1
|
Guz W, Podgórski R, Aebisher D, Truszkiewicz A, Machorowska-Pieniążek A, Cieślar G, Kawczyk-Krupka A, Bartusik-Aebisher D. Utility of 1.5 Tesla MRI Scanner in the Management of Small Sample Sizes Driven from 3D Breast Cell Culture. Int J Mol Sci 2024; 25:3009. [PMID: 38474256 DOI: 10.3390/ijms25053009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/09/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
The aim of this work was to use and optimize a 1.5 Tesla magnetic resonance imaging (MRI) system for three-dimensional (3D) images of small samples obtained from breast cell cultures in vitro. The basis of this study was to design MRI equipment to enable imaging of MCF-7 breast cancer cell cultures (about 1 million cells) in 1.5 and 2 mL glass tubes and/or bioreactors with an external diameter of less than 20 mm. Additionally, the development of software to calculate longitudinal and transverse relaxation times is described. Imaging tests were performed using a clinical MRI scanner OPTIMA 360 manufactured by GEMS. Due to the size of the tested objects, it was necessary to design additional receiving circuits allowing for the study of MCF-7 cell cultures placed in glass bioreactors. The examined sample's volume did not exceed 2.0 mL nor did the number of cells exceed 1 million. This work also included a modification of the sequence to allow for the analysis of T1 and T2 relaxation times. The analysis was performed using the MATLAB package (produced by MathWorks). The created application is based on medical MR images saved in the DICOM3.0 standard which ensures that the data analyzed are reliable and unchangeable in an unintentional manner that could affect the measurement results. The possibility of using 1.5 T MRI systems for cell culture research providing quantitative information from in vitro studies was realized. The scanning resolution for FOV = 5 cm and the matrix was achieved at a level of resolution of less than 0.1 mm/pixel. Receiving elements were built allowing for the acquisition of data for MRI image reconstruction confirmed by images of a phantom with a known structure and geometry. Magnetic resonance sequences were modified for the saturation recovery (SR) method, the purpose of which was to determine relaxation times. An application in MATLAB was developed that allows for the analysis of T1 and T2 relaxation times. The relaxation times of cell cultures were determined over a 6-week period. In the first week, the T1 time value was 1100 ± 40 ms, which decreased to 673 ± 59 ms by the sixth week. For T2, the results were 171 ± 10 ms and 128 ± 12 ms, respectively.
Collapse
Affiliation(s)
- Wiesław Guz
- Department of Diagnostic Imaging and Nuclear Medicine, Medical College of the University of Rzeszow, 35-310 Rzeszów, Poland
| | - Rafał Podgórski
- Department of Biochemistry and General Chemistry, Medical College of the University of Rzeszow, 35-310 Rzeszów, Poland
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszow, 35-310 Rzeszów, Poland
| | - Adrian Truszkiewicz
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszow, 35-310 Rzeszów, Poland
| | | | - Grzegorz Cieślar
- Department of Internal Diseases, Angiology and Physical Medicine, Centre for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15, 41-902 Bytom, Poland
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Diseases, Angiology and Physical Medicine, Centre for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15, 41-902 Bytom, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the University of Rzeszow, 35-310 Rzeszów, Poland
| |
Collapse
|
2
|
Menezes R, Vincent R, Osorno L, Hu P, Arinzeh TL. Biomaterials and tissue engineering approaches using glycosaminoglycans for tissue repair: Lessons learned from the native extracellular matrix. Acta Biomater 2023; 163:210-227. [PMID: 36182056 PMCID: PMC10043054 DOI: 10.1016/j.actbio.2022.09.064] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 09/13/2022] [Accepted: 09/23/2022] [Indexed: 01/30/2023]
Abstract
Glycosaminoglycans (GAGs) are an important component of the extracellular matrix as they influence cell behavior and have been sought for tissue regeneration, biomaterials, and drug delivery applications. GAGs are known to interact with growth factors and other bioactive molecules and impact tissue mechanics. This review provides an overview of native GAGs, their structure, and properties, specifically their interaction with proteins, their effect on cell behavior, and their mechanical role in the ECM. GAGs' function in the extracellular environment is still being understood however, promising studies have led to the development of medical devices and therapies. Native GAGs, including hyaluronic acid, chondroitin sulfate, and heparin, have been widely explored in tissue engineering and biomaterial approaches for tissue repair or replacement. This review focuses on orthopaedic and wound healing applications. The use of GAGs in these applications have had significant advances leading to clinical use. Promising studies using GAG mimetics and future directions are also discussed. STATEMENT OF SIGNIFICANCE: Glycosaminoglycans (GAGs) are an important component of the native extracellular matrix and have shown promise in medical devices and therapies. This review emphasizes the structure and properties of native GAGs, their role in the ECM providing biochemical and mechanical cues that influence cell behavior, and their use in tissue regeneration and biomaterial approaches for orthopaedic and wound healing applications.
Collapse
Affiliation(s)
- Roseline Menezes
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Richard Vincent
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Laura Osorno
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Phillip Hu
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Treena Livingston Arinzeh
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States; Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States.
| |
Collapse
|
3
|
Oliveira THC, Vanheule V, Vandendriessche S, Poosti F, Teixeira MM, Proost P, Gouwy M, Marques PE. The GAG-Binding Peptide MIG30 Protects against Liver Ischemia-Reperfusion in Mice. Int J Mol Sci 2022; 23:ijms23179715. [PMID: 36077113 PMCID: PMC9456047 DOI: 10.3390/ijms23179715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) drives graft rejection and is the main cause of mortality after liver transplantation. During IRI, an intense inflammatory response marked by chemokine production and neutrophil recruitment occurs. However, few strategies are available to restrain this excessive response. Here, we aimed to interfere with chemokine function during IRI in order to disrupt neutrophil recruitment to the injured liver. For this, we utilized a potent glycosaminoglycan (GAG)-binding peptide containing the 30 C-terminal amino acids of CXCL9 (MIG30) that is able to inhibit the binding of chemokines to GAGs in vitro. We observed that mice subjected to IRI and treated with MIG30 presented significantly lower liver injury and dysfunction as compared to vehicle-treated mice. Moreover, the levels of chemokines CXCL1, CXCL2 and CXCL6 and of proinflammatory cytokines TNF-α and IL-6 were significantly reduced in MIG30-treated mice. These events were associated with a marked inhibition of neutrophil recruitment to the liver during IRI. Lastly, we observed that MIG30 is unable to affect leukocytes directly nor to alter the stimulation by either CXCL8 or lipopolysaccharide (LPS), suggesting that its protective properties derive from its ability to inhibit chemokine activity in vivo. We conclude that MIG30 holds promise as a strategy to treat liver IRI and inflammation.
Collapse
Affiliation(s)
- Thiago Henrique Caldeira Oliveira
- Immunopharmacology Laboratory, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
- Laboratory of Molecular Immunology, Department of Microbiology, Rega Institute, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Vincent Vanheule
- Laboratory of Molecular Immunology, Department of Microbiology, Rega Institute, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Sofie Vandendriessche
- Laboratory of Molecular Immunology, Department of Microbiology, Rega Institute, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Fariba Poosti
- Laboratory of Molecular Immunology, Department of Microbiology, Rega Institute, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Mauro Martins Teixeira
- Immunopharmacology Laboratory, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Rega Institute, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology, Rega Institute, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Pedro Elias Marques
- Laboratory of Molecular Immunology, Department of Microbiology, Rega Institute, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
- Correspondence:
| |
Collapse
|
4
|
Zhao X, Wang H, Zou Y, Xue W, Zhuang Y, Gu R, Shen H, Dai J. Optimized, visible light-induced crosslinkable hybrid gelatin/hyaluronic acid scaffold promotes complete spinal cord injury repair. Biomed Mater 2021; 17. [PMID: 34937000 DOI: 10.1088/1748-605x/ac45ec] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/22/2021] [Indexed: 11/12/2022]
Abstract
Severe microenvironmental changes after spinal cord injury (SCI) present serious challenges in neural regeneration and tissue repair. Gelatin (GL)- and hyaluronic acid (HA)-based hydrogels are attractive scaffolds because they are major components of the extracellular matrix and can provide a favorable adjustable microenvironment for neurogenesis and motor function recovery. In this study, three-dimensional hybrid GL/HA hydrogel scaffolds were prepared and optimized. The hybrid hydrogels could undergo in-situ gelation and fit the defects perfectly via visible light- induced crosslinking in the complete SCI rats. We found that the transplantation of the hybrid hydrogel scaffold significantly reduced the inflammatory responses and suppressed glial scar formation in an HA concentration-dependent manner. Moreover, the hybrid hydrogel with GL/HA ratios less than 8/2 effectively promoted endogenous neural stem cell migration and neurogenesis, as well as improved neuron maturation and axonal regeneration. The results showed locomotor function improved 60 days after transplantation, thus suggesting that GL/HA hydrogels can be considered as a promising scaffold for complete SCI repair.
Collapse
Affiliation(s)
- Xinhao Zhao
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, CHINA
| | - Huiru Wang
- Suzhou Institute of NanoTech and NanoBionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou, 215123, CHINA
| | - Yunlong Zou
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, CHINA
| | - Weiwei Xue
- Institute of Genetics and Developmental Biology Chinese Academy of Sciences, No 1 West Beichen Road, Chaoyang District, Beijing, 100101, Beijing, 100101, CHINA
| | - Yang Zhuang
- Suzhou Institute of NanoTech and NanoBionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou, 215123, CHINA
| | - Rui Gu
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, CHINA
| | - He Shen
- Suzhou Institute of NanoTech and NanoBionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou, 215123, CHINA
| | - Jianwu Dai
- Institute of Genetics and Developmental Biology Chinese Academy of Sciences, No 1 West Beichen Road, Chaoyang District, Beijing, 100101, Beijing, 100101, CHINA
| |
Collapse
|
5
|
Sandoval‐Castellanos AM, Claeyssens F, Haycock JW. Biomimetic surface delivery of NGF and BDNF to enhance neurite outgrowth. Biotechnol Bioeng 2020; 117:3124-3135. [DOI: 10.1002/bit.27466] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 11/11/2022]
Affiliation(s)
| | - Frederik Claeyssens
- Department of Materials Science and Engineering The University of Sheffield Sheffield United Kingdom
| | - John W. Haycock
- Department of Materials Science and Engineering The University of Sheffield Sheffield United Kingdom
| |
Collapse
|
6
|
Comparative Study of Electrospun Scaffolds Containing Native GAGs and a GAG Mimetic for Human Mesenchymal Stem Cell Chondrogenesis. Ann Biomed Eng 2020; 48:2040-2052. [DOI: 10.1007/s10439-020-02499-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/24/2020] [Indexed: 12/20/2022]
|
7
|
Rehman T, Yin L, Latif MB, Chen J, Wang K, Geng Y, Huang X, Abaidullah M, Guo H, Ouyang P. Adhesive mechanism of different Salmonella fimbrial adhesins. Microb Pathog 2019; 137:103748. [PMID: 31521802 DOI: 10.1016/j.micpath.2019.103748] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 02/01/2023]
Abstract
Salmonellosis is a serious threat to human and animal health. Salmonella adhesion to the host cell is an initial and most crucial step in the pathogenesis of salmonellosis. Many factors are involved in the adhesion process of Salmonella infection. Fimbriae are one of the most important factors in the adhesion of Salmonella. The Salmonella fimbriae are assembled in three types of assembly pathways: chaperon-usher, nucleation-precipitation, and type IV fimbriae. These assembly pathways lead to multiple types of fimbriae. Salmonella fimbriae bind to host cell receptors to initiate adhesion. So far, many receptors have been identified, such as Toll-like receptors. However, several receptors that may be involved in the adhesive mechanism of Salmonella fimbriae are still un-identified. This review aimed to summarize the types of Salmonella fimbriae produced by different assembly pathways and their role in adhesion. It also enlisted previously discovered receptors involved in adhesion. This review might help readers to develop a comprehensive understanding of Salmonella fimbriae, their role in adhesion, and recently developed strategies to counter Salmonella infection.
Collapse
Affiliation(s)
- Tayyab Rehman
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Lizi Yin
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Muhammad Bilal Latif
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, 44195, Ohio, USA.
| | - Jiehao Chen
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Kaiyu Wang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Yi Geng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Muhammad Abaidullah
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Hongrui Guo
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Ping Ouyang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
8
|
Deng Y, Sun AX, Overholt KJ, Yu GZ, Fritch MR, Alexander PG, Shen H, Tuan RS, Lin H. Enhancing chondrogenesis and mechanical strength retention in physiologically relevant hydrogels with incorporation of hyaluronic acid and direct loading of TGF-β. Acta Biomater 2019; 83:167-176. [PMID: 30458242 PMCID: PMC6733255 DOI: 10.1016/j.actbio.2018.11.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/31/2018] [Accepted: 11/14/2018] [Indexed: 12/21/2022]
Abstract
Cell-loaded hydrogels are frequently applied in cartilage tissue engineering for their biocompatibility, ease of application, and ability to conform to various defect sites. As a bioactive adjunct to the biomaterial, transforming growth factor beta (TGF-β) has been shown to be essential for cell differentiation into a chondrocyte phenotype and maintenance thereof, but the low amounts of endogenous TGF-β in the in vivo joint microenvironment necessitate a mechanism for controlled delivery and release of this growth factor. In this study, TGF-β3 was directly loaded with human bone marrow-derived mesenchymal stem cells (MSCs) into poly-d,l-lactic acid/polyethylene glycol/poly-d,l-lactic acid (PDLLA-PEG) hydrogel, or PDLLA-PEG with the addition of hyaluronic acid (PDLLA/HA), and cultured in vitro. We hypothesize that the inclusion of HA within PDLLA-PEG would result in a controlled release of the loaded TGF-β3 and lead to a robust cartilage formation without the use of TGF-β3 in the culture medium. ELISA analysis showed that TGF-β3 release was effectively slowed by HA incorporation, and retention of TGF-β3 in the PDLLA/HA scaffold was detected by immunohistochemistry for up to 3 weeks. By means of both in vitro culture and in vivo implantation, we found that sulfated glycosaminoglycan production was higher in PDLLA/HA groups with homogenous distribution throughout the scaffold than PDLLA groups. Finally, with an optimal loading of TGF-β3 at 10 μg/mL, as determined by RT-PCR and glycosaminoglycan production, an almost twofold increase in Young's modulus of the construct was seen over a 4-week period compared to TGF-β3 delivery in the culture medium. Taken together, our results indicate that the direct loading of TGF-β3 and stem cells in PDLLA/HA has the potential to be a one-step point-of-care treatment for cartilage injury. STATEMENT OF SIGNIFICANCE: Stem cell-seeded hydrogels are commonly used in cell-based cartilage tissue engineering, but they generally fail to possess physiologically relevant mechanical properties suitable for loading. Moreover, degradation of the hydrogel in vivo with time further decreases mechanical suitability of the hydrogel due in part to the lack of TGF-β3 signaling. In this study, we demonstrated that incorporation of hyaluronic acid (HA) into a physiologically stiff PDLLA-PEG hydrogel allowed for slow release of one-time preloaded TGF-β3, and when loaded with adult mesenchymal stem cells and cultured in vitro, it resulted in higher chondrogenic gene expression and constructs of significantly higher mechanical strength than constructs cultured in conventional TGF-β3-supplemented medium. Similar effects were also observed in constructs implanted in vivo. Our results indicate that direct loading of TGF-β3 combined with HA in the physiologically stiff PDLLA-PEG hydrogel has the potential to be used for one-step point-of-care treatment of cartilage injury.
Collapse
Affiliation(s)
- Yuhao Deng
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, USA; Department of Orthopaedic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; Xiangya Third Hospital, Central South University, Changsha, Hunan, China
| | - Aaron X Sun
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, USA; Medical Scientist Training Program, University of Pittsburgh School of Medicine, USA; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, USA
| | - Kalon J Overholt
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, USA; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, USA
| | - Gary Z Yu
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, USA; Medical Scientist Training Program, University of Pittsburgh School of Medicine, USA
| | - Madalyn R Fritch
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, USA; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, USA
| | - Peter G Alexander
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, USA
| | - He Shen
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, USA; Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, China
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, USA; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, USA; The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| | - Hang Lin
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, USA.
| |
Collapse
|
9
|
Yap L, Murali S, Bhakta G, Titmarsh DM, Chen AKL, Chiin Sim L, Bardor M, Lim YM, Goh JCH, Oh SKW, Choo ABH, van Wijnen AJ, Robinson DE, Whittle JD, Birch WR, Short RD, Nurcombe V, Cool SM. Immobilization of vitronectin-binding heparan sulfates onto surfaces to support human pluripotent stem cells. J Biomed Mater Res B Appl Biomater 2017; 106:1887-1896. [PMID: 28941021 DOI: 10.1002/jbm.b.33999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/11/2017] [Accepted: 09/01/2017] [Indexed: 11/10/2022]
Abstract
Functionalizing medical devices with polypeptides to enhance their performance has become important for improved clinical success. The extracellular matrix (ECM) adhesion protein vitronectin (VN) is an effective coating, although the chemistry used to attach VN often reduces its bioactivity. In vivo, VN binds the ECM in a sequence-dependent manner with heparan sulfate (HS) glycosaminoglycans. We reasoned therefore that sequence-based affinity chromatography could be used to isolate a VN-binding HS fraction (HS9) for use as a coating material to capture VN onto implant surfaces. Binding avidity and specificity of HS9 were confirmed by enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR)-based assays. Plasma polymerization of allylamine (AA) to tissue culture-treated polystyrene (TCPS) was then used to capture and present HS9 as determined by radiolabeling and ELISA. HS9-coated TCPS avidly bound VN, and this layered surface supported the robust attachment, expansion, and maintenance of human pluripotent stem cells. Compositional analysis demonstrated that 6-O- and N-sulfation, as well as lengths greater than three disaccharide units (dp6) are critical for VN binding to HS-coated surfaces. Importantly, HS9 coating reduced the threshold concentration of VN required to create an optimally bioactive surface for pluripotent stem cells. We conclude that affinity-purified heparan sugars are able to coat materials to efficiently bind adhesive factors for biomedical applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1887-1896, 2018.
Collapse
Affiliation(s)
- Lynn Yap
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore, 138648, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Centre for Life Sciences (CeLS), #05-01, 28 Medical Drive, Singapore, 117456, Singapore
| | - Sadasivam Murali
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore, 138648, Singapore
| | - Gajadhar Bhakta
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore, 138648, Singapore
| | - Drew M Titmarsh
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore, 138648, Singapore
| | - Allen Kuan-Liang Chen
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01, Centros, Singapore, 138668, Singapore
| | - Lyn Chiin Sim
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01, Centros, Singapore, 138668, Singapore
| | - Muriel Bardor
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01, Centros, Singapore, 138668, Singapore.,Normandie University, UNIROUEN, Laboratoire Glyco-MEV, 76000, Rouen, France
| | - Yu Ming Lim
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01, Centros, Singapore, 138668, Singapore
| | - James C H Goh
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 11, 1E Kent Ridge Road, Singapore, 119288, Singapore.,Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, E4 #04-08, Singapore, 117583, Singapore
| | - Steve K W Oh
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01, Centros, Singapore, 138668, Singapore
| | - Andre B H Choo
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01, Centros, Singapore, 138668, Singapore.,Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, E4 #04-08, Singapore, 117583, Singapore
| | - Andre J van Wijnen
- Mayo Clinic, Department of Orthopedic Surgery, 200 First St. SW, Rochester, Minnesota, 55905
| | - David E Robinson
- Mawson Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, Adelaide, 5095, Australia
| | - Jason D Whittle
- School of Engineering, Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, Adelaide, 5095, Australia
| | - William R Birch
- Institute of Materials Research & Engineering, #08-03, 2 Fusionopolis Way, Innovis, Singapore, 138634, Singapore
| | - Robert D Short
- Future Industry Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, Adelaide, 5095, Australia.,Material Science Institute and Department of Chemistry, University of Lancaster, Lancaster, LA1 4YW, UK
| | - Victor Nurcombe
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore, 138648, Singapore
| | - Simon M Cool
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore, 138648, Singapore.,Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 11, 1E Kent Ridge Road, Singapore, 119288, Singapore
| |
Collapse
|
10
|
Gelatin Scaffolds Containing Partially Sulfated Cellulose Promote Mesenchymal Stem Cell Chondrogenesis. Tissue Eng Part A 2017; 23:1011-1021. [DOI: 10.1089/ten.tea.2016.0461] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
11
|
Ayerst BI, Merry CLR, Day AJ. The Good the Bad and the Ugly of Glycosaminoglycans in Tissue Engineering Applications. Pharmaceuticals (Basel) 2017; 10:E54. [PMID: 28608822 PMCID: PMC5490411 DOI: 10.3390/ph10020054] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/05/2017] [Accepted: 06/05/2017] [Indexed: 12/14/2022] Open
Abstract
High sulfation, low cost, and the status of heparin as an already FDA- and EMA- approved product, mean that its inclusion in tissue engineering (TE) strategies is becoming increasingly popular. However, the use of heparin may represent a naïve approach. This is because tissue formation is a highly orchestrated process, involving the temporal expression of numerous growth factors and complex signaling networks. While heparin may enhance the retention and activity of certain growth factors under particular conditions, its binding 'promiscuity' means that it may also inhibit other factors that, for example, play an important role in tissue maintenance and repair. Within this review we focus on articular cartilage, highlighting the complexities and highly regulated processes that are involved in its formation, and the challenges that exist in trying to effectively engineer this tissue. Here we discuss the opportunities that glycosaminoglycans (GAGs) may provide in advancing this important area of regenerative medicine, placing emphasis on the need to move away from the common use of heparin, and instead focus research towards the utility of specific GAG preparations that are able to modulate the activity of growth factors in a more controlled and defined manner, with less off-target effects.
Collapse
Affiliation(s)
- Bethanie I Ayerst
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology & Regenerative Medicine, School of Biology, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK.
| | - Catherine L R Merry
- Stem Cell Glycobiology Group, Wolfson Centre for Stem Cells, Tissue Engineering & Modelling (STEM), Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Anthony J Day
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology & Regenerative Medicine, School of Biology, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK.
| |
Collapse
|
12
|
Vanheule V, Boff D, Mortier A, Janssens R, Petri B, Kolaczkowska E, Kubes P, Berghmans N, Struyf S, Kungl AJ, Teixeira MM, Amaral FA, Proost P. CXCL9-Derived Peptides Differentially Inhibit Neutrophil Migration In Vivo through Interference with Glycosaminoglycan Interactions. Front Immunol 2017; 8:530. [PMID: 28539925 PMCID: PMC5423902 DOI: 10.3389/fimmu.2017.00530] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/20/2017] [Indexed: 01/09/2023] Open
Abstract
Several acute and chronic inflammatory diseases are driven by accumulation of activated leukocytes due to enhanced chemokine expression. In addition to specific G protein-coupled receptor-dependent signaling, chemokine-glycosaminoglycan (GAG) interactions are important for chemokine activity in vivo. Therefore, the GAG-chemokine interaction has been explored as target for inhibition of chemokine activity. It was demonstrated that CXCL9(74-103) binds with high affinity to GAGs, competed with active chemokines for GAG binding and thereby inhibited CXCL8- and monosodium urate (MSU) crystal-induced neutrophil migration to joints. To evaluate the affinity and specificity of the COOH-terminal part of CXCL9 toward different GAGs in detail, we chemically synthesized several COOH-terminal CXCL9 peptides including the shorter CXCL9(74-93). Compared to CXCL9(74-103), CXCL9(74-93) showed equally high affinity for heparin and heparan sulfate (HS), but lower affinity for binding to chondroitin sulfate (CS) and cellular GAGs. Correspondingly, both peptides competed with equal efficiency for CXCL8 binding to heparin and HS but not to cellular GAGs. In addition, differences in anti-inflammatory activity between both peptides were detected in vivo. CXCL8-induced neutrophil migration to the peritoneal cavity and to the knee joint were inhibited with similar potency by intravenous or intraperitoneal injection of CXCL9(74-103) or CXCL9(74-93), but not by CXCL9(86-103). In contrast, neutrophil extravasation in the MSU crystal-induced gout model, in which multiple chemoattractants are induced, was not affected by CXCL9(74-93). This could be explained by (1) the lower affinity of CXCL9(74-93) for CS, the most abundant GAG in joints, and (2) by reduced competition with GAG binding of CXCL1, the most abundant ELR+ CXC chemokine in this gout model. Mechanistically we showed by intravital microscopy that fluorescent CXCL9(74-103) coats the vessel wall in vivo and that CXCL9(74-103) inhibits CXCL8-induced adhesion of neutrophils to the vessel wall in the murine cremaster muscle model. Thus, both affinity and specificity of chemokines and the peptides for different GAGs and the presence of specific GAGs in different tissues will determine whether competition can occur. In summary, both CXCL9 peptides inhibited neutrophil migration in vivo through interference with GAG interactions in several animal models. Shortening CXCL9(74-103) from the COOH-terminus limited its GAG-binding spectrum.
Collapse
Affiliation(s)
- Vincent Vanheule
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Daiane Boff
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anneleen Mortier
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Rik Janssens
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Björn Petri
- Mouse Phenomics Resource Laboratory, Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Elzbieta Kolaczkowska
- Department of Evolutionary Immunology, Institute of Zoology, Jagiellonian University, Krakow, Poland
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Paul Kubes
- Immunology Research Group, Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Nele Berghmans
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Andreas J. Kungl
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, Karl-Franzens Universität, Graz, Austria
| | - Mauro Martins Teixeira
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Flavio Almeida Amaral
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Burzava ALS, Jasieniak M, Cockshell MP, Bonder CS, Harding FJ, Griesser HJ, Voelcker NH. Affinity Binding of EMR2 Expressing Cells by Surface-Grafted Chondroitin Sulfate B. Biomacromolecules 2017; 18:1697-1704. [DOI: 10.1021/acs.biomac.6b01687] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Anouck L. S. Burzava
- Future
Industries Institute, University of South Australia, Mawson
Lakes, South Australia 5095, Australia
| | - Marek Jasieniak
- Future
Industries Institute, University of South Australia, Mawson
Lakes, South Australia 5095, Australia
| | - Michaelia P. Cockshell
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia 5000, Australia
| | - Claudine S. Bonder
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia 5000, Australia
- Adelaide
Medical School, Faculty of Health Sciences, University of Adelaide, Adelaide 5000, Australia
| | - Frances J. Harding
- Future
Industries Institute, University of South Australia, Mawson
Lakes, South Australia 5095, Australia
| | - Hans J. Griesser
- Future
Industries Institute, University of South Australia, Mawson
Lakes, South Australia 5095, Australia
| | - Nicolas H. Voelcker
- Future
Industries Institute, University of South Australia, Mawson
Lakes, South Australia 5095, Australia
- Drug
Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical
Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
14
|
Feng Q, Lin S, Zhang K, Dong C, Wu T, Huang H, Yan X, Zhang L, Li G, Bian L. Sulfated hyaluronic acid hydrogels with retarded degradation and enhanced growth factor retention promote hMSC chondrogenesis and articular cartilage integrity with reduced hypertrophy. Acta Biomater 2017; 53:329-342. [PMID: 28193542 DOI: 10.1016/j.actbio.2017.02.015] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 01/20/2017] [Accepted: 02/08/2017] [Indexed: 12/22/2022]
Abstract
Recently, hyaluronic acid (HA) hydrogels have been extensively researched for delivering cells and drugs to repair damaged tissues, particularly articular cartilage. However, the in vivo degradation of HA is fast, thus limiting the clinical translation of HA hydrogels. Furthermore, HA cannot bind proteins with high affinity because of the lack of negatively charged sulfate groups. In this study, we conjugated tunable amount of sulfate groups to HA. The sulfated HA exhibits significantly slower degradation by hyaluronidase compared to the wild type HA. We hypothesize that the sulfation reduces the available HA octasaccharide substrate needed for the effective catalytic action of hyaluronidase. Moreover, the sulfated HA hydrogels significantly improve the protein sequestration, thereby effectively extending the availability of the proteinaceous drugs in the hydrogels. In the following in vitro study, we demonstrate that the HA hydrogel sulfation exerts no negative effect on the viability of encapsulated human mesenchymal stem cells (hMSCs). Furthermore, the sulfated HA hydrogels promote the chondrogenesis and suppresses the hypertrophy of encapsulated hMSCs both in vitro and in vivo. Moreover, intra-articular injections of the sulfated HA hydrogels avert the cartilage abrasion and hypertrophy in the animal osteoarthritic joints. Collectively, our findings demonstrate that the sulfated HA is a promising biomaterial for the delivery of therapeutic agents to aid the regeneration of injured or diseased tissues and organs. STATEMENT OF SIGNIFICANCE In this paper, we conjugated sulfate groups to hyaluronic acid (HA) and demonstrated the slow degradation and growth factor delivery of sulfated HA. Furthermore, the in vitro and in vivo culture of hMSCs laden HA hydrogels proved that the sulfation of HA hydrogels not only promotes the chondrogenesis of hMSCs but also suppresses hypertrophic differentiation of the chondrogenically induced hMSCs. The animal OA model study showed that the injected sulfated HA hydrogels significantly reduced the cartilage abrasion and hypertrophy in the animal OA joints. We believe that this study will provide important insights into the design and optimization of the HA-based hydrogels as the scaffold materials for cartilage regeneration and OA treatment in clinical setting.
Collapse
Affiliation(s)
- Qian Feng
- Division of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, 999077, Hong Kong; Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, 999077, Hong Kong
| | - Sien Lin
- Division of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, 999077, Hong Kong; Department of Orthopaedic and Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, 999077, Hong Kong
| | - Kunyu Zhang
- Division of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, 999077, Hong Kong; Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, 999077, Hong Kong
| | - Chaoqun Dong
- Division of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, 999077, Hong Kong; Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, 999077, Hong Kong
| | - Tianyi Wu
- Division of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, 999077, Hong Kong; Department of Orthopaedic and Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, 999077, Hong Kong
| | - Heqin Huang
- Division of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, 999077, Hong Kong; Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, 999077, Hong Kong
| | - Xiaohui Yan
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, 999077, Hong Kong
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, 999077, Hong Kong
| | - Gang Li
- Department of Orthopaedic and Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, 999077, Hong Kong
| | - Liming Bian
- Division of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, 999077, Hong Kong; Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, 999077, Hong Kong; Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, Shatin, New Territories, 999077, Hong Kong; Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, PR China; Centre for Novel Biomaterials, The Chinese University of Hong Kong, Shatin, New Territories, 999077, Hong Kong.
| |
Collapse
|
15
|
Huang GP, Molina A, Tran N, Collins G, Arinzeh TL. Investigating cellulose derived glycosaminoglycan mimetic scaffolds for cartilage tissue engineering applications. J Tissue Eng Regen Med 2017; 12:e592-e603. [DOI: 10.1002/term.2331] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 08/20/2016] [Accepted: 09/26/2016] [Indexed: 01/22/2023]
Affiliation(s)
- G. Portocarrero Huang
- Department of Biomedical Engineering New Jersey Institute of Technology Newark NJ USA
| | - A. Molina
- Department of Biomedical Engineering New Jersey Institute of Technology Newark NJ USA
| | - N. Tran
- Department of Biomedical Engineering New Jersey Institute of Technology Newark NJ USA
| | - G. Collins
- Department of Biomedical Engineering New Jersey Institute of Technology Newark NJ USA
| | | |
Collapse
|
16
|
Smith LE, Bryant C, Krasowska M, Cowin AJ, Whittle JD, MacNeil S, Short RD. Haptotatic Plasma Polymerized Surfaces for Rapid Tissue Regeneration and Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2016; 8:32675-32687. [PMID: 27934156 DOI: 10.1021/acsami.6b11320] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Skin has a remarkable capacity for regeneration; however, with an ever aging population, there is a growing burden to the healthcare system from chronic wounds. Novel therapies are required to address the problems associated with nonhealing chronic wounds. Novel wound dressings that can encourage increased reepithelialization could help to reduce the burden of chronic wounds. A suite of chemically defined surfaces have been produced using plasma polymerization, and the ability of these surfaces to support the growth of primary human skin cells has been assessed. Additionally, the ability of these surfaces to modulate cell migration and morphology has also been investigated. Keratinocytes and endothelial cells were extremely sensitive to surface chemistry showing increased viability and migration with an increased number of carboxylic acid functional groups. Fibroblasts proved to be more tolerant to changes in surface chemistry; however, these cells migrated fastest over amine-functionalized surfaces. The novel combination of comprehensive chemical characterization coupled with the focus on cell migration provides a unique insight into how a material's physicochemical properties affect cell migration.
Collapse
Affiliation(s)
- Louise E Smith
- Wound Management Innovation Cooperative Research Centre , Brisbane 4059, Queensland, Australia
- Future Industries Institute, University of South Australia , Adelaide 5095, South Australia, Australia
| | - Christian Bryant
- Wound Management Innovation Cooperative Research Centre , Brisbane 4059, Queensland, Australia
| | - Marta Krasowska
- Future Industries Institute, University of South Australia , Adelaide 5095, South Australia, Australia
- School of Information Technology and Mathematical Sciences, University of South Australia , Adelaide, 5095, South Australia, Australia
| | - Allison J Cowin
- Wound Management Innovation Cooperative Research Centre , Brisbane 4059, Queensland, Australia
- Future Industries Institute, University of South Australia , Adelaide 5095, South Australia, Australia
| | - Jason D Whittle
- Wound Management Innovation Cooperative Research Centre , Brisbane 4059, Queensland, Australia
- School of Engineering, University of South Australia , Adelaide 5095, South Australia, Australia
| | - Sheila MacNeil
- Kroto Research Institute, University of Sheffield , Sheffield S3 7HQ, South Yorkshire, United Kingdom
| | - Robert D Short
- Wound Management Innovation Cooperative Research Centre , Brisbane 4059, Queensland, Australia
- Future Industries Institute, University of South Australia , Adelaide 5095, South Australia, Australia
| |
Collapse
|
17
|
Schirmer L, Atallah P, Werner C, Freudenberg U. StarPEG-Heparin Hydrogels to Protect and Sustainably Deliver IL-4. Adv Healthc Mater 2016; 5:3157-3164. [PMID: 27860466 DOI: 10.1002/adhm.201600797] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/04/2016] [Indexed: 12/31/2022]
Abstract
A major limitation for the therapeutic applications of cytokines is their short half-life time. Glycosaminoglycans (GAGs), known to complex and stabilize cytokines in vivo, are therefore used to form 3D-biohybrid polymer networks capable of aiding the effective administration of Interleukin-4, a key regulator of the inflammatory response. Mimicking the in vivo situation of a protease-rich inflammatory milieu, star-shaped poly(ethylene glycol) (starPEG)-heparin hydrogels and starPEG reference hydrogels without heparin are loaded with Interleukin-4 and subsequently exposed to trypsin as a model protease. Heparin-containing hydrogels retain significantly higher amounts of the Interleukin-4 protein thus exhibiting a significantly higher specific activity than the heparin-free controls. StarPEG-heparin hydrogels are furthermore shown to enable a sustained delivery of the cytokine for time periods of more than two weeks. Primary murine macrophages adopt a wound healing supporting (M2) phenotype when conditioned with Interleukin-4 releasing starPEG-heparin hydrogels. The reported results suggest that GAG-based hydrogels offer valuable options for the effective administration of cytokines in protease-rich proinflammatory milieus such as chronic wounds of diabetic patients.
Collapse
Affiliation(s)
- Lucas Schirmer
- Leibniz Institute of Polymer Research Dresden (IPF); Max Bergmann Center of Biomaterials Dresden (MBC); Hohe Str. 6 01069 Dresden Germany
| | - Passant Atallah
- Leibniz Institute of Polymer Research Dresden (IPF); Max Bergmann Center of Biomaterials Dresden (MBC); Hohe Str. 6 01069 Dresden Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden (IPF); Max Bergmann Center of Biomaterials Dresden (MBC); Hohe Str. 6 01069 Dresden Germany
- Center for Regenerative Therapies Dresden (CRTD); Technische Universität Dresden; Fetscherstraße 105 01307 Dresden Germany
| | - Uwe Freudenberg
- Leibniz Institute of Polymer Research Dresden (IPF); Max Bergmann Center of Biomaterials Dresden (MBC); Hohe Str. 6 01069 Dresden Germany
| |
Collapse
|
18
|
Structural and functional insights into the interaction of sulfated glycosaminoglycans with tissue inhibitor of metalloproteinase-3 - A possible regulatory role on extracellular matrix homeostasis. Acta Biomater 2016; 45:143-154. [PMID: 27545813 DOI: 10.1016/j.actbio.2016.08.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/22/2016] [Accepted: 08/17/2016] [Indexed: 11/23/2022]
Abstract
An imbalance between tissue-degrading matrix metalloproteinases (MMPs) and their counterparts' tissue inhibitors of metalloproteinases (TIMPs) causes pathologic extracellular matrix (ECM) degradation in chronic wounds and requires new adaptive biomaterials that interact with these regulators to re-establish their balance. Sulfated glycosaminoglycans (GAGs) and TIMP-3 are key modulators of tissue formation and remodeling. However, little is known about their molecular interplay. GAG/TIMP-3 interactions were characterized combining surface plasmon resonance, ELISA, molecular modeling and hydrogen/deuterium exchange mass spectrometry. We demonstrate the potential of solute and surface-bound sulfated hyaluronan (sHA) and chondroitin sulfate (sCS) derivatives to manipulate GAG/TIMP-3 interactions by varying GAG concentration, sulfation degree and chain length. Three GAG binding sites in the N- and C-terminal domains of TIMP-3 were identified. We reveal no overlap with the matrix metalloproteinases (MMP)-binding site, elucidating why GAGs did not change MMP-1/-2 inhibition by TIMP-3 in enzyme kinetics. Since we prove that GAGs alone have a low impact on MMP activity, sHA and sCS offer a promising strategy to possibly control ECM remodeling via stabilizing and accumulating TIMP-3 by maintaining its MMP inhibitory activity under GAG-bound conditions. Whether GAG-based functional biomaterials can be applied to foster chronic wound healing by shifting the MMP/TIMP balance to a healing promoting state needs to be evaluated in vivo. STATEMENT OF SIGNIFICANCE Increased levels of tissue-degrading matrix metalloproteinases (MMPs) lead to pathologic matrix degradation in chronic wounds. Therefor functional biomaterials that restore the balance between MMPs and tissue inhibitors of metalloproteinases (TIMPs) are required to promote wound healing. Since sulfated glycosaminoglycan (GAG) derivatives demonstrated already to be e.g. anti-inflammatory and immunomodulatory, and native GAGs interact with TIMP-3 the former are promising candidates for functionalizing biomaterials. We identified the GAG binding sites of TIMP-3 by combining experimental and molecular modeling approaches and revealed that GAG derivatives have a higher capacity to sequester TIMP-3 than native GAGs without altering its inhibitory potential towards MMPs. Thus GAG derivative-containing biomaterials could protect tissue from excessive proteolytic degradation e.g. in chronic wounds by re-establishing the MMP/TIMP balance.
Collapse
|
19
|
Rother S, Samsonov SA, Hempel U, Vogel S, Moeller S, Blaszkiewicz J, Köhling S, Schnabelrauch M, Rademann J, Pisabarro MT, Hintze V, Scharnweber D. Sulfated Hyaluronan Alters the Interaction Profile of TIMP-3 with the Endocytic Receptor LRP-1 Clusters II and IV and Increases the Extracellular TIMP-3 Level of Human Bone Marrow Stromal Cells. Biomacromolecules 2016; 17:3252-3261. [DOI: 10.1021/acs.biomac.6b00980] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sandra Rother
- Institute
of Materials Science, Max Bergmann Center of Biomaterials, TU Dresden, Budapester Str. 27, 01069 Dresden, Germany
| | - Sergey A. Samsonov
- Structural
Bioinformatics, BIOTEC TU Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Ute Hempel
- Institute
of Physiological Chemistry, Carl Gustav Carus Faculty of Medicine, TU Dresden, Fiedlerstraße 42, 01307 Dresden, Germany
| | - Sarah Vogel
- Institute
of Physiological Chemistry, Carl Gustav Carus Faculty of Medicine, TU Dresden, Fiedlerstraße 42, 01307 Dresden, Germany
| | - Stephanie Moeller
- Biomaterials
Department, INNOVENT e.V., Prüssingstraße 27 B, 07745 Jena, Germany
| | - Joanna Blaszkiewicz
- Institute of Pharmacy & Institute of Chemistry and Biochemistry, Freie Universität Berlin, Königin-Luise-Str. 2, 14195 Berlin, Germany
- Institute
of Medical Physics and Biophysics, Universität Leipzig, Härtelstr.
16/18, 04107 Leipzig, Germany
| | - Sebastian Köhling
- Institute of Pharmacy & Institute of Chemistry and Biochemistry, Freie Universität Berlin, Königin-Luise-Str. 2, 14195 Berlin, Germany
- Institute
of Medical Physics and Biophysics, Universität Leipzig, Härtelstr.
16/18, 04107 Leipzig, Germany
| | | | - Jörg Rademann
- Institute of Pharmacy & Institute of Chemistry and Biochemistry, Freie Universität Berlin, Königin-Luise-Str. 2, 14195 Berlin, Germany
- Institute
of Medical Physics and Biophysics, Universität Leipzig, Härtelstr.
16/18, 04107 Leipzig, Germany
| | - M. Teresa Pisabarro
- Structural
Bioinformatics, BIOTEC TU Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Vera Hintze
- Institute
of Materials Science, Max Bergmann Center of Biomaterials, TU Dresden, Budapester Str. 27, 01069 Dresden, Germany
| | - Dieter Scharnweber
- Institute
of Materials Science, Max Bergmann Center of Biomaterials, TU Dresden, Budapester Str. 27, 01069 Dresden, Germany
| |
Collapse
|
20
|
Abstract
Tissue inhibitor of metalloproteinases-3 (TIMP-3) belongs to a family of proteins that regulate the activity of matrix metalloproteinases (MMPs), which can process various bioactive molecules such as cell surface receptors, chemokines, and cytokines. Glycosaminoglycans (GAGs) interact with a number of proteins, thereby playing an essential role in the regulation of many physiological/patho-physiological processes. Both GAGs and TIMP/MMPs play a major role in many cell biological processes, including cell proliferation, migration, differentiation, angiogenesis, apoptosis, and host defense. In this report, a heparin biosensor was used to map the interaction between TIMP-3 and heparin and other GAGs by surface plasmon resonance spectroscopy. These studies show that TIMP-3 is a heparin-binding protein with an affinity of ~59 nM. Competition surface plasmon resonance analysis indicates that the interaction between TIMP-3 and heparin is chain-length dependent, and N-sulfo and 6-O-sulfo groups (rather than the 2-O-sulfo groups) in heparin are important in the interaction of heparin with TIMP-3. Other GAGs (including chondroitin sulfate (CS) type E (CS-E)and CS type B (CS-B)demonstrated strong binding to TIMP-3, while heparan sulfate (HS), CS type A (CSA), CS type C (CSC), and CS type D (CSD) displayed only weak binding affinity.
Collapse
|
21
|
New strategies for cartilage regeneration exploiting selected glycosaminoglycans to enhance cell fate determination. Biochem Soc Trans 2014; 42:703-9. [DOI: 10.1042/bst20140031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Most research strategies for cartilage tissue engineering use extended culture with complex media loaded with costly GFs (growth factors) to drive tissue assembly and yet they result in the production of cartilage with inferior mechanical and structural properties compared with the natural tissue. Recent evidence suggests that GAGs (glycosaminoglycans) incorporated into tissue engineering scaffolds can sequester and/or activate GFs and thereby more effectively mimic the natural ECM (extracellular matrix). Such approaches may have potential for the improvement of cartilage engineering. However, natural GAGs are structurally complex and heterogeneous, making structure–function relationships hard to determine and clinical translation difficult. Importantly, subfractions of GAGs with specific chain lengths and sulfation patterns have been shown to activate key signalling processes during stem cell differentiation. In addition, recently, GAGs have been bound to synthetic biomaterials, such as electrospun scaffolds and hydrogels, in biologically active conformations, and methods to purify and select affinity-matched GAGs for specific GFs have also been developed. The identification and use of specific GAG moieties to promote chondrogenesis is therefore an exciting new avenue of research. Combining these with synthetic biomaterials may allow a more effective mimicry of the natural ECM, reduction in the need for expensive GFs, and perhaps the deposition of an articular cartilage-like matrix in a clinically relevant manner.
Collapse
|
22
|
Zuber AA, Robinson DE, Short RD, Steele DA, Whittle JD. Development of a surface to increase retinal pigment epithelial cell (ARPE-19) proliferation under reduced serum conditions. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:1367-1373. [PMID: 24493476 DOI: 10.1007/s10856-014-5163-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 01/23/2014] [Indexed: 06/03/2023]
Abstract
Age related macular degeneration of the eye is brought about by damage to the retinal pigment epithelium (RPE) and is a major cause of adult blindness. One potential treatment method is transplantation of RPE cells grown in vitro. Maintaining RPE cell viability and physiological function in vitro is a challenge, and this must also be achieved using materials that can be subsequently used to deliver an intact cell sheet into the eye. In this paper, plasma polymerisation has been used to develop a chemically modified surface for maintaining RPE cells in vitro. Multiwell plates modified with a plasma copolymer of allylamine and octadiene maintained RPE cell growth at a level similar to that of TCPS. However, the addition of bound glycosaminoglycans (GAGs) to the plasma polymerised surface significantly enhanced RPE proliferation. Simply adding GAG to the culture media had no positive effect. It is shown that a combination of plasma polymer and GAG is a promising method for developing suitable surfaces for cell growth and delivery, that can be applied to any substrate material.
Collapse
Affiliation(s)
- Agnieszka A Zuber
- Mawson Institute, University of South Australia, GPO Box 2471, Adelaide, SA, 5001, Australia
| | | | | | | | | |
Collapse
|
23
|
Robinson DE, Smith LE, Steele DA, Short RD, Whittle JD. Development of a surface to enhance the effectiveness of fibroblast growth factor 2 (FGF-2). Biomater Sci 2014; 2:875-882. [PMID: 32481820 DOI: 10.1039/c4bm00018h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Growth factors (GFs) play an important role in biological processes such as cell proliferation, differentiation and angiogenesis. GFs are known to bind to glycosaminoglycans (GAGs) in the extracellular matrix, aiding projection from degradation and pooling the GFs for quick response to biological stimuli in vivo. GFs are typically expensive and have a relatively short half-life in culture media, requiring regular replenishment. Here the cooperative binding of GF to a plasma polymerised surface decorated with heparin, and the subsequent culture of primary human dermal fibroblasts (HDFs) is investigated. A simple one-step technique suitable for coating a wide range of different substrates was utilised. Substrates such as culture-ware, scaffolds, bandages and devices for implantation could be coated. The modified surface was compared to standard culture techniques of addition of GF to the media. Results demonstrate that surface bound heparin and FGF-2 have a greater effect on cell proliferation especially at reduced serum concentrations. With performance equivalent to supplementing the media achieved at as little as 1% total FGF-2 added. The protective cooperative effect of FGF-2-GAG bound to modified surface at the interface could lead to reduced costs by reduction of FGF-2 required. Furthermore, for applications such as chronic non-healing wounds, bandages can be produced modified by plasma and decorated with GAGs that could utilise and protect important GFs. This would effectively re-introduce important biomolecules which are protected by GAG binding into a harsh environment.
Collapse
Affiliation(s)
- David E Robinson
- Mawson Institute, University of South Australia, Mawson Lakes, Adelaide, South Australia 5095, Australia.
| | | | | | | | | |
Collapse
|
24
|
Easton CD, Bullock AJ, Gigliobianco G, McArthur SL, MacNeil S. Application of layer-by-layer coatings to tissue scaffolds – development of an angiogenic biomaterial. J Mater Chem B 2014; 2:5558-5568. [DOI: 10.1039/c4tb00448e] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Development of flexible coating strategies to promote angiogenesis is critical to effectively treat chronic, non-healing wounds.
Collapse
Affiliation(s)
- C. D. Easton
- CSIRO Manufacturing Flagship
- Clayton VIC 3168, Australia
| | - A. J. Bullock
- Department of Engineering Materials
- University of Sheffield
- Kroto Research Institute
- Broad Lane, UK
| | - G. Gigliobianco
- Department of Engineering Materials
- University of Sheffield
- Kroto Research Institute
- Broad Lane, UK
| | - S. L. McArthur
- Biotactical Engineering Group
- IRIS
- Faculty of Engineering and Industrial Sciences
- Swinburne University of Technology
- Hawthorn, Australia
| | - S. MacNeil
- Department of Engineering Materials
- University of Sheffield
- Kroto Research Institute
- Broad Lane, UK
| |
Collapse
|
25
|
Wang K, Luo Y. Defined Surface Immobilization of Glycosaminoglycan Molecules for Probing and Modulation of Cell–Material Interactions. Biomacromolecules 2013; 14:2373-82. [DOI: 10.1021/bm4004942] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Kai Wang
- Department of Biomedical
Engineering,
College of Engineering, Peking University, Room 206, Fang-Zheng Building, 298 Chengfu Road, Haidian District,
Beijing, China 100871
| | - Ying Luo
- Department of Biomedical
Engineering,
College of Engineering, Peking University, Room 206, Fang-Zheng Building, 298 Chengfu Road, Haidian District,
Beijing, China 100871
- National Engineering Laboratory for Regenerative and Implantable Medical Devices, 12 Yu-Yan Road, Luogang Dist, Guangzhou, China 510663
| |
Collapse
|
26
|
Meade KA, White KJ, Pickford CE, Holley RJ, Marson A, Tillotson D, van Kuppevelt TH, Whittle JD, Day AJ, Merry CLR. Immobilization of heparan sulfate on electrospun meshes to support embryonic stem cell culture and differentiation. J Biol Chem 2012; 288:5530-8. [PMID: 23235146 PMCID: PMC3581394 DOI: 10.1074/jbc.m112.423012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
As our understanding of what guides the behavior of multi- and pluripotent stem cells deepens, so too does our ability to utilize certain cues to manipulate their behavior and maximize their therapeutic potential. Engineered, biologically functionalized materials have the capacity to influence stem cell behavior through a powerful combination of biological, mechanical, and topographical cues. Here, we present the development of a novel electrospun scaffold, functionalized with glycosaminoglycans (GAGs) ionically immobilized onto the fiber surface. Bound GAGs retained the ability to interact with GAG-binding molecules and, crucially, presented GAG sulfation motifs fundamental to mediating stem cell behavior. Bound GAG proved to be biologically active, rescuing the neural differentiation capacity of heparan sulfate-deficient mouse embryonic stem cells and functioning in concert with FGF4 to facilitate the formation of extensive neural processes across the scaffold surface. The combination of GAGs with electrospun scaffolds creates a biomaterial with potent applicability for the propagation and effective differentiation of pluripotent stem cells.
Collapse
Affiliation(s)
- Kate A Meade
- Stem Cell Glycobiology Group, School of Materials, University of Manchester, Grosvenor Street, Manchester M1 7HS, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|