1
|
Umar H, Wahab HA, Attiq A, Amjad MW, Bukhari SNA, Ahmad W. Platinum-based targeted chemotherapies and reversal of cisplatin resistance in non-small cell lung cancer (NSCLC). Mutat Res 2024; 828:111856. [PMID: 38520879 DOI: 10.1016/j.mrfmmm.2024.111856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/04/2024] [Accepted: 03/16/2024] [Indexed: 03/25/2024]
Abstract
Lung cancer is the one of the most prevalent cancer in the world. It kills more people from cancer than any other cause and is especially common in underdeveloped nations. With 1.2 million instances, it is also the most prevalent cancer in men worldwide, making about 16.7% of the total cancer burden. Surgery is the main form of curative treatment for early-stage lung cancer. However, the majority of patients had incurable advanced non-small cell lung cancer (NSCLC) recurrence after curative purpose surgery, which is indicative of the aggressiveness of the illness and the dismal outlook. The gold standard of treatment for NSCLC patients includes drug targeting of specific mutated genes drive in development of lung cancer. Furthermore, patients with advanced NSCLC and those with early-stage illness needing adjuvant therapy should use cisplatin as it is the more active platinum drug. So, this review encompasses the non-small cell lung cancer microenvironment, treatment approaches, and use of cisplatin as a first-line regimen for NSCLC, its mechanism of action, cisplatin resistance in NSCLC and also the prevention strategies to revert the drug resistance.
Collapse
Affiliation(s)
- Hassaan Umar
- School of Pharmaceutical Science, Universiti Sains Malaysia, Minden, Pulau Pinang 11800, Malaysia
| | - Habibah A Wahab
- School of Pharmaceutical Science, Universiti Sains Malaysia, Minden, Pulau Pinang 11800, Malaysia.
| | - Ali Attiq
- School of Pharmaceutical Science, Universiti Sains Malaysia, Minden, Pulau Pinang 11800, Malaysia
| | - Muhammad Wahab Amjad
- Center for Ultrasound Molecular Imaging and Therapeutics, Pittsburgh Heart, Lung, Blood and, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Aljouf 72341, Saudi Arabia
| | - Waqas Ahmad
- School of Pharmaceutical Science, Universiti Sains Malaysia, Minden, Pulau Pinang 11800, Malaysia.
| |
Collapse
|
2
|
Wang J, Zhang Y, Zhang G, Xiang L, Pang H, Xiong K, Lu Y, Li J, Dai J, Lin S, Fu S. Radiotherapy-induced enrichment of EGF-modified doxorubicin nanoparticles enhances the therapeutic outcome of lung cancer. Drug Deliv 2022; 29:588-599. [PMID: 35156493 PMCID: PMC8856057 DOI: 10.1080/10717544.2022.2036871] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/30/2022] Open
Abstract
Chemotherapy is the primary treatment for advanced non-small-cell lung cancer (NSCLC). However, related dose-dependent toxicity limits its clinical use. Therefore, it is necessary to explore new strategies for improving the clinical outcomes while reducing the side effects of chemotherapy in the treatment of NSCLC. In this study, we designed and synthesized epidermal growth factor (EGF)-modified doxorubicin nanoparticles (EGF@DOX-NPs) that selectively targets the epidermal growth factor receptor (EGFR) overexpressed in lung tumor cells. When administered in combination with low-dose X-ray radiotherapy (RT), the NPs preferentially accumulated at the tumor site due to radiation-induced outburst of the local intra-tumoral blood vessels. Compared with DOX alone, EGF@DOX-NPs significantly decreased the viability and migration and enhanced the apoptosis rates of tumor cells in vitro. Also, the EGF@DOX-NPs significantly inhibited tumor growth in vivo, increasing the survival of the tumor-bearing mice without apparent systemic toxic effects through RT-induced aggregation. The tumor cell proliferation was greatly inhibited in the RT + EGF@DOX-NPs group. Contrarily, the apoptosis of tumor cells was significantly higher in this group. These results confirm the promising clinical application of radiotherapy in combination with EGF@DOX-NPs for lung cancer treatment.
Collapse
Affiliation(s)
- Jing Wang
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yan Zhang
- Department of Oncology, The Affiliated TCM Hospital of Southwest Medical University, Luzhou, China
| | - GuangPeng Zhang
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Li Xiang
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - HaoWen Pang
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Kang Xiong
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yun Lu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - JianMei Li
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jie Dai
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Sheng Lin
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - ShaoZhi Fu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
3
|
Mittal D, Singh A, Kohli K, Verma AK. Engineering biosafe cisplatin loaded nanostructured lipid carrier: optimisation, synthesis, pharmacokinetics and biodistribution. J Microencapsul 2022; 39:522-538. [PMID: 36327982 DOI: 10.1080/02652048.2022.2131919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Low aqueous solubility, adverse effects of Cisplatin includes hepatotoxicity and nephrotoxicity necessitates development of nanoparticulate drug delivery. The study pertains to development of CisNLC (Cisplatin loaded Nanostructured Lipid Carrier) by ultrasonication. Physical characterisation includes particle size, zeta potential, TEM, SEM-EDX, DSC. Its ex vivo biocompatibility, pharmacokinetics and biodistribution along with acute toxicity induced oxidative stress in Balb/c mice were evaluated. The mean particle diameter of CisNLC was observed to be 141.5 ± 3.86 nm with zeta potential of -41.5 ± 1.62 mV. In vitro release studies at pH 7.4 and 5.8 showed burst release following a sustained release pattern post-72 h. CisNLC showed anticancer efficacy against PA-1. Negligible ex vivo haemolysis indicated bio-compatibility. Improved pharmacokinetics of CisNLC was observed. Acute toxicity and oxidative stress evaluation proved negligible toxicity by CisNLC. The formulated CisNLC had a good physical stability, biocompatible, indicated enhanced circulation and caused negligible toxicity on liver and kidney as compared to pure Cis.
Collapse
Affiliation(s)
- Disha Mittal
- Nanobiotech Lab, Department of Zoology, Kirori Mal College, University of Delhi, New Delhi, India
| | - Archu Singh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Anita Kamra Verma
- Nanobiotech Lab, Department of Zoology, Kirori Mal College, University of Delhi, New Delhi, India
| |
Collapse
|
4
|
Maliyakkal N, Appadath Beeran A, Udupa N. Nanoparticles of cisplatin augment drug accumulations and inhibit multidrug resistance transporters in human glioblastoma cells. Saudi Pharm J 2021; 29:857-873. [PMID: 34408546 PMCID: PMC8363105 DOI: 10.1016/j.jsps.2021.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 07/04/2021] [Indexed: 11/16/2022] Open
Abstract
Background Cisplatin (CSP) is a potent anticancer drug widely used in treating glioblastoma multiforme (GBM). However, CSP's clinical efficacy in GBM contrasted with low therapeutic ratio, toxicity, and multidrug resistance (MDR). Therefore, we have developed a system for the active targeting of cisplatin in GBM via cisplatin loaded polymeric nanoplatforms (CSP-NPs). Methods CSP-NPs were prepared by modified double emulsion and nanoprecipitation techniques. The physiochemical characterizations of CSP-NPs were performed using zeta sizer, scanning electron microscopy (SEM), drug release kinetics, and drug content analysis. Cytotoxicity, induction of apoptosis, and cell cycle-specific activity of CSP-NPs in human GBM cell lines were evaluated by MTT assay, fluorescent microscopy, and flow cytometry. Intracellular drug uptake was gauged by fluorescent imaging and flow cytometry. The potential of CSP-NPs to inhibit MDR transporters were assessed by flow cytometry-based drug efflux assays. Results CSP-NPs have smooth surface properties with discrete particle size with required zeta potential, polydispersity index, drug entrapment efficiency, and drug content. CSP-NPs has demonstrated an ‘initial burst effect’ followed by sustained drug release properties. CSP-NPs imparted dose and time-dependent cytotoxicity and triggered apoptosis in human GBM cells. Interestingly, CSP-NPs significantly increased uptake, internalization, and accumulations of anticancer drugs. Moreover, CSP-NPs significantly reversed the MDR transporters (ABCB1 and ABCG2) in human GBM cells. Conclusion The nanoparticulate system of cisplatin seems to has a promising potential for active targeting of cisplatin as an effective and specific therapeutic for human GBM, thus eliminating current chemotherapy's limitations.
Collapse
Key Words
- ABC, ATP-binding cassette
- ANOVA, Analysis of variance
- Active drug targeting
- BBB, Blood brain barrier
- BCRP, Breast cancer resistance protein
- CSP, Cisplatin
- CSP-NPs, Cisplatin nanoparticles DMEM, Dulbecco’s modified eagle medium
- Cisplatin nanoparticles
- DMSO, Dimethyl sulfoxide
- DNR, Daunorubicin
- DOX, Doxorubicin
- Drug uptake and accumulations
- EDTA, Ethylenediaminetetraacetic acid
- EPR, Enhanced permeability retention
- FACS, Fluorescence activated cell sorting
- FBS, Fetal bovine serum
- FTC, Fumitremorgin C
- GBM, Glioblastoma multiforme
- HBSS, Hank’s balanced salt solution
- HPLC, High Performance Liquid Chromatography
- Induction of Apoptosis
- MDR, Multidrug resistance
- MTT, Methyl tetrazolium
- MX, Mitoxantrone
- NPs, Nanoparticles
- O.D., Optical density
- PBS, Phosphate buffer saline
- PI, Propidium iodide
- PLGA, Poly (lactic-co-glycolic) acid
- RT, Room temperature
- Rho-123, Rhodamine 123
- SDS, Sodium dodecyl sulfate
- SEM, Scanning electron microscopy
- Targeting multidrug resistance (MDR) transporters
- nm, Nanometer
Collapse
Affiliation(s)
- Naseer Maliyakkal
- Department of Basic Medical Sciences, College of Applied Medical Sciences in Khamis Mushait, King Khalid University, Abha, Saudi Arabia.,Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.,Cancer Research Unit, King Khalid University, Abha, Saudi Arabia
| | - Asmy Appadath Beeran
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Nayanabhirama Udupa
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
5
|
Development of New Targeted Inulin Complex Nanoaggregates for siRNA Delivery in Antitumor Therapy. Molecules 2021; 26:molecules26061713. [PMID: 33808586 PMCID: PMC8003534 DOI: 10.3390/molecules26061713] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 11/16/2022] Open
Abstract
Here, a novel strategy of formulating efficient polymeric carriers based on the already described INU-IMI-DETA for gene material whose structural, functional, and biological properties can be modulated and improved was successfully investigated. In particular, two novel derivatives of INU-IMI-DETA graft copolymer were synthesized by chemical functionalisation with epidermal growth factor (EGF) or polyethylenglycol (PEG), named INU-IMI-DETA-EGF and INU-IMI-DETA-PEG, respectively, in order to improve the performance of already described "inulin complex nanoaggregates" (ICONs). The latter were thus prepared by appropriately mixing the two copolymers, by varying each component from 0 to 100 wt% on the total mixture, named EP-ICONs. It was seen that the ability of the INU-IMI-DETA-EGF/INU-IMI-DETA-PEG polymeric mixture to complex siGL3 increases with the increase in the EGF-based component in the EP-ICONs and, for each sample, with the increase in the copolymer:siRNA weight ratio (R). On the other hand, the susceptibility of loaded siRNA towards RNase decreases with the increase in the pegylated component in the polymeric mixture. At all R values, the average size and the zeta potential values are suitable for escaping from the RES system and suitable for prolonged intravenous circulation. By means of biological characterisation, it was shown that MCF-7 cells are able to internalize mainly the siRNA-loaded into EGF-decorated complexes, with a significant difference from ICONs, confirming its targeting function. The targeting effect of EGF on EP-ICONs was further demonstrated by a competitive cell uptake study, i.e., after cell pre-treatment with EGF. Finally, it was shown that the complexes containing both EGF and PEG are capable of promoting the internalisation and therefore the transfection of siSUR, a siRNA acting against surviving mRNA, and to increase the sensitivity to an anticancer agent, such as doxorubicin.
Collapse
|
6
|
Wu XL, Liu L, Wang QC, Wang HF, Zhao XR, Lin XB, Lv WJ, Niu YB, Lu TL, Mei QB. Antitumor Activity and Mechanism Study of Riluzole and Its Derivatives. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 19:217-230. [PMID: 33680024 PMCID: PMC7757987 DOI: 10.22037/ijpr.2020.1101149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To explore novel antitumor agents with high efficiency and low toxicity, riluzole alkyl derivatives (4a-4i) were synthesized. Their anti-proliferative activities against HeLa, HepG2, SP2/0, and MCF-7 cancer cell lines were assessed by the CCK-8 assay and compared with human normal liver (LO2) cells. Most of them showed potent cytotoxic effects against four human tumor cell lines and low toxic to LO2 cells. In particular, 2-(N-ethylamine)-6-trifluoromethoxy- benzothiazole (4a) showed a IC50 value of 7.76 μmol/L in HeLa cells and was found to be nontoxic to LO2 cells up to 65 μmol/L. Furthermore, flow cytometry indicated that 4a could induce remarkable early apoptosis and G2/M cell cycle arrest in HeLa cells. It also impaired the migration ability of HeLa cells in wound healing assays. Western blot results demonstrated that 4a suppressed Bcl-2 protein expression but increased the level of Bax in HeLa cells, and elevated the Bax/Bcl-2 expression ratio. These new findings suggest that 4a exhibited beneficially anti-cervical cancer effect on HeLa cells by inducing HeLa cell apoptosis.
Collapse
Affiliation(s)
- Xiang-Long Wu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Liu Liu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Qing-Chuan Wang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Hai-Fang Wang
- Laboratory Center of Shaanxi Province People's Hospital, Xi'an, China
| | - Xiang-Rong Zhao
- Laboratory Center of Shaanxi Province People's Hospital, Xi'an, China
| | - Xu-Bin Lin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Wen-Jun Lv
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yin-Bo Niu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Ting-Li Lu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Qi-Bing Mei
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Department of Pharmacology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
7
|
Xu H, Qiu Y, Xiong Z, Shao W, Zhang Q, Tang G. Tracking mesenchymal stem cells with Ir(III) complex-encapsulated nanospheres in cranium defect with postmenopausal osteoporosis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111842. [PMID: 33641885 DOI: 10.1016/j.msec.2020.111842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 01/15/2023]
Abstract
Osteoporosis (OP) is a significant public health problem with associated fragility fractures, thereby causing large bone defects and difficulty in self-repair. The introduction of human mesenchymal stem cells (hMSCs) is the most promising platform in bone tissue engineering for OP therapy, which induces less side effects than conventional medication. However, the safety and efficiency of the cell-based OP therapy requires the ability to monitor the cell's outcome and biodistribution after cell transplantation. Therefore, we designed an in vivo system to track hMSCs in real time and simultaneously attempted to obtain a significant therapeutic effect during the bone repair process. In this study, we synthesized Ir(III) complex, followed by encapsulation with biodegradable methoxy-poly(ethylene glycol) poly(lactic-co-glycolic acid) nanospheres through double emulsions strategy. The Ir(III) complex nanospheres did not affect hMSC proliferation, stemness, and differentiation and realized highly efficient and long-term cellular labeling for at least 25 days in vivo. The optimal transplantation conditions were also determined first by injecting a gradient number of labeled hMSCs percutaneously into the cranial defect of the nude mouse model. Next, we applied this method to ovariectomy-induced OP mice. Results showed long-term optical imaging with high fluorescence intensity and computed tomography (CT) scanning with significantly increased bone formation between the osteoporotic and sham-operated bones. During the tracking process, two mice from each group were sacrificed at two representative time points to examine the bony defect bridging via micro-CT morphometric analyses. Our data showed remarkable promise for efficient hMSC tracking and encouraging treatment in bioimaging-guided OP stem cell therapy.
Collapse
Affiliation(s)
- Hong Xu
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yanchang Road, Shanghai 200072, P. R. China; Department of Radiology, Northern Jiangsu People's Hospital, Clinical Medical School of Yangzhou University, No. 98 Nantong West Road, Yangzhou, Jiangsu 225001, P. R. China
| | - Yuyou Qiu
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yanchang Road, Shanghai 200072, P. R. China
| | - Zuogang Xiong
- Department of Radiology, Ping An Healthcare Diagnostics Center, No. 199 Kaibin Road, Shanghai 200030, P. R. China
| | - Wenjun Shao
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection Medical College of Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Qi Zhang
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection Medical College of Soochow University, Suzhou, Jiangsu 215123, P. R. China.
| | - Guangyu Tang
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yanchang Road, Shanghai 200072, P. R. China.
| |
Collapse
|
8
|
Tousi MS, Sepehri H, Khoee S, Farimani MM, Delphi L, Mansourizadeh F. Evaluation of apoptotic effects of mPEG-b-PLGA coated iron oxide nanoparticles as a eupatorin carrier on DU-145 and LNCaP human prostate cancer cell lines. J Pharm Anal 2020; 11:108-121. [PMID: 33717617 PMCID: PMC7930876 DOI: 10.1016/j.jpha.2020.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 04/02/2020] [Accepted: 04/10/2020] [Indexed: 12/24/2022] Open
Abstract
Many studies have so far confirmed the efficiency of phytochemicals in the treatment of prostate cancer. Eupatorin, a flavonoid with a wide range of phytomedical activities, suppresses proliferation of and induces apoptosis of multiple cancer cell lines. However, low solubility, poor bioavailability, and rapid degradation limit its efficacy. The aim of our study was to evaluate whether the use of mPEG-b-poly (lactic-co-glycolic) acid (PLGA) coated iron oxide nanoparticles as a carrier could enhance the therapeutic efficacy of eupatorin in DU-145 and LNcaP human prostate cancer cell lines. Nanoparticles were prepared by the co-precipitation method and were fully characterized for morphology, surface charge, particle size, drug loading, encapsulation efficiency and in vitro drug-release profile. The inhibitory effect of nanoparticles on cell viability was evaluated by MTT test. Apoptosis was then determined by Hoechest staining, cell cycle analysis, NO production, annexin/propidium iodide (PI) assay, and Western blotting. The results indicated that eupatorin was successfully entrapped in Fe3O4@mPEG-b-PLGA nanoparticles with an efficacy of (90.99 ± 2.1)%. The nanoparticle’s size was around (58.5 ± 4) nm with a negative surface charge [(−34.16 ± 1.3) mV]. In vitro release investigation showed a 30% initial burst release of eupatorin in 24 h, followed by sustained release over 200 h. The MTT assay indicated that eupatorin-loaded Fe3O4@mPEG-b-PLGA nanoparticles exhibited a significant decrease in the growth rate of DU-145 and LNcaP cells and their IC50 concentrations were 100 μM and 75 μM, respectively. Next, apoptosis was confirmed by nuclear condensation, enhancement of cell population in the sub-G1 phase and increased NO level. Annexin/PI analysis demonstrated that eupatorin-loaded Fe3O4@mPEG-b-PLGA nanoparticles could increase apoptosis and decrease necrosis frequency. Finally, Western blotting analysis confirmed these results and showed that Bax/Bcl-2 ratio and the cleaved caspase-3 level were up-regulated by the designing nanoparticles. Encapsulation of eupatorin in Fe3O4@mPEG-b-PLGA nanoparticles increased its anticancer effects in prostate cancer cell lines as compared to free eupatorin. Based on these results, this formulation can provide a sustained eupatorin-delivery system for cancer treatment with the drug remaining active at a significantly lower dose, making it a suitable candidate for pharmacological uses. In the current study, Eupatorin was efficiently encapsulated in mPEG-b-PLGA coated iron oxide nanoparticles. The nanoparticles bypass the limitations and provide a sustained release of Eupatorin into the human prostate cancer cell. The designed nanoparticles can be more effective in inhibiting cancer cell growth as compared to free form.
Collapse
Affiliation(s)
- Marziyeh Shalchi Tousi
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Houri Sepehri
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Sepideh Khoee
- Polymer Chemistry Department, School of Science, University of Tehran, Tehran, Iran
| | - Mahdi Moridi Farimani
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Ladan Delphi
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Fariba Mansourizadeh
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
9
|
Chen G, Zhang Y, Deng H, Tang Z, Mao J, Wang L. Pursuing for the better lung cancer therapy effect: Comparison of two different kinds of hyaluronic acid and nitroimidazole co-decorated nanomedicines. Biomed Pharmacother 2020; 125:109988. [PMID: 32059173 DOI: 10.1016/j.biopha.2020.109988] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/14/2020] [Accepted: 02/04/2020] [Indexed: 02/06/2023] Open
Abstract
Lung cancer remains the leading cause of cancer associated deaths worldwide. Compared with traditional chemotherapy for non-small cell lung cancer (NSCLC), specific targeted therapies are better choices for advanced patients to improve their survival. In this study, we attempted to fabricate Nitroimidazoles (NI) and Hyaluronic acid (HA) co-decorated, cisplatin (DDP) loaded polymeric nanoparticles (PNPs) (NI/HA-DDP-PNPs) and lipid-polymer hybrid nanoparticles (LPNs) (NI/HA-DDP-LPNs) for the facilitated drug delivery at lung tumor regions (hypoxic regions). In vitro cytotoxicity and cellular uptake; In vivo anti-tumor activity and in vivo tissue biodistribution of PNPs and LPNs were evaluated and compared in lung carcinoma cells and xenograft. Hydrodynamic size of NI/HA-DDP-LPNs was 185.6 ± 4.7 nm, which is larger than that of NI/HA-DDP-PNPs (136.7 ± 3.5 nm). The zeta potential of NI/HA-DDP-PNPs (-31.2 ± 2.7 mV) was more negative than NI/HA-DDP-LPNs (-22.3 ± 2.1 mV). The peak plasma concentration (Cmax) achieved from NI/HA-DDP-PNPs and NI/HA-DDP-LPNs was 35.2 ± 1.6 and 37.3 ± 1.7 μg/mL. The half-life (T1/2) of NI/HA-DDP-PNPs and NI/HA-DDP-LPNs was 12.03 ± 0.75 and 11.78 ± 0.89 h. Area Under Curve (AUC) of NI/HA-DDP-PNPs and NI/HA-DDP-LPNs showed no significant difference while greater than other groups. NI/HA-DDP-LPNs exhibited excellent antitumor effect against drug-resistant human lung cancer A549/DDP cells in vitro and in vivo, better than that of NI/HA-DDP-PNPs. Considering that the low toxicity of NI/HA-DDP-LPNs and NI/HA-DDP-PNPs, NI/HA-DDP-LPNs could be a more promising system for lung cancer targeted therapy.
Collapse
Affiliation(s)
- Ge Chen
- Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Tumor Hospital of Hebei Province, Shijiazhuang, 050011, Hebei Province, People's Republic of China
| | - Yaozhong Zhang
- Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Tumor Hospital of Hebei Province, Shijiazhuang, 050011, Hebei Province, People's Republic of China
| | - Haowen Deng
- Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Tumor Hospital of Hebei Province, Shijiazhuang, 050011, Hebei Province, People's Republic of China
| | - Zilong Tang
- Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Tumor Hospital of Hebei Province, Shijiazhuang, 050011, Hebei Province, People's Republic of China
| | - Junjie Mao
- Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Tumor Hospital of Hebei Province, Shijiazhuang, 050011, Hebei Province, People's Republic of China
| | - Lei Wang
- Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Tumor Hospital of Hebei Province, Shijiazhuang, 050011, Hebei Province, People's Republic of China.
| |
Collapse
|
10
|
Ding L, Gu W, Zhang Y, Yue S, Sun H, Cornelissen JJLM, Zhong Z. HER2-Specific Reduction-Sensitive Immunopolymersomes with High Loading of Epirubicin for Targeted Treatment of Ovarian Tumor. Biomacromolecules 2019; 20:3855-3863. [DOI: 10.1021/acs.biomac.9b00947] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Lin Ding
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Wenxing Gu
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
- Department of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands
| | - Yifan Zhang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Shujing Yue
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Huanli Sun
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Jeroen J. L. M. Cornelissen
- Department of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
11
|
Farooq MA, Aquib M, Farooq A, Haleem Khan D, Joelle Maviah MB, Sied Filli M, Kesse S, Boakye-Yiadom KO, Mavlyanova R, Parveen A, Wang B. Recent progress in nanotechnology-based novel drug delivery systems in designing of cisplatin for cancer therapy: an overview. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1674-1692. [PMID: 31066300 DOI: 10.1080/21691401.2019.1604535] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cisplatin cis-(diammine)dichloridoplatinum(II) (CDDP) is the first platinum-based complex approved by the food and drug administration (FDA) of the United States (US). Cisplatin is the first line chemotherapeutic agent used alone or combined with radiations or other anti-cancer agents for a broad range of cancers such as lung, head and neck. Aroplatin™, Lipoplatin™ and SPI-077 are PEGylated liposome-based nano-formulations that are still under clinical trials. They have many limitations, for example, poor aqueous solubility, drug resistance and toxicities, which can be overcome by encapsulating the cisplatin in Nemours nanocarriers. The extensive literature from different electronic databases covers the different nano-delivery systems that are developed for cisplatin. This review critically emphasizes on the recent advancement, development, innovations and updated literature reported for different carrier systems for CDDP.
Collapse
Affiliation(s)
- Muhammad Asim Farooq
- a Department of Pharmaceutics, School of Pharmacy , China Pharmaceutical University , Nanjing , PR China
| | - Md Aquib
- a Department of Pharmaceutics, School of Pharmacy , China Pharmaceutical University , Nanjing , PR China
| | - Anum Farooq
- b Department of Chemistry , Government College University , Faisalabad , Pakistan
| | - Daulat Haleem Khan
- c Department of Pharmacy , Lahore College of Pharmaceutical Sciences , Lahore , Pakistan
| | - Mily Bazezy Joelle Maviah
- a Department of Pharmaceutics, School of Pharmacy , China Pharmaceutical University , Nanjing , PR China
| | - Mensura Sied Filli
- a Department of Pharmaceutics, School of Pharmacy , China Pharmaceutical University , Nanjing , PR China
| | - Samuel Kesse
- a Department of Pharmaceutics, School of Pharmacy , China Pharmaceutical University , Nanjing , PR China
| | - Kofi Oti Boakye-Yiadom
- a Department of Pharmaceutics, School of Pharmacy , China Pharmaceutical University , Nanjing , PR China
| | - Rukhshona Mavlyanova
- a Department of Pharmaceutics, School of Pharmacy , China Pharmaceutical University , Nanjing , PR China
| | - Amna Parveen
- d College of Pharmacy , Gachon University, Hambakmoero , Yeonsu-gu, Incheon , Korea.,e Department of Pharmacogonsy , Faculty of Pharmaceutical Science, Government College University , Faisalabad , Pakistan
| | - Bo Wang
- a Department of Pharmaceutics, School of Pharmacy , China Pharmaceutical University , Nanjing , PR China
| |
Collapse
|
12
|
Sun Y, Shi T, Zhou Y, Zhou L, Sun B. Folate-decorated and NIR-triggered nanoparticles loaded with platinum(IV)-prodrug plus 5-fluorouracil for targeted and chemo-photothermal combination therapy. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.08.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Ye P, Yin H, Gu X, Ye Y, Zhao Q, Chang Z, Han B, Chen X, Liu P. Improved synergetic therapy efficiency of cryoablation and nanoparticles for MCF-7 breast cancer. Nanomedicine (Lond) 2018; 13:1889-1903. [PMID: 30071777 DOI: 10.2217/nnm-2018-0168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AIM Current cryoablation therapy easily induces a high tumor recurrence, it is therefore necessary to develop an effective method to enhance its antitumor efficacy. MATERIALS & METHODS We solve the aforementioned problem by introducing doxorubicin (DOX) loading methoxy polyethylene glycol-polylactic-co-glycolic acid-poly-L-lysine-cyclic arginine-glycine-aspartic acid peptide nanoparticles (DOX nanoparticles) in the process of cryoablation. RESULTS The combination of cryoablation and DOX nanoparticles greatly decreases the recurrence rate of breast cancer, which is owing to the specific targeting therapy of DOX nanoparticles for residuary breast cancer cells after cryoablation. Therefore, the survival time of MCF-7 breast cancer bearing mice significantly increases. CONCLUSION The synergetic therapy of cryoablation and DOX nanoparticles is an effective therapy means for breast cancer. This strategy provides new means for treating breast cancer.
Collapse
Affiliation(s)
- Ping Ye
- Shanghai Institute for Minimally Invasive Therapy, School of Medical Instrument & Food Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China
| | - Haitao Yin
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xuelian Gu
- Shanghai Institute for Minimally Invasive Therapy, School of Medical Instrument & Food Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China
| | - Yuanyuan Ye
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Qingxiao Zhao
- Shanghai Institute for Minimally Invasive Therapy, School of Medical Instrument & Food Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China
| | - Zhaohua Chang
- Shanghai Institute for Minimally Invasive Therapy, School of Medical Instrument & Food Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China
| | - Baosan Han
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Xiaoxiang Chen
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Peifeng Liu
- State Key Laboratory of Oncogenes & Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| |
Collapse
|
14
|
Hierarchical mesosilicalite nanoformulation integrated with cisplatin exhibits target-specific efficient anticancer activity. APPLIED NANOSCIENCE 2018. [DOI: 10.1007/s13204-018-0786-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Li S, Wei Y. Association of HMGB1, BRCA1 and P62 expression in ovarian cancer and chemotherapy sensitivity. Oncol Lett 2018; 15:9572-9576. [PMID: 29844838 PMCID: PMC5958823 DOI: 10.3892/ol.2018.8482] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 01/02/2018] [Indexed: 11/11/2022] Open
Abstract
The expression of high mobility group box 1 (HMGB1), breast cancer susceptibility gene 1 (BRCA1) and P62 in ovarian cancer was investigated to explore its association with chemotherapy sensitivity in ovarian cancer patients. Tumor tissues and para-carcinoma normal tissues of 60 ovarian cancer patients hospitalized in Department of Surgery in Dongying Hospital from June, 2012 to June, 2015 were collected. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to detect the mRNA expression levels of HMGB1, BRCA1 and P62 in tumor and para-carcinoma normal tissues. Moreover, immunohistochemistry was used to detect the protein expression of HMGB1, BRCA1 and P62 in tumor tissues and para-carcinoma normal tissues. The cancer tissue specimens were divided into the chemotherapy resistance group and sensitivity group through the in vitro resin droplet experiment to analyze the association of the expression of HMGB1, BRCA1 and P62 in epithelial ovarian cancer with chemotherapy resistance of patients. The RT-qPCR results showed that the expression of HMGB1, BRCA1 and P62 in ovarian cancer tissues at the mRNA level was significantly higher than that in para-carcinoma normal tissues. Immunohistochemical results showed that the positive expression levels of HMGB1, BRCA1 and P62 in ovarian carcinoma tissue were 61.67% (37/60), 76.33% (47/60) and 71.67% (43/60), respectively, while the positive expression levels of HMGB1, BRCA1 and P62 in para-carcinoma normal tissues were 13.33% (8/60), 8.33% (5/60) and 11.67% (7/60), respectively, and the differences were statistically significant (P<0.05). In vitro resin droplet experiment revealed that 38 out of 60 ovarian cancer patients were drug resistant and 22 patients were sensitive to the therapy. The analysis of the association with chemotherapy sensitivity revealed that the positive expression of HMGB1, BRCA1 and P62 was associated with the drug resistance of ovarian cancer patients. The positive expression of HMGB1, BRCA1 and P62 was associated with chemotherapy sensitivity of ovarian cancer patients. Therefore, HMGB1, BRCA1 and P62 may be molecular markers for the prediction of chemotherapy sensitivity of ovarian cancer patients.
Collapse
Affiliation(s)
- Shouyong Li
- Department of Clinical Laboratory, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| | - Yanlei Wei
- Department of Pharmacy, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| |
Collapse
|
16
|
Larue L, Ben Mihoub A, Youssef Z, Colombeau L, Acherar S, André JC, Arnoux P, Baros F, Vermandel M, Frochot C. Using X-rays in photodynamic therapy: an overview. Photochem Photobiol Sci 2018; 17:1612-1650. [DOI: 10.1039/c8pp00112j] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Photodynamic therapy is a therapeutic option to treat cancer and other diseases.
Collapse
|
17
|
Li S, Li C, Jin S, Liu J, Xue X, Eltahan AS, Sun J, Tan J, Dong J, Liang XJ. Overcoming resistance to cisplatin by inhibition of glutathione S-transferases (GSTs) with ethacraplatin micelles in vitro and in vivo. Biomaterials 2017; 144:119-129. [PMID: 28834763 DOI: 10.1016/j.biomaterials.2017.08.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/09/2017] [Accepted: 08/14/2017] [Indexed: 01/06/2023]
Abstract
Platinum-based DNA-adducting agents are used extensively in the clinic for cancer chemotherapy. However, the anti-tumor efficacy of these drugs is severely limited by cisplatin resistance, and this can lead to the failure of chemotherapy. One of cisplatin resistance mechanisms is associated with overexpression of glutathione S-transferases (GSTs), which would accelerate the deactivation of cisplatin and decrease its antitumor efficiency. Nanoscale micelles encapsulating ethacraplatin, a conjugate of cisplatin and ethacrynic acid (an effective GSTs inhibitor), can enhance the accumulation of active cisplatin in cancer cells by inhibiting the activity of GSTs and circumventing deactivation of cisplatin. In vitro and in vivo results provide strong evidence that GSTs inhibitor-modified cisplatin prodrug combined with nanoparticle encapsulation favor high effective platinum accumulation, significantly enhanced antitumor efficacy against cisplatin-resistant cancer and decreased system toxicity. It is believed that these ethacraplatin-loaded micelles have the ability of overcoming resistance of cancers toward cisplatin and will improve the prospects for chemotherapy of cisplatin-resistant cancers in the near future.
Collapse
Affiliation(s)
- Shuyi Li
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, No.11, First North Road, Zhongguancun, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Chan Li
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, No.11, First North Road, Zhongguancun, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Shubin Jin
- Beijing Municipal Institute of Labour Protection, No.55 Taoranting Road, Xicheng District, Beijing, 100054, PR China
| | - Juan Liu
- Tissue Engineering Lab, Beijing Institute of Transfusion Medicine, Beijing, 1000850, PR China
| | - Xiangdong Xue
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, No.11, First North Road, Zhongguancun, Beijing, 100190, PR China
| | - Ahmed Shaker Eltahan
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, No.11, First North Road, Zhongguancun, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jiadong Sun
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, No.11, First North Road, Zhongguancun, Beijing, 100190, PR China
| | - Jingjie Tan
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, No.11, First North Road, Zhongguancun, Beijing, 100190, PR China
| | - Jinchen Dong
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, No.11, First North Road, Zhongguancun, Beijing, 100190, PR China
| | - Xing-Jie Liang
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, No.11, First North Road, Zhongguancun, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
18
|
Wu M, Wang Y, Wang Y, Zhang M, Luo Y, Tang J, Wang Z, Wang D, Hao L, Wang Z. Paclitaxel-loaded and A10-3.2 aptamer-targeted poly(lactide- co-glycolic acid) nanobubbles for ultrasound imaging and therapy of prostate cancer. Int J Nanomedicine 2017; 12:5313-5330. [PMID: 28794625 PMCID: PMC5536230 DOI: 10.2147/ijn.s136032] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In the current study, we synthesized prostate cancer-targeting poly(lactide-co-glycolic acid) (PLGA) nanobubbles (NBs) modified using A10-3.2 aptamers targeted to prostate-specific membrane antigen (PSMA) and encapsulated paclitaxel (PTX). We also investigated their impact on ultrasound (US) imaging and therapy of prostate cancer. PTX-A10-3.2-PLGA NBs were developed using water-in-oil-in-water (water/oil/water) double emulsion and carbodiimide chemistry approaches. Fluorescence imaging together with flow cytometry verified that the PTX-A10-3.2-PLGA NBs were successfully fabricated and could specifically bond to PSMA-positive LNCaP cells. We speculated that, in vivo, the PTX-A10-3.2-PLGA NBs would travel for a long time, efficiently aim at prostate cancer cells, and sustainably release the loaded PTX due to the improved permeability together with the retention impact and US-triggered drug delivery. The results demonstrated that the combination of PTX-A10-3.2-PLGA NBs with low-frequency US achieved high drug release, a low 50% inhibition concentration, and significant cell apoptosis in vitro. For mouse prostate tumor xenografts, the use of PTX-A10-3.2-PLGA NBs along with low-frequency US achieved the highest tumor inhibition rate, prolonging the survival of tumor-bearing nude mice without obvious systemic toxicity. Moreover, LNCaP xenografts in mice were utilized to observe modifications in the parameters of PTX-A10-3.2-PLGA and PTX-PLGA NBs in the contrast mode and the allocation of fluorescence-labeled PTX-A10-3.2-PLGA and PTX-PLGA NBs in live small animals and laser confocal scanning microscopy fluorescence imaging. These results demonstrated that PTX-A10-3.2-PLGA NBs showed high gray-scale intensity and aggregation ability and showed a notable signal intensity in contrast mode as well as aggregation ability in fluorescence imaging. In conclusion, we successfully developed an A10-3.2 aptamer and loaded PTX-PLGA multifunctional theranostic agent for the purpose of obtaining US images of prostate cancer and providing low-frequency US-triggered therapy of prostate cancer that was likely to constitute a strategy for both prostate cancer imaging and chemotherapy.
Collapse
Affiliation(s)
- Meng Wu
- School of Medicine, Nankai University, Tianjin.,Department of Ultrasound, Chinese PLA General Hospital, Beijing
| | | | - Yiru Wang
- Department of Ultrasound, Chinese PLA General Hospital, Beijing
| | - Mingbo Zhang
- Department of Ultrasound, Chinese PLA General Hospital, Beijing
| | - Yukun Luo
- Department of Ultrasound, Chinese PLA General Hospital, Beijing
| | - Jie Tang
- Department of Ultrasound, Chinese PLA General Hospital, Beijing
| | - Zhigang Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University
| | - Dong Wang
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University
| | - Lan Hao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University
| | - Zhibiao Wang
- College of Biomedical Engineering, Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
19
|
Yang J, Ju Z, Dong S. Cisplatin and paclitaxel co-delivered by folate-decorated lipid carriers for the treatment of head and neck cancer. Drug Deliv 2016; 24:792-799. [PMID: 28494629 PMCID: PMC8241145 DOI: 10.1080/10717544.2016.1236849] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/11/2016] [Accepted: 09/12/2016] [Indexed: 01/19/2023] Open
Abstract
CONTEXT For head and neck cancer therapy, co-delivery of two drugs, cisplatin (DDP) plus paclitaxel (PTX), are more effective than single drug therapy. Lipid carriers are promising drug carriers for anti-cancer delivery. OBJECTIVE The aim of this study is to construct a folate (FA) decorated nanostructured lipid carriers (NLCs) as nanocarriers for DDP and PTX delivery. MATERIALS AND METHODS In this study, DDP and PTX were incorporated into NLCs. Folate-PEG-DSPE (FA-PEG-DSPE) was synthesized and decorated the drugs-loaded NLCs (FA-DDP/PTX NLCs). Their average size, zeta potential, drug encapsulation efficiency, drug loading capacity, and in vitro drug release were evaluated. Head and neck cancer cells (FaDu cells) were used for the testing of in vitro cytotoxicity, and in vivo transfection efficiency of NLC was evaluated on mice bearing FaDu cells model. RESULTS The size of FA-DDP/PTX NLCs was around 127 nm, with a positive zeta potential of 26.7 mV. FA-DDP/PTX NLCs showed the highest cytotoxicity and synergistic effect of two drugs in head and neck cancer cells (FaDu cells) in vitro. The in vivo study revealed the greatest anti-tumor activity than all the other formulations in murine-bearing head and neck cancer model. DISCUSSION AND CONCLUSION FA-DDP/PTX NLCs effectively improves anticancer efficiency for head and neck cancer in vitro and in vivo. The constructed NLCs could be used as a novel carrier to co-delivery DDP and PTX for head and neck cancer therapy.
Collapse
Affiliation(s)
- Jiying Yang
- Department of Pharmacy, Linyi People’s Hospital, Linyi, Shandong Province, PR China
| | - Zengjuan Ju
- Department of Pharmacy, Linyi People’s Hospital, Linyi, Shandong Province, PR China
| | - Shufang Dong
- Department of Pharmacy, Linyi People’s Hospital, Linyi, Shandong Province, PR China
| |
Collapse
|
20
|
Co-delivery of cisplatin and paclitaxel by folic acid conjugated amphiphilic PEG-PLGA copolymer nanoparticles for the treatment of non-small lung cancer. Oncotarget 2016; 6:42150-68. [PMID: 26517524 PMCID: PMC4747216 DOI: 10.18632/oncotarget.6243] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 10/11/2015] [Indexed: 12/02/2022] Open
Abstract
An amphiphilic copolymer, folic acid (FA) modified poly(ethylene glycol)-poly(lactic-co-glycolic acid) (FA-PEG-PLGA) was prepared and explored as a nanometer carrier for the co-delivery of cisplatin (cis-diaminodichloroplatinum, CDDP) and paclitaxel (PTX). CDDP and PTX were encapsulated inside the hydrophobic inner core and chelated to the middle shell, respectively. PEG provided the outer corona for prolonged circulation. An in vitro release profile of the CDDP + PTX-encapsulated nanoparticles revealed that the PTX chelation cross-link prevented an initial burst release of CDDP. After an incubation period of 24 hours, the CDDP+PTX-encapsulated nanoparticles exhibited a highly synergistic effect for the inhibition of A549 (FA receptor negative) and M109 (FA receptor positive) lung cancer cell line proliferation. Pharmacokinetic experiment and distribution research shows that nanoparticles have longer circulation time in the blood and can prolong the treatment times of chemotherapeutic drugs. For the in vivo treatment of A549 cells xeno-graft lung tumor, the CDDP+PTX-encapsulated nanoparticles displayed an obvious tumor inhibiting effect with an 89.96% tumor suppression rate (TSR). This TSR was significantly higher than that of free chemotherapy drug combination or nanoparticles with a single drug. For M109 cells xeno-graft tumor, the TSR was 95.03%. In vitro and in vivo experiments have all shown that the CDDP+PTX-encapsulated nanoparticles have better targeting and antitumor effects in M109 cells than CDDP+PTX-loaded PEG-PLGA nanoparticles (p < 0.05). In addition, more importantly, the enhanced anti-tumor efficacy of the CDDP+PTX-encapsulated nanoparticles came with reduced side-effects. No obvious body weight loss or functional changes occurred within blood components, liver, or kidneys during the treatment of A549 and M109 tumor-bearing mice with the CDDP+PTX-encapsulated nanoparticles. Thus, the FA modified amphiphilic copolymer-based combination of CDDP and PTX may provide useful guidance for effective and safe cancer chemotherapy, especially in tumors with high FA receptor expression.
Collapse
|
21
|
Xing L, Shi Q, Zheng K, Shen M, Ma J, Li F, Liu Y, Lin L, Tu W, Duan Y, Du L. Ultrasound-Mediated Microbubble Destruction (UMMD) Facilitates the Delivery of CA19-9 Targeted and Paclitaxel Loaded mPEG-PLGA-PLL Nanoparticles in Pancreatic Cancer. Am J Cancer Res 2016; 6:1573-87. [PMID: 27446491 PMCID: PMC4955056 DOI: 10.7150/thno.15164] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/01/2016] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer, one of the most lethal human malignancies with dismal prognosis, is refractory to existing radio-chemotherapeutic treatment modalities. There is a critical unmet need to develop effective approaches, especially for targeted pancreatic cancer drug delivery. Targeted and drug-loaded nanoparticles (NPs) combined with ultrasound-mediated microbubble destruction (UMMD) have been shown to significantly increase the cellular uptake in vitro and drug retention in vivo, suggesting a promising strategy for cancer therapy. In this study, we synthesized pancreatic cancer-targeting organic NPs that were modified with anti CA19-9 antibody and encapsulated paclitaxol (PTX). The three-block copolymer methoxy polyethylene glycol-polylacticco-glycolic acid-polylysine (mPEG-PLGA-PLL) constituted the skeleton of the NPs. We speculated that the PTX-NPs-anti CA19-9 would circulate long-term in vivo, "actively target" pancreatic cancer cells, and sustainably release the loaded PTX while UMMD would "passively target" the irradiated tumor and effectively increase the permeability of cell membrane and capillary gaps. Our results demonstrated that the combination of PTX-NPs-anti CA19-9 with UMMD achieved a low IC50, significant cell cycle arrest, and cell apoptosis in vitro. In mouse pancreatic tumor xenografts, the combined application of PTX-NP-anti CA19-9 NPs with UMMD attained the highest tumor inhibition rate, promoted the pharmacokinetic profile by increasing AUC, t1/2, and mean residence time (MRT), and decreased clearance. Consequently, the survival of the tumor-bearing nude mice was prolonged without obvious toxicity. The dynamic change in cellular uptake, targeted real-time imaging, and the concentration of PTX in the plasma and tumor were all closely associated with the treatment efficacy both in vitro and in vivo. Our study suggests that PTX-NP-anti CA19-9 NPs combined with UMMD is a promising strategy for the treatment of pancreatic cancer.
Collapse
|
22
|
Wang L, Wang W, Rui Z, Zhou D. The effective combination therapy against human osteosarcoma: doxorubicin plus curcumin co-encapsulated lipid-coated polymeric nanoparticulate drug delivery system. Drug Deliv 2016; 23:3200-3208. [PMID: 26987435 DOI: 10.3109/10717544.2016.1162875] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Lin Wang
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong University, Ji’nan, P.R. China
- Department of Orthopaedics, Affiliated Hospital of Taishan Medical University, Taian, P.R. China, and
| | - WeiGuo Wang
- Department of Orthopaedics, General Hospital of Ji’nan Military Command, Ji’nan, P.R. China
| | - Ze Rui
- Department of Orthopaedics, Affiliated Hospital of Taishan Medical University, Taian, P.R. China, and
| | - DongSheng Zhou
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong University, Ji’nan, P.R. China
| |
Collapse
|
23
|
Huang C, Sun Y, Shen M, Zhang X, Gao P, Duan Y. Altered Cell Cycle Arrest by Multifunctional Drug-Loaded Enzymatically-Triggered Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2016; 8:1360-1370. [PMID: 26698111 DOI: 10.1021/acsami.5b10241] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
cRGD-targeting matrix metalloproteinase (MMP)-sensitive nanoparticles [PLGA-PEG1K-cRGD/PLGA-peptide-PEG5K (NPs-cRGD)] were successfully developed. Au-Pt(IV) nanoparticles, PTX, and ADR were encapsulated into NPs-RGD separately. The effects of the drug-loaded nanoparticles on the cell cycle were investigated. Here, we showed that higher cytotoxicity of drug-loaded nanoparticles was related to the cell cycle arrest, compared to that of free drugs. The NPs-cRGD studied here did not disrupt cell cycle progression. The cell cycle of Au-Pt(IV)@NPs-cRGD showed a main S phase arrest in all phases of the cell cycle phase, especially in G0/G1 phase. PTX@NPs-cRGD and ADR@NPs-cRGD showed a higher ratio of G2/M and S phase arrest than the free drugs, respectively. Cells in G0/G1 and S phases of the cell cycle had a higher uptake ratio of NPs-cRGD. A nutrient deprivation or an increase in the requirement of nutrients in tumor cells could promote the uptake of nanoparticles from the microenvironments. In vivo, NPs-cRGD could efficiently accumulate at tumor sites. The inhibition of tumor growth coupled with cell cycle arrest is in line with that in vitro. On the basis of our results, we propose that future studies on nanoparticle action mechanism should consider the cell cycle, which could be different from free drugs. Understanding the actions of cell cycle arrest could affect the application of nanomedicine in the clinic.
Collapse
Affiliation(s)
- Can Huang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| | - Ying Sun
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| | - Ming Shen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| | - Xiangyu Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| | - Pei Gao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| | - Yourong Duan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| |
Collapse
|
24
|
Zhang X, Wang Q, Qin L, Fu H, Fang Y, Han B, Duan Y. EGF-modified mPEG-PLGA-PLL nanoparticle for delivering doxorubicin combined with Bcl-2 siRNA as a potential treatment strategy for lung cancer. Drug Deliv 2016; 23:2936-2945. [PMID: 26739487 DOI: 10.3109/10717544.2015.1126769] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Xiangyu Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China and
| | - Qi Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China and
| | - Liubing Qin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China and
| | - Hao Fu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China and
| | - Yiwei Fang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China and
| | - Baoshan Han
- Department of General Surgery, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yourong Duan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China and
| |
Collapse
|
25
|
He Z, Sun Y, Cao J, Duan Y. Degradation behavior and biosafety studies of the mPEG–PLGA–PLL copolymer. Phys Chem Chem Phys 2016; 18:11986-99. [DOI: 10.1039/c6cp00767h] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In a previous study, a novel biodegradable multiblock copolymer, monomethoxy (poly-ethylene glycol)–poly(d,l-lactide-co-glycolide)–poly(l-lysine) (PEAL), was developed as a new drug carrier material.
Collapse
Affiliation(s)
- Zelai He
- State Key Laboratory of Oncogenes and Related Genes
- Shanghai Cancer Institute
- Renji Hospital
- School of Medicine
- Shanghai Jiao Tong University
| | - Ying Sun
- State Key Laboratory of Oncogenes and Related Genes
- Shanghai Cancer Institute
- Renji Hospital
- School of Medicine
- Shanghai Jiao Tong University
| | - Jun Cao
- Dahua Hospital
- Shanghai 200237
- China
| | - Yourong Duan
- State Key Laboratory of Oncogenes and Related Genes
- Shanghai Cancer Institute
- Renji Hospital
- School of Medicine
- Shanghai Jiao Tong University
| |
Collapse
|
26
|
He Z, Shi Z, Sun W, Ma J, Xia J, Zhang X, Chen W, Huang J. Hemocompatibility of folic-acid-conjugated amphiphilic PEG-PLGA copolymer nanoparticles for co-delivery of cisplatin and paclitaxel: treatment effects for non-small-cell lung cancer. Tumour Biol 2015; 37:7809-21. [PMID: 26695149 DOI: 10.1007/s13277-015-4634-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/10/2015] [Indexed: 12/18/2022] Open
Abstract
In this study, we used folic-acid-modified poly(ethylene glycol)-poly(lactic-co-glycolic acid) (FA-PEG-PLGA) to encapsulate cisplatin and paclitaxel (separately or together), and evaluated their antitumor effects against lung cancer; this study was conducted in order to investigate the antitumor effects of the co-delivery of cisplatin and paclitaxel by a targeted drug delivery system. Blood compatibility assays and complement activation tests revealed that FA-PEG-PLGA nanoparticles did not induce blood hemolysis, blood clotting, or complement activation. The results also indicated that FA-PEG-PLGA nanoparticles had no biotoxic effects, the drug delivery system allowed controlled release of the cargo molecules, and the co-delivery of cisplatin and paclitaxel efficiently induces cancer cell apoptosis and cell cycle retardation. In addition, co-delivery of cisplatin and paclitaxel showed the ability to suppress xenograft lung cancer growth and prolong the survival time of xenografted mice. These results implied that FA-PEG-PLGA nanoparticles can function as effective carriers of cisplatin and paclitaxel, and that co-delivery of cisplatin and paclitaxel by FA-PEG-PLGA nanoparticles results in more effective antitumor effects than the combination of free-drugs or single-drug-loaded nanoparticles.
Collapse
Affiliation(s)
- Zelai He
- The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, 325027, China
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Zengfang Shi
- Henan Polytechnic Institute, No 666, Kongming North Road, Nanyang Henan, 473000, China
| | - Wenjie Sun
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Jing Ma
- Department of Ultrasound, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Junyong Xia
- Department of Nuclear Medicine, the Affiliated Provincial Hospital of Anhui Medical University, Hefei, 230001, China
| | - Xiangyu Zhang
- Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China.
| | - Wenjun Chen
- The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, 325027, China.
| | - Jingwen Huang
- The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, 325027, China.
| |
Collapse
|
27
|
Zhou Z, Murdoch WJ, Shen Y. A linear polyethylenimine (LPEI) drug conjugate with reversible charge to overcome multidrug resistance in cancer cells. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.08.061] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Guo L, Zhang H, Wang F, Liu P, Wang Y, Xia G, Liu R, Li X, Yin H, Jiang H, Chen B. Targeted multidrug-resistance reversal in tumor based on PEG-PLL-PLGA polymer nano drug delivery system. Int J Nanomedicine 2015. [PMID: 26213467 PMCID: PMC4509529 DOI: 10.2147/ijn.s85587] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The study investigated the reversal of multidrug resistance (MDR) and the biodistribution of nanoparticles (NPs) that target leukemia cells in a nude mice model via a surface-bound transferrin (Tf). The cytotoxic cargo of daunorubicin (DNR) and tetrandrine (Tet) was protected in the NPs by an outer coat composed of polyethylene glycol (PEG)-poly-l-lysine (PLL)-poly(lactic-co-glycolic acid) (PLGA) NPs. Injection of DNR-Tet-Tf-PEG-PLL-PLGA NPs into nude mice bearing MDR leukemia cell K562/A02 xenografts was shown to inhibit tumor growth, and contemporaneous immunohistochemical analysis of tumor tissue showed the targeted NPs induced apoptosis in tumor cells. Targeted tumor cells exhibited a marked increase in Tf receptor expression, with noticeable decreases in P-glycoprotein, MDR protein, and nuclear factor κB, as assessed by quantitative real-time polymerase chain reaction and Western blot analysis. Moreover, the concentration of DNR was shown to increase in plasma, tumor tissue, and major organs. Flow cytometry analysis with a near-infrared fluorescent (NIRF) dye, NIR797, was used to study the effectiveness of Tf as a targeting group for leukemia cells, a finding that was supported by NIRF imaging in tumor-bearing nude mice. In summary, our studies show that DNR-Tet-Tf-PEG-PLL-PLGA NPs provide a specific and effective means to target cytotoxic drugs to MDR tumor cells.
Collapse
Affiliation(s)
- Liting Guo
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), The Affiliated Zhongda Hospital, Medical School of Southeast University, Nanjing, People's Republic of China
| | - Haijun Zhang
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), The Affiliated Zhongda Hospital, Medical School of Southeast University, Nanjing, People's Republic of China
| | - Fei Wang
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), The Affiliated Zhongda Hospital, Medical School of Southeast University, Nanjing, People's Republic of China
| | - Ping Liu
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), The Affiliated Zhongda Hospital, Medical School of Southeast University, Nanjing, People's Republic of China
| | - Yonglu Wang
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), The Affiliated Zhongda Hospital, Medical School of Southeast University, Nanjing, People's Republic of China ; School of Pharmacy, Nanjing University of Technology, Nanjing, People's Republic of China
| | - Guohua Xia
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), The Affiliated Zhongda Hospital, Medical School of Southeast University, Nanjing, People's Republic of China
| | - Ran Liu
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), The Affiliated Zhongda Hospital, Medical School of Southeast University, Nanjing, People's Republic of China
| | - Xueming Li
- School of Pharmacy, Nanjing University of Technology, Nanjing, People's Republic of China
| | - Haixiang Yin
- School of Pharmacy, Nanjing University of Technology, Nanjing, People's Republic of China
| | - Hulin Jiang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Baoan Chen
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), The Affiliated Zhongda Hospital, Medical School of Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
29
|
Wang Q, Sun Y, Zhang Z, Duan Y. Targeted polymeric therapeutic nanoparticles: Design and interactions with hepatocellular carcinoma. Biomaterials 2015; 56:229-40. [DOI: 10.1016/j.biomaterials.2015.03.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/26/2015] [Accepted: 03/27/2015] [Indexed: 01/28/2023]
|
30
|
Liu KS, Pan KA, Liu SJ. In-vitro elution of cisplatin and fluorouracil from bi-layered biodegradable beads. BIOMATERIALS AND BIOMECHANICS IN BIOENGINEERING 2015. [DOI: 10.12989/bme.2015.2.2.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Kim J, Pramanick S, Lee D, Park H, Kim WJ. Polymeric biomaterials for the delivery of platinum-based anticancer drugs. Biomater Sci 2015. [PMID: 26221935 DOI: 10.1039/c5bm00039d] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Since cisplatin, cis-diamminedichloroplatinum(ii), received FDA approval for use in cancer treatment in 1978, platinum-based drugs have been one of the most widely used drugs for the treatment of tumors in testicles, ovaries, head and neck. However, there are concerns associated with the use of platinum-based anticancer drugs, owing to severe side effects and drug resistance. In order to overcome these limitations, various drug-delivery systems have been developed based on diverse organic and inorganic materials. In particular, the versatility of polymeric materials facilitates the tuning of drug-delivery systems to meet their primary goals. This review focuses on the progress made over the last five years in the application of polymeric nanoparticles for the delivery of platinum-based anticancer drugs. The present article not only describes the fundamental principles underlying the implementation of polymeric nanomaterials in platinum-based drug delivery, but also summarizes concepts and strategies employed in the development of drug-delivery systems.
Collapse
Affiliation(s)
- Jihoon Kim
- Center for Self-assembly and Complexity, Institute for Basic Science and Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang 790-784, Republic of Korea
| | | | | | | | | |
Collapse
|
32
|
Dual-responsive mPEG-PLGA-PGlu hybrid-core nanoparticles with a high drug loading to reverse the multidrug resistance of breast cancer: an in vitro and in vivo evaluation. Acta Biomater 2015; 16:156-68. [PMID: 25662165 DOI: 10.1016/j.actbio.2015.01.039] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 01/21/2015] [Accepted: 01/26/2015] [Indexed: 11/21/2022]
Abstract
In this study, monomethoxy (polyethylene glycol)-b-P (d,l-lactic-co-glycolic acid)-b-P (l-glutamic acid) (mPEG-PLGA-PGlu) nanoparticles with the ability to rapidly respond to the endolysosomal pH and hydrolase were prepared and the pH-sensitivity was tuned by adjusting the length of the PGlu segment. The mPEG5k-PLGA20k-PGlu (60) nanoparticles were specifically responsive to an endosomal pH of 5.0-6.0 due to the configuration transition of the PGlu segment and rapidly initiated chemical degradation after incubation with proteinase k for 10 min. Doxorubicin hydrochloride (DOX), used as a model drug, was easily encapsulated into nanoparticles and the DOX-loaded nanoparticles (DOX-NPs) exhibited a pH-dependent and enzyme-sensitive release profile in vitro. The dual sensitivity enabled the rapid escape of DOX-loaded nanoparticles from the endolysosomal system to target cellular nuclei, which resulted in increased cell toxicity against MCF/ADR resistant breast cancer cells and a higher cellular uptake than free DOX. In Vivo Imaging studies indicated that the nanoparticles could continuously accumulate in the tumor tissues through EPR effects and Ex vivo Imaging biodistribution studies indicated that DOX-NPs increased drug penetration into tumors compared with normal tissues. The in vivo antitumor activity demonstrated that DOX-loaded NPs had less body loss and a significant regression of tumor growth, indicating the increased anti-tumor efficacy and lower systemic toxicity. Therefore, this dual sensitive nanoparticle system may be a potential nanocarrier to overcome the multidrug resistance exhibited by breast cancer.
Collapse
|
33
|
Chen Y, Wang X, Liu T, Zhang DSZ, Wang Y, Gu H, Di W. Highly effective antiangiogenesis via magnetic mesoporous silica-based siRNA vehicle targeting the VEGF gene for orthotopic ovarian cancer therapy. Int J Nanomedicine 2015; 10:2579-94. [PMID: 25848273 PMCID: PMC4386807 DOI: 10.2147/ijn.s78774] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Therapeutic antiangiogenesis strategies have demonstrated significant antitumor efficacy in ovarian cancer. Recently, RNA interference (RNAi) has come to be regarded as a promising technology for treatment of disease, especially cancer. In this study, vascular endothelial growth factor (VEGF)-small interfering RNA (siRNA) was encapsulated into a magnetic mesoporous silica nanoparticle (M-MSN)-based, polyethylenimine (PEI)-capped, polyethylene glycol (PEG)-grafted, fusogenic peptide (KALA)-functionalized siRNA delivery system, termed M-MSN_VEGF siRNA@PEI-PEG-KALA, which showed significant effectiveness with regard to VEGF gene silencing in vitro and in vivo. The prepared siRNA delivery system readily exhibited cellular internalization and ease of endosomal escape, resulting in excellent RNAi efficacy without associated cytotoxicity in SKOV3 cells. In in vivo experiments, notable retardation of tumor growth was observed in orthotopic ovarian tumor-bearing mice, which was attributed to significant inhibition of angiogenesis by systemic administration of this nanocarrier. No obvious toxic drug responses were detected in major organs. Further, the magnetic core of M-MSN_VEGF siRNA@PEI-PEG-KALA proved capable of probing the site and size of the ovarian cancer in mice on magnetic resonance imaging. Collectively, the results demonstrate that an M-MSN-based delivery system has potential to serve as a carrier of siRNA therapeutics in ovarian cancer.
Collapse
Affiliation(s)
- Yijie Chen
- State Key Laboratory of Oncogenes and Related Genes, Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China ; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xinran Wang
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China ; Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, People's Republic of China
| | - Ting Liu
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China ; Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, People's Republic of China
| | - Ding Sheng-Zi Zhang
- State Key Laboratory of Oncogenes and Related Genes, Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China ; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yunfei Wang
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China ; Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, People's Republic of China
| | - Hongchen Gu
- State Key Laboratory of Oncogenes and Related Genes, Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China ; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Wen Di
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China ; Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, People's Republic of China
| |
Collapse
|
34
|
Zhou Z, Tang J, Sun Q, Murdoch WJ, Shen Y. A multifunctional PEG–PLL drug conjugate forming redox-responsive nanoparticles for intracellular drug delivery. J Mater Chem B 2015; 3:7594-7603. [DOI: 10.1039/c5tb01027f] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tumor-targeting camptothecin (CPT)-conjugated nanoparticles with high stability and GSH-triggered drug release were developed for cancer targeting drug delivery.
Collapse
Affiliation(s)
- Zhuxian Zhou
- Center for Bionanoengineering and State Key Laboratory for Chemical Engineering
- Department of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Jianbin Tang
- Center for Bionanoengineering and State Key Laboratory for Chemical Engineering
- Department of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Qihang Sun
- Department of Chemical and Petroleum Engineering
- University of Wyoming
- Laramie
- USA
| | | | - Youqing Shen
- Center for Bionanoengineering and State Key Laboratory for Chemical Engineering
- Department of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
35
|
Xu P, Wang R, Li J, Ouyang J, Chen B. PEG–PLGA–PLL nanoparticles in combination with gambogic acid for reversing multidrug resistance of K562/A02 cells to daunorubicin. RSC Adv 2015. [DOI: 10.1039/c5ra10603f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The present chemotherapy in malignancy treatment, including leukaemia, is plagued by one main problem: multidrug resistance (MDR) which is often related to excessive expression of adenosine triphosphate-dependent efflux pump.
Collapse
Affiliation(s)
- Peipei Xu
- Department of Hematology
- The Affiliated Drum Tower Hospital of Nanjing University Medical School
- Nanjing 210008
- People's Republic of China
| | - Ruju Wang
- Medical School
- Southeast University
- Nanjing 210009
- People's Republic of China
| | - Jian Li
- Department of Hematology
- The Affiliated Drum Tower Hospital of Nanjing University Medical School
- Nanjing 210008
- People's Republic of China
| | - Jian Ouyang
- Department of Hematology
- The Affiliated Drum Tower Hospital of Nanjing University Medical School
- Nanjing 210008
- People's Republic of China
| | - Bing Chen
- Department of Hematology
- The Affiliated Drum Tower Hospital of Nanjing University Medical School
- Nanjing 210008
- People's Republic of China
| |
Collapse
|
36
|
Chen L, Liu T, Zhou J, Wang Y, Wang X, Di W, Zhang S. Citrate synthase expression affects tumor phenotype and drug resistance in human ovarian carcinoma. PLoS One 2014; 9:e115708. [PMID: 25545012 PMCID: PMC4278743 DOI: 10.1371/journal.pone.0115708] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 11/26/2014] [Indexed: 01/02/2023] Open
Abstract
Citrate synthase (CS), one of the key enzymes in the tricarboxylic acid (TCA) cycle, catalyzes the reaction between oxaloacetic acid and acetyl coenzyme A to generate citrate. Increased CS has been observed in pancreatic cancer. In this study, we found higher CS expression in malignant ovarian tumors and ovarian cancer cell lines compared to benign ovarian tumors and normal human ovarian surface epithelium, respectively. CS knockdown by RNAi could result in the reduction of cell proliferation, and inhibition of invasion and migration of ovarian cancer cells in vitro. The drug resistance was also inhibited possibly through an excision repair cross complementing 1 (ERCC1)-dependent mechanism. Finally, upon CS knockdown we observed significant increase expression of multiple genes, including ISG15, IRF7, CASP7, and DDX58 in SKOV3 and A2780 cells by microarray analysis and real-time PCR. Taken together, these results suggested that CS might represent a potential therapeutic target for ovarian carcinoma.
Collapse
Affiliation(s)
- Lilan Chen
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, 200127, P. R. China
| | - Ting Liu
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, 200127, P. R. China
| | - Jinhua Zhou
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, 200127, P. R. China
| | - Yunfei Wang
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, 200127, P. R. China
| | - Xinran Wang
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, 200127, P. R. China
| | - Wen Di
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, 200127, P. R. China
- * E-mail: (WD); (SZ)
| | - Shu Zhang
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, 200127, P. R. China
- * E-mail: (WD); (SZ)
| |
Collapse
|
37
|
Engelberth SA, Hempel N, Bergkvist M. Development of nanoscale approaches for ovarian cancer therapeutics and diagnostics. Crit Rev Oncog 2014; 19:281-315. [PMID: 25271436 DOI: 10.1615/critrevoncog.2014011455] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ovarian cancer is the deadliest of all gynecological cancers and the fifth leading cause of death due to cancer in women. This is largely due to late-stage diagnosis, poor prognosis related to advanced-stage disease, and the high recurrence rate associated with development of chemoresistance. Survival statistics have not improved significantly over the last three decades, highlighting the fact that improved therapeutic strategies and early detection require substantial improvements. Here, we review and highlight nanotechnology-based approaches that seek to address this need. The success of Doxil, a PEGylated liposomal nanoencapsulation of doxorubicin, which was approved by the FDA for use on recurrent ovarian cancer, has paved the way for the current wave of nanoparticle formulations in drug discovery and clinical trials. We discuss and summarize new nanoformulations that are currently moving into clinical trials and highlight novel nanotherapeutic strategies that have shown promising results in preclinical in vivo studies. Further, the potential for nanomaterials in diagnostic imaging techniques and the ability to leverage nanotechnology for early detection of ovarian cancer are also discussed.
Collapse
Affiliation(s)
| | - Nadine Hempel
- SUNY College of Nanoscale Science and Engineering, Albany NY 12203
| | - Magnus Bergkvist
- SUNY College of Nanoscale Science and Engineering, Albany NY 12203
| |
Collapse
|
38
|
Silk fibroin nanoparticles prepared by electrospray as controlled release carriers of cisplatin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 44:166-74. [DOI: 10.1016/j.msec.2014.08.034] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/11/2014] [Accepted: 08/08/2014] [Indexed: 11/23/2022]
|
39
|
Sheng M, Zhao Y, Zhang A, Wang L, Zhang G. The effect of LfcinB9 on human ovarian cancer cell SK-OV-3 is mediated by inducing apoptosis. J Pept Sci 2014; 20:803-10. [PMID: 24965354 DOI: 10.1002/psc.2670] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/27/2014] [Accepted: 05/30/2014] [Indexed: 12/14/2022]
Affiliation(s)
- Minjia Sheng
- China Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China
| | | | | | | | | |
Collapse
|
40
|
Wang Y, Zhou J, Qiu L, Wang X, Chen L, Liu T, Di W. Cisplatin-alginate conjugate liposomes for targeted delivery to EGFR-positive ovarian cancer cells. Biomaterials 2014; 35:4297-309. [PMID: 24565522 DOI: 10.1016/j.biomaterials.2014.01.035] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 01/10/2014] [Indexed: 12/20/2022]
Abstract
Systemic side effects and low aqueous solubility have limited the clinical use of cisplatin (CDDP) in ovarian carcinoma and have contributed to failures in developing effective drug delivery systems. In order to develop a novel drug delivery system with enhanced efficacy and minimal adverse effects, we exploited the properties of sodium alginate (SA) to synthesize CDDP-SA conjugate (CS), which is highly soluble and readily incorporated into liposomes (CS-PEG-Lip). Epidermal growth factor receptor (EGFR) is overexpressed in many ovarian cancers, therefore we modified EGF on the liposomes (CS-EGF-Lip) to specifically target EGFR-expressing tumors, thereby increasing the bioavailability and efficacy of CDDP. In vitro experiments confirmed that EGF-Lip selectively recognized EGFR-positive SKOV3 cells and effectively penetrated tumor spheroids. We demonstrated that CS-EGF-Lip possessed satisfactory size distribution and exhibited significantly improved encapsulation and loading efficiency. Furthermore, CS-EGF-Lip sustained release of CDDP in vitro, suggesting that CS-EGF-Lip may retain the antitumor activity of CDDP. Inhibition of proliferation and migration was also greater with CS-EGF-Lip compared to CDDP. In vivo xenograft experiments revealed that administration of CS-EGF-Lip enhanced delivery of CDDP into ovarian tumor tissues and improved the antitumor efficacy of CDDP, while reducing nephrotoxicity and body weight loss in mice. These results suggest that CS-EGF-Lip may offer a promising strategy for CDDP delivery in the treatment of EGFR-positive ovarian carcinoma or similar tumors, with enhanced efficacy and fewer adverse effects.
Collapse
Affiliation(s)
- Yunfei Wang
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China; Shanghai Key Laboratory of Gynecologic Oncology, Shanghai 200127, PR China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, PR China; Shanghai Health Bureau Key Disciplines and Specialties Foundation, Shanghai 200127, PR China; Key Discipline Project of Ren Ji Hospital, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Jinhua Zhou
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China; Shanghai Key Laboratory of Gynecologic Oncology, Shanghai 200127, PR China; Key Discipline Project of Ren Ji Hospital, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Lihua Qiu
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China; Shanghai Key Laboratory of Gynecologic Oncology, Shanghai 200127, PR China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, PR China; Key Discipline Project of Ren Ji Hospital, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Xinran Wang
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China; Shanghai Key Laboratory of Gynecologic Oncology, Shanghai 200127, PR China
| | - Lilan Chen
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China; Shanghai Key Laboratory of Gynecologic Oncology, Shanghai 200127, PR China
| | - Ting Liu
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China; Shanghai Key Laboratory of Gynecologic Oncology, Shanghai 200127, PR China; Shanghai Health Bureau Key Disciplines and Specialties Foundation, Shanghai 200127, PR China; Key Discipline Project of Ren Ji Hospital, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Wen Di
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China; Shanghai Key Laboratory of Gynecologic Oncology, Shanghai 200127, PR China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, PR China; Shanghai Health Bureau Key Disciplines and Specialties Foundation, Shanghai 200127, PR China; Key Discipline Project of Ren Ji Hospital, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China.
| |
Collapse
|
41
|
Wang Y, Liu P, Duan Y, Yin X, Wang Q, Liu X, Wang X, Zhou J, Wang W, Qiu L, Di W. Specific cell targeting with APRPG conjugated PEG-PLGA nanoparticles for treating ovarian cancer. Biomaterials 2013; 35:983-92. [PMID: 24176193 DOI: 10.1016/j.biomaterials.2013.09.062] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 09/17/2013] [Indexed: 01/07/2023]
Abstract
Good biocompatibility, specific tumor targeting, effective drug loading capacity and persistence in the circulation in vivo are imperative prerequisites for the antitumor efficiency of nanoparticles and their further clinical application. In this study, APRPG (Ala-Pro-Arg-Pro-Gly) peptide-modified poly (ethylene glycol)-poly (lactic acid) (PEG-PLA) nanoparticles (NP-APRPG) encapsulating inhibitors of angiogenesis (TNP-470) (TNP-470-NP-APRPG) were fabricated. TNP-470-NP-APRPG was designed to feature maleimide-PEG-PLA and mPEG-PLA as carrier materials, the APRPG peptide for targeting angiogenesis, PEG for prolonging circulation in vivo and PLA for loading TNP-470. TNP-470-NP-APRPG was confirmed to be approximately 130 nm in size with negative ζ-potential (-14.3 mV), narrow distribution (PDI = 0.27) and spherical morphology according to dynamic light scattering (DLS) and transmission electron microscopy (TEM) analyses. In addition, X-ray photoelectron spectra (XPS) analyses confirmed 7.73% APRPG grafting on the TNP-470-NP. In vitro, TNP-470-NP-APRPG exhibited effective inhibition of proliferation, migration and tube formation in human umbilical vein endothelial cells (HUVECs). Similar findings were observed for the retardation of tumor growth in SKOV3 ovarian cancer-bearing mice, suggesting the significant inhibition of angiogenesis and antitumor efficiency of TNP-470-NP-APRPG. Moreover, no obvious toxic drug responses were observed. Further evidence obtained from the immunohistochemical examination demonstrated that the tumor growth inhibition was closely correlated with the high rate of apoptosis among endothelial cells and the effective blockade of endothelial cell proliferation. These results demonstrate that NP-APRPG is a promising carrier for delivering TNP-470 to treat ovarian cancer and that this approach has the potential to achieve broad tumor coverage in the clinic.
Collapse
Affiliation(s)
- Yunfei Wang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China; Shanghai Key Laboratory of Gynecologic Oncology, Shanghai 200127, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Das D, Das R, Mandal J, Ghosh A, Pal S. Dextrin crosslinked with poly(lactic acid): A novel hydrogel for controlled drug release application. J Appl Polym Sci 2013. [DOI: 10.1002/app.40039] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dipankar Das
- Polymer Chemistry Laboratory; Department of Applied Chemistry; Indian School of Mines; Dhanbad Jharkhand 826004 India
| | - Raghunath Das
- Polymer Chemistry Laboratory; Department of Applied Chemistry; Indian School of Mines; Dhanbad Jharkhand 826004 India
| | - Jayanta Mandal
- Polymer Chemistry Laboratory; Department of Applied Chemistry; Indian School of Mines; Dhanbad Jharkhand 826004 India
| | - Animesh Ghosh
- Department of Pharmaceutical Sciences; Birla Institutes of Technology; Ranchi Jharkhand 835215 India
| | - Sagar Pal
- Polymer Chemistry Laboratory; Department of Applied Chemistry; Indian School of Mines; Dhanbad Jharkhand 826004 India
| |
Collapse
|
43
|
Intracellular trafficking and cellular uptake mechanism of mPEG-PLGA-PLL and mPEG-PLGA-PLL-Gal nanoparticles for targeted delivery to hepatomas. Biomaterials 2013; 35:760-70. [PMID: 24148242 DOI: 10.1016/j.biomaterials.2013.10.020] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/04/2013] [Indexed: 12/16/2022]
Abstract
The lysosomal escape of nanoparticles is crucial to enhancing their delivery and therapeutic efficiency. Here, we report the cellular uptake mechanism, lysosomal escape, and organelle morphology effect of monomethoxy (polyethylene glycol)-poly (D,L-lactide-co-glycolide)-poly (L-lysine) (mPEG-PLGA-PLL, PEAL) and 4-O-beta-D-Galactopyranosyl-D-gluconic acid (Gal)-modified PEAL (PEAL-Gal) for intracellular delivery to HepG2, Huh7, and PLC hepatoma cells. These results indicate that PEAL is taken up by clathrin-mediated endocytosis of HepG2, Huh7 and PLC cells. For PEAL-Gal, sialic acid receptor-mediated endocytosis and clathrin-mediated endocytosis are the primary uptake pathways in HepG2 cells, respectively, whereas PEAL-Gal is internalized by sag vesicle- and clathrin-mediated endocytosis in Huh7 cells. In the case of PLC cells, clathrin-mediated endocytosis and sialic acid receptor play a primary role in the uptake of PEAL-Gal. TEM results verify that PEAL and PEAL-Gal lead to a different influence on organelle morphology of HepG2, Huh7 and PLC cells. In addition, the results of intracellular distribution reveal that PEAL and PEAL-Gal are less entrapped in the lysosomes of HepG2 and Huh7 cells, demonstrating that they effectively escape from lysosomes and contribute to enhance the efficiency of intracellular delivery and tumor therapy. In vivo tumor targeting image results demonstrate that PEAL-Gal specifically delivers Rhodamine B (Rb) to the tumor tissue of mice with HepG2, Huh7, and PLC hepatomas and remains at a high concentration in tumor tissue until 48 h, properties that will greatly contribute to enhanced antitumor efficiency.
Collapse
|
44
|
Qin S, Fite BZ, Gagnon MKJ, Seo JW, Curry FR, Thorsen F, Ferrara KW. A physiological perspective on the use of imaging to assess the in vivo delivery of therapeutics. Ann Biomed Eng 2013; 42:280-98. [PMID: 24018607 DOI: 10.1007/s10439-013-0895-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 08/14/2013] [Indexed: 12/25/2022]
Abstract
Our goal is to provide a physiological perspective on the use of imaging to optimize and monitor the accumulation of nanotherapeutics within target tissues, with an emphasis on evaluating the pharmacokinetics of organic particles. Positron emission tomography (PET), magnetic resonance imaging (MRI) and ultrasound technologies, as well as methods to label nanotherapeutic constructs, have created tremendous opportunities for preclinical optimization of therapeutics and for personalized treatments in challenging disease states. Within the methodology summarized here, the accumulation of the construct is estimated directly from the image intensity. Particle extravasation is then estimated based on classical physiological measures. Specifically, the transport of nanotherapeutics is described using the concept of apparent permeability, which is defined as the net flux of solute across a blood vessel wall per unit surface area of the blood vessel and per unit solute concentration difference across the blood vessel wall. The apparent permeability to small molecule MRI constructs is accurately shown to be far larger than that estimated for proteins such as albumin or nanoconstructs such as liposomes. Further, the quantitative measurements of vascular permeability are shown to facilitate detection of the transition from a pre-malignant to a malignant cancer and to quantify the delivery enhancement resulting from interventions such as ultrasound. While PET-based estimates facilitate quantitative comparisons of many constructs, high field MRI proves useful in the visualization of model drugs within small lesions and in the evaluation of the release and intracellular trafficking of nanoparticles and cargo.
Collapse
Affiliation(s)
- Shengping Qin
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA,
| | | | | | | | | | | | | |
Collapse
|