1
|
Abdukerim R, Li L, Li JH, Xiang S, Shi YX, Xie XW, Chai AL, Fan TF, Li BJ. Coating seeds with biocontrol bacteria-loaded sodium alginate/pectin hydrogel enhances the survival of bacteria and control efficacy against soil-borne vegetable diseases. Int J Biol Macromol 2024; 279:135317. [PMID: 39245117 DOI: 10.1016/j.ijbiomac.2024.135317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/25/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
Microbial seed coatings serve as effective, labor-saving, and ecofriendly means of controlling soil-borne plant diseases. However, the survival of microbial agents on seed surfaces and in the rhizosphere remains a crucial challenge. In this work, we embedded a biocontrol bacteria (Bacillus subtilis ZF71) in sodium alginate (SA)/pectin (PC) hydrogel as a seed coating agent to control Fusarium root rot in cucumber. The formula of SA/PC hydrogel was optimized with the highest coating uniformity of 90 % in cucumber seeds. SA/PC hydrogel was characterized using rheological, gel content, and water content tests, thermal gravimetric analysis, and Fourier transform infrared spectroscopy. Bacillus subtilis ZF71 within the SA/PC hydrogel network formed a biofilm-like structure with a high viable cell content (8.30 log CFU/seed). After 37 days of storage, there was still a high number of Bacillus subtilis ZF71 cells (7.23 log CFU/seed) surviving on the surface of cucumber seeds. Pot experiments revealed a higher control efficiency against Fusarium root rot in ZF71-SA/PC cucumber seeds (53.26 %) compared with roots irrigated with a ZF71 suspension. Overall, this study introduced a promising microbial seed coating strategy based on biofilm formation that improved performance against soil-borne plant diseases.
Collapse
Affiliation(s)
- Rizwangul Abdukerim
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lei Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jun-Hui Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sheng Xiang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yan-Xia Shi
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xue-Wen Xie
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - A-Li Chai
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Teng-Fei Fan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Bao-Ju Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
2
|
Somchob B, Promphet N, Rodthongkum N, Hoven VP. Zwitterionic hydrogel for preserving stability and activity of oxidase enzyme for electrochemical biosensor. Talanta 2024; 270:125510. [PMID: 38128281 DOI: 10.1016/j.talanta.2023.125510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
Enzymatic electrochemical biosensor is the most common analytical platform for medical diagnosis. To mimic the biological environment of the enzyme for maintaining the function of biosensor, zwitterionic hydrogels have been recognized as effective matrices for enzymatic immobilization. Herein, a zwitterionic hydrogel derived from a copolymer, poly[2-methacryloyloxyethyl phosphorylcholine (MPC)-co-N-methacryloyloxyethyl tyrosine methylester (MAT)] (PMM) was firstly applied as versatile coating to preserve stability and activity of oxidase enzymes, glucose oxidase (GOx) and lactate oxidase (LOx) for enzymatic electrochemical sensor. A screen-printed carbon electrode (SPCE) was sequentially coated with nitrogen-doped graphene (NDG), oxidase enzyme, and PMM mixed with Ru(II)bpy32+ and (NH4)2S2O8 followed by visible light irradiation for 3 min to induce PMM gelation. Electrochemical detection of glucose and lactate using the modified SPCE was performed via amperometry in the presence of hydrogen peroxide. The activity of both GOx and LOx immobilized on the modified SPCE was well maintained for 49 days at 87 and 80 %, respectively. Additionally, two different electrodes, a screen-printed graphene electrode (SPGE), and a screen-printed silver electrode (SPAgE), similarly modified gave the same satisfactory detection of spiked glucose and lactate in human plasma and sweat with 93-118 % recovery. This indicates the potential of the PMM hydrogel as a universal platform for preservation of enzymes which can be easily fabricated without the need for specific chemical modification of the electrode.
Collapse
Affiliation(s)
- Benjawan Somchob
- Program in Petrochemistry and Polymer Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nadtinan Promphet
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Road, Wangmai, Patumwan, Bangkok, 10330, Thailand
| | - Nadnudda Rodthongkum
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Road, Wangmai, Patumwan, Bangkok, 10330, Thailand; Center of Excellence in Responsive Wearable Materials, Chulalongkorn University, Soi Chula 12, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Voravee P Hoven
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence in Materials and Bio-interfaces, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
3
|
Luc VS, Lin CC, Wang SY, Lin HP, Li BR, Chou YN, Chang CC. Antifouling Properties of Amine-Oxide-Containing Zwitterionic Polymers. Biomacromolecules 2023; 24:5467-5477. [PMID: 37862241 DOI: 10.1021/acs.biomac.3c00948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Biofouling due to nonspecific proteins or cells on the material surfaces is a major challenge in a range of applications such as biosensors, medical devices, and implants. Even though poly(ethylene glycol) (PEG) has become the most widely used stealth material in medical and pharmaceutical products, the number of reported cases of PEG-triggered rare allergic responses continues to increase in the past decades. Herein, a new type of antifouling material poly(amine oxide) (PAO) has been evaluated as an alternative to overcome nonspecific foulant adsorption and impart comparable biocompatibility. Alkyl-substituted PAO containing diethyl, dibutyl, and dihexyl substituents are prepared, and their solution properties are studied. Photoreactive copolymers containing benzophenone as the photo-cross-linker are prepared by reversible addition-fragmentation chain-transfer polymerization and fully characterized by gel permeation chromatography and dynamic light scattering. Then, these water-soluble polymers are anchored onto a silicon wafer with the aid of UV irradiation. By evaluating the fouling resistance properties of these modified surfaces against various types of foulants, protein adsorption and bacterial attachment assays show that the cross-linked PAO-modified surface can efficiently inhibit biofouling. Furthermore, human blood cell adhesion experiments demonstrate that our PAO polymer could be used as a novel surface modifier for biomedical devices.
Collapse
Affiliation(s)
- Van-Sieu Luc
- Sustainable Chemical Science and Technology (SCST), Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei 11529, Taiwan
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Chien-Cheng Lin
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Shao-Yu Wang
- Department of Chemical and Materials Engineering, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan
| | - Hsiu-Pen Lin
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Bor-Ran Li
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Ying-Nien Chou
- Department of Chemical and Materials Engineering, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan
| | - Chia-Chih Chang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
4
|
Li Q, Wen C, Yang J, Zhou X, Zhu Y, Zheng J, Cheng G, Bai J, Xu T, Ji J, Jiang S, Zhang L, Zhang P. Zwitterionic Biomaterials. Chem Rev 2022; 122:17073-17154. [PMID: 36201481 DOI: 10.1021/acs.chemrev.2c00344] [Citation(s) in RCA: 142] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The term "zwitterionic polymers" refers to polymers that bear a pair of oppositely charged groups in their repeating units. When these oppositely charged groups are equally distributed at the molecular level, the molecules exhibit an overall neutral charge with a strong hydration effect via ionic solvation. The strong hydration effect constitutes the foundation of a series of exceptional properties of zwitterionic materials, including resistance to protein adsorption, lubrication at interfaces, promotion of protein stabilities, antifreezing in solutions, etc. As a result, zwitterionic materials have drawn great attention in biomedical and engineering applications in recent years. In this review, we give a comprehensive and panoramic overview of zwitterionic materials, covering the fundamentals of hydration and nonfouling behaviors, different types of zwitterionic surfaces and polymers, and their biomedical applications.
Collapse
Affiliation(s)
- Qingsi Li
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Chiyu Wen
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Jing Yang
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Xianchi Zhou
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yingnan Zhu
- Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research, Zhengzhou University, Zhengzhou 450001, China
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Gang Cheng
- Department of Chemical Engineering, The University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Jie Bai
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, China
| | - Tong Xu
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Shaoyi Jiang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Lei Zhang
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Peng Zhang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
5
|
Javan Nikkhah S, Vandichel M. Modeling Polyzwitterion-Based Drug Delivery Platforms: A Perspective of the Current State-of-the-Art and Beyond. ACS ENGINEERING AU 2022; 2:274-294. [PMID: 35996394 PMCID: PMC9389590 DOI: 10.1021/acsengineeringau.2c00008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Drug delivery platforms are anticipated to have biocompatible and bioinert surfaces. PEGylation of drug carriers is the most approved method since it improves water solubility and colloid stability and decreases the drug vehicles' interactions with blood components. Although this approach extends their biocompatibility, biorecognition mechanisms prevent them from biodistribution and thus efficient drug transfer. Recent studies have shown (poly)zwitterions to be alternatives for PEG with superior biocompatibility. (Poly)zwitterions are super hydrophilic, mainly stimuli-responsive, easy to functionalize and they display an extremely low protein adsorption and long biodistribution time. These unique characteristics make them already promising candidates as drug delivery carriers. Furthermore, since they have highly dense charged groups with opposite signs, (poly)zwitterions are intensely hydrated under physiological conditions. This exceptional hydration potential makes them ideal for the design of therapeutic vehicles with antifouling capability, i.e., preventing undesired sorption of biologics from the human body in the drug delivery vehicle. Therefore, (poly)zwitterionic materials have been broadly applied in stimuli-responsive "intelligent" drug delivery systems as well as tumor-targeting carriers because of their excellent biocompatibility, low cytotoxicity, insignificant immunogenicity, high stability, and long circulation time. To tailor (poly)zwitterionic drug vehicles, an interpretation of the structural and stimuli-responsive behavior of this type of polymer is essential. To this end, a direct study of molecular-level interactions, orientations, configurations, and physicochemical properties of (poly)zwitterions is required, which can be achieved via molecular modeling, which has become an influential tool for discovering new materials and understanding diverse material phenomena. As the essential bridge between science and engineering, molecular simulations enable the fundamental understanding of the encapsulation and release behavior of intelligent drug-loaded (poly)zwitterion nanoparticles and can help us to systematically design their next generations. When combined with experiments, modeling can make quantitative predictions. This perspective article aims to illustrate key recent developments in (poly)zwitterion-based drug delivery systems. We summarize how to use predictive multiscale molecular modeling techniques to successfully boost the development of intelligent multifunctional (poly)zwitterions-based systems.
Collapse
Affiliation(s)
- Sousa Javan Nikkhah
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Matthias Vandichel
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| |
Collapse
|
6
|
Abstract
Collagen is the most abundant component of mammalian extracellular matrices. As such, the development of materials that mimic the biological and mechanical properties of collagenous tissues is an enduring goal of the biomaterials community. Despite the development of molded and 3D printed collagen hydrogel platforms, their use as biomaterials and tissue engineering scaffolds is hindered by either low stiffness and toughness or processing complexity. Here, we demonstrate the development of stiff and tough biohybrid composites by combining collagen with a zwitterionic hydrogel through simple mixing. This combination led to the self-assembly of a nanostructured fibrillar network of collagen that was ionically linked to the surrounding zwitterionic hydrogel matrix, leading to a composite microstructure reminiscent of soft biological tissues. The addition of 5-15 mg mL-1 collagen and the formation of nanostructured fibrils increased the elastic modulus of the composite system by 40% compared to the base zwitterionic matrix. Most notably, the addition of collagen increased the fracture energy nearly 11-fold ([Formula: see text] 180 J m-2) and clearly delayed crack initiation and propagation. These composites exhibit elastic modulus ([Formula: see text] 0.180 MJ) and toughness ([Formula: see text]0.617 MJ m-3) approaching that of biological tissues such as articular cartilage. Maintenance of the fibrillar structure of collagen also greatly enhanced cytocompatibility, improving cell adhesion more than 100-fold with >90% cell viability.
Collapse
|
7
|
Tan RYH, Lee CS, Pichika MR, Cheng SF, Lam KY. PH Responsive Polyurethane for the Advancement of Biomedical and Drug Delivery. Polymers (Basel) 2022; 14:polym14091672. [PMID: 35566843 PMCID: PMC9102459 DOI: 10.3390/polym14091672] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/11/2022] [Accepted: 04/17/2022] [Indexed: 02/01/2023] Open
Abstract
Due to the specific physiological pH throughout the human body, pH-responsive polymers have been considered for aiding drug delivery systems. Depending on the surrounding pH conditions, the polymers can undergo swelling or contraction behaviors, and a degradation mechanism can release incorporated substances. Additionally, polyurethane, a highly versatile polymer, has been reported for its biocompatibility properties, in which it demonstrates good biological response and sustainability in biomedical applications. In this review, we focus on summarizing the applications of pH-responsive polyurethane in the biomedical and drug delivery fields in recent years. In recent studies, there have been great developments in pH-responsive polyurethanes used as controlled drug delivery systems for oral administration, intravaginal administration, and targeted drug delivery systems for chemotherapy treatment. Other applications such as surface biomaterials, sensors, and optical imaging probes are also discussed in this review.
Collapse
Affiliation(s)
- Rachel Yie Hang Tan
- School of Postgraduate, International Medical University, Kuala Lumpur 57000, Malaysia; (R.Y.H.T.); (K.Y.L.)
| | - Choy Sin Lee
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia;
- Correspondence:
| | - Mallikarjuna Rao Pichika
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia;
- Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Sit Foon Cheng
- Unit of Research on Lipids (URL), Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Ki Yan Lam
- School of Postgraduate, International Medical University, Kuala Lumpur 57000, Malaysia; (R.Y.H.T.); (K.Y.L.)
| |
Collapse
|
8
|
Erfani A, Hanna A, Zarrintaj P, Manouchehri S, Weigandt K, Aichele CP, Ramsey JD. Biodegradable zwitterionic poly(carboxybetaine) microgel for sustained delivery of antibodies with extended stability and preserved function. SOFT MATTER 2021; 17:5349-5361. [PMID: 33954314 DOI: 10.1039/d1sm00154j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Many recent innovative treatments are based on monoclonal antibodies (mAbs) and other protein therapies. Nevertheless, sustained subcutaneous, oral or pulmonary delivery of such therapeutics is limited by the poor stability, short half-life, and non-specific interactions between the antibody (Ab) and delivery vehicle. Protein stabilizers (osmolytes) such as carboxybetaine can prevent non-specific interactions within proteins. In this work, a biodegradable zwitterionic poly(carboxybetaine), pCB, based microgel covalently crosslinked with tetra(ethylene glycol) diacrylate (TTEGDA) was synthesized for Ab encapsulation. The resulting microgels were characterized via FTIR, diffusion NMR, small-angle neutron scattering (SANS), and cell culture studies. The microgels were found to contain up to 97.5% water content and showed excellent degradability that can be tuned with crosslinking density. Cell compatibility of the microgel was studied by assessing the toxicity and immunogenicity in vitro. Cells exposed to microgel showed complete viability and no pro-inflammatory secretion of interleukin 6 (IL6) or tumor necrosis factor-alpha (TNFα). Microgel was loaded with Immunoglobulin G (as a model Ab), using a post-fabrication loading technique, and Ab sustained release from microgels of varying crosslinking densities was studied. The released Abs (especially from the high crosslinked microgels) proved to be completely active and able to bind with Ab receptors. This study opens a new horizon for scientists to use such a platform for local delivery of Abs to the desired target with minimized non-specific interactions.
Collapse
Affiliation(s)
- Amir Erfani
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Abanoub Hanna
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Saeed Manouchehri
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Katie Weigandt
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20889-6102, USA
| | - Clint P Aichele
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Joshua D Ramsey
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
9
|
Liu Y, Zhang D, Ren B, Gong X, Xu L, Feng ZQ, Chang Y, He Y, Zheng J. Molecular simulations and understanding of antifouling zwitterionic polymer brushes. J Mater Chem B 2021; 8:3814-3828. [PMID: 32227061 DOI: 10.1039/d0tb00520g] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Zwitterionic materials are an important class of antifouling biomaterials for various applications. Despite such desirable antifouling properties, molecular-level understanding of the structure-property relationship associated with surface chemistry/topology/hydration and antifouling performance still remains to be elucidated. In this work, we computationally studied the packing structure, surface hydration, and antifouling property of three zwitterionic polymer brushes of poly(carboxybetaine methacrylate) (pCBMA), poly(sulfobetaine methacrylate) (pSBMA), and poly((2-(methacryloyloxy)ethyl)phosporylcoline) (pMPC) brushes and a hydrophilic PEG brush using a combination of molecular mechanics (MM), Monte Carlo (MC), molecular dynamics (MD), and steered MD (SMD) simulations. We for the first time determined the optimal packing structures of all polymer brushes from a wide variety of unit cells and chain orientations in a complex energy landscape. Under the optimal packing structures, MD simulations were further conducted to study the structure, dynamics, and orientation of water molecules and protein adsorption on the four polymer brushes, while SMD simulations to study the surface resistance of the polymer brushes to a protein. The collective results consistently revealed that the three zwitterionic brushes exhibited stronger interactions with water molecules and higher surface resistance to a protein than the PEG brush. It was concluded that both the carbon space length between zwitterionic groups and the nature of the anionic groups have a distinct effect on the antifouling performance, leading to the following antifouling ranking of pCBMA > pMPC > pSBMA. This work hopefully provides some structural insights into the design of new antifouling materials beyond traditional PEG-based antifouling materials.
Collapse
Affiliation(s)
- Yonglan Liu
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio 44325, USA.
| | - Dong Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio 44325, USA.
| | - Baiping Ren
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio 44325, USA.
| | - Xiong Gong
- Department of Polymer Engineering, The University of Akron, Ohio 44325, USA
| | - Lijian Xu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, P. R. China
| | - Zhang-Qi Feng
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yung Chang
- Department of Chemical Engineering and R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan 320, Taiwan
| | - Yi He
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio 44325, USA. and Department of Polymer Engineering, The University of Akron, Ohio 44325, USA
| |
Collapse
|
10
|
Naito N, Ukita R, Wilbs J, Wu K, Lin X, Carleton NM, Roberts K, Jiang S, Heinis C, Cook KE. Combination of polycarboxybetaine coating and factor XII inhibitor reduces clot formation while preserving normal tissue coagulation during extracorporeal life support. Biomaterials 2021; 272:120778. [PMID: 33812214 DOI: 10.1016/j.biomaterials.2021.120778] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 03/16/2021] [Accepted: 03/20/2021] [Indexed: 12/17/2022]
Abstract
Blood contact with high surface area medical devices, such as dialysis and extracorporeal life support (ECLS), induces rapid surface coagulation. Systemic anticoagulation, such as heparin, is thus necessary to slow clot formation, but some patients suffer from bleeding complications. Both problems might be reduced by 1) replacing heparin anticoagulation with artificial surface inhibition of the protein adsorption that initiates coagulation and 2) selective inhibition of the intrinsic branch of the coagulation cascade. This approach was evaluated by comparing clot formation and bleeding times during short-term ECLS using zwitterionic polycarboxybetaine (PCB) surface coatings combined with either a potent, selective, bicyclic peptide inhibitor of activated Factor XII (FXII900) or standard heparin anticoagulation. Rabbits underwent venovenous ECLS with small sham oxygenators for 60 min using three means of anticoagulation (n = 4 ea): (1) PCB coating + FXII900 infusion, (2) PCB coating + heparin infusion with an activated clotting time of 220-300s, and (3) heparin infusion alone. Sham oxygenator blood clot weights in the PCB + FXII900 and PCB + heparin groups were 4% and 25% of that in the heparin group (p < 10-6 and p < 10-5), respectively. At the same time, the bleeding time remained normal in the PCB + FXII900 group (2.4 ± 0.2 min) but increased to 4.8 ± 0.5 and 5.1 ± 0.7 min in the PCB + heparin and heparin alone groups (p < 10-4 and 0.01). Sham oxygenator blood flow resistance was significantly lower in the PCB + FXII900 and PCB + heparin groups than in the heparin only group (p < 10-6 and 10-5). These results were confirmed by gross and scanning electron microscopy (SEM) images and fibrinopeptide A (FPA) concentrations. Thus, the combined use of PCB coating and FXII900 markedly reduced sham oxygenator coagulation and tissue bleeding times versus the clinical standard of heparin anticoagulation and is a promising anticoagulation method for clinical ECLS.
Collapse
Affiliation(s)
- Noritsugu Naito
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Rei Ukita
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jonas Wilbs
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Kan Wu
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - Xiaojie Lin
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - Neil M Carleton
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Kalliope Roberts
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Shaoyi Jiang
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - Christian Heinis
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Keith E Cook
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
11
|
The impact of antifouling layers in fabricating bioactive surfaces. Acta Biomater 2021; 126:45-62. [PMID: 33727195 DOI: 10.1016/j.actbio.2021.03.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/18/2021] [Accepted: 03/09/2021] [Indexed: 12/18/2022]
Abstract
Bioactive surfaces modified with functional peptides are critical for both fundamental research and practical application of implant materials and tissue repair. However, when bioactive molecules are tethered on biomaterial surfaces, their functions can be compromised due to unwanted fouling (mainly nonspecific protein adsorption and cell adhesion). In recent years, researchers have continuously studied antifouling strategies to obtain low background noise and effectively present the function of bioactive molecules. In this review, we describe several commonly used antifouling strategies and analyzed their advantages and drawbacks. Among these strategies, antifouling molecules are widely used to construct the antifouling layer of various bioactive surfaces. Subsequently, we summarize various structures of antifouling molecules and their surface grafting methods and characteristics. Application of these functionalized surfaces in microarray, biosensors, and implants are also introduced. Finally, we discuss the primary challenges associated with antifouling layers in fabricating bioactive surfaces and provide prospects for the future development of this field. STATEMENT OF SIGNIFICANCE: The nonspecific protein adsorption and cell adhesion will cause unwanted background "noise" on the surface of biological materials and detecting devices and compromise the performance of functional molecules and, therefore, impair the performance of materials and the sensitivity of devices. In addition, the selection of antifouling surfaces with proper chain length and high grafting density is also of great importance and requires further studies. Otherwise, the surface-tethered bioactive molecules may not function in their optimal status or even fail to display their functions. Based on these two critical issues, we summarize antifouling molecules with different structures, variable grafting methods, and diverse applications in biomaterials and biomedical devices reported in literature. Overall, we expect to shed some light on choosing the appropriate antifouling molecules in fabricating bioactive surfaces.
Collapse
|
12
|
Shen N, Cheng E, Whitley JW, Horne RR, Leigh B, Xu L, Jones BD, Guymon CA, Hansen MR. Photograftable Zwitterionic Coatings Prevent Staphylococcus aureus and Staphylococcus epidermidis Adhesion to PDMS Surfaces. ACS APPLIED BIO MATERIALS 2021; 4:1283-1293. [DOI: 10.1021/acsabm.0c01147] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Na Shen
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa 52242, United States
- Department of Otolaryngology, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Elise Cheng
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa 52242, United States
| | - John W. Whitley
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Ryan R. Horne
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa 52242, United States
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Braden Leigh
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Linjing Xu
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa 52242, United States
| | - Bradley D. Jones
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa 52242, United States
| | - C. Allan Guymon
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Marlan R. Hansen
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa 52242, United States
- Department of Neurosurgery, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
13
|
A nanocomposite interpenetrating hydrogel with high toughness: effects of the posttreatment and molecular weight. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04761-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Li Q, Guo H, Yang J, Zhao W, Zhu Y, Sui X, Xu T, Zhang J, Zhang L. MOF-Based Antibiofouling Hemoadsorbent for Highly Efficient Removal of Protein-Bound Bilirubin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8753-8763. [PMID: 32551665 DOI: 10.1021/acs.langmuir.0c01047] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A metal-organic framework (MOF)-based antibiofouling hemoadsorbent (PCB-MIL101) was developed through a facile encapsulation of MIL-101(Cr) in zwitterionic poly carboxybetaine (PCB) hydrogel. PCB-MIL101 possessed strong mechanical strength and superior hemocompatibility, ensuring its safety in hemoperfusion applications. In addition, it showed efficient and effective adsorption toward bilirubin (BR), and its maximum adsorption capacity was ∼583 mg g-1. Moreover, due to the protection of antibiofouling PCB hydrogel, PCB-MIL101 showed ability to resist protein adsorption, thus working effectively to remove BR molecules from their binding albumin in biological solutions. The finding in this study provides a novel insight into developing MOF-based hemoadsorbents for the improvement of hemoperfusion therapies.
Collapse
Affiliation(s)
- Qingsi Li
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao 266235, China
| | - Hongshuang Guo
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao 266235, China
| | - Jing Yang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao 266235, China
| | - Weiqiang Zhao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao 266235, China
| | - Yingnan Zhu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao 266235, China
| | - Xiaojie Sui
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao 266235, China
| | - Tong Xu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao 266235, China
| | - Jiamin Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao 266235, China
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao 266235, China
| |
Collapse
|
15
|
Koc J, Schönemann E, Wanka R, Aldred N, Clare AS, Gardner H, Swain GW, Hunsucker K, Laschewsky A, Rosenhahn A. Effects of crosslink density in zwitterionic hydrogel coatings on their antifouling performance and susceptibility to silt uptake. BIOFOULING 2020; 36:646-659. [PMID: 32718200 DOI: 10.1080/08927014.2020.1796983] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/08/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
Hydrogel coatings effectively reduce the attachment of proteins and organisms in laboratory assays, in particular when made from zwitterionic monomers. In field experiments with multiple species and non-living material, such coatings suffer from adsorption of particulate matter. In this study, the zwitterionic monomer 3-[N-(2-methacryloyloxyethyl)-N,N-dimethylammonio] propanesulfonate (SPE) was copolymerized with increasing amounts of the photo-crosslinker benzophenon-4-yloxyethyl methacrylate (BPEMA) to systematically alter the density of crosslinks between the polymer chains. The effect of increasing crosslink density on the antifouling (AF) performance of the coatings was investigated in laboratory assays and fields tests. In both cases, the AF performance was improved by increasing the crosslinker content. The coatings reduced protein, diatom, and barnacle accumulation, and showed better resistance to biomass accumulation. The findings underline that the marine AF performance of hydrogel coatings does not only depend on the specific chemical structure of the polymers, but also on their physico-chemical properties such as rigidity and swelling.
Collapse
Affiliation(s)
- Julian Koc
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, Bochum, Germany
| | - Eric Schönemann
- Institute of Chemistry, Universität Potsdam, Potsdam, Germany
| | - Robin Wanka
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, Bochum, Germany
| | - Nick Aldred
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
- School of Life Sciences, University of Essex, Wivenhoe Park, UK
| | - Anthony S Clare
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Harrison Gardner
- Center for Corrosion & Biofouling, Florida Institute of Technology, Melbourne, FL, USA
| | - Geoffrey W Swain
- Center for Corrosion & Biofouling, Florida Institute of Technology, Melbourne, FL, USA
| | - Kelli Hunsucker
- Center for Corrosion & Biofouling, Florida Institute of Technology, Melbourne, FL, USA
| | - Andre Laschewsky
- Institute of Chemistry, Universität Potsdam, Potsdam, Germany
- Fraunhofer Institute of Applied Polymer Research IAP, Potsdam, Germany
| | - Axel Rosenhahn
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
16
|
Li D, Wei Q, Wu C, Zhang X, Xue Q, Zheng T, Cao M. Superhydrophilicity and strong salt-affinity: Zwitterionic polymer grafted surfaces with significant potentials particularly in biological systems. Adv Colloid Interface Sci 2020; 278:102141. [PMID: 32213350 DOI: 10.1016/j.cis.2020.102141] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/21/2022]
Abstract
In recent years, zwitterionic polymers have been frequently reported to modify various surfaces to enhance hydrophilicity, antifouling and antibacterial properties, which show significant potentials particularly in biological systems. This review focuses on the fabrication, properties and various applications of zwitterionic polymer grafted surfaces. The "graft-from" and "graft-to" strategies, surface grafting copolymerization and post zwitterionization methods were adopted to graft lots type of the zwitterionic polymers on different inorganic/organic surfaces. The inherent hydrophilicity and salt affinity of the zwitterionic polymers endow the modified surfaces with antifouling, antibacterial and lubricating properties, thus the obtained zwitterionic surfaces show potential applications in biosystems. The zwitterionic polymer grafted membranes or stationary phases can effectively separate plasma, water/oil, ions, biomolecules and polar substrates. The nanomedicines with zwitterionic polymer shells have "stealth" effect in the delivery of encapsulated drugs, siRNA or therapeutic proteins. Moreover, the zwitterionic surfaces can be utilized as wound dressing, self-healing or oil extraction materials. The zwitterionic surfaces are expected as excellent support materials for biosensors, they are facing the severe challenges in the surface protection of marine facilities, and the dense ion pair layers may take unexpected role in shielding the grafted surfaces from strong electromagnetic field.
Collapse
|
17
|
Ukita R, Wu K, Lin X, Carleton NM, Naito N, Lai A, Do-Nguyen CC, Demarest CT, Jiang S, Cook KE. Zwitterionic poly-carboxybetaine coating reduces artificial lung thrombosis in sheep and rabbits. Acta Biomater 2019; 92:71-81. [PMID: 31082571 PMCID: PMC6633914 DOI: 10.1016/j.actbio.2019.05.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/30/2019] [Accepted: 05/07/2019] [Indexed: 12/24/2022]
Abstract
Current artificial lungs fail in 1-4 weeks due to surface-induced thrombosis. Biomaterial coatings may be applied to anticoagulate artificial surfaces, but none have shown marked long-term effectiveness. Poly-carboxybetaine (pCB) coatings have shown promising results in reducing protein and platelet-fouling in vitro. However, in vivo hemocompatibility remains to be investigated. Thus, three different pCB-grafting approaches to artificial lung surfaces were first investigated: 1) graft-to approach using 3,4-dihydroxyphenylalanine (DOPA) conjugated with pCB (DOPA-pCB); 2) graft-from approach using the Activators ReGenerated by Electron Transfer method of atom transfer radical polymerization (ARGET-ATRP); and 3) graft-to approach using pCB randomly copolymerized with hydrophobic moieties. One device coated with each of these methods and one uncoated device were attached in parallel within a veno-venous sheep extracorporeal circuit with no continuous anticoagulation (N = 5 circuits). The DOPA-pCB approach showed the least increase in blood flow resistance and the lowest incidence of device failure over 36-hours. Next, we further investigated the impact of tip-to-tip DOPA-pCB coating in a 4-hour rabbit study with veno-venous micro-artificial lung circuit at a higher activated clotting time of 220-300 s (N ≥ 5). Here, DOPA-pCB reduced fibrin formation (p = 0.06) and gross thrombus formation by 59% (p < 0.05). Therefore, DOPA-pCB is a promising material for improving the anticoagulation of artificial lungs. STATEMENT OF SIGNIFICANCE: Chronic lung diseases lead to 168,000 deaths each year in America, but only 2300 lung transplantations happen each year. Hollow fiber membrane oxygenators are clinically used as artificial lungs to provide respiratory support for patients, but their long-term viability is hindered by surface-induced clot formation that leads to premature device failure. Among different coatings investigated for blood-contacting applications, poly-carboxybetaine (pCB) coatings have shown remarkable reduction in protein adsorption in vitro. However, their efficacy in vivo remains unclear. This is the first work that investigates various pCB-coating methods on artificial lung surfaces and their biocompatibility in sheep and rabbit studies. This work highlights the promise of applying pCB coatings on artificial lungs to extend its durability and enable long-term respiratory support for lung disease patients.
Collapse
Affiliation(s)
- Rei Ukita
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Scott Hall 4(th) Floor, Pittsburgh, PA 15213, USA.
| | - Kan Wu
- Department of Chemical Engineering, University of Washington, Box 351750, Seattle, WA 98195-1750, USA
| | - Xiaojie Lin
- Department of Chemical Engineering, University of Washington, Box 351750, Seattle, WA 98195-1750, USA
| | - Neil M Carleton
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Scott Hall 4(th) Floor, Pittsburgh, PA 15213, USA
| | - Noritsugu Naito
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Scott Hall 4(th) Floor, Pittsburgh, PA 15213, USA
| | - Angela Lai
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Scott Hall 4(th) Floor, Pittsburgh, PA 15213, USA
| | - Chi Chi Do-Nguyen
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Scott Hall 4(th) Floor, Pittsburgh, PA 15213, USA
| | - Caitlin T Demarest
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Scott Hall 4(th) Floor, Pittsburgh, PA 15213, USA
| | - Shaoyi Jiang
- Department of Chemical Engineering, University of Washington, Box 351750, Seattle, WA 98195-1750, USA
| | - Keith E Cook
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Scott Hall 4(th) Floor, Pittsburgh, PA 15213, USA
| |
Collapse
|
18
|
Zhu H, Xie C, Chen P, Pu K. Organic Nanotheranostics for Photoacoustic Imaging-Guided Phototherapy. Curr Med Chem 2019; 26:1389-1405. [PMID: 28933283 DOI: 10.2174/0929867324666170921103152] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 12/23/2022]
Abstract
Phototherapies including photothermal therapy (PTT) and photodynamic therapy (PDT) have emerged as one of the avant-garde strategies for cancer treatment. Photoacoustic (PA) imaging is a new hybrid imaging modality that shows great promise for real-time in vivo monitoring of biological processes with deep tissue penetration and high spatial resolution. To enhance therapeutic efficacy, reduce side effects and minimize the probability of over-medication, it is necessary to use imaging and diagnostic methods to identify the ideal therapeutic window and track the therapeutic outcome. With this regard, nanotheranostics with the ability to conduct PA imaging and PTT/PDT are emerging. This review summarizes the recent progress of organic nanomaterials including nearinfrared (NIR) dyes and semiconducting polymer nanoparticles (SPNs) in PA imaging guided cancer phototherapy, and also addresses their present challenges and potential in clinical applications.
Collapse
Affiliation(s)
- Houjuan Zhu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore
| | - Chen Xie
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore
| | - Peng Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore
| |
Collapse
|
19
|
Belanger A, Decarmine A, Jiang S, Cook K, Amoako KA. Evaluating the Effect of Shear Stress on Graft-To Zwitterionic Polycarboxybetaine Coating Stability Using a Flow Cell. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1984-1988. [PMID: 30299969 DOI: 10.1021/acs.langmuir.8b03078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The effect of surface coatings on the performance of antifouling activity under flow can be influenced by the flow/coating interactions. This study evaluates the effect of surface coatings on antifouling activity under different flows for the analyses of coating stability. This was done by exposing DOPA-PCB-300/dopamine coated polydimethylsiloxane (PDMS) to physiological shear stresses using a recirculation system which consisted of dual chamber acrylic flow cells, tygon tubing, flow probe and meter, and perfusion pumps. The effect of shear stress induced by phosphate buffered saline flow on coating stability was characterized with differences in fibrinogen adsorption between control (coated PDMS not loaded with shear stress) and coated samples loaded with various shear stresses. Fibrinogen adsorption data showed that relative adsorption on coated PDMS that were not exposed to shear (5.73% ± 1.97%) was significantly lower than uncoated PDMS (100%, p < 0.001). Furthermore, this fouling level, although lower, was not significantly different from coated PDMS membranes that were exposed to 1 dyn/cm2 (9.55% ± 0.09%, p = 0.23), 6 dyn/cm2 (15.92% ± 10.88%, p = 0.14), and 10 dyn/cm2 (21.62% ± 13.68%, p = 0.08). Our results show that DOPA-PCB-300/dopamine coatings are stable, with minimal erosion, under shear stresses tested. The techniques from this fundamental study may be used to determine the limits of stability of coatings in long-term experiments.
Collapse
Affiliation(s)
| | | | - Shaoyi Jiang
- Department of Chemical Engineering , University of Washington , Seattle , Washington 98195 , United States
| | - Keith Cook
- Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | | |
Collapse
|
20
|
Leigh BL, Cheng E, Xu L, Derk A, Hansen MR, Guymon CA. Antifouling Photograftable Zwitterionic Coatings on PDMS Substrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1100-1110. [PMID: 29983076 PMCID: PMC6358520 DOI: 10.1021/acs.langmuir.8b00838] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The foreign body response (FBR) to implantable materials can negatively impact performance of medical devices such as the cochlear implant. Engineering surfaces that resist the FBR could lead to enhanced functionality including potentially improving outcomes for cochlear implant recipients through reduction in fibrosis. In this work, we coat poly(dimethylsiloxane) (PDMS) surfaces with two zwitterionic polymers, poly(sulfobetaine methacrylate) (pSBMA) and poly(carboxybetaine methacrylate) (pCBMA), using a simultaneous photografting/photo-cross-linking process to produce a robust grafted zwitterionic hydrogel. reduce nonspecific protein adsorption, the first step of the FBR. The coating process uses benzophenone, a photografting agent and type II photoinitiator, to covalently link the cross-linked zwitterionic thin film to the PDMS surface. As the concentration of benzophenone on the surface increases, the adhesive strength of the zwitterionic thin films to PDMS surfaces increases as determined by shear adhesion. Additionally, with increased concentration of the adsorbed benzophenone, failure of the system changes from adhesive delamination to cohesive failure within the hydrogel, demonstrating that durable adhesive bonds are formed from the photografting process. Interestingly, antifouling properties of the zwitterionic polymers are preserved with significantly lower levels of nonspecific protein adsorption on zwitterion hydrogel-coated samples compared to uncoated controls. Fibroblast adhesion is also dramatically reduced on coated substrates. These results show that cross-linked pSBMA and pCBMA hydrogels can be readily photografted to PDMS substrates and show promise in potentially changing the fibrotic response to implanted biomaterials.
Collapse
|
21
|
Wang J, Hui N. Zwitterionic poly(carboxybetaine) functionalized conducting polymer polyaniline nanowires for the electrochemical detection of carcinoembryonic antigen in undiluted blood serum. Bioelectrochemistry 2019; 125:90-96. [DOI: 10.1016/j.bioelechem.2018.09.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/25/2018] [Accepted: 09/28/2018] [Indexed: 12/21/2022]
|
22
|
Hossain T, Alam MA, Rahman MA, Sharafat MK, Minami H, Gafur MA, Hoque SM, Ahmad H. Zwitterionic poly(2-(methacryloyloxy) ethyl phosphorylcholine) coated mesoporous silica particles and doping with magnetic nanoparticles. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.06.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
23
|
Kisley L, Miller KA, Davis CM, Guin D, Murphy EA, Gruebele M, Leckband DE. Soluble Zwitterionic Poly(sulfobetaine) Destabilizes Proteins. Biomacromolecules 2018; 19:3894-3901. [PMID: 30064224 DOI: 10.1021/acs.biomac.8b01120] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The widespread interest in neutral, water-soluble polymers such as poly(ethylene glycol) (PEG) and poly(zwitterions) such as poly(sulfobetaine) (pSB) for biomedical applications is due to their widely assumed low protein binding. Here we demonstrate that pSB chains in solution can interact with proteins directly. Moreover, pSB can reduce the thermal stability and increase the protein folding cooperativity relative to proteins in buffer or in PEG solutions. Polymer-dependent changes in the tryptophan fluorescence spectra of three structurally-distinct proteins reveal that soluble, 100 kDa pSB interacts directly with all three proteins and changes both the local polarity near tryptophan residues and the protein conformation. Thermal denaturation studies show that the protein melting temperatures decrease by as much as ∼1.9 °C per weight percent of polymer and that protein folding cooperativity increases by as much as ∼130 J mol-1 K-1 per weight percent of polymer. The exact extent of the changes is protein-dependent, as some proteins exhibit increased stability, whereas others experience decreased stability at high soluble pSB concentrations. These results suggest that pSB is not universally protein-repellent and that its efficacy in biotechnological applications will depend on the specific proteins used.
Collapse
|
24
|
Li W, Cao F, He C, Ohno K, Ngai T. Measuring the Interactions between Protein-Coated Microspheres and Polymer Brushes in Aqueous Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8798-8806. [PMID: 29983064 DOI: 10.1021/acs.langmuir.8b01968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hydrophilic or zwitterionic polymer-functionalized surfaces have become attractive biomaterials in bioscience and technology due to their excellent protein-resistant ability. Understanding the fundamental interactions between proteins and polymers plays an essential role in the surface design of biomaterials. In this work, we studied the interactions between bovine serum albumin (BSA) and two sorts of polymer brushes including zwitterionic poly(carboxybetaine methacrylate) (PCBMA) and hydrophilic poly[oligo(ethylene glycol) methyl ether methacrylate] (POEGMA) in NaCl aqueous solutions directly with a self-established total internal reflection microscope (TIRM) to provide a better understanding of the underlying nonfouling mechanism of polymers. Our results indicate that both the surface charge and brushes length can affect protein adsorption through electrostatic and steric repulsions, respectively. Both PCBMA- and POEGMA-coated surfaces display negative charge properties due to incomplete coverage and ionic adsorption. As a result, strong electrostatic repulsions between proteins and negatively charged polymer-coated surfaces could contribute to the resistance of protein-coated particles in solutions with low ionic strength (0.1, 0.5, and 1 mM) and disappear in solutions with high ionic strength (10 mM). The measured interaction profiles demonstrate that PCBMA brushes could provide apparent steric forces only at high ionic strength (10 mM), where zwitterionic brushes exhibit a relatively extended conformation with a lack of electrostatic forces between intra- and interpolymers. In contrast, the steric repulsion between proteins and POEGMA brushes appears when particles diffuse at low positions in all salt concentrations (0.1-10 mM) with similar steric decay lengths, which results from the unresponsiveness of POEGMA brushes to the salt stimulus.
Collapse
Affiliation(s)
- Wendi Li
- Department of Chemistry , The Chinese University of Hong Kong , Shatin , N.T., Hong Kong SAR, PR China
| | - Feng Cao
- Department of Chemistry , The Chinese University of Hong Kong , Shatin , N.T., Hong Kong SAR, PR China
| | - Chuanxin He
- College of Chemistry Environmental Engineering , Shenzhen University , Shenzhen , Guangdong 518060 , PR China
| | - Kohji Ohno
- Institute for Chemical Research , Kyoto University , Uji , Kyoto 611-0011 , Japan
| | - To Ngai
- Department of Chemistry , The Chinese University of Hong Kong , Shatin , N.T., Hong Kong SAR, PR China
| |
Collapse
|
25
|
Reduction of measurement noise in a continuous glucose monitor by coating the sensor with a zwitterionic polymer. Nat Biomed Eng 2018; 2:894-906. [PMID: 30931173 PMCID: PMC6436621 DOI: 10.1038/s41551-018-0273-3] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Continuous glucose monitors (CGMs), used by patients with diabetes mellitus, can autonomously track fluctuations in blood glucose over time. However, the signal produced by CGMs during the initial recording period following sensor implantation contains substantial noise, requiring frequent recalibration via fingerprick tests. Here, we show that coating the sensor with a zwitterionic polymer, found via a combinatorial-chemistry approach, significantly reduces signal noise and improves CGM performance. We evaluated the polymer-coated sensors in mice as well as in healthy and diabetic non-human primates, and show that the sensors accurately record glucose levels without the need for recalibration. We also show that the polymer-coated sensors significantly abrogated immune responses to the sensor, as indicated by histology, fluorescent whole-body imaging of inflammation-associated protease activity, and gene expression of inflammation markers. The polymer coating may allow CGMs to become standalone measuring devices.
Collapse
|
26
|
Wu H, Lee CJ, Wang H, Hu Y, Young M, Han Y, Xu FJ, Cong H, Cheng G. Highly sensitive and stable zwitterionic poly(sulfobetaine-3,4-ethylenedioxythiophene) (PSBEDOT) glucose biosensor. Chem Sci 2018; 9:2540-2546. [PMID: 29732132 PMCID: PMC5911821 DOI: 10.1039/c7sc05104b] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/24/2018] [Indexed: 12/31/2022] Open
Abstract
A zwitterionic poly(sulfobetaine-3,4-ethylenedioxythiophene) (PSBEDOT)-based glucose biosensor was fabricated via encapsulating glucose oxidase (GOx) in a one-step electropolymerization method.
A zwitterionic poly(sulfobetaine-3,4-ethylenedioxythiophene) (PSBEDOT)-based glucose biosensor was fabricated via encapsulating glucose oxidase (GOx) in a one-step electropolymerization method. Integrating conductivity and hydrophilic properties, PSBEDOT provides a great framework for GOx immobilization and stabilization. The anti-fouling, high-sensitivity, and long-term stability properties of PSBEDOT–GOx make it a promising platform for long-term and continuous glucose monitoring.
Collapse
Affiliation(s)
- Haiyan Wu
- Department of Chemical and Biomolecular Engineering , University of Akron , Akron , Ohio 44325 , USA . ; http://www.uakron.edu/engineering/about-us/people-directory/bio-detail.dot?u=hcong
| | - Chen-Jung Lee
- Department of Chemical and Biomolecular Engineering , University of Akron , Akron , Ohio 44325 , USA . ; http://www.uakron.edu/engineering/about-us/people-directory/bio-detail.dot?u=hcong
| | - Huifeng Wang
- Department of Chemical Engineering , University of Illinois at Chicago , Chicago , Illinois 60607 , USA . ; https://che.uic.edu/k-teacher/gang-cheng-ph-d/
| | - Yang Hu
- Department of Chemical Engineering , University of Illinois at Chicago , Chicago , Illinois 60607 , USA . ; https://che.uic.edu/k-teacher/gang-cheng-ph-d/
| | - Megan Young
- Department of Chemical Engineering , University of Illinois at Chicago , Chicago , Illinois 60607 , USA . ; https://che.uic.edu/k-teacher/gang-cheng-ph-d/
| | - Yu Han
- Department of Mechanical Engineering , University of Akron , Akron , Ohio 44325 , USA
| | - Fu-Jian Xu
- Key Laboratory of Carbon Fiber and Functional Polymers (Ministry of Education) , Beijing Laboratory of Biomedical Materials , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Hongbo Cong
- Department of Chemical and Biomolecular Engineering , University of Akron , Akron , Ohio 44325 , USA . ; http://www.uakron.edu/engineering/about-us/people-directory/bio-detail.dot?u=hcong
| | - Gang Cheng
- Department of Chemical Engineering , University of Illinois at Chicago , Chicago , Illinois 60607 , USA . ; https://che.uic.edu/k-teacher/gang-cheng-ph-d/
| |
Collapse
|
27
|
Leigh BL, Cheng E, Linjing X, Andresen C, Hansen MR, Guymon CA. Photopolymerizable Zwitterionic Polymer Patterns Control Cell Adhesion and Guide Neural Growth. Biomacromolecules 2017; 18:2389-2401. [PMID: 28671816 PMCID: PMC6372952 DOI: 10.1021/acs.biomac.7b00579] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Developing materials that reduce or eliminate fibrosis encapsulation of neural prosthetic implants could significantly enhance implant fidelity by improving the tissue/electrode array interface. Here, we report on the photografting and patterning of two zwitterionic materials, sulfobetaine methacrylate (SBMA) and carboxybetaine methacrylate (CBMA), for controlling the adhesion and directionality of cells relevant to neural prosthetics. CBMA and SBMA polymers were photopolymerized and grafted on glass surfaces then characterized by X-ray photoelectron spectroscopy, water contact angle, and protein adsorption. Micropatterned surfaces were fabricated with alternating zwitterionic and uncoated bands. Fibroblasts, cells prevalent in fibrotic tissue, almost exclusively migrate and grow on uncoated bands with little to no cells present on zwitterionic bands, especially for CBMA-coated surfaces. Astrocytes and Schwann cells showed similarly low levels of cell adhesion and morphology changes when cultured on zwitterionic surfaces. Additionally, Schwann cells and inner ear spiral ganglion neuron neurites aligned well to zwitterionic patterns.
Collapse
Affiliation(s)
- Braden L. Leigh
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Elise Cheng
- Department of Otolaryngology Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, USA
| | - Xu Linjing
- Department of Otolaryngology Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, USA
| | - Corinne Andresen
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Marlan R. Hansen
- Department of Otolaryngology Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, USA
- Department of Neurosurgery, University of Iowa, Iowa City, IA 52242, USA
| | - C. Allan Guymon
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
28
|
Kisley L, Miller KA, Guin D, Kong X, Gruebele M, Leckband DE. Direct Imaging of Protein Stability and Folding Kinetics in Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2017; 9:21606-21617. [PMID: 28553706 DOI: 10.1021/acsami.7b01371] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We apply fast relaxation imaging (FReI) as a novel technique for investigating the folding stability and dynamics of proteins within polyacrylamide hydrogels, which have diverse and widespread uses in biotechnology. FReI detects protein unfolding in situ by imaging changes in fluorescence resonance energy transfer (FRET) after temperature jump perturbations. Unlike bulk measurements, diffraction-limited epifluorescence imaging combined with fast temperature perturbations reveals the impact of local environment effects on protein-biomaterial compatibility. Our experiments investigated a crowding sensor protein (CrH2) and phosphoglycerate kinase (PGK), which undergoes cooperative unfolding. The crowding sensor quantifies the confinement effect of the cross-linked hydrogel: the 4% polyacrylamide hydrogel is similar to aqueous solution (no confinement), while the 10% hydrogel is strongly confining. FRAP measurements and protein concentration gradients in the 4% and 10% hydrogels further support this observation. PGK reveals that noncovalent interactions of the protein with the polymer surface are more important than confinement for determining protein properties in the gel: the mere presence of hydrogel increases protein stability, speeds up folding relaxation, and promotes irreversible binding to the polymer even at the solution-gel interface, whereas the difference between the 4% and the 10% hydrogels is negligible despite their large difference in confinement. The imaging capabilities of FReI, demonstrated to be diffraction limited, further revealed spatially homogeneous protein unfolding across the hydrogels at 500 nm length scales and revealed differences in protein properties at the gel-solution boundary.
Collapse
Affiliation(s)
- Lydia Kisley
- Beckman Institute for Advanced Science and Technology, ‡Department of Chemistry, §Department of Biochemistry, ∥Department of Chemical and Biomolecular Engineering, and ⊥Department of Physics, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Kali A Miller
- Beckman Institute for Advanced Science and Technology, ‡Department of Chemistry, §Department of Biochemistry, ∥Department of Chemical and Biomolecular Engineering, and ⊥Department of Physics, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Drishti Guin
- Beckman Institute for Advanced Science and Technology, ‡Department of Chemistry, §Department of Biochemistry, ∥Department of Chemical and Biomolecular Engineering, and ⊥Department of Physics, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Xinyu Kong
- Beckman Institute for Advanced Science and Technology, ‡Department of Chemistry, §Department of Biochemistry, ∥Department of Chemical and Biomolecular Engineering, and ⊥Department of Physics, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Martin Gruebele
- Beckman Institute for Advanced Science and Technology, ‡Department of Chemistry, §Department of Biochemistry, ∥Department of Chemical and Biomolecular Engineering, and ⊥Department of Physics, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Deborah E Leckband
- Beckman Institute for Advanced Science and Technology, ‡Department of Chemistry, §Department of Biochemistry, ∥Department of Chemical and Biomolecular Engineering, and ⊥Department of Physics, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| |
Collapse
|
29
|
Sobczynski DJ, Eniola‐Adefeso O. IgA and IgM protein primarily drive plasma corona-induced adhesion reduction of PLGA nanoparticles in human blood flow. Bioeng Transl Med 2017; 2:180-190. [PMID: 28932819 PMCID: PMC5579729 DOI: 10.1002/btm2.10064] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/20/2017] [Accepted: 04/24/2017] [Indexed: 01/09/2023] Open
Abstract
The high abundance of immunoglobulins (Igs) in the plasma protein corona on poly(lactic-co-glycolic) acid (PLGA)-based vascular-targeted carriers (VTCs) has previously been shown to reduce their adhesion to activated endothelial cells (aECs) in human blood flow. However, the relative role of individual Ig classes (e.g., IgG, IgA, and IgM) in causing adhesion reduction remains largely unknown. Here, we characterized the influence of specific Ig classes in prescribing the binding efficiency of PLGA nano-sized VTCs in blood flow. Specifically, we evaluated the flow adhesion to aECs of PLGA VTCs with systematic depletion of various Igs in their corona. Adhesion reduction was largely eliminated for PLGA VTCs when all Igs were removed from the corona. Furthermore, re-addition of IgA or IgM to the Igs-depleted corona reinstated the low adhesion of PLGA VTCs, as evidenced by ∼40-70% reduction relative to particles with an Igs-deficient corona. However, re-addition of a high concentration of IgG to the Igs-depleted corona did not cause significant adhesion reduction. Overall, the presented results reveal that PLGA VTC adhesion reduction in blood flows is primarily driven by high adsorption of IgA and IgM in the particle corona. Pre-coating of albumin on PLGA VTCs mitigated the extent of adhesion reduction in plasma for some donors but was largely ineffective in general. Overall, this work may shed light into effective control of protein corona composition, thereby enhancing VTC functionality in vivo for eventual clinical use.
Collapse
Affiliation(s)
| | - Omolola Eniola‐Adefeso
- Dept. of Chemical EngineeringUniversity of MichiganAnn ArborMI48109
- Dept. of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109
- Dept. of Macromolecular Science and EngineeringUniversity of MichiganAnn ArborMI48109
| |
Collapse
|
30
|
Yesilyurt V, Veiseh O, Doloff JC, Li J, Bose S, Xie X, Bader AR, Chen M, Webber MJ, Vegas AJ, Langer R, Anderson DG. A Facile and Versatile Method to Endow Biomaterial Devices with Zwitterionic Surface Coatings. Adv Healthc Mater 2017; 6:10.1002/adhm.201601091. [PMID: 27976536 PMCID: PMC5322155 DOI: 10.1002/adhm.201601091] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Indexed: 01/10/2023]
Abstract
The surface modification of implantable biomaterials with zwitterionic phosphorylcholine polymer is demonstrated through mussel-mimetic catecholamine polymer thin films. Using this method, the surfaces of alginate hydrogel microspheres and polystyrene microbeads, a model material known to produce robust foreign body responses and fibrosis, are successfully modified to reduce the tissue reaction by reducing the fibrosis in immunocompetent C57BL/6J mice.
Collapse
Affiliation(s)
- Volkan Yesilyurt
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Omid Veiseh
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Joshua C Doloff
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Jie Li
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Suman Bose
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Xi Xie
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Andrew R Bader
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Michael Chen
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Matthew J Webber
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Arturo J Vegas
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
31
|
Sobczynski DJ, Eniola-Adefeso O. Effect of anticoagulants on the protein corona-induced reduced drug carrier adhesion efficiency in human blood flow. Acta Biomater 2017; 48:186-194. [PMID: 27765678 PMCID: PMC5235944 DOI: 10.1016/j.actbio.2016.10.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 10/16/2016] [Accepted: 10/17/2016] [Indexed: 11/17/2022]
Abstract
Plasma proteins rapidly coat the surfaces of particulate drug carriers to form a protein corona upon their injection into the bloodstream. The high presence of immunoglobulins in the corona formed on poly(lactic-co-glycolic acid) (PLGA) vascular-targeted carrier (VTC) surfaces was recently shown to negatively impact their adhesion to activated endothelial cells (aECs) in vitro. Here, we characterized the influence of anticoagulants, or their absence, on the binding efficiency of VTCs of various materials via modulation of their protein corona. Specifically, we evaluated the adhesion of PLGA, poly(lactic acid) (PLA), polycaprolactone (PCL), silica, and polystyrene VTCs to aECs in heparinized, citrated, and non-anticoagulated (serum and whole) blood flows relative to buffer control. Particle adhesion is substantially reduced in non-anticoagulated blood flows regardless of the material type while only moderate to minimal reduction is observed for VTCs in anticoagulant-containing blood flow depending on the anticoagulant and material type. The substantial reduction in VTC adhesion in blood flows was linked to a high presence of immunoglobulin-sized proteins in the VTC corona via SDS-PAGE analysis. Of all the materials evaluated, PLGA was the most sensitive to plasma protein effects while PCL was the most resistant, suggesting particle hydrophobicity is a critical component of the observed negative plasma protein effects. Overall, this work demonstrates that anticoagulant positively alters the effect of plasma proteins in prescribing VTC adhesion to aECs in human blood flow, which has implication in the use of in vitro blood flow assays for functional evaluation of VTCs for in vivo use. STATEMENT OF SIGNIFICANCE This study addresses the impact of anticoagulant on altering the extent of the previously observed protein corona-induced adhesion reduction of vascular-targeted drug carriers in human blood flows. Specifically, serum blood flow (no anticoagulant) magnifies the negative effect of the plasma protein corona on drug carrier adhesion relative to citrated or heparinized blood flows. Overall, the results from this work suggest that serum better predicts targeted drug carrier adhesion efficiency in vivo compared to anticoagulant containing plasma. Furthermore, this study offers critical insight into the importance of how the choice of anticoagulant can greatly affect drug delivery-related processes in vitro.
Collapse
Affiliation(s)
- Daniel J Sobczynski
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Omolola Eniola-Adefeso
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, United States; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 28109, United States.
| |
Collapse
|
32
|
Soto RJ, Hall JR, Brown MD, Taylor JB, Schoenfisch MH. In Vivo Chemical Sensors: Role of Biocompatibility on Performance and Utility. Anal Chem 2017; 89:276-299. [PMID: 28105839 PMCID: PMC6773264 DOI: 10.1021/acs.analchem.6b04251] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Robert J. Soto
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, NC 27599
| | - Jackson R. Hall
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, NC 27599
| | - Micah D. Brown
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, NC 27599
| | - James B. Taylor
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, NC 27599
| | - Mark H. Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, NC 27599
| |
Collapse
|
33
|
Responsive Polymer Nanostructures. POLYMER-ENGINEERED NANOSTRUCTURES FOR ADVANCED ENERGY APPLICATIONS 2017. [DOI: 10.1007/978-3-319-57003-7_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
34
|
Synthesis and characterization of a zwitterionic hydrogel blend with low coefficient of friction. Acta Biomater 2016; 46:245-255. [PMID: 27650587 DOI: 10.1016/j.actbio.2016.09.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/02/2016] [Accepted: 09/16/2016] [Indexed: 02/07/2023]
Abstract
Hydrogels display a great deal of potential for a wide variety of biomedical applications. Often times the performance of these biomimetic materials is limited due to inferior friction and wear properties. This manuscript presents a method inspired by the tribological phenomena observed in nature for enhancing the lubricious properties of poly(vinyl alcohol) (PVA) hydrogels. This was achieved by blending PVA with various amounts of zwitterionic polymer, poly([2-(methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide) (pMEDSAH). Our results indicate that pMEDSAH acts as an effective boundary lubricant, allowing for reduction in coefficient of friction by more than 80%. This reduction in friction coefficient was achieved while maintaining comparable mechanical and physical properties to that of the neat material. Also, these zwitterionic blends were found to be cytocompatible. Analysis of the structure to property relationships within this system indicate that the zwitterionic polymer served as a boundary lubricant and promoted a reduction in friction through hydration lubrication. This novel approach provides a promising platform for further investigations enhancing the tribological properties of hydrogels for biomedical applications. STATEMENT OF SIGNIFICANCE The novelty of this work stems from showing that zwitterionic polymers can be used as an extremely effective hydrogel boundary lubricant. This work will have significant scientific impact because to date, design of hydrogels has emphasized replication of mechanical properties, but in order for these types of materials to be fully utilized as biomaterials it is imperative that they possess improved tribological and lubrication properties, because ignoring the surface and boundary lubrication mechanism, make these potential load-bearing substitutes incompatible with other natural articulating surfaces, leading the constructs to wear, fail, and damage healthy tissue. Our work also provides unique insight to the structure-property-function relationships of these biomaterials which will be of great interest to the readership of the journal.
Collapse
|
35
|
Hu Y, Liang B, Fang L, Ma G, Yang G, Zhu Q, Chen S, Ye X. Antifouling Zwitterionic Coating via Electrochemically Mediated Atom Transfer Radical Polymerization on Enzyme-Based Glucose Sensors for Long-Time Stability in 37 °C Serum. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:11763-11770. [PMID: 27756132 DOI: 10.1021/acs.langmuir.6b03016] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In this study, a versatile fabrication method for coating enzyme-based biosensors with ultrathin antifouling zwitterionic polymer films to meet the challenge of the long-time stability of sensors in vivo was developed. Electrochemically mediated atom transfer radical polymerization (eATRP) was applied to polymerize zwitterionic sulfobetaine methacrylate monomers on the rough enzyme-absorbed electrode surfaces; meanwhile, a refined overall bromination was developed to improve the coverage of polymers on the biosensor surfaces and to maintain the enzyme activity simultaneously for the first time. X-ray photoelectron spectroscopy and atomic force microscopy were used to characterize the properties of the polymer layers. The antifouling performance and long-time stability in 37 °C undiluted bovine serum in vitro were evaluated. The results showed that the polymer brush coatings diminished over 99% nonspecific protein adsorption and that the sensitivity of the evaluated sensor was maintained at 94% after 15 days. The overall sensitivity deviation of 7% was nearly 50% lower than that of the polyurethane-coated ones and also much smaller than the current commercially available glucose biosensors. The results suggested that this highly controllable electrodeposition procedure could be a promising method to develop implantable biosensors with long-time stability.
Collapse
Affiliation(s)
- Yichuan Hu
- Zhijiang College, Zhejiang University of Technology , Hangzhou 310027, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Wu J, Xiao Z, He C, Zhu J, Ma G, Wang G, Zhang H, Xiao J, Chen S. Protein diffusion characteristics in the hydrogels of poly(ethylene glycol) and zwitterionic poly(sulfobetaine methacrylate) (pSBMA). Acta Biomater 2016; 40:172-181. [PMID: 27142255 DOI: 10.1016/j.actbio.2016.04.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 04/07/2016] [Accepted: 04/28/2016] [Indexed: 11/26/2022]
Abstract
UNLABELLED Nonfouling materials such as neutral poly(ethylene glycol) (PEG) and zwitterionic poly(sulfobetaine methacrylate) (pSBMA) are ideal biocompatible materials for drug, especially protein drug delivery. The interaction behavior of protein between the nonfouling materials could cause great impact on their future applications, such as controlled release drug delivery systems. In this work, we investigated the diffusion behavior of the fluorescence-labeled model proteins (bovine serum albumin (BSA) and lysozyme (LYZ)) in nonfouling PEG, pSBMA and mixed PEG-SBMA hydrogels (SBMA:PEG 4:1, SBMA:PEG 1:4). It was observed that these four hydrogels showed varied diffusion behavior for either negatively charged BSA or positively charged LYZ due to protein-polymer interaction and the free water content in hydrogel matrix. The relatively stronger interaction between protein-PEG than protein-pSBMA could increase protein loading efficiency and control release rate by changing ratio of PEG to SBMA in the hybrid hydrogel. Moreover, it is further demonstrated the free water (freezable water) content in low cross-linked hydrogel, not the equilibrium water content (EWC), is a more accurate parameter to reflect the diffusion behavior of protein molecules. Thus, these results together provide new insights of the interactions between protein molecules and nonfouling polymers as well as the bio applications of the nonfouling polymeric hydrogels. STATEMENT OF SIGNIFICANCE This work shows that the relative stronger interaction between protein-PEG than protein-pSBMA could increase protein loading efficiency and control release rate by the change ratio of PEG to SBMA in the hydrogel, while the free water (freezable water) content in low cross-linked hydrogel, not the equilibrium water content (EWC), is a more accurate parameter to reflect the diffusion behavior of protein molecules. The impact of this work (i) gains some new insights of the interactions between protein molecules and nonfouling polymer matrixes for protein drug delivery; (ii) prompts to apply the weak PEG-protein interactions to protein drug loading and release; (iii) provides a new fundamental understanding of free water in hydrogel for protein diffusion.
Collapse
|
37
|
Chou YN, Sun F, Hung HC, Jain P, Sinclair A, Zhang P, Bai T, Chang Y, Wen TC, Yu Q, Jiang S. Ultra-low fouling and high antibody loading zwitterionic hydrogel coatings for sensing and detection in complex media. Acta Biomater 2016; 40:31-37. [PMID: 27090589 DOI: 10.1016/j.actbio.2016.04.023] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 04/07/2016] [Accepted: 04/15/2016] [Indexed: 12/27/2022]
Abstract
UNLABELLED For surface-based diagnostic devices to achieve reliable biomarker detection in complex media such as blood, preventing nonspecific protein adsorption and incorporating high loading of biorecognition elements are paramount. In this work, a novel method to produce nonfouling zwitterionic hydrogel coatings was developed to achieve these goals. Poly(carboxybetaine acrylamide) (pCBAA) hydrogel thin films (CBHTFs) prepared with a carboxybetaine diacrylamide crosslinker (CBAAX) were coated on gold and silicon dioxide surfaces via a simple spin coating process. The thickness of CBHTFs could be precisely controlled between 15 and 150nm by varying the crosslinker concentration, and the films demonstrated excellent long-term stability. Protein adsorption from undiluted human blood serum onto the CBHTFs was measured with surface plasmon resonance (SPR). Hydrogel thin films greater than 20nm exhibited ultra-low fouling (<5ng/cm(2)). In addition, the CBHTFs were capable of high antibody functionalization for specific biomarker detection without compromising their nonfouling performance. This strategy provides a facile method to modify SPR biosensor chips with an advanced nonfouling material, and can be potentially expanded to a variety of implantable medical devices and diagnostic biosensors. STATEMENT OF SIGNIFICANCE In this work, we developed an approach to realize ultra-low fouling and high ligand loading with a highly-crosslinked, purely zwitterionic, carboxybetaine thin film hydrogel (CBHTF) coating platform. The CBHTF on a hydrophilic surface demonstrated long-term stability. By varying the crosslinker content in the spin-coated hydrogel solution, the thickness of CBHTFs could be precisely controlled. Optimized CBHTFs exhibited ultra-low nonspecific protein adsorption below 5ng/cm(2) measured by a surface plasmon resonance (SPR) sensor, and their 3D architecture allowed antibody loading to reach 693ng/cm(2). This strategy provides a facile method to modify SPR biosensor chips with an advanced nonfouling material, and can be potentially expanded to a variety of implantable medical devices and diagnostic biosensors.
Collapse
Affiliation(s)
- Ying-Nien Chou
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195-1750, USA; Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Fang Sun
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195-1750, USA
| | - Hsiang-Chieh Hung
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195-1750, USA
| | - Priyesh Jain
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195-1750, USA
| | - Andrew Sinclair
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195-1750, USA
| | - Peng Zhang
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195-1750, USA
| | - Tao Bai
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195-1750, USA
| | - Yung Chang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chung-Li, Taoyuan 320, Taiwan
| | - Ten-Chin Wen
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Qiuming Yu
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195-1750, USA
| | - Shaoyi Jiang
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195-1750, USA.
| |
Collapse
|
38
|
Lee CJ, Wu H, Tang Q, Cao B, Wang H, Cong H, Zhe J, Xu F, Cheng G. Structure-Function Relationships of a Tertiary Amine-Based Polycarboxybetaine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:9965-9972. [PMID: 26331774 DOI: 10.1021/acs.langmuir.5b02096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Zwitterionic polycarboxybetaine (PCB) materials have attracted noticeable interest for biomedical applications, such as wound healing/tissue engineering, medical implants, and biosensors, due to their excellent antifouling properties and design flexibility. Antifouling materials with buffering capability are particularly useful for many biomedical applications. In this work, an integrated zwitterionic polymeric material, poly(2-((2-hydroxyethyl)(2-methacrylamidoethyl)ammonio)acetate) (PCBMAA-1T), was synthesized to carry desired properties (antifouling, switchability and buffering capability). A tertiary amine was used to replace quaternary ammonium as the cation to endow the materials with buffering capability under neutral pH. Through this study, a better understanding on the structure-property relationship of zwitterionic materials was obtained. The tertiary amine cation does not compromise antifouling properties of zwitterionic materials. The amount of adsorbed proteins on PCBMAA-1T polymer brushes is less than 0.8 ng/cm(2) for fibrinogen and 0.3 ng/cm(2) (detection limit of the surface plasmon resonance sensor) for both undiluted blood plasma and serum. It is found that the tertiary amine is favorable to obtain good lactone ring stability in switchable PCB materials. Titration study showed that PCBMAA-1T could resist pH changes under both acidic (pH 1-3) and neutral/basic (pH 7-9) conditions. To the best of our knowledge, such an all-in-one material has not been reported. We believe this material might be potentially used for a variety of applications, including tissue engineering, chronic wound healing and medical device coating.
Collapse
Affiliation(s)
- Chen-Jung Lee
- Department of Chemical and Biomolecular Engineering and ‡Department of Mechanical Engineering, University of Akron , Akron, Ohio 44325, United States
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, and ∥Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology , Beijing 100029, China
| | - Haiyan Wu
- Department of Chemical and Biomolecular Engineering and ‡Department of Mechanical Engineering, University of Akron , Akron, Ohio 44325, United States
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, and ∥Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology , Beijing 100029, China
| | - Qiong Tang
- Department of Chemical and Biomolecular Engineering and ‡Department of Mechanical Engineering, University of Akron , Akron, Ohio 44325, United States
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, and ∥Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology , Beijing 100029, China
| | - Bin Cao
- Department of Chemical and Biomolecular Engineering and ‡Department of Mechanical Engineering, University of Akron , Akron, Ohio 44325, United States
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, and ∥Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology , Beijing 100029, China
| | - Huifeng Wang
- Department of Chemical and Biomolecular Engineering and ‡Department of Mechanical Engineering, University of Akron , Akron, Ohio 44325, United States
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, and ∥Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology , Beijing 100029, China
| | - Hongbo Cong
- Department of Chemical and Biomolecular Engineering and ‡Department of Mechanical Engineering, University of Akron , Akron, Ohio 44325, United States
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, and ∥Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology , Beijing 100029, China
| | - Jiang Zhe
- Department of Chemical and Biomolecular Engineering and ‡Department of Mechanical Engineering, University of Akron , Akron, Ohio 44325, United States
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, and ∥Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology , Beijing 100029, China
| | - Fujian Xu
- Department of Chemical and Biomolecular Engineering and ‡Department of Mechanical Engineering, University of Akron , Akron, Ohio 44325, United States
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, and ∥Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology , Beijing 100029, China
| | - Gang Cheng
- Department of Chemical and Biomolecular Engineering and ‡Department of Mechanical Engineering, University of Akron , Akron, Ohio 44325, United States
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, and ∥Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology , Beijing 100029, China
| |
Collapse
|
39
|
Chou YN, Chang Y, Wen TC. Applying thermosettable zwitterionic copolymers as general fouling-resistant and thermal-tolerant biomaterial interfaces. ACS APPLIED MATERIALS & INTERFACES 2015; 7:10096-10107. [PMID: 25912841 DOI: 10.1021/acsami.5b01756] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We introduced a thermosettable zwitterionic copolymer to design a high temperature tolerance biomaterial as a general antifouling polymer interface. The original synthetic fouling-resistant copolymer, poly(vinylpyrrolidone)-co-poly(sulfobetaine methacrylate) (poly(VP-co-SBMA)), is both thermal-tolerant and fouling-resistant, and the antifouling stability of copolymer coated interfaces can be effectively controlled by regulating the VP/SBMA composition ratio. We studied poly(VP-co-SBMA) copolymer gels and networks with a focus on their general resistance to protein, cell, and bacterial bioadhesion, as influenced by the thermosetting process. Interestingly, we found that the shape of the poly(VP-co-SBMA) copolymer material can be set at a high annealing temperature of 200 °C while maintaining good antifouling properties. However, while the zwitterionic PSBMA polymer gels were bioinert as expected, control of the fouling resistance of the PSBMA polymer networks was lost in the high temperature annealing process. A poly(VP-co-SBMA) copolymer network composed of PSBMA segments at 32 mol % showed reduced fibrinogen adsorption, tissue cell adhesion, and bacterial attachment, but a relatively higher PSBMA content of 61 mol % was required to optimize resistance to platelet adhesion and erythrocyte attachment to confer hemocompatibility to human blood. We suggest that poly(VP-co-SBMA) copolymers capable of retaining stable fouling resistance after high temperature shaping have a potential application as thermosettable materials in a bioinert interface for medical devices, such as the thermosettable coating on a stainless steel blood-compatible metal stent investigated in this study.
Collapse
Affiliation(s)
- Ying-Nien Chou
- †Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | | | - Ten-Chin Wen
- †Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
40
|
Hu Y, Yang G, Liang B, Fang L, Ma G, Zhu Q, Chen S, Ye X. The fabrication of superlow protein absorption zwitterionic coating by electrochemically mediated atom transfer radical polymerization and its application. Acta Biomater 2015; 13:142-9. [PMID: 25463508 DOI: 10.1016/j.actbio.2014.11.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/13/2014] [Indexed: 12/27/2022]
Abstract
A well-controllable electrochemically mediated surface-initiated atom transfer radical polymerization (e-siATRP) method for the fabrication of superlow protein absorption zwitterionic hydrogel coatings based on poly(sulbetaine methacrylate) (pSBMA) was developed in this work. The effects of the electric condition on polymerization as well as its antifouling performances both in vitro and in vivo were also investigated. Different potentials (-0.08 V, -0.15 V and -0.22 V) and polymerization times (from 8 to 48 h) were chosen to study the polymerization procedure. X-ray photoelectron spectroscopy, atomic force microscopy and ellipsometry measurements were used to characterize the properties of the polymer layers. Ellipsometry measurements showed that a higher potential provided faster polymerization and thicker polymer layers; however, the protein absorption experiments showed that the best polymerization condition was under a constant potential of -0.15 V and 32 h, under which the protein absorption was 0.8% in an enzyme-linked immunosorbent assay (compared to a bare gold electrode). The electrodes with a pSBMA coating effectively deduced the current sensitivity decay both in undiluted serum and in vivo. The usage of the commercially available polymerization monomer of SBMA, the simple convenient synthesis process regardless of the presence of oxygen and the excellent controllability of e-siATRP make it a very promising and universal technique in the preparation of zwitterionic polymer coatings, especially in the development of biocompatible material for implantable devices such as neural and biosensor electrodes.
Collapse
|
41
|
Thromboinflammation in Therapeutic Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 865:3-17. [DOI: 10.1007/978-3-319-18603-0_1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
Cao B, Tang Q, Cheng G. Recent advances of zwitterionic carboxybetaine materials and their derivatives. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2014; 25:1502-13. [DOI: 10.1080/09205063.2014.927300] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
43
|
Natural zwitterionic organosulfurs as surface ligands for antifouling and responsive properties. Biointerphases 2014; 9:029010. [DOI: 10.1116/1.4869300] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
44
|
Barfidokht A, Gooding JJ. Approaches Toward Allowing Electroanalytical Devices to be Used in Biological Fluids. ELECTROANAL 2014. [DOI: 10.1002/elan.201400097] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
45
|
Zwitterionic fusion in hydrogels and spontaneous and time-independent self-healing under physiological conditions. Biomaterials 2014; 35:3926-33. [DOI: 10.1016/j.biomaterials.2014.01.077] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/31/2014] [Indexed: 11/22/2022]
|
46
|
Zhu Y, Xu X, Brault ND, Keefe AJ, Han X, Deng Y, Xu J, Yu Q, Jiang S. Cellulose Paper Sensors Modified with Zwitterionic Poly(carboxybetaine) for Sensing and Detection in Complex Media. Anal Chem 2014; 86:2871-5. [DOI: 10.1021/ac500467c] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yongheng Zhu
- Department
of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
- Department
of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Xuewei Xu
- Department
of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Norman D. Brault
- Department
of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Andrew J. Keefe
- Department
of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Xia Han
- Key Laboratory for Advanced Materials and Department of Chemistry, East China University of Science & Technology, Shanghai 200237, China
| | - Yan Deng
- Department
of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Jiaqiang Xu
- Department
of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Qiuming Yu
- Department
of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Shaoyi Jiang
- Department
of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
47
|
Hu CMJ, Fang RH, Luk BT, Zhang L. Polymeric nanotherapeutics: clinical development and advances in stealth functionalization strategies. NANOSCALE 2014; 6:65-75. [PMID: 24280870 DOI: 10.1039/c3nr05444f] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Long-circulating polymeric nanotherapeutics have garnered increasing interest in research and in the clinic owing to their ability to improve the solubility and pharmacokinetics of therapeutic cargoes. Modulation of carrier properties promises more effective drug localization at the disease sites and can lead to enhanced drug safety and efficacy. In the present review, we highlight the current development of polymeric nanotherapeutics in the clinic. In light of the importance of stealth properties in therapeutic nanoparticles, we also review the advances in stealth functionalization strategies and examine the performance of different stealth polymers in the literature. In addition, we discuss the recent development of biologically inspired "self" nanoparticles, which present a differing stealth concept from conventional approaches.
Collapse
Affiliation(s)
- Che-Ming J Hu
- Department of NanoEngineering and Moores Cancer Center, University of California, La Jolla, San Diego, CA 92093, USA.
| | | | | | | |
Collapse
|
48
|
Hou J, Shi Q, Ye W, Stagnaro P, Yin J. Micropatterning of hydrophilic polyacrylamide brushes to resist cell adhesion but promote protein retention. Chem Commun (Camb) 2014; 50:14975-8. [DOI: 10.1039/c4cc03994g] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel micropatterned polyacrylamide brushes are fabricated to resist cell adhesion but promote protein retention.
Collapse
Affiliation(s)
- Jianwen Hou
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun, P. R. China
- University of the Chinese Academy of Sciences
| | - Qiang Shi
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun, P. R. China
| | - Wei Ye
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun, P. R. China
- University of the Chinese Academy of Sciences
| | - Paola Stagnaro
- Istituto per lo Studio delle Macromolecole
- UOS Genova
- Genova, Italy
| | - Jinghua Yin
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun, P. R. China
| |
Collapse
|
49
|
Sun J, Zeng F, Jian H, Wu S. Grafting zwitterionic polymer chains onto PEI as a convenient strategy to enhance gene delivery performance. Polym Chem 2013. [DOI: 10.1039/c3py00752a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|