the development of new delivery reagents with improved performance. This review charts the development of protein mimics based on cell-penetrating peptides (CPPs) and how structure-activity relationships (SARs) with these molecules and their protein counterparts ultimately led to the use of polymeric scaffolds. These scaffolds deviate from the normal peptide backbone, allowing for simpler, synthetic procedures to make carriers and tune chemical compositions for application specific needs. Successful design of polymeric protein mimics would allow researchers to further understand the key features in proteins and peptides necessary for efficient delivery and to design the next generation of more efficient delivery reagents.
Collapse
Affiliation(s)
- Brittany M deRonde
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003
| | - Gregory N Tew
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, 01003
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA, 01003
| |
Collapse
|
41
|
Shete H, Sable S, Tidke P, Selkar N, Pawar Y, Chakraborty A, De A, Vanage G, Patravale V. Mono-guanidine heterolipid based SMEDDS: A promising tool for cytosolic delivery of antineoplastics. Biomaterials 2015; 57:116-32. [PMID: 25916500 DOI: 10.1016/j.biomaterials.2015.03.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 03/18/2015] [Accepted: 03/23/2015] [Indexed: 10/23/2022]
Abstract
In the present work, we designed and synthesized a novel mono-guanidine heterolipid (MGH) and confirmed its structure by NMR and ESI-MS. The MGH was used as cationic lipid in developing etoposide loaded cationic self-microemulsifying drug delivery system (ECS) intended to be delivered by intratumoral route. The ECS exhibited size <50 nm and zeta potential +32.6 mV on dilution with various isotonic vehicles with no phase separation or drug precipitation. The ECS could be easily sterilized by membrane filtration method and showed excellent stability for 6 months. The ECS demonstrated excellent in vitro antiproliferative activity against B16F10 cells which is attributed to its high transfection efficiency and capability to cause prolonged drug release in cytosolic space. In vivo antitumor activity of ECS was conducted in B16F10 induced melanoma tumor model. ECS at 12 mg/kg dose showed superior tumor suppression ability and exhibited 100% survival compared to other formulations. Mice treated with ECS by intratumoral route, showed neither systemic side effect nor any evidences of hepatotoxicity and nephrotoxicity. In contrast, etoposide administered by intravenous route showed remarkable systemic toxicity, hepatotoxicity and nephrotoxicity.
Collapse
Affiliation(s)
- Harshad Shete
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai 400019, Maharashtra, India
| | - Sandip Sable
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai 400019, Maharashtra, India
| | - Pritish Tidke
- Molecular Functional Imaging Lab, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India
| | - Nilakash Selkar
- National Centre for Preclinical Reproductive and Genetic Toxicology, National Institute for Research in Reproductive Health, J. M. Street, Parel, Mumbai 400012, Maharashtra, India
| | - Yogita Pawar
- Radiation Medicine Centre (BARC), C/o Tata Memorial Centre Annex, J. W. Road, Parel, Mumbai 400012, Maharashtra, India
| | - Avik Chakraborty
- Radiation Medicine Centre (BARC), C/o Tata Memorial Centre Annex, J. W. Road, Parel, Mumbai 400012, Maharashtra, India
| | - Abhijit De
- Molecular Functional Imaging Lab, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India.
| | - Geeta Vanage
- National Centre for Preclinical Reproductive and Genetic Toxicology, National Institute for Research in Reproductive Health, J. M. Street, Parel, Mumbai 400012, Maharashtra, India.
| | - Vandana Patravale
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai 400019, Maharashtra, India.
| |
Collapse
|
42
|
Sajeesh S, Choe JY, Lee TY, Lee DK. Guanidine modified polyethyleneimine-g-polyethylene glycol nanocarriers for long interfering RNA (liRNA) based advanced anticancer therapy. J Mater Chem B 2015; 3:207-216. [DOI: 10.1039/c4tb01621a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Long interfering RNA mediated advanced anticancer therapy.
Collapse
Affiliation(s)
- S. Sajeesh
- Global Research Laboratory for RNAi Medicine
- Department of Chemistry
- Sungkyunkwan University
- Suwon 440-746
- Republic of Korea
| | - Jeong Yong Choe
- Global Research Laboratory for RNAi Medicine
- Department of Chemistry
- Sungkyunkwan University
- Suwon 440-746
- Republic of Korea
| | - Tae Yeon Lee
- Global Research Laboratory for RNAi Medicine
- Department of Chemistry
- Sungkyunkwan University
- Suwon 440-746
- Republic of Korea
| | - Dong-ki Lee
- Global Research Laboratory for RNAi Medicine
- Department of Chemistry
- Sungkyunkwan University
- Suwon 440-746
- Republic of Korea
| |
Collapse
|
43
|
Bartolami E, Bessin Y, Bettache N, Gary-Bobo M, Garcia M, Dumy P, Ulrich S. Multivalent DNA recognition by self-assembled clusters: deciphering structural effects by fragments screening and evaluation as siRNA vectors. Org Biomol Chem 2015; 13:9427-38. [DOI: 10.1039/c5ob01404b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fragment self-assembly was used for producing clusters with a variety of scaffolds and ligands, and an effective siRNA vector was identified.
Collapse
Affiliation(s)
- Eline Bartolami
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Yannick Bessin
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Nadir Bettache
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Magali Gary-Bobo
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Marcel Garcia
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Pascal Dumy
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| |
Collapse
|
44
|
Hosseinkhani H, Abedini F, Ou KL, Domb AJ. Polymers in gene therapy technology. POLYM ADVAN TECHNOL 2014. [DOI: 10.1002/pat.3432] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hossein Hosseinkhani
- Graduate Institute of Biomedical Engineering; National Taiwan University of Science and Technology (Taiwan Tech); Taipei 10607 Taiwan
- Center of Excellence in Nanomedicine; National Taiwan University of Science and Technology (Taiwan Tech); Taipei 10607 Taiwan
- Research Center for Biomedical Devices and Prototyping Production, Research Center for Biomedical Implants and Microsurgery Devices, Graduate Institute of Biomedical Materials and Tissue Engineering, College of Oral Medicine, Taipei Medical University, Department of Dentistry; Taipei Medical University-Shuang Ho Hospital; Taipei 235 Taiwan
| | - Fatemeh Abedini
- Razi Vaccine and Serum Research Institute; Karaj Alborz IRAN
| | - Keng-Liang Ou
- Research Center for Biomedical Devices and Prototyping Production, Research Center for Biomedical Implants and Microsurgery Devices, Graduate Institute of Biomedical Materials and Tissue Engineering, College of Oral Medicine, Taipei Medical University, Department of Dentistry; Taipei Medical University-Shuang Ho Hospital; Taipei 235 Taiwan
| | - Abraham J. Domb
- Institute of Drug Research, The Center for Nanoscience and Nanotechnology, School of Pharmacy-Faculty of Medicine; The Hebrew University of Jerusalem; Jerusalem 91120 Israel
| |
Collapse
|
45
|
Targeted siRNA therapy using cytoplasm-responsive nanocarriers and cell-penetrating peptides. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2014. [DOI: 10.1007/s40005-014-0155-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
46
|
Zhang QF, Wang B, Yin DX, Zhang J, Wu WX, Yu QY, Yu XQ. Linear TACN-based cationic polymers as non-viral gene vectors. RSC Adv 2014; 4:59164-59174. [DOI: 10.1039/c4ra11094c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
|
47
|
Islam MA, Park T, Singh B, Maharjan S, Firdous J, Cho MH, Kang SK, Yun CH, Choi Y, Cho CS. Major degradable polycations as carriers for DNA and siRNA. J Control Release 2014; 193:74-89. [DOI: 10.1016/j.jconrel.2014.05.055] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/24/2014] [Accepted: 05/27/2014] [Indexed: 12/17/2022]
|
48
|
Lee D, Lee YM, Jeong C, Lee J, Kim WJ. Bioreducible guanidinylated polyethylenimine for efficient gene delivery. ChemMedChem 2014; 9:2718-24. [PMID: 25287668 DOI: 10.1002/cmdc.201402293] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Indexed: 11/06/2022]
Abstract
Cationic polymers are known to afford efficient gene transfection. However, cytotoxicity remains a problem at the molecular weight for optimal DNA delivery. As such, optimized polymeric gene delivery systems are still a sought-after research goal. A guanidinylated bioreducible branched polyethylenimine (GBPEI-SS) was synthesized by using a disulfide bond to crosslink the guanidinylated BPEI (GBPEI). GBPEI-SS showed sufficient plasmid DNA (pDNA) condensation ability. The physicochemical properties of GBPEI-SS demonstrate that it has the appropriate size (~200 nm) and surface potential (~30 mV) at a nitrogen-to-phosphorus ratio of 10. No significant toxicity was observed, possibly due to bioreducibility and to the guanidine group delocalizing the positive charge of the primary amine in BPEI. Compared with the nonguanidinylated analogue, BPEI-SS, GBPEI-SS showed enhanced transfection efficiency owing to increased cellular uptake and efficient pDNA release by cleavage of disulfide bonds. This system is very efficient for delivering pDNA into cells, thereby achieving high transfection efficiency and low cytotoxicity.
Collapse
Affiliation(s)
- Duhwan Lee
- Center for Self-assembly and Complexity, Institute for Basic Science and Department of Chemistry, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Pohang 790-784 (Republic of Korea)
| | | | | | | | | |
Collapse
|
49
|
Bouillon C, Paolantoni D, Rote JC, Bessin Y, Peterson LW, Dumy P, Ulrich S. Degradable Hybrid Materials Based on Cationic Acylhydrazone Dynamic Covalent Polymers Promote DNA Complexation through Multivalent Interactions. Chemistry 2014; 20:14705-14. [DOI: 10.1002/chem.201403695] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Indexed: 12/28/2022]
|
50
|
Yue D, Cheng G, He Y, Nie Y, Jiang Q, Cai X, Gu Z. Influence of reduction-sensitive diselenide bonds and disulfide bonds on oligoethylenimine conjugates for gene delivery. J Mater Chem B 2014; 2:7210-7221. [PMID: 32261800 DOI: 10.1039/c4tb00757c] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Bioreducible polymers have appeared as ideal gene delivery vectors due to the high stability in extracellular fluids and rapid DNA unpacking in an intracellular reducing environment, as well as decreased cytotoxicity. Disulfide bonds have long been regarded as the only golden standard for this design. Recently, diselenide bonds have emerged as a new reduction-sensitive linkage. However, its reduction sensitivity has not been systematically reported. The primary aim of this study is to compare its reduction sensitivity with the golden standard disulfide bonds. Bioreduction-triggered polymer degradation revealed that diselenide bonds are more stable than disulfide bonds with a lower redox potential (i.e. 10 μM GSH). The changes in DNA binding ability, particle size, zeta potential, and morphology all demonstrated that diselenide bonds have similar reduction sensitivity as disulfide bonds, but it could be only cleaved at a tumor-relevant glutathione concentration (i.e. 10 mM GSH). Förster resonance energy transfer (FRET) spectra suggested that diselenide bond conjugated OEI800 (OEI-SeSex) complexes could not only maintain high stability under 10 μM GSH conditions, but could also timely release DNA under 10 mM GSH conditions. Cell viability assay results showed that OEI-SeSex has a similar cell viability profile as disulfide bond conjugated OEI800 (OEI-SSx), which is much less toxic than PEI25k. Biological efficacy assessment indicated comparable or even outweigh transfection efficiency of OEI-SeSex with OEI-SSx and PEI25k. These results suggested that the unique properties of diselenide bonds have enabled a versatile design of multifunctional bioreducible polymers for in vivo gene delivery.
Collapse
Affiliation(s)
- Dong Yue
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | | | | | | | | | | | | |
Collapse
|