1
|
Yin W, Jiang Y, Ma G, Mbituyimana B, Xu J, Shi Z, Yang G, Chen H. A review: Carrier-based hydrogels containing bioactive molecules and stem cells for ischemic stroke therapy. Bioact Mater 2025; 49:39-62. [PMID: 40124600 PMCID: PMC11928985 DOI: 10.1016/j.bioactmat.2025.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/22/2024] [Accepted: 01/13/2025] [Indexed: 03/25/2025] Open
Abstract
Ischemic stroke (IS), a cerebrovascular disease, is the leading cause of physical disability and death worldwide. Tissue plasminogen activator (tPA) and thrombectomy are limited by a narrow therapeutic time window. Although strategies such as drug therapies and cellular therapies have been used in preclinical trials, some important issues in clinical translation have not been addressed: low stem cell survival and drug delivery limited by the blood-brain barrier (BBB). Among the therapeutic options currently sought, carrier-based hydrogels hold great promise for the repair and regeneration of neural tissue in the treatment of ischemic stroke. The advantage lies in the ability to deliver drugs and cells to designated parts of the brain in an injectable manner to enhance therapeutic efficacy. Here, this article provides an overview of the use of carrier-based hydrogels in ischemic stroke therapy and focuses on the use of hydrogel scaffolds containing bioactive molecules and stem cells. In addition to this, we provide a more in-depth summary of the composition, physicochemical properties and physiological functions of the materials themselves. Finally, we also outline the prospects and challenges for clinical translation of hydrogel therapy for IS.
Collapse
Affiliation(s)
- Wenqi Yin
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuchi Jiang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Guangrui Ma
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bricard Mbituyimana
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jia Xu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhijun Shi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hong Chen
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
2
|
Li X, Zhang J, Zhang Y, Guo L, Gao M, Wang Y, Qiu W, Yuan Y, Zhu J, Liu B, Xiong H, Xu T, Xu R. Conjugated therapy with coaxially printed neural stem cell-laden microfibers and umbilical cord mesenchymal stem cell derived exosomes on complete transactional spinal cord defects. Mater Today Bio 2025; 32:101639. [PMID: 40160243 PMCID: PMC11953994 DOI: 10.1016/j.mtbio.2025.101639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/22/2025] [Accepted: 03/03/2025] [Indexed: 04/02/2025] Open
Abstract
Motor function recovery after complete spinal cord injury remained as a challenge in medical field, while one of the key approaches is promoting the local microenvironments. In this research, we performed a conjugated therapy by transplantation of neural stem cell (NSC) scaffolds and umbilical cord mesenchymal stem cell derived exosomes (ucMSC-exos) for the treatment of complete transactional spinal cord injury (SCI). We first demonstrated the anti-inflammatory effects of ucMSC-exos in vitro and found that ucMSC-exos could regulate microglia polarization from M1 to M2, an anti-inflammatory phenotype. Besides, ucMSC-exos also promoted NSC proliferation and neural differentiation during in vitro culturing. On the other hand, core-shell hydrogel microfibers were used as transplantation scaffolds for both small and large SCI defects. The core-shell microfibers could carry large amounts of NSCs in the core portion and the shell portion is highly permeable for nutrient and metabolite transportation. In in vivo experiments, we found that conjugated transplantation of ucMSC-exos and NSC microfibers could decreased inflammatory cytokines at lesion sites, gave rise to more neurons and promoted angiogenesis, thus comprehensively improved the local microenvironment while compared with transplantation of NSC scaffolds only. These beneficial results were in accordance with those in vitro experiments and further led to better locomotor function recovery. In summary, this research has demonstrated that that conjugated transplantation of ucMSC-exos and NSC microfibers could make a potential tool for complete SCI repair.
Collapse
Affiliation(s)
- Xinda Li
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
| | - Jin Zhang
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
| | - Yi Zhang
- Department of Research and Development, Huaqing Zhimei (Shenzhen) Biotechnology Co., Ltd., Shenzhen, 518107, People's Republic of China
| | - Lili Guo
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
| | - Mingjun Gao
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
| | - Yangyang Wang
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
| | - Wenqiao Qiu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
| | - Ying Yuan
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
| | - Jianwei Zhu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
| | - Boxun Liu
- Department of Research and Development, Huaqing Zhimei (Shenzhen) Biotechnology Co., Ltd., Shenzhen, 518107, People's Republic of China
| | - Huan Xiong
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
| | - Tao Xu
- Center for Bio-intelligent Manufacturing and Living Matter Bioprinting, Research Institute of Tsinghua University in Shenzhen, Tsinghua University, Shenzhen, 518057, People's Republic of China
| | - Ruxiang Xu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
| |
Collapse
|
3
|
Said M, Jing J, Montigon O, Collomb N, Vossier F, Chovelon B, El Amine B, Jeacomine I, Lemasson B, Barbier EL, Detante O, Rome C, Auzély-Velty R. A T1 MRI detectable hyaluronic acid hydrogel for in vivo tracking after intracerebral injection in stroke. J Mater Chem B 2025; 13:4103-4117. [PMID: 40042261 DOI: 10.1039/d4tb02722a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Injectable hydrogels have emerged as a promising strategy for treating stroke and neurodegenerative diseases, but their effectiveness depends on precise injection, defect filling, and long-term retention at the target site. While MRI can help visualize hydrogels, distinguishing them from fluid-filled spaces, like a post-stroke cavity at a chronic stage, is challenging owing to their high water content and similar MR properties. In this study, a T1 MRI detectable hyaluronic acid (HA) hydrogel that is injectable and self-healing was developed for in vivo tracking after intracerebral injection in stroke. This HA hydrogel was functionalized with a thermodynamically stable and kinetically inert gadolinium(III) complex for monitoring its long-term fate in the brain with T1-contrast enhanced MRI. The dynamic covalent cross-links based on boronate ester bonds in the hydrogel network ensured precise injection and instantaneous self-healing. The HA network did not induce adverse tissue response and was biocompatible with therapeutic cells (human adipose stromal/stem cells). Furthermore, this labeling strategy enabled accurate tracking of hydrogel distribution and degradation in stroke condition, allowing a better assessment of efficacy and safety. This MRI-visible hydrogel has significant potential as a scaffold for stem cells, growth factors, and/or drugs, paving the way for more effective treatments for brain disorders.
Collapse
Affiliation(s)
- Moustoifa Said
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
- Univ. Grenoble Alpes, Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS), 38041 Grenoble, France.
| | - Jing Jing
- Univ. Grenoble Alpes, Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS), 38041 Grenoble, France.
| | - Olivier Montigon
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
- Univ. Grenoble Alpes, IRMaGe, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Nora Collomb
- Univ. Grenoble Alpes, IRMaGe, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Frédérique Vossier
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Benoît Chovelon
- Univ. Grenoble-Alpes, Département de Pharmacochimie Moléculaire UMR 5063, 38400 Grenoble, France
- CHU de Grenoble-Alpes, Institut de Biologie et Pathologie, 38700 La Tronche, France
| | - Bayan El Amine
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Isabelle Jeacomine
- Univ. Grenoble Alpes, Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS), 38041 Grenoble, France.
| | - Benjamin Lemasson
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Emmanuel Luc Barbier
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
- Univ. Grenoble Alpes, IRMaGe, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Olivier Detante
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
- CHU Grenoble Alpes, Stroke Unit, Department of Neurology, 38043 Grenoble, France
| | - Claire Rome
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Rachel Auzély-Velty
- Univ. Grenoble Alpes, Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS), 38041 Grenoble, France.
| |
Collapse
|
4
|
Hajinejad M, Far BF, Gorji A, Sahab-Negah S. The effects of self-assembling peptide on glial cell activation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1391-1402. [PMID: 39305327 DOI: 10.1007/s00210-024-03415-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 08/26/2024] [Indexed: 02/14/2025]
Abstract
Glial cells play a critical role in the healthy and diseased phases of the central nervous system (CNS). CNS diseases involve a wide range of pathological conditions characterized by poor recovery of neuronal function. Glial cell-related target therapies are progressively gaining interest in inhibiting secondary injury-related death. Modulation of the extracellular matrix by artificial scaffolds plays a critical role in the behavior of glial cells after injury. Among numerous types of scaffolds, self-assembling peptides (SAPs) notably give attention to the design of a proper biophysical and biomechanical microenvironment for cellular homeostasis and tissue regeneration. Implementing SAPs in an injured brain can induce neural differentiation in transplanted stem cells, reducing inflammation and inhibiting glial scar formation. In this review, we investigate the recent findings to elucidate the pivotal role of SAPs in orchestrating the most pivotal secondary response following CNS injury. Notably, we explore their impact on the activation of glial cells and their modulatory effects on microglial and astrocytic polarization.
Collapse
Affiliation(s)
- Mehrdad Hajinejad
- Qaen Faculty of Medical Sciences, Birjand University of Medical Sciences, Birjand, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
- Epilepsy Research Center, Neurosurgery Department, Münster University, Münster, Germany
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Pardis Campus, Azadi Square, Kalantari Blvd., Mashhad, Iran
| | - Sajad Sahab-Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Pardis Campus, Azadi Square, Kalantari Blvd., Mashhad, Iran.
| |
Collapse
|
5
|
Mohseni SO, Au KM, Issa W, Ruan L, Stuve O, Wang AZ. Multiple sclerosis treatments a review of current biomedical engineering approaches. Biomaterials 2025; 313:122807. [PMID: 39241553 DOI: 10.1016/j.biomaterials.2024.122807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/19/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
Multiple Sclerosis (MS) is an autoimmune condition targeting the central nervous system (CNS) characterized by focal demyelination with inflammation, causing neurodegeneration and gliosis. This is accompanied by a refractory period in relapsing MS or chronic progression in primary progressive MS. Current MS treatments target disease relapses and aim to reduce further demyelination and disability. These include the treatment of acute exacerbations through global immunomodulation upon corticosteroid administration, which are accompanied by adverse reactions. Disease modifying therapies (DMTs) which provide targeted immunosuppression of T and B cells, and sequestration of leukocytes out of CNS, have led to further improvements in demyelination prevention and disease burden reduction. Despite their efficacy, DMTs are ineffective in remyelination, pathology reversal and have minimal effects in progressive MS. The advent of modern biomedical engineering approaches in combination with a better understanding of MS pathology, has led to the development of novel, regenerative approaches to treatment. Such treatments utilize neural stem cells (NSCs) and can reduce disease relapses and reverse damage caused by the disease through localized tissue regeneration. While at initial stages, pre-clinical and clinical studies utilizing NSCs and immune modulation have shown promising outcomes in tissue regeneration, creating a potential new era in MS therapy.
Collapse
Affiliation(s)
- Sayyed Ourmazd Mohseni
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kin Man Au
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Wadih Issa
- Division of Hematology and Oncology, Department of Internal Medicine, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - Lifu Ruan
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Olaf Stuve
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Andrew Z Wang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
6
|
Ma Y, Wang C, Li J, Xie P, Xiao L, Ramakrishna S, Chen N, Wang X, He L. CP/HA/HGF Conductive Composite Scaffolds with Synergistic Electrical Stimulation for Nerve Regeneration. Macromol Biosci 2025:e2400265. [PMID: 39838598 DOI: 10.1002/mabi.202400265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 01/04/2025] [Indexed: 01/23/2025]
Abstract
The challenge of nerve regeneration stems from the diminished vitality of mature neurons post-injury. The construction of a suitable microenvironment at the injury site to facilitate axonal regeneration is a crucial aspect of nerve injury repair. In this work, a conductive and biocompatible composite material, CP/HA/HGF, is designed by grafting polypyrrole onto chitosan and compounding it with hyaluronic acid and functional short peptides for neural regeneration. Comprehensive material characterizations shows that CP/HA/HGF holds the potential as a scaffold material based on its good overall performance. In vitro experiments revealed that the combination of conductive composite scaffolds and electrical stimulation facilitated axonal growth and myelin formation in the dorsal root ganglion, while also promoting the migration of Schwann cells. Therefore, the conductive composite scaffold studied in this paper presents a promising strategy for enhancing neural regeneration.
Collapse
Affiliation(s)
- Yahao Ma
- College of Life Science and Technology, Jinan University, Guangzhou, 510630, China
| | - Cong Wang
- Department of Acupuncture and Moxibustion, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China
| | - Jun Li
- College of Life Science and Technology, Jinan University, Guangzhou, 510630, China
| | - Pengfei Xie
- Department of Spine Surgery, The 3rd Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Longyou Xiao
- Department of Spine Surgery, The 3rd Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, College of Design and Engineering, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Nuan Chen
- Department of Mechanical Engineering, College of Design and Engineering, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Xiaoying Wang
- College of Life Science and Technology, Jinan University, Guangzhou, 510630, China
| | - Liumin He
- College of Life Science and Technology, Jinan University, Guangzhou, 510630, China
- Department of Spine Surgery, The 3rd Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| |
Collapse
|
7
|
Ning G, Guo X, Zhu K, Xu Z, Cai P, Dang Y, Lu C, Xu F, Shen R, Kang N, Zhang R, Chen K. Human decidual mesenchymal stem cells obtained from early pregnancy attenuate bleomycin-induced lung fibrosis by inhibiting inflammation and apoptosis. Int Immunopharmacol 2024; 142:113224. [PMID: 39306886 DOI: 10.1016/j.intimp.2024.113224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Decidual mesenchymal stem cells (DMSCs) are easily obtained and exhibit strong anti-inflammatory and anti-apoptotic effects. Compared with bone marrow mesenchymal stem cells (BMSCs), their role in cell transplantation after idiopathic pulmonary fibrosis remains unclear. We investigated whether the transplantation of BMSCs and DMSCs could alleviate pulmonary inflammation and fibrosis in a bleomycin-induced mouse model of pulmonary fibrosis. METHODS BMSCs and DMSCs were derived from healthy donors. The anti-inflammatory and anti-apoptotic effects on both cell types were evaluated in vitro. The function of DMSCs in MLE-12 cells and mouse lung fibroblasts was examined using additional transwell coculture experiments in vitro. Twenty-one days after MSC transplantation, we examined the inflammatory factors in the serum and bronchoalveolar lavage fluid, collagen content, pathology, fibrotic area, lung function, and micro-computed tomography of the lung tissue. RESULTS DMSCs exhibited better anti-inflammatory and anti-apoptotic effects than BMSCs on MLE-12 cells in vitro. In addition, DMSCs inhibited tumor growth factor β-dependent epithelial-mesenchymal transition in MLE-12 cells and attenuated mouse lung fibroblasts fibrosis. Furthermore, transplantation of DMSCs in the mouse idiopathic pulmonary fibrosis model significantly attenuated pulmonary inflammation and lung fibrosis compared with BMSCs transplantation. CONCLUSIONS DMSCs exhibited better efficacy in improving pulmonary inflammation and lung fibrosis than BMSCs. Thus, DMSCs are a potential therapeutic target for pulmonary fibrosis.
Collapse
Affiliation(s)
- Guangyao Ning
- Department of Thoracic Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Xiaohui Guo
- Department of Pathology, the First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Kechao Zhu
- Department of Thoracic Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Ziqiang Xu
- Department of Thoracic Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Peian Cai
- Department of Thoracic Surgery, Henan Cancer Hospital, Zhengzhou, PR China
| | - Yan Dang
- Department of Thoracic Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Chen Lu
- Department of Thoracic Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Feng Xu
- Department of Thoracic Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Ruifang Shen
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, PR China
| | - Ningning Kang
- Department of Thoracic Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, PR China.
| | - Renquan Zhang
- Department of Thoracic Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, PR China.
| | - Kegong Chen
- Department of Thoracic Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, PR China; Research and experiment center, the First Affiliated Hospital of Anhui Medical University, Hefei, PR China.
| |
Collapse
|
8
|
Wang S, He Q, Qu Y, Yin W, Zhao R, Wang X, Yang Y, Guo ZN. Emerging strategies for nerve repair and regeneration in ischemic stroke: neural stem cell therapy. Neural Regen Res 2024; 19:2430-2443. [PMID: 38526280 PMCID: PMC11090435 DOI: 10.4103/1673-5374.391313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/26/2023] [Accepted: 11/10/2023] [Indexed: 03/26/2024] Open
Abstract
Ischemic stroke is a major cause of mortality and disability worldwide, with limited treatment options available in clinical practice. The emergence of stem cell therapy has provided new hope to the field of stroke treatment via the restoration of brain neuron function. Exogenous neural stem cells are beneficial not only in cell replacement but also through the bystander effect. Neural stem cells regulate multiple physiological responses, including nerve repair, endogenous regeneration, immune function, and blood-brain barrier permeability, through the secretion of bioactive substances, including extracellular vesicles/exosomes. However, due to the complex microenvironment of ischemic cerebrovascular events and the low survival rate of neural stem cells following transplantation, limitations in the treatment effect remain unresolved. In this paper, we provide a detailed summary of the potential mechanisms of neural stem cell therapy for the treatment of ischemic stroke, review current neural stem cell therapeutic strategies and clinical trial results, and summarize the latest advancements in neural stem cell engineering to improve the survival rate of neural stem cells. We hope that this review could help provide insight into the therapeutic potential of neural stem cells and guide future scientific endeavors on neural stem cells.
Collapse
Affiliation(s)
- Siji Wang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Qianyan He
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yang Qu
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Wenjing Yin
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Ruoyu Zhao
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xuyutian Wang
- Department of Breast Surgery, General Surgery Center, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yi Yang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
- Neuroscience Research Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
- Neuroscience Research Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
9
|
Guo L, Zou D, Qiu W, Fei F, Chen L, Chen W, Xiong H, Li X, Wang Y, Gao M, Zhu J, Zhang J, He Y, Gao M, Xu R. Linc-NSC affects cell differentiation, apoptosis and proliferation in mouse neural stem cells and embryonic stem cells in vitro and in vivo. Cell Mol Life Sci 2024; 81:182. [PMID: 38615283 PMCID: PMC11016521 DOI: 10.1007/s00018-024-05224-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/12/2023] [Accepted: 03/18/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND Stem cell therapy is a promising therapeutic strategy. In a previous study, we evaluated tumorigenicity by the stereotactic transplantation of neural stem cells (NSCs) and embryonic stem cells (ESCs) from experimental mice. Twenty-eight days later, there was no evidence of tumor formation or long-term engraftment in the NSCs transplantation group. In contrast, the transplantation of ESCs caused tumor formation; this was due to their high proliferative capacity. Based on transcriptome sequencing, we found that a long intergenic non-coding RNA (named linc-NSC) with unknown structure and function was expressed at 1100-fold higher levels in NSCs than in ESCs. This finding suggested that linc-NSC is negatively correlated with stem cell pluripotency and tumor development, but positively correlated with neurogenesis. In the present study, we investigated the specific role of linc-NSC in NSCs/ESCs in tumor formation and neurogenesis. METHODS Whole transcriptome profiling by RNA sequencing and bioinformatics was used to predict lncRNAs that are widely associated with enhanced tumorigenicity. The expression of linc-NSC was assessed by quantitative real-time PCR. We also performed a number of in vitro methods, including cell proliferation assays, differentiation assays, immunofluorescence assays, flow cytometry, along with in vivo survival and immunofluorescence assays to investigate the impacts of linc-NSC on tumor formation and neurogenesis in NSCs and ESCs. RESULTS Following the knockdown of linc-NSC in NSCs, NSCs cultured in vitro and those transplanted into the cortex of mice showed stronger survival ability (P < 0.0001), enhanced proliferation(P < 0.001), and reduced apoptosis (P < 0.05); the opposite results were observed when linc-NSC was overexpressed in ESCs. Furthermore, the overexpression of linc-NSC in ECSs induced enhanced apoptosis (P < 0.001) and differentiation (P < 0.01), inhibited tumorigenesis (P < 0.05) in vivo, and led to a reduction in tumor weight (P < 0.0001). CONCLUSIONS Our analyses demonstrated that linc-NSC, a promising gene-edited target, may promote the differentiation of mouse NSCs and inhibit tumorigenesis in mouse ESCs. The knockdown of linc-NSC inhibited the apoptosis in NSCs both in vitro and in vivo, and prevented tumor formation, revealing a new dimension into the effect of lncRNA on low survival NSCs and providing a prospective gene manipulation target prior to transplantation. In parallel, the overexpression of linc-NSC induced apoptosis in ESCs both in vitro and in vivo and attenuated the tumorigenicity of ESCs in vivo, but did not completely prevent tumor formation.
Collapse
Affiliation(s)
- Lili Guo
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Dan Zou
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Wenqiao Qiu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Fan Fei
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Lihua Chen
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Wenjin Chen
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Huan Xiong
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Xinda Li
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Yangyang Wang
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Mingjun Gao
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Jianwei Zhu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Jin Zhang
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Yunsen He
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Mou Gao
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Ruxiang Xu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China.
| |
Collapse
|
10
|
Kosara S, Singh R, Bhatia D. Structural DNA nanotechnology at the nexus of next-generation bio-applications: challenges and perspectives. NANOSCALE ADVANCES 2024; 6:386-401. [PMID: 38235105 PMCID: PMC10790967 DOI: 10.1039/d3na00692a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/15/2023] [Indexed: 01/19/2024]
Abstract
DNA nanotechnology has significantly progressed in the last four decades, creating nucleic acid structures widely used in various biological applications. The structural flexibility, programmability, and multiform customization of DNA-based nanostructures make them ideal for creating structures of all sizes and shapes and multivalent drug delivery systems. Since then, DNA nanotechnology has advanced significantly, and numerous DNA nanostructures have been used in biology and other scientific disciplines. Despite the progress made in DNA nanotechnology, challenges still need to be addressed before DNA nanostructures can be widely used in biological interfaces. We can open the door for upcoming uses of DNA nanoparticles by tackling these issues and looking into new avenues. The historical development of various DNA nanomaterials has been thoroughly examined in this review, along with the underlying theoretical underpinnings, a summary of their applications in various fields, and an examination of the current roadblocks and potential future directions.
Collapse
Affiliation(s)
- Sanjay Kosara
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar Palaj Gujarat 382355 India
| | - Ramesh Singh
- Department of Mechanical Engineering, Colorado State University Fort Collins CO USA
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar Palaj Gujarat 382355 India
| |
Collapse
|
11
|
Pereira I, Lopez-Martinez MJ, Samitier J. Advances in current in vitro models on neurodegenerative diseases. Front Bioeng Biotechnol 2023; 11:1260397. [PMID: 38026882 PMCID: PMC10658011 DOI: 10.3389/fbioe.2023.1260397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Many neurodegenerative diseases are identified but their causes and cure are far from being well-known. The problem resides in the complexity of the neural tissue and its location which hinders its easy evaluation. Although necessary in the drug discovery process, in vivo animal models need to be reduced and show relevant differences with the human tissues that guide scientists to inquire about other possible options which lead to in vitro models being explored. From organoids to organ-on-a-chips, 3D models are considered the cutting-edge technology in cell culture. Cell choice is a big parameter to take into consideration when planning an in vitro model and cells capable of mimicking both healthy and diseased tissue, such as induced pluripotent stem cells (iPSC), are recognized as good candidates. Hence, we present a critical review of the latest models used to study neurodegenerative disease, how these models have evolved introducing microfluidics platforms, 3D cell cultures, and the use of induced pluripotent cells to better mimic the neural tissue environment in pathological conditions.
Collapse
Affiliation(s)
- Inês Pereira
- Nanobioengineering Group, Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Maria J. Lopez-Martinez
- Nanobioengineering Group, Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro Investigación Biomédica en Red: Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona, Barcelona, Spain
| | - Josep Samitier
- Nanobioengineering Group, Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro Investigación Biomédica en Red: Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona, Barcelona, Spain
| |
Collapse
|
12
|
Morley CD, Ding EA, Carvalho EM, Kumar S. A Balance between Inter- and Intra-Microgel Mechanics Governs Stem Cell Viability in Injectable Dynamic Granular Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304212. [PMID: 37653580 PMCID: PMC10841739 DOI: 10.1002/adma.202304212] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/25/2023] [Indexed: 09/02/2023]
Abstract
Injectable hydrogels are increasingly explored for the delivery of cells to tissue. These materials exhibit both liquid-like properties, protecting cells from mechanical stress during injection, and solid-like properties, providing a stable 3D engraftment niche. Many strategies for modulating injectable hydrogels tune liquid- and solid-like material properties simultaneously, such that formulation changes designed to improve injectability can reduce stability at the delivery site. The ability to independently tune liquid- and solid-like properties would greatly facilitate formulation development. Here, such a strategy is presented in which cells are ensconced in the pores between microscopic granular hyaluronic acid (HA) hydrogels (microgels), where elasticity is tuned with static covalent intra-microgel crosslinks and flowability with mechanosensitive adamantane-cyclodextrin (AC) inter-microgel crosslinks. Using the same AC-free microgels as a 3D printing support bath, the location of each cell is preserved as it exits the needle, allowing identification of the mechanism driving mechanical trauma-induced cell death. The microgel AC concentration is varied to find the threshold from microgel yielding- to AC interaction-dominated injectability, and this threshold is exploited to fabricate a microgel with better injection-protecting performance. This delivery strategy, and the balance between intra- and inter-microgel properties it reveals, may facilitate the development of new cell injection formulations.
Collapse
Affiliation(s)
- Cameron D Morley
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - Erika A Ding
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
| | - Emily M Carvalho
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
| | - Sanjay Kumar
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, 94158, USA
| |
Collapse
|
13
|
Pandya AK, Vora LK, Umeyor C, Surve D, Patel A, Biswas S, Patel K, Patravale VB. Polymeric in situ forming depots for long-acting drug delivery systems. Adv Drug Deliv Rev 2023; 200:115003. [PMID: 37422267 DOI: 10.1016/j.addr.2023.115003] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/10/2023]
Abstract
Polymeric in situ forming depots have emerged as highly promising drug delivery systems for long-acting applications. Their effectiveness is attributed to essential characteristics such as biocompatibility, biodegradability, and the ability to form a stable gel or solid upon injection. Moreover, they provide added versatility by complementing existing polymeric drug delivery systems like micro- and nanoparticles. The formulation's low viscosity facilitates manufacturing unit operations and enhances delivery efficiency, as it can be easily administered via hypodermic needles. The release mechanism of drugs from these systems can be predetermined using various functional polymers. To enable unique depot design, numerous strategies involving physiological and chemical stimuli have been explored. Important assessment criteria for in situ forming depots include biocompatibility, gel strength and syringeability, texture, biodegradation, release profile, and sterility. This review focuses on the fabrication approaches, key evaluation parameters, and pharmaceutical applications of in situ forming depots, considering perspectives from academia and industry. Additionally, insights about the future prospects of this technology are discussed.
Collapse
Affiliation(s)
- Anjali K Pandya
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400 019, India; School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, UK
| | - Chukwuebuka Umeyor
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400 019, India; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka 422001, Anambra State, Nigeria
| | - Dhanashree Surve
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Akanksha Patel
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Swati Biswas
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad, Telangana 500078, India
| | - Ketankumar Patel
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Vandana B Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400 019, India.
| |
Collapse
|
14
|
Qiao G, Gulisashvili D, Jablonska A, Zhao G, Janowski M, Walczak P, Liang Y. 3D printing-based frugal manufacturing of glass pipettes for minimally invasive delivery of therapeutics to the brain. NEUROPROTECTION 2023; 1:58-65. [PMID: 37771648 PMCID: PMC10538625 DOI: 10.1002/nep3.20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/04/2023] [Indexed: 09/30/2023]
Abstract
Objective Intracerebral delivery of agents in liquid form is usually achieved through commercially available and durable metal needles. However, their size and texture may contribute to mechanical brain damage. Glass pipettes with a thin tip may significantly reduce injection-associated brain damage but require access to prohibitively expensive programmable pipette pullers. This study is to remove the economic barrier to the application of minimally invasive delivery of therapeutics to the brain, such as chemical compounds, viral vectors, and cells. Methods We took advantage of the rapid development of free educational online resources and emerging low-cost 3D printers by designing an affordable pipette puller (APP) to remove the cost obstacle. Results We showed that our APP could produce glass pipettes with a sharp tip opening down to 20 μm or less, which is sufficiently thin for the delivery of therapeutics into the brain. A pipeline from pipette pulling to brain injection using low-cost and open-source equipment was established to facilitate the application of the APP. Conclusion In the spirit of frugal science, our device may democratize glass pipette-puling and substantially promote the application of minimally invasive and precisely controlled delivery of therapeutics to the brain for finding more effective therapies of brain diseases.
Collapse
Affiliation(s)
- Guanda Qiao
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - David Gulisashvili
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Anna Jablonska
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Guiling Zhao
- Laboratory of Molecular Cardiology, Department of Physiology, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Miroslaw Janowski
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Piotr Walczak
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yajie Liang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
15
|
Huang WH, Ding SL, Zhao XY, Li K, Guo HT, Zhang MZ, Gu Q. Collagen for neural tissue engineering: Materials, strategies, and challenges. Mater Today Bio 2023; 20:100639. [PMID: 37197743 PMCID: PMC10183670 DOI: 10.1016/j.mtbio.2023.100639] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/19/2023] Open
Abstract
Neural tissue engineering (NTE) has made remarkable strides in recent years and holds great promise for treating several devastating neurological disorders. Selecting optimal scaffolding material is crucial for NET design strategies that enable neural and non-neural cell differentiation and axonal growth. Collagen is extensively employed in NTE applications due to the inherent resistance of the nervous system against regeneration, functionalized with neurotrophic factors, antagonists of neural growth inhibitors, and other neural growth-promoting agents. Recent advancements in integrating collagen with manufacturing strategies, such as scaffolding, electrospinning, and 3D bioprinting, provide localized trophic support, guide cell alignment, and protect neural cells from immune activity. This review categorises and analyses collagen-based processing techniques investigated for neural-specific applications, highlighting their strengths and weaknesses in repair, regeneration, and recovery. We also evaluate the potential prospects and challenges of using collagen-based biomaterials in NTE. Overall, this review offers a comprehensive and systematic framework for the rational evaluation and applications of collagen in NTE.
Collapse
Affiliation(s)
- Wen-Hui Huang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, PR China
- University of Chinese Academy of Sciences, Huairou District, Beijing, 101499, PR China
| | - Sheng-Long Ding
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, PR China
| | - Xi-Yuan Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, PR China
- University of Chinese Academy of Sciences, Huairou District, Beijing, 101499, PR China
| | - Kai Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, PR China
| | - Hai-Tao Guo
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, PR China
- University of Chinese Academy of Sciences, Huairou District, Beijing, 101499, PR China
| | - Ming-Zhu Zhang
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, PR China
- Corresponding author.
| | - Qi Gu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, PR China
- Beijing Institute for Stem Cell and Regenerative Medicine, Chaoyang District, Beijing, 100101, PR China
- University of Chinese Academy of Sciences, Huairou District, Beijing, 101499, PR China
- Corresponding author. Institute of Zoology, Chinese Academy of Sciences, No. 5 of Courtyard 1, Beichen West Road, Chaoyang District, Beijing 100101, PR China.
| |
Collapse
|
16
|
Said M, Tavakoli C, Dumot C, Toupet K, Dong YC, Collomb N, Auxenfans C, Moisan A, Favier B, Chovelon B, Barbier EL, Jorgensen C, Cormode DP, Noël D, Brun E, Elleaume H, Wiart M, Detante O, Rome C, Auzély-Velty R. A novel injectable radiopaque hydrogel with potent properties for multicolor CT imaging in the context of brain and cartilage regenerative therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.20.537520. [PMID: 37131613 PMCID: PMC10153246 DOI: 10.1101/2023.04.20.537520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cell therapy is promising to treat many conditions, including neurological and osteoarticular diseases. Encapsulation of cells within hydrogels facilitates cell delivery and can improve therapeutic effects. However, much work remains to be done to align treatment strategies with specific diseases. The development of imaging tools that enable monitoring cells and hydrogel independently is key to achieving this goal. Our objective herein is to longitudinally study an iodine-labeled hydrogel, incorporating gold-labeled stem cells, by bicolor CT imaging after in vivo injection in rodent brains or knees. To this aim, an injectable self-healing hyaluronic acid (HA) hydrogel with long-persistent radiopacity was formed by the covalent grafting of a clinical contrast agent on HA. The labeling conditions were tuned to achieve sufficient X-ray signal and to maintain the mechanical and self-healing properties as well as injectability of the original HA scaffold. The efficient delivery of both cells and hydrogel at the targeted sites was demonstrated by synchrotron K-edge subtraction-CT. The iodine labeling enabled to monitor the hydrogel biodistribution in vivo up to 3 days post-administration, which represents a technological first in the field of molecular CT imaging agents. This tool may foster the translation of combined cell-hydrogel therapies into the clinics.
Collapse
Affiliation(s)
- Moustoifa Said
- Univ. Grenoble Alpes, Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS), 38041 Grenoble, France; Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Clément Tavakoli
- Univ. Lyon 1, Inserm U1060, CarMeN Laboratory, 69600 Oullins, France; Univ. Grenoble Alpes, Inserm, UA7 Strobe, 38000 Grenoble, France
| | - Chloé Dumot
- Univ. Lyon 1, Inserm U1060, CarMeN Laboratory, 69600 Oullins, France
| | - Karine Toupet
- IRMB, Univ. Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Yuxi Clara Dong
- Department of Radiology and Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Nora Collomb
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | | | - Anaïck Moisan
- Cell Therapy and Engineering Unit, EFS Rhone Alpes, 38330 Saint Ismier, France
| | - Bertrand Favier
- Univ. Grenoble Alpes, Translational Innovation in Medicine & Complexity, UMR552, 38700 La Tronche, France
| | - Benoit Chovelon
- Univ. Grenoble-Alpes, Departement de Pharmacochimie Moleculaire UMR 5063, 38400 Grenoble, France; Institut de Biologie et Pathologie, CHU de Grenoble-Alpes, 38700 La Tronche, France
| | - Emmanuel Luc Barbier
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | | | - David Peter Cormode
- Department of Radiology and Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Danièle Noël
- IRMB, Univ. Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Emmanuel Brun
- Univ. Grenoble Alpes, Inserm, UA7 Strobe, 38000 Grenoble, France
| | - Hélène Elleaume
- Univ. Grenoble Alpes, Inserm, UA7 Strobe, 38000 Grenoble, France
| | - Marlène Wiart
- Univ. Lyon 1, Inserm U1060, CarMeN Laboratory, 69600 Oullins, France
| | - Olivier Detante
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France; CHU Grenoble Alpes, Stroke Unit, Department of Neurology, 38043 Grenoble, France
| | - Claire Rome
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Rachel Auzély-Velty
- Univ. Grenoble Alpes, Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS), 38041 Grenoble, France
| |
Collapse
|
17
|
Sarker S, Colton A, Wen Z, Xu X, Erdi M, Jones A, Kofinas P, Tubaldi E, Walczak P, Janowski M, Liang Y, Sochol RD. 3D-Printed Microinjection Needle Arrays via a Hybrid DLP-Direct Laser Writing Strategy. ADVANCED MATERIALS TECHNOLOGIES 2023; 8:2201641. [PMID: 37064271 PMCID: PMC10104452 DOI: 10.1002/admt.202201641] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Indexed: 06/19/2023]
Abstract
Microinjection protocols are ubiquitous throughout biomedical fields, with hollow microneedle arrays (MNAs) offering distinctive benefits in both research and clinical settings. Unfortunately, manufacturing-associated barriers remain a critical impediment to emerging applications that demand high-density arrays of hollow, high-aspect-ratio microneedles. To address such challenges, here, a hybrid additive manufacturing approach that combines digital light processing (DLP) 3D printing with "ex situ direct laser writing (esDLW)" is presented to enable new classes of MNAs for fluidic microinjections. Experimental results for esDLW-based 3D printing of arrays of high-aspect-ratio microneedles-with 30 μm inner diameters, 50 μm outer diameters, and 550 μm heights, and arrayed with 100 μm needle-to-needle spacing-directly onto DLP-printed capillaries reveal uncompromised fluidic integrity at the MNA-capillary interface during microfluidic cyclic burst-pressure testing for input pressures in excess of 250 kPa (n = 100 cycles). Ex vivo experiments perform using excised mouse brains reveal that the MNAs not only physically withstand penetration into and retraction from brain tissue but also yield effective and distributed microinjection of surrogate fluids and nanoparticle suspensions directly into the brains. In combination, the results suggest that the presented strategy for fabricating high-aspect-ratio, high-density, hollow MNAs could hold unique promise for biomedical microinjection applications.
Collapse
Affiliation(s)
- Sunandita Sarker
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA; Maryland Robotics Center, University of Maryland, College Park, MD 20742, USA; Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
| | - Adira Colton
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA; Maryland Robotics Center, University of Maryland, College Park, MD 20742, USA; Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
| | - Ziteng Wen
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | - Xin Xu
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | - Metecan Erdi
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | - Anthony Jones
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA; Maryland Robotics Center, University of Maryland, College Park, MD 20742, USA; Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
| | - Peter Kofinas
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | - Eleonora Tubaldi
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA; Maryland Robotics Center, University of Maryland, College Park, MD 20742, USA; Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
| | - Piotr Walczak
- Program in Image Guided Neurointerventions, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Miroslaw Janowski
- Program in Image Guided Neurointerventions, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yajie Liang
- Program in Image Guided Neurointerventions, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ryan D Sochol
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA; Maryland Robotics Center, University of Maryland, College Park, MD 20742, USA; Institute for Systems Research, University of Maryland, College Park, MD 20742, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
18
|
Gao Y, Kang Y, Wang T, Li C, Shen S, Qu C, Gong S, Liu P, Yang L, Liu J, Han B, Li C. Alginate microspheres-collagen hydrogel, as a novel 3D culture system, enhanced skin wound healing of hUCMSCs in rats model. Colloids Surf B Biointerfaces 2022; 219:112799. [PMID: 36095954 DOI: 10.1016/j.colsurfb.2022.112799] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/13/2022] [Accepted: 08/22/2022] [Indexed: 10/31/2022]
Abstract
While stem cell transplantation has emerged as a promising approach to improving wound healing outcomes, the application of stem cells to date has been limited by the poor survival and retention of these cells once transplanted. The survival, development, and migratory activity of transplanted cells can be improved through the use of three-dimensional (3D) culture systems. Here, a novel alginate microsphere-collage hydrogel (AMS-Col gel) 3D culture system was developed and found to improve human umbilical cord mesenchymal stem cell (hUCMSC) survival, permitting their sustained release so as to promote wound healing. Through hematoxylin and eosin staining and Masson's trichrome staining, the prepared hUCMSCs-AMS-Col gel was found to exhibit wound healing activity. On day 7 following the hUCMSCs-AMS-Col gel treatment of model wounds, improved collagen fiber deposition and re-epithelialization were evident, with complete epithelial regeneration as of day 14 and near-total wound healing was evident as of day 21. This hUCMSCs-AMS-Col gel was also associated with increased VEGF and FGF2 expression. Together, these data indicate that AMS-Col gels are a promising and novel form of 3D cell culture system capable of improving hUCMSC-mediated wound healing, highlighting the potential clinical utility of this regenerative strategy.
Collapse
Affiliation(s)
- Yonglin Gao
- College of Life Sciences, Yantai University, Yantai 264005, PR China
| | - Yating Kang
- College of Life Sciences, Yantai University, Yantai 264005, PR China
| | - Tong Wang
- College of Life Sciences, Yantai University, Yantai 264005, PR China
| | - Chengbo Li
- School of Pharmacy, Binzhou Medical University, Yantai 264003, PR China
| | - Shengbiao Shen
- Yantai Longstrong Biotechnology Co., Ltd., Yantai 264670, PR China
| | - Chenglei Qu
- Yantai Longstrong Biotechnology Co., Ltd., Yantai 264670, PR China
| | - Shizhou Gong
- Yantai Longstrong Biotechnology Co., Ltd., Yantai 264670, PR China
| | - Ping Liu
- College of Life Sciences, Yantai University, Yantai 264005, PR China
| | - Lintong Yang
- College of Life Sciences, Yantai University, Yantai 264005, PR China
| | - Jingmin Liu
- College of Life Sciences, Yantai University, Yantai 264005, PR China
| | - Bing Han
- Luye Pharma Group Ltd., Yantai 264003, PR China
| | - Chunmei Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China.
| |
Collapse
|
19
|
Multimodular Bio-Inspired Organized Structures Guiding Long-Distance Axonal Regeneration. Biomedicines 2022; 10:biomedicines10092228. [PMID: 36140328 PMCID: PMC9496454 DOI: 10.3390/biomedicines10092228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Axonal bundles or axonal tracts have an aligned and unidirectional architecture present in many neural structures with different lengths. When peripheral nerve injury (PNI), spinal cord injury (SCI), traumatic brain injury (TBI), or neurodegenerative disease occur, the intricate architecture undergoes alterations leading to growth inhibition and loss of guidance through large distance. In order to overcome the limitations of long-distance axonal regeneration, here we combine a poly-L-lactide acid (PLA) fiber bundle in the common lumen of a sequence of hyaluronic acid (HA) conduits or modules and pre-cultured Schwann cells (SC) as cells supportive of axon extension. This multimodular preseeded conduit is then used to induce axon growth from a dorsal root ganglion (DRG) explant placed at one of its ends and left for 21 days to follow axon outgrowth. The multimodular conduit proved effective in promoting directed axon growth, and the results may thus be of interest for the regeneration of long tissue defects in the nervous system. Furthermore, the hybrid structure grown within the HA modules consisting in the PLA fibers and the SC can be extracted from the conduit and cultured independently. This “neural cord” proved to be viable outside its scaffold and opens the door to the generation of ex vivo living nerve in vitro for transplantation.
Collapse
|
20
|
Sun S, Lu D, Zhong H, Li C, Yang N, Huang B, Ni S, Li X. Donors for nerve transplantation in craniofacial soft tissue injuries. Front Bioeng Biotechnol 2022; 10:978980. [PMID: 36159691 PMCID: PMC9490317 DOI: 10.3389/fbioe.2022.978980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Neural tissue is an important soft tissue; for instance, craniofacial nerves govern several aspects of human behavior, including the expression of speech, emotion transmission, sensation, and motor function. Therefore, nerve repair to promote functional recovery after craniofacial soft tissue injuries is indispensable. However, the repair and regeneration of craniofacial nerves are challenging due to their intricate anatomical and physiological characteristics. Currently, nerve transplantation is an irreplaceable treatment for segmental nerve defects. With the development of emerging technologies, transplantation donors have become more diverse. The present article reviews the traditional and emerging alternative materials aimed at advancing cutting-edge research on craniofacial nerve repair and facilitating the transition from the laboratory to the clinic. It also provides a reference for donor selection for nerve repair after clinical craniofacial soft tissue injuries. We found that autografts are still widely accepted as the first options for segmental nerve defects. However, allogeneic composite functional units have a strong advantage for nerve transplantation for nerve defects accompanied by several tissue damages or loss. As an alternative to autografts, decellularized tissue has attracted increasing attention because of its low immunogenicity. Nerve conduits have been developed from traditional autologous tissue to composite conduits based on various synthetic materials, with developments in tissue engineering technology. Nerve conduits have great potential to replace traditional donors because their structures are more consistent with the physiological microenvironment and show self-regulation performance with improvements in 3D technology. New materials, such as hydrogels and nanomaterials, have attracted increasing attention in the biomedical field. Their biocompatibility and stimuli-responsiveness have been gradually explored by researchers in the regeneration and regulation of neural networks.
Collapse
Affiliation(s)
- Sishuai Sun
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Di Lu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Hanlin Zhong
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Chao Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Ning Yang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Shilei Ni
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- *Correspondence: Shilei Ni, ; Xingang Li,
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- *Correspondence: Shilei Ni, ; Xingang Li,
| |
Collapse
|
21
|
Guo T, He C, Venado A, Zhou Y. Extracellular Matrix Stiffness in Lung Health and Disease. Compr Physiol 2022; 12:3523-3558. [PMID: 35766837 PMCID: PMC10088466 DOI: 10.1002/cphy.c210032] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The extracellular matrix (ECM) provides structural support and imparts a wide variety of environmental cues to cells. In the past decade, a growing body of work revealed that the mechanical properties of the ECM, commonly known as matrix stiffness, regulate the fundamental cellular processes of the lung. There is growing appreciation that mechanical interplays between cells and associated ECM are essential to maintain lung homeostasis. Dysregulation of ECM-derived mechanical signaling via altered mechanosensing and mechanotransduction pathways is associated with many common lung diseases. Matrix stiffening is a hallmark of lung fibrosis. The stiffened ECM is not merely a sequelae of lung fibrosis but can actively drive the progression of fibrotic lung disease. In this article, we provide a comprehensive view on the role of matrix stiffness in lung health and disease. We begin by summarizing the effects of matrix stiffness on the function and behavior of various lung cell types and on regulation of biomolecule activity and key physiological processes, including host immune response and cellular metabolism. We discuss the potential mechanisms by which cells probe matrix stiffness and convert mechanical signals to regulate gene expression. We highlight the factors that govern matrix stiffness and outline the role of matrix stiffness in lung development and the pathogenesis of pulmonary fibrosis, pulmonary hypertension, asthma, chronic obstructive pulmonary disease (COPD), and lung cancer. We envision targeting of deleterious matrix mechanical cues for treatment of fibrotic lung disease. Advances in technologies for matrix stiffness measurements and design of stiffness-tunable matrix substrates are also explored. © 2022 American Physiological Society. Compr Physiol 12:3523-3558, 2022.
Collapse
Affiliation(s)
- Ting Guo
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA.,Department of Respiratory Medicine, the Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Chao He
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA
| | - Aida Venado
- Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Yong Zhou
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA
| |
Collapse
|
22
|
Roca FG, Santos LG, Roig MM, Medina LM, Martínez-Ramos C, Pradas MM. Novel Tissue-Engineered Multimodular Hyaluronic Acid-Polylactic Acid Conduits for the Regeneration of Sciatic Nerve Defect. Biomedicines 2022; 10:biomedicines10050963. [PMID: 35625700 PMCID: PMC9138968 DOI: 10.3390/biomedicines10050963] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 02/01/2023] Open
Abstract
The gold standard for the treatment of peripheral nerve injuries, the autograft, presents several drawbacks, and engineered constructs are currently suitable only for short gaps or small diameter nerves. Here, we study a novel tissue-engineered multimodular nerve guidance conduit for the treatment of large nerve damages based in a polylactic acid (PLA) microfibrillar structure inserted inside several co-linear hyaluronic acid (HA) conduits. The highly aligned PLA microfibers provide a topographical cue that guides axonal growth, and the HA conduits play the role of an epineurium and retain the pre-seeded auxiliary cells. The multimodular design increases the flexibility of the device. Its performance for the regeneration of a critical-size (15 mm) rabbit sciatic nerve defect was studied and, after six months, very good nerve regeneration was observed. The multimodular approach contributed to a better vascularization through the micrometrical gaps between HA conduits, and the pre-seeded Schwann cells increased axonal growth. Six months after surgery, a cross-sectional available area occupied by myelinated nerve fibers above 65% at the central and distal portions was obtained when the multimodular device with pre-seeded Schwann cells was employed. The results validate the multi-module approach for the regeneration of large nerve defects and open new possibilities for surgical solutions in this field.
Collapse
Affiliation(s)
- Fernando Gisbert Roca
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 Valencia, Spain; (F.G.R.); (L.G.S.); (C.M.-R.)
| | - Luis Gil Santos
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 Valencia, Spain; (F.G.R.); (L.G.S.); (C.M.-R.)
| | - Manuel Mata Roig
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, 46010 Valencia, Spain; (M.M.R.); (L.M.M.)
| | - Lara Milian Medina
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, 46010 Valencia, Spain; (M.M.R.); (L.M.M.)
| | - Cristina Martínez-Ramos
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 Valencia, Spain; (F.G.R.); (L.G.S.); (C.M.-R.)
- Unitat Predepartamental de Medicina, Universitat Jaume I, 12071 Castellón de la Plana, Spain
| | - Manuel Monleón Pradas
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 Valencia, Spain; (F.G.R.); (L.G.S.); (C.M.-R.)
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-963-877000
| |
Collapse
|
23
|
Ma X, Wang M, Ran Y, Wu Y, Wang J, Gao F, Liu Z, Xi J, Ye L, Feng Z. Design and Fabrication of Polymeric Hydrogel Carrier for Nerve Repair. Polymers (Basel) 2022; 14:polym14081549. [PMID: 35458307 PMCID: PMC9031091 DOI: 10.3390/polym14081549] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/23/2022] [Accepted: 04/07/2022] [Indexed: 02/07/2023] Open
Abstract
Nerve regeneration and repair still remain a huge challenge for both central nervous and peripheral nervous system. Although some therapeutic substances, including neuroprotective agents, clinical drugs and stem cells, as well as various growth factors, are found to be effective to promote nerve repair, a carrier system that possesses a sustainable release behavior, in order to ensure high on-site concentration during the whole repair and regeneration process, and high bioavailability is still highly desirable. Hydrogel, as an ideal delivery system, has an excellent loading capacity and sustainable release behavior, as well as tunable physical and chemical properties to adapt to various biomedical scenarios; thus, it is thought to be a suitable carrier system for nerve repair. This paper reviews the structure and classification of hydrogels and summarizes the fabrication and processing methods that can prepare a suitable hydrogel carrier with specific physical and chemical properties. Furthermore, the modulation of the physical and chemical properties of hydrogels is also discussed in detail in order to obtain a better therapeutic effect to promote nerve repair. Finally, the future perspectives of hydrogel microsphere carriers for stroke rehabilitation are highlighted.
Collapse
Affiliation(s)
- Xiaoyu Ma
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; (X.M.); (Z.F.)
| | - Mengjie Wang
- School of Beijing Rehabilitation Medicine, Capital Medical University, Beijing 100044, China;
| | - Yuanyuan Ran
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical School, Beijing 100044, China; (Y.R.); (F.G.)
| | - Yusi Wu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; (Y.W.); (J.W.)
- NUIST-UoR International Research Institute, Reading Academy, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Jin Wang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; (Y.W.); (J.W.)
| | - Fuhai Gao
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical School, Beijing 100044, China; (Y.R.); (F.G.)
| | - Zongjian Liu
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical School, Beijing 100044, China; (Y.R.); (F.G.)
- Correspondence: (Z.L.); (J.X.); (L.Y.); Tel.: +86-1056981363 (Z.L.); +86-1056981279 (J.X.); +86-1068912650 (L.Y.)
| | - Jianing Xi
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical School, Beijing 100044, China; (Y.R.); (F.G.)
- Correspondence: (Z.L.); (J.X.); (L.Y.); Tel.: +86-1056981363 (Z.L.); +86-1056981279 (J.X.); +86-1068912650 (L.Y.)
| | - Lin Ye
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; (X.M.); (Z.F.)
- Correspondence: (Z.L.); (J.X.); (L.Y.); Tel.: +86-1056981363 (Z.L.); +86-1056981279 (J.X.); +86-1068912650 (L.Y.)
| | - Zengguo Feng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; (X.M.); (Z.F.)
| |
Collapse
|
24
|
Collins MN, Zamboni F, Serafin A, Escobar A, Stepanian R, Culebras M, Reis RL, Oliveira JM. Emerging scaffold- and cellular-based strategies for brain tissue regeneration and imaging. IN VITRO MODELS 2022; 1:129-150. [PMID: 39872806 PMCID: PMC11756503 DOI: 10.1007/s44164-022-00013-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 01/30/2025]
Abstract
Stimulating brain tissue regeneration is a major challenge after central nervous system (CNS) injury, such as those observed from trauma or cerebrovascular accidents. Full regeneration is difficult even when a neurogenesis-associated repair response may occur. Currently, there are no effective treatments to stimulate brain tissue regeneration. However, biomaterial scaffolds are showing promising results, where hydrogels are the materials of choice to develop these supportive scaffolds for cell carriers. Their combination with growth factors, such as brain-derived neurotrophic factor (BDNF), basic fibroblast growth factor (bFGF), or vascular endothelial growth factor (VEGF), together with other cell therapy strategies allows the prevention of further neuronal death and can potentially lead to the direct stimulation of neurogenesis and vascularisation at the injured site. Imaging of the injured site is particularly critical to study the reestablishment of neural cell functionality after brain tissue injury. This review outlines the latest key advances associated with different strategies aiming to promote the neuroregeneration, imaging, and functional recovery of brain tissue. Graphical abstract
Collapse
Affiliation(s)
- Maurice N. Collins
- School of Engineering and Bernal Institute, University of Limerick, Limerick, Ireland
- SFI AMBER, University of Limerick, Limerick, Ireland
| | - Fernanda Zamboni
- School of Engineering and Bernal Institute, University of Limerick, Limerick, Ireland
| | - Aleksandra Serafin
- School of Engineering and Bernal Institute, University of Limerick, Limerick, Ireland
| | - Ane Escobar
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência E Tecnologia, Zona Industrial da Gandra, University of Minho, 4805-017 Barco, Guimarães Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga, Guimarães Portugal
| | - Romain Stepanian
- School of Engineering and Bernal Institute, University of Limerick, Limerick, Ireland
| | - Mario Culebras
- School of Engineering and Bernal Institute, University of Limerick, Limerick, Ireland
- SFI AMBER, University of Limerick, Limerick, Ireland
| | - Rui L. Reis
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência E Tecnologia, Zona Industrial da Gandra, University of Minho, 4805-017 Barco, Guimarães Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga, Guimarães Portugal
| | - Joaquim M. Oliveira
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência E Tecnologia, Zona Industrial da Gandra, University of Minho, 4805-017 Barco, Guimarães Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga, Guimarães Portugal
| |
Collapse
|
25
|
Abstract
Although the use of stem cell therapy for central nervous system (CNS) repair has shown considerable promise, it is still limited by the immediate death of a large fraction of transplanted cells owing to cell handling procedures, injection stress and host immune attack leading to poor therapeutic outcomes. Scaffolding cells in hydrogels is known to protect cells from such immediate death by shielding them from mechanical damage and by averting an immune attack after transplantation. Implanted hydrogels must eventually degrade and facilitate a safe integration of the graft with the surrounding host tissue. Hence, serial monitoring of hydrogel degradation in vivo is pivotal to optimize hydrogel compositions and overall therapeutic efficacy of the graft. We present here methods and protocols to use chemical exchange saturation transfer magnetic resonance imaging (CEST MRI) as a non-invasive, label-free imaging paradigm to monitor the degradation of composite hydrogels made up of thiolated gelatin (Gel-SH), thiolated hyaluronic acid (HA-SH), and poly (ethylene glycol) diacrylate (PEGDA), of which the stiffness and CEST contrast can be fine-tuned by simply varying the composite concentrations and mixing ratios. By individually labeling Gel-S and HA-S with two distinct near-infrared (NIR) dyes, multispectral monitoring of the relative degradation of the components can be used for long-term validation of the CEST MRI findings.
Collapse
Affiliation(s)
- Shreyas Kuddannaya
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wei Zhu
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeff W M Bulte
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Chemical & Biomolecular Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
26
|
The biological applications of DNA nanomaterials: current challenges and future directions. Signal Transduct Target Ther 2021; 6:351. [PMID: 34620843 PMCID: PMC8497566 DOI: 10.1038/s41392-021-00727-9] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/24/2021] [Accepted: 07/30/2021] [Indexed: 02/08/2023] Open
Abstract
DNA, a genetic material, has been employed in different scientific directions for various biological applications as driven by DNA nanotechnology in the past decades, including tissue regeneration, disease prevention, inflammation inhibition, bioimaging, biosensing, diagnosis, antitumor drug delivery, and therapeutics. With the rapid progress in DNA nanotechnology, multitudinous DNA nanomaterials have been designed with different shape and size based on the classic Watson-Crick base-pairing for molecular self-assembly. Some DNA materials could functionally change cell biological behaviors, such as cell migration, cell proliferation, cell differentiation, autophagy, and anti-inflammatory effects. Some single-stranded DNAs (ssDNAs) or RNAs with secondary structures via self-pairing, named aptamer, possess the ability of targeting, which are selected by systematic evolution of ligands by exponential enrichment (SELEX) and applied for tumor targeted diagnosis and treatment. Some DNA nanomaterials with three-dimensional (3D) nanostructures and stable structures are investigated as drug carrier systems to delivery multiple antitumor medicine or gene therapeutic agents. While the functional DNA nanostructures have promoted the development of the DNA nanotechnology with innovative designs and preparation strategies, and also proved with great potential in the biological and medical use, there is still a long way to go for the eventual application of DNA materials in real life. Here in this review, we conducted a comprehensive survey of the structural development history of various DNA nanomaterials, introduced the principles of different DNA nanomaterials, summarized their biological applications in different fields, and discussed the current challenges and further directions that could help to achieve their applications in the future.
Collapse
|
27
|
Wartenberg A, Weisser J, Schnabelrauch M. Glycosaminoglycan-Based Cryogels as Scaffolds for Cell Cultivation and Tissue Regeneration. Molecules 2021; 26:5597. [PMID: 34577067 PMCID: PMC8466427 DOI: 10.3390/molecules26185597] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/08/2021] [Accepted: 09/12/2021] [Indexed: 12/12/2022] Open
Abstract
Cryogels are a class of macroporous, interconnective hydrogels polymerized at sub-zero temperatures forming mechanically robust, elastic networks. In this review, latest advances of cryogels containing mainly glycosaminoglycans (GAGs) or composites of GAGs and other natural or synthetic polymers are presented. Cryogels produced in this way correspond to the native extracellular matrix (ECM) in terms of both composition and molecular structure. Due to their specific structural feature and in addition to an excellent biocompatibility, GAG-based cryogels have several advantages over traditional GAG-hydrogels. This includes macroporous, interconnective pore structure, robust, elastic, and shape-memory-like mechanical behavior, as well as injectability for many GAG-based cryogels. After addressing the cryogelation process, the fabrication of GAG-based cryogels and known principles of GAG monomer crosslinking are discussed. Finally, an overview of specific GAG-based cryogels in biomedicine, mainly as polymeric scaffold material in tissue regeneration and tissue engineering-related controlled release of bioactive molecules and cells, is provided.
Collapse
Affiliation(s)
- Annika Wartenberg
- Biomaterials Department, INNOVENT e.V., Pruessingstrasse 27B, 07745 Jena, Germany;
| | | | | |
Collapse
|
28
|
Doblado LR, Martínez-Ramos C, García-Verdugo JM, Moreno-Manzano V, Pradas MM. Engineered axon tracts within tubular biohybrid scaffolds. J Neural Eng 2021; 18. [PMID: 34311448 DOI: 10.1088/1741-2552/ac17d8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/26/2021] [Indexed: 12/29/2022]
Abstract
Injuries to the nervous system that involve the disruption of axonal pathways are devastating to the individual and require specific tissue engineering strategies. Here we analyse a cells-biomaterials strategy to overcome the obstacles limiting axon regenerationin vivo, based on the combination of a hyaluronic acid (HA) single-channel tubular conduit filled with poly-L-lactide acid (PLA) fibres in its lumen, with pre-cultured Schwann cells (SCs) as cells supportive of axon extension. The HA conduit and PLA fibres sustain the proliferation of SC, which enhance axon growth acting as a feeder layer and growth factor pumps. The parallel unidirectional ensemble formed by PLA fibres and SC tries to recapitulate the directional features of axonal pathways in the nervous system. A dorsal root ganglion (DRG) explant is planted on one of the conduit's ends to follow axon outgrowth from the DRG. After a 21 d co-culture of the DRG + SC-seeded conduit ensemble, we analyse the axonal extension throughout the conduit by scanning, transmission electronic and confocal microscopy, in order to study the features of SC and the grown axons and their association. The separate effects of SC and PLA fibres on the axon growth are also experimentally addressed. The biohybrid thus produced may be considered a synthetic axonal pathway, and the results could be of use in strategies for the regeneration of axonal tracts.
Collapse
Affiliation(s)
- Laura Rodríguez Doblado
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain
| | - Cristina Martínez-Ramos
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain.,Department of Medicine, Universitat Jaume I, Av. Vicent-Sos Baynat s/n, Castellón 12071, Spain
| | - José Manuel García-Verdugo
- Laboratory of Comparative Neurobiology, Instituto Cavanilles, Universitat de València, CIBERNED, Valencia, Spain
| | - Victoria Moreno-Manzano
- Neuronal and Tissue Regeneration Lab, Centro de Investigación Príncipe Felipe, Valencia, Spain.,Universidad Católica de Valencia, Valencia, Spain
| | - Manuel Monleón Pradas
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain
| |
Collapse
|
29
|
Kalkowski L, Golubczyk D, Kwiatkowska J, Holak P, Milewska K, Janowski M, Oliveira JM, Walczak P, Malysz-Cymborska I. Two in One: Use of Divalent Manganese Ions as Both Cross-Linking and MRI Contrast Agent for Intrathecal Injection of Hydrogel-Embedded Stem Cells. Pharmaceutics 2021; 13:pharmaceutics13071076. [PMID: 34371767 PMCID: PMC8309201 DOI: 10.3390/pharmaceutics13071076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 12/04/2022] Open
Abstract
Cell therapy is a promising tool for treating central nervous system (CNS) disorders; though, the translational efforts are plagued by ineffective delivery methods. Due to the large contact surface with CNS and relatively easy access, the intrathecal route of administration is attractive in extensive or global diseases such as stroke or amyotrophic lateral sclerosis (ALS). However, the precision and efficacy of this approach are still a challenge. Hydrogels were introduced to minimize cell sedimentation and improve cell viability. At the same time, contrast agents were integrated to allow image-guided injection. Here, we report using manganese ions (Mn2+) as a dual agent for cross-linking alginate-based hydrogels and magnetic resonance imaging (MRI). We performed in vitro studies to test the Mn2+ alginate hydrogel formulations for biocompatibility, injectability, MRI signal retention time, and effect on cell viability. The selected formulation was injected intrathecally into pigs under MRI control. The biocompatibility test showed a lack of immune response, and cells suspended in the hydrogel showed greater viability than monolayer culture. Moreover, Mn2+-labeled hydrogel produced a strong T1 MRI signal, which enabled MRI-guided procedure. We confirmed the utility of Mn2+ alginate hydrogel as a carrier for cells in large animals and a contrast agent at the same time.
Collapse
Affiliation(s)
- Lukasz Kalkowski
- Department of Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland; (L.K.); (D.G.); (J.K.); (K.M.)
| | - Dominika Golubczyk
- Department of Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland; (L.K.); (D.G.); (J.K.); (K.M.)
| | - Joanna Kwiatkowska
- Department of Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland; (L.K.); (D.G.); (J.K.); (K.M.)
| | - Piotr Holak
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-719 Olsztyn, Poland;
| | - Kamila Milewska
- Department of Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland; (L.K.); (D.G.); (J.K.); (K.M.)
| | - Miroslaw Janowski
- Center for Advanced Imaging Research, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (M.J.); (P.W.)
| | - Joaquim Miguel Oliveira
- a3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Guimarães, Portugal
| | - Piotr Walczak
- Center for Advanced Imaging Research, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (M.J.); (P.W.)
| | - Izabela Malysz-Cymborska
- Department of Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland; (L.K.); (D.G.); (J.K.); (K.M.)
- Correspondence: ; Tel.: +48-605118887
| |
Collapse
|
30
|
Ucar B. Natural biomaterials in brain repair: A focus on collagen. Neurochem Int 2021; 146:105033. [PMID: 33785419 DOI: 10.1016/j.neuint.2021.105033] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 03/07/2021] [Accepted: 03/22/2021] [Indexed: 12/16/2022]
Abstract
Biomaterials derived from natural resources have increasingly been used for versatile applications in the central nervous system (CNS). Thanks to their biocompatibility and biodegradability, natural biomaterials offer vast possibilities for future clinical repair strategies for the CNS. These materials can be used for diverse applications such as hydrogels to fill the tissue cavities, microparticles to deliver drugs across the blood-brain barrier, and scaffolds to transplant stem cells. In this review, various uses of prominent protein and polysaccharide biomaterials, with a special focus on collagen, in repair and regenerative applications for the brain are summarized together with their individual advantages and disadvantages.
Collapse
Affiliation(s)
- Buket Ucar
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Medical University of Innsbruck, Austria.
| |
Collapse
|
31
|
Kuddannaya S, Zhu W, Chu C, Singh A, Walczak P, Bulte JWM. In Vivo Imaging of Allografted Glial-Restricted Progenitor Cell Survival and Hydrogel Scaffold Biodegradation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23423-23437. [PMID: 33978398 PMCID: PMC9440547 DOI: 10.1021/acsami.1c03415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Transplanted glial-restricted progenitor (GRP) cells have potential to focally replace defunct astrocytes and produce remyelinating oligodendrocytes to avert neuronal death and dysfunction. However, most central nervous system cell therapeutic paradigms are hampered by high initial cell death and a host anti-graft immune response. We show here that composite hyaluronic acid-based hydrogels of tunable mechanical strengths can significantly improve transplanted GRP survival and differentiation. Allogeneic GRPs expressing green fluorescent protein and firefly luciferase were scaffolded in optimized hydrogel formulations and transplanted intracerebrally into immunocompetent BALB/c mice followed by serial in vivo bioluminescent imaging and chemical exchange saturation transfer magnetic resonance imaging (CEST MRI). We demonstrate that gelatin-sensitive CEST MRI can be exploited to monitor hydrogel scaffold degradation in vivo for ∼5 weeks post transplantation without necessitating exogenous labeling. Hydrogel scaffolding of GRPs resulted in a 4.5-fold increase in transplanted cell survival at day 32 post transplantation compared to naked cells. Histological analysis showed significant enhancement of cell proliferation as well as Olig2+ and GFAP+ cell differentiation for scaffolded cells compared to naked cells, with reduced host immunoreactivity. Hence, hydrogel scaffolding of transplanted GRPs in conjunction with serial in vivo imaging of cell survival and hydrogel degradation has potential for further advances in glial cell therapy.
Collapse
Affiliation(s)
- Shreyas Kuddannaya
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Wei Zhu
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Chengyan Chu
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Anirudha Singh
- Department of Urology, the James Buchanan Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, Maryland 21287, United States
- Department of Chemical & Biomolecular Engineering, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Piotr Walczak
- Center for Advanced Imaging Research, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, Maryland 21201, United States
| | - Jeff W M Bulte
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Department of Chemical & Biomolecular Engineering, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
32
|
Carvalho IC, Mansur HS, Leonel AG, Mansur AAP, Lobato ZIP. Soft matter polysaccharide-based hydrogels as versatile bioengineered platforms for brain tissue repair and regeneration. Int J Biol Macromol 2021; 182:1091-1111. [PMID: 33892028 DOI: 10.1016/j.ijbiomac.2021.04.116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/12/2021] [Accepted: 04/17/2021] [Indexed: 01/08/2023]
Abstract
Acute or chronic brain injuries promote deaths and the life-long debilitating neurological status where, despite advances in therapeutic strategies, clinical outcome hardly achieves total patient recovery. In recent decades, brain tissue engineering emerged as an encouraging area of research for helping in damaged central nervous system (CNS) recovery. Polysaccharides are abundant naturally occurring biomacromolecules with a great potential enhancement of advanced technologies in brain tissue repair and regeneration (BTRR). Besides carrying rich biological information, polysaccharides can interact and communicate with biomolecules, including glycosaminoglycans present in cell membranes and many signaling moieties, growth factors, chemokines, and axon guidance molecules. This review includes a comprehensive investigation of the current progress on designing and developing polysaccharide-based soft matter biomaterials for BTRR. Although few interesting reviews concerning BTRR have been reported, this is the first report specifically focusing on covering multiple polysaccharides and polysaccharide-based functionalized biomacromolecules in this emerging and intriguing field of multidisciplinary knowledge. This review aims to cover the state of art challenges and prospects of this fascinating field while presenting the richness of possibilities of using these natural biomacromolecules for advanced biomaterials in prospective neural tissue engineering applications.
Collapse
Affiliation(s)
- Isadora C Carvalho
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627 Belo Horizonte/M.G., Brazil
| | - Herman S Mansur
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627 Belo Horizonte/M.G., Brazil.
| | - Alice G Leonel
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627 Belo Horizonte/M.G., Brazil
| | - Alexandra A P Mansur
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627 Belo Horizonte/M.G., Brazil
| | - Zelia I P Lobato
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais - UFMG, Brazil
| |
Collapse
|
33
|
Zhang Z, Li Z, Li Y, Wang Y, Yao M, Zhang K, Chen Z, Yue H, Shi J, Guan F, Ma S. Sodium alginate/collagen hydrogel loaded with human umbilical cord mesenchymal stem cells promotes wound healing and skin remodeling. Cell Tissue Res 2021; 383:809-821. [PMID: 33159581 DOI: 10.1007/s00441-020-03321-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/12/2020] [Indexed: 02/03/2023]
Abstract
Stem cell transplantation is a promising therapy for wound healing, but the low retention and survival of transplanted stem cells limit their application. Injectable hydrogels exert beneficial effects in skin tissue engineering. In this study, an injectable hydrogel composed of sodium alginate (SA) and collagen type I (Col) was synthesized as a tissue scaffold to improve the efficacy of stem cells in a full-thickness excision wound model. Our results showed that SA/Col hydrogel was injectable, biodegradable, and exhibited low immunogenicity, which could promote the retention and survival of hUC-MSCs in vivo. SA/Col loaded with hUC-MSCs showed reduced wound size (p < 0.05). Histological and immunofluorescence results confirmed that SA/Col loaded with hUC-MSCs significantly promoted the formation of granulation, enhanced collagen deposition and angiogenesis, increased VEGF and TGF-β1 expression (p < 0.05), and mitigated inflammation evidenced by lower production of TNF-α and IL-1β and higher release of IL-4 and IL-10 (p < 0.05). Furthermore, SA/Col loaded with hUC-MSCs significantly lowered the expression of NLRP3 inflammasome-related proteins (p < 0.05). Taken together, our results suggest that SA/Col loaded with hUC-MSCs promotes skin wound healing via partly inhibiting NLRP3 pathway, which has potential to the treatment of skin wounds.
Collapse
Affiliation(s)
- Zhenkun Zhang
- School of Life Sciences, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, Henan, China
| | - Zhe Li
- School of Life Sciences, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, Henan, China
| | - Ya Li
- School of Life Sciences, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, Henan, China
| | - Yingying Wang
- School of Life Sciences, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, Henan, China
| | - Minghao Yao
- School of Life Sciences, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, Henan, China
| | - Kun Zhang
- School of Life Sciences, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, Henan, China
| | - Zhenyu Chen
- School of Life Sciences, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, Henan, China
| | - Han Yue
- Stem Cell Research Center, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
| | - Jijing Shi
- Central Lab of the First People's Hospital of Zhengzhou, Zhengzhou, 450001, Henan, China
| | - Fangxia Guan
- School of Life Sciences, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, Henan, China
- Stem Cell Research Center, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
| | - Shanshan Ma
- School of Life Sciences, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
34
|
Muckom RJ, Sampayo RG, Johnson HJ, Schaffer DV. Advanced Materials to Enhance Central Nervous System Tissue Modeling and Cell Therapy. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2002931. [PMID: 33510596 PMCID: PMC7840150 DOI: 10.1002/adfm.202002931] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Indexed: 05/04/2023]
Abstract
The progressively deeper understanding of mechanisms underlying stem cell fate decisions has enabled parallel advances in basic biology-such as the generation of organoid models that can further one's basic understanding of human development and disease-and in clinical translation-including stem cell based therapies to treat human disease. Both of these applications rely on tight control of the stem cell microenvironment to properly modulate cell fate, and materials that can be engineered to interface with cells in a controlled and tunable manner have therefore emerged as valuable tools for guiding stem cell growth and differentiation. With a focus on the central nervous system (CNS), a broad range of material solutions that have been engineered to overcome various hurdles in constructing advanced organoid models and developing effective stem cell therapeutics is reviewed. Finally, regulatory aspects of combined material-cell approaches for CNS therapies are considered.
Collapse
Affiliation(s)
- Riya J Muckom
- Department of Chemical and Biomolecular Engineering, UC Berkeley, Berkeley, CA 94704, USA
| | - Rocío G Sampayo
- Department of Chemical and Biomolecular Engineering, UC Berkeley, Berkeley, CA 94704, USA
| | - Hunter J Johnson
- Department of Bioengineering, UC Berkeley, Berkeley, CA 94704, USA
| | - David V Schaffer
- Department of Chemical and Biomolecular Engineering, UC Berkeley, Berkeley, CA 94704, USA
| |
Collapse
|
35
|
Chu C, Davis CM, Lan X, Hienz RD, Jablonska A, Thomas AM, Velarde E, Li S, Janowski M, Kai M, Walczak P. Neuroinflammation After Stereotactic Radiosurgery-Induced Brain Tumor Disintegration Is Linked to Persistent Cognitive Decline in a Mouse Model of Metastatic Disease. Int J Radiat Oncol Biol Phys 2020; 108:745-757. [PMID: 32470502 PMCID: PMC8758056 DOI: 10.1016/j.ijrobp.2020.05.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/20/2020] [Accepted: 05/18/2020] [Indexed: 11/23/2022]
Abstract
PURPOSE Improved efficacy of anticancer therapy and a growing pool of survivors give rise to a question about their quality of life and return to premorbid status. Radiation is effective in brain metastasis eradication, although the optimal approach and long-term effects on brain function are largely unknown. We studied the effects of radiosurgery on brain function. METHODS AND MATERIALS Adult C57BL/6J mice with or without brain metastases (rat 9L gliosarcoma) were treated with cone beam single-arc stereotactic radiosurgery (SRS; 40 Gy). Tumor growth was monitored using bioluminescence, whereas longitudinal magnetic resonance imaging, behavioral studies, and histologic analysis were performed to evaluate brain response to the treatment for up to 18 months. RESULTS Stereotactic radiosurgery (SRS) resulted in 9L metastases eradication within 4 weeks with subsequent long-term survival of all treated animals, whereas all nontreated animals succumbed to the brain tumor. Behavioral impairment, as measured with a recognition memory test, was observed earlier in mice subjected to radiosurgery of tumors (6 weeks) in comparison to SRS of healthy brain tissue (10 weeks). Notably, the deficit resolved by 18 weeks only in mice not bearing a tumor, whereas tumor eradication was complicated by the persistent cognitive deficits. In addition, the results of magnetic resonance imaging were unremarkable in both groups, and histopathology revealed changes. SRS-induced tumor eradication triggered long-lasting and exacerbated neuroinflammatory response. No demyelination, neuronal loss, or hemorrhage was detected in any of the groups. CONCLUSIONS Tumor disintegration by SRS leads to exacerbated neuroinflammation and persistent cognitive deficits; therefore, methods aiming at reducing inflammation after tumor eradication or other therapeutic methods should be sought.
Collapse
Affiliation(s)
- Chengyan Chu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland; The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Catherine M Davis
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Xiaoyan Lan
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland; The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Robert D Hienz
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Anna Jablonska
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland; The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Aline M Thomas
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Esteban Velarde
- Department of Radiation Oncology, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Shen Li
- Department of Neurology, Dalian Municipal Central Hospital, Dalian, Liaoning, China
| | - Miroslaw Janowski
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland; The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mihoko Kai
- Department of Radiation Oncology, Johns Hopkins University, School of Medicine, Baltimore, Maryland.
| | - Piotr Walczak
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland; The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
36
|
Toia F, Di Stefano AB, Muscolino E, Sabatino MA, Giacomazza D, Moschella F, Cordova A, Dispenza C. In-situ gelling xyloglucan formulations as 3D artificial niche for adipose stem cell spheroids. Int J Biol Macromol 2020; 165:2886-2899. [PMID: 33470202 DOI: 10.1016/j.ijbiomac.2020.10.158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022]
Abstract
Three-dimensional spheroidal cell aggregates of adipose stem cells (SASCs) are a distinct upstream population of stem cells present in adipose tissue, with enhanced regeneration properties in vivo. The preservation of the 3D structure of the cells, from extraction to administration, can be a promising strategy to ensure optimal conditions for cell viability and maintenance of stemness potential. With this aim, an artificial niche was created by incorporating the spheroids into an injectable, in-situ gelling solution of partially degalactosylated xyloglucan (dXG) and an ad hoc formulated culture medium for the preservation of stem cell spheroid features. The evolution of the mechanical properties and the morphological structure of this artificial niche was investigated by small amplitude rheological analysis and scanning electron microscopy, respectively. Comparatively, systems produced with the same polymer and the typical culture medium (DMEM) used for adipose stem cell (ASC) growth in adherent cell culture conditions were also characterised. Cell viability of both SASCs and ASCs incorporated inside the hydrogel or seeded on top of the hydrogel were investigated as well as the preservation of SASC stemness conditions when embedded in the hydrogel.
Collapse
Affiliation(s)
- F Toia
- Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche, Università degli Studi di Palermo, via del Vespro 129, 90127 Palermo, Italy; BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche, Università degli Studi di Palermo, via del Vespro 129, 90127 Palermo, Italy
| | - A B Di Stefano
- BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche, Università degli Studi di Palermo, via del Vespro 129, 90127 Palermo, Italy
| | - E Muscolino
- Dipartimento di Ingegneria, Università degli Studi di Palermo, Viale delle Scienze 6, 90128 Palermo, Italy
| | - M A Sabatino
- Dipartimento di Ingegneria, Università degli Studi di Palermo, Viale delle Scienze 6, 90128 Palermo, Italy
| | - D Giacomazza
- Istituto di BioFisica, Consiglio Nazionale delle Ricerche, Via U. La Malfa 153, 90146 Palermo, Italy
| | - F Moschella
- BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche, Università degli Studi di Palermo, via del Vespro 129, 90127 Palermo, Italy
| | - A Cordova
- Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche, Università degli Studi di Palermo, via del Vespro 129, 90127 Palermo, Italy; BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche, Università degli Studi di Palermo, via del Vespro 129, 90127 Palermo, Italy
| | - C Dispenza
- Dipartimento di Ingegneria, Università degli Studi di Palermo, Viale delle Scienze 6, 90128 Palermo, Italy; Istituto di BioFisica, Consiglio Nazionale delle Ricerche, Via U. La Malfa 153, 90146 Palermo, Italy.
| |
Collapse
|
37
|
Jensen G, Holloway JL, Stabenfeldt SE. Hyaluronic Acid Biomaterials for Central Nervous System Regenerative Medicine. Cells 2020; 9:E2113. [PMID: 32957463 PMCID: PMC7565873 DOI: 10.3390/cells9092113] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 12/16/2022] Open
Abstract
Hyaluronic acid (HA) is a primary component of the brain extracellular matrix and functions through cellular receptors to regulate cell behavior within the central nervous system (CNS). These behaviors, such as migration, proliferation, differentiation, and inflammation contribute to maintenance and homeostasis of the CNS. However, such equilibrium is disrupted following injury or disease leading to significantly altered extracellular matrix milieu and cell functions. This imbalance thereby inhibits inherent homeostatic processes that support critical tissue health and functionality in the CNS. To mitigate the damage sustained by injury/disease, HA-based tissue engineering constructs have been investigated for CNS regenerative medicine applications. HA's effectiveness in tissue healing and regeneration is primarily attributed to its impact on cell signaling and the ease of customizing chemical and mechanical properties. This review focuses on recent findings to highlight the applications of HA-based materials in CNS regenerative medicine.
Collapse
Affiliation(s)
- Gregory Jensen
- Chemical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85224, USA;
| | - Julianne L. Holloway
- Chemical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85224, USA;
| | - Sarah E. Stabenfeldt
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
38
|
Liu Y, Hsu YH, Huang APH, Hsu SH. Semi-Interpenetrating Polymer Network of Hyaluronan and Chitosan Self-Healing Hydrogels for Central Nervous System Repair. ACS APPLIED MATERIALS & INTERFACES 2020; 12:40108-40120. [PMID: 32808527 DOI: 10.1021/acsami.0c11433] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The repair of the central nervous system (CNS) is a major challenge because of the difficulty for neurons or axons to regenerate after damages. Injectable hydrogels have been developed to deliver drugs or cells for neural repair, but these hydrogels usually require conditional stimuli or additional catalysts to control the gelling process. Self-healing hydrogels, which can be injected locally to fill tissue defects after stable gelation, are attractive candidates for CNS treatment. In the current study, the self-healing hydrogel with a semi-interpenetrating polymer network (SIPN) was prepared by incorporation of hyaluronan (HA) into the chitosan-based self-healing hydrogel. The addition of HA allowed the hydrogel to pass through a narrow needle much more easily. As the HA content increased, the hydrogel showed a more packed nanostructure and a more porous microstructure verified by coherent small-angle X-ray scattering and scanning electron microscopy. The unique structure of SIPN hydrogel enhanced the spreading, migration, proliferation, and differentiation of encapsulated neural stem cells in vitro. Compared to the pristine chitosan-based self-healing hydrogel, the SIPN hydrogel showed better biocompatibility, CNS injury repair, and functional recovery evaluated by the traumatic brain injury zebrafish model and intracerebral hemorrhage rat model. We proposed that the SIPN of HA and chitosan self-healing hydrogel allowed an adaptable environment for cell spreading and migration and had the potential as an injectable defect support for CNS repair.
Collapse
Affiliation(s)
- Yi Liu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan, Republic of China
| | - Yi-Hua Hsu
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei 10617, Taiwan, Republic of China
| | - Abel Po-Hao Huang
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan, Republic of China
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei 10617, Taiwan, Republic of China
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan, Republic of China
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli 35053, Taiwan, Republic of China
| |
Collapse
|
39
|
Abatangelo G, Vindigni V, Avruscio G, Pandis L, Brun P. Hyaluronic Acid: Redefining Its Role. Cells 2020; 9:E1743. [PMID: 32708202 PMCID: PMC7409253 DOI: 10.3390/cells9071743] [Citation(s) in RCA: 240] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 12/26/2022] Open
Abstract
The discovery of several unexpected complex biological roles of hyaluronic acid (HA) has promoted new research impetus for biologists and, the clinical interest in several fields of medicine, such as ophthalmology, articular pathologies, cutaneous repair, skin remodeling, vascular prosthesis, adipose tissue engineering, nerve reconstruction and cancer therapy. In addition, the great potential of HA in medicine has stimulated the interest of pharmaceutical companies which, by means of new technologies can produce HA and several new derivatives in order to increase both the residence time in a variety of human tissues and the anti-inflammatory properties. Minor chemical modifications of the molecule, such as the esterification with benzyl alcohol (Hyaff-11® biomaterials), have made possible the production of water-insoluble polymers that have been manufactured in various forms: membranes, gauzes, nonwoven meshes, gels, tubes. All these biomaterials are used as wound-covering, anti-adhesive devices and as scaffolds for tissue engineering, such as epidermis, dermis, micro-vascularized skin, cartilage and bone. In this review, the essential biological functions of HA and the applications of its derivatives for pharmaceutical and tissue regeneration purposes are reviewed.
Collapse
Affiliation(s)
- G. Abatangelo
- Faculty of Medicine, University of Padova, 35121 Padova, Italy
| | - V. Vindigni
- Clinic of Plastic and Reconstructive Surgery, University of Padova, 35128 Padova, Italy; (V.V.); (L.P.)
| | - G. Avruscio
- Department of Cardiac, Thoracic and Vascular Sciences, Angiology Unit, University of Padova, 35128 Padova, Italy;
| | - L. Pandis
- Clinic of Plastic and Reconstructive Surgery, University of Padova, 35128 Padova, Italy; (V.V.); (L.P.)
| | - P. Brun
- Department of Molecular Medicine, Histology unit, University of Padova, 35121 Padova, Italy;
| |
Collapse
|
40
|
Nguyen LTB, Hsu CC, Ye H, Cui Z. Development of an in situ injectable hydrogel containing hyaluronic acid for neural regeneration. ACTA ACUST UNITED AC 2020; 15:055005. [PMID: 32324167 DOI: 10.1088/1748-605x/ab8c43] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In this work, a novel enzymatically crosslinked injectable hydrogel comprising hyaluronic acid (HyA), dopamine (DA), and 3-(4-hydroxyphenyl) propionic acid (HPA) conjugates was successfully developed. To the best of our knowledge, it is the first time that HPA is conjugated to a HyA-based backbone. In situ hydrogelation of HyA-DA-HPA occurred in the presence of hydrogen peroxide (H2O2) as an oxidant and horseradish peroxidase (HRP) as a catalyst. Proton nuclear magnetic resonance and Fourier transform infrared spectroscopy were used to characterize the chemical reactions between HyA, DA, and HPA. Gel formation completed between 3 s to 5 min depending on the concentrations of polymer, HRP, and H2O2. Crosslinked HyA-DA-HPA gels acquired storage moduli ranging from ∼100 Pa to ∼20 000 Pa (at f = 2000 rad s-1). Biocompatibility of the hydrogels was examined with human mesenchymal stem cells (hMSCs) and human induced pluripotent stem cell-derived neural stem cells. The hydrogels made of 2.0 w/v% HyA-DA-HPA hydrogels, 0.24 U ml-1 HRP and ≤ 0.5 µmol ml-1 H2O2 were found biocompatible with hMSCs cultured on and encapsulated within the hydrogels. Since HyA serves as a backbone of the extracellular matrix in the central nervous system (CNS) and DA acquires the ability to restore dopaminergic neurons, use of this injectable HyA-DA-HPA hydrogel for stem cell transplantation is a potential treatment strategy for CNS repair and regeneration.
Collapse
Affiliation(s)
- Linh T B Nguyen
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, United Kingdom. Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London WC1X 8LD, United Kingdom
| | | | | | | |
Collapse
|
41
|
Piejko M, Walczak P, Li X, Bulte JWM, Janowski M. In Vitro Assessment of Fluorine Nanoemulsion-Labeled Hyaluronan-Based Hydrogels for Precise Intrathecal Transplantation of Glial-Restricted Precursors. Mol Imaging Biol 2020; 21:1071-1078. [PMID: 30850968 DOI: 10.1007/s11307-019-01341-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE We studied the feasibility of labeling hydrogel scaffolds with a fluorine nanoemulsion for 19F- magnetic resonance imaging (MRI) to enable non-invasive visualization of their precise placement and potential degradation. PROCEDURE Hyaluronan-based hydrogels (activated hyaluronan, HA) with increasing concentrations of fluorine nanoemulsion (V-sense) were prepared to measure the gelation time and oscillatory stress at 1 h and 7 days after the beginning of gelation. All biomechanical measurements were conducted with an ARES 2 rheometer. Diffusion of fluorine from the hydrogel: Three hydrogels in various Vs to HA volumetric ratios (1:50, 1:10, and 1:5) were prepared in duplicate. Hydrogels were incubated at 37 °C. To induce diffusion, three hydrogels were agitated at 1000 rpm. 1H and 19F MRI scans were acquired at 1, 3, 7 days and 2 months after gel preparation on a Bruker Ascend 750 scanner. To quantify fluorine content, scans were analyzed using Voxel Tracker 2.0. Assessment of cell viability in vitro and in vivo: Luciferase-positive mouse glial-restricted progenitors (GRPs) were embedded in 0:1, 1:50, 1:10, and 1:5 Vs:HA mixtures (final cell concentration =1 × 107/ml). For the in vitro assay, mixtures were placed in 96-wells plate in triplicate and bioluminescence was measured after 1, 3, 7, 14, 21, and 28 days. For in vivo experiments, Vs/HA mixtures containing GRPs were injected subcutaneously in SCID mice and BLI was acquired at 1, 3, 7, and 14 days post-injection. RESULTS Mixing of V-sense at increasing ratios of 1:50, 1:10, and 1:5 v/v of fluorine/activated hyaluronan (HA) hydrogel gradually elongated the gelation time from 194 s for non-fluorinated controls to 304 s for 1:5 V-sense:HA hydrogels, while their elastic properties slightly decreased. There was no release of V-sense from hydrogels maintained in stationary conditions over 2 months. The addition of V-sense positively affected in vitro survival of scaffolded GRPs in a dose-dependent manner. CONCLUSIONS These results show that hydrogel fluorination does not impair its beneficial properties for scaffolded cells, which may be used to visualize scaffolded GRP transplants with 19F MRI.
Collapse
Affiliation(s)
- Marcin Piejko
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,3rd Department of General Surgery, Jagiellonian University Medical College, Krakow, Poland
| | - Piotr Walczak
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology and Neurosurgery, University of Warmia and Mazury, Olsztyn, Poland
| | - Xiaowei Li
- Translational Tissue Engineering Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Mary and Dick Holland Regenerative Medicine Program, Department of Neurological Sciences, The University of Nebraska Medical Center, Omaha, NE, USA
| | - Jeff W M Bulte
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, USA.,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Miroslaw Janowski
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
42
|
Gisbert Roca F, Lozano Picazo P, Pérez-Rigueiro J, Guinea Tortuero GV, Monleón Pradas M, Martínez-Ramos C. Conduits based on the combination of hyaluronic acid and silk fibroin: Characterization, in vitro studies and in vivo biocompatibility. Int J Biol Macromol 2020; 148:378-390. [PMID: 31954793 DOI: 10.1016/j.ijbiomac.2020.01.149] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/27/2019] [Accepted: 01/15/2020] [Indexed: 12/11/2022]
Abstract
We address the production of structures intended as conduits made from natural biopolymers, capable of promoting the regeneration of axonal tracts. We combine hyaluronic acid (HA) and silk fibroin (SF) with the aim of improving mechanical and biological properties of HA. The results show that SF can be efficiently incorporated into the production process, obtaining conduits with tubular structure with a matrix of HA-SF blend. HA-SF has better mechanical properties than sole HA, which is a very soft hydrogel, facilitating manipulation. Culture of rat Schwann cells shows that cell adhesion and proliferation are higher than in pure HA, maybe due to the binding motifs contributed by the SF protein. This increased proliferation accelerates the formation of a tight cell layer, which covers the inner channel surface of the HA-SF tubes. Biocompatibility of the scaffolds was studied in immunocompetent mice. Both HA and HA-SF scaffolds were accepted by the host with no residual immune response at 8 weeks. New collagen extracellular matrix and new blood vessels were visible and they were present earlier when SF was present. The results show that incorporation of SF enhances the mechanical properties of the materials and results in promising biocompatible conduits for tubulization strategies.
Collapse
Affiliation(s)
- Fernando Gisbert Roca
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Cno. de Vera s/n, 46022 Valencia, Spain
| | - Paloma Lozano Picazo
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain; Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - José Pérez-Rigueiro
- CIBER-BBN, Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine, Spain; Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain; Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Gustavo Victor Guinea Tortuero
- CIBER-BBN, Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine, Spain; Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain; Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Manuel Monleón Pradas
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Cno. de Vera s/n, 46022 Valencia, Spain; CIBER-BBN, Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine, Spain
| | - Cristina Martínez-Ramos
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Cno. de Vera s/n, 46022 Valencia, Spain; Department of Medicine, Universitat Jaume I, Av. Vicent-Sos Baynat s/n, Castellón 12071, Spain..
| |
Collapse
|
43
|
Pham-Nguyen OV, Shin JU, Kim H, Yoo HS. Self-assembled cell sheets composed of mesenchymal stem cells and gelatin nanofibers for the treatment of full-thickness wounds. Biomater Sci 2020; 8:4535-4544. [DOI: 10.1039/d0bm00910e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Gelatin-layered PCL nanofibrils for 3D cell sheet formation were composed with adipocyte-derived stem cells for wound healing.
Collapse
Affiliation(s)
- Oanh-Vu Pham-Nguyen
- Department of Biomedical Materials Engineering
- Kangwon National University
- Chuncheon 24341
- Republic of Korea
| | - Ji Un Shin
- Department of Biomedical Materials Engineering
- Kangwon National University
- Chuncheon 24341
- Republic of Korea
| | - Hyesung Kim
- Department of Biomedical Materials Engineering
- Kangwon National University
- Chuncheon 24341
- Republic of Korea
| | - Hyuk Sang Yoo
- Department of Biomedical Materials Engineering
- Kangwon National University
- Chuncheon 24341
- Republic of Korea
- Institute of Molecular Science and Fusion Technology
| |
Collapse
|
44
|
Yousaf SS, Houacine C, Khan I, Ahmed W, Jackson MJ. Importance of biomaterials in biomedical engineering. ADVANCES IN MEDICAL AND SURGICAL ENGINEERING 2020:151-177. [DOI: 10.1016/b978-0-12-819712-7.00011-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
45
|
Self-Healing Collagen-Based Hydrogel for Brain Injury Therapy. SELF-HEALING AND SELF-RECOVERING HYDROGELS 2020. [DOI: 10.1007/12_2019_57] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
46
|
Zhu W, Chu C, Kuddannaya S, Yuan Y, Walczak P, Singh A, Song X, Bulte JW. In Vivo Imaging of Composite Hydrogel Scaffold Degradation Using CEST MRI and Two-Color NIR Imaging. ADVANCED FUNCTIONAL MATERIALS 2019; 29:1903753. [PMID: 32190034 PMCID: PMC7079757 DOI: 10.1002/adfm.201903753] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Indexed: 05/24/2023]
Abstract
Hydrogel scaffolding of stem cells is a promising strategy to overcome initial cell loss and manipulate cell function post-transplantation. Matrix degradation is a requirement for downstream cell differentiation and functional tissue integration, which determines therapeutic outcome. Therefore, monitoring of hydrogel degradation is essential for scaffolded cell replacement therapies. We show here that chemical exchange saturation transfer magnetic resonance imaging (CEST MRI) can be used as a label-free imaging platform for monitoring the degradation of crosslinked hydrogels containing gelatin (Gel) and hyaluronic acid (HA), of which the stiffness can be fine-tuned by varying the ratio of the Gel:HA. By labeling Gel and HA with two different NIR dyes having distinct emission excitation frequencies, we show here that the HA signal remains stable for 42 days, while the Gel signal gradually decreases to <25% of its initial value at this time point. Both imaging modalities were in excellent agreement for both the time course and relative value of CEST MRI and NIR signals (R2=0.94). These findings support the further use of CEST MRI for monitoring biodegradation and optimizing of gelatin-containing hydrogels in a label-free manner.
Collapse
Affiliation(s)
- Wei Zhu
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, the Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Cellular Imaging Section, Institute for Cell Engineering, the Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Chengyan Chu
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, the Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Cellular Imaging Section, Institute for Cell Engineering, the Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Shreyas Kuddannaya
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, the Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Cellular Imaging Section, Institute for Cell Engineering, the Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yue Yuan
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, the Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Cellular Imaging Section, Institute for Cell Engineering, the Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Piotr Walczak
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, the Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Cellular Imaging Section, Institute for Cell Engineering, the Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Anirudha Singh
- Department of Urology, the James Buchanan Brady Urological Institute, the Johns Hopkins University School of Medicine, Baltimore, MD, 21287
- Department of Chemical & Biomolecular Engineering, the Johns Hopkins University Whiting School of Engineering, Baltimore, MD, 21218
| | - Xiaolei Song
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, the Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Cellular Imaging Section, Institute for Cell Engineering, the Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jeff W.M. Bulte
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, the Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Cellular Imaging Section, Institute for Cell Engineering, the Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Chemical & Biomolecular Engineering, the Johns Hopkins University Whiting School of Engineering, Baltimore, MD, 21218
- Department of Biomedical Engineering, the Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Oncology, the Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
47
|
Oliveira EP, Malysz-Cymborska I, Golubczyk D, Kalkowski L, Kwiatkowska J, Reis RL, Oliveira JM, Walczak P. Advances in bioinks and in vivo imaging of biomaterials for CNS applications. Acta Biomater 2019; 95:60-72. [PMID: 31075514 DOI: 10.1016/j.actbio.2019.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 04/25/2019] [Accepted: 05/03/2019] [Indexed: 01/03/2023]
Abstract
Due to increasing life expectancy incidence of neurological disorders is rapidly rising, thus adding urgency to develop effective strategies for treatment. Stem cell-based therapies were considered highly promising and while progress in this field is evident, outcomes of clinical trials are rather disappointing. Suboptimal engraftment, poor cell survival and uncontrolled differentiation may be the reasons behind dismal results. Clearly, new direction is needed and we postulate that with recent progress in biomaterials and bioprinting, regenerative approaches for neurological applications may be finally successful. The use of biomaterials aids engraftment of stem cells, protects them from harmful microenvironment and importantly, it facilitates the incorporation of cell-supporting molecules. The biomaterials used in bioprinting (the bioinks) form a scaffold for embedding the cells/biomolecules of interest, but also could be exploited as a source of endogenous contrast or supplemented with contrast agents for imaging. Additionally, bioprinting enables patient-specific customization with shape/size tailored for actual needs. In stroke or traumatic brain injury for example lesions are localized and focal, and usually progress with significant loss of tissue volume creating space that could be filled with artificial tissue using bioprinting modalities. The value of imaging for bioprinting technology is advantageous on many levels including design of custom shapes scaffolds based on anatomical 3D scans, assessment of performance and integration after scaffold implantation, or to learn about the degradation over time. In this review, we focus on bioprinting technology describing different printing techniques and properties of biomaterials in the context of requirements for neurological applications. We also discuss the need for in vivo imaging of implanted materials and tissue constructs reviewing applicable imaging modalities and type of information they can provide. STATEMENT OF SIGNIFICANCE: Current stem cell-based regenerative strategies for neurological diseases are ineffective due to inaccurate engraftment, low cell viability and suboptimal differentiation. Bioprinting and embedding stem cells within biomaterials at high precision, including building complex multi-material and multi-cell type composites may bring a breakthrough in this field. We provide here comprehensive review of bioinks, bioprinting techniques applicable to application for neurological disorders. Appreciating importance of longitudinal monitoring of implanted scaffolds, we discuss advantages of various imaging modalities available and suitable for imaging biomaterials in the central nervous system. Our goal is to inspire new experimental approaches combining imaging, biomaterials/bioinks, advanced manufacturing and tissue engineering approaches, and stimulate interest in image-guided therapies based on bioprinting.
Collapse
Affiliation(s)
- Eduarda P Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal
| | | | - Dominika Golubczyk
- Dept. of Neurosurgery, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Lukasz Kalkowski
- Dept. of Neurosurgery, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Joanna Kwiatkowska
- Dept. of Neurosurgery, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal
| | - J Miguel Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal
| | - Piotr Walczak
- Dept. of Neurosurgery, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland; Russell H. Morgan Dept. of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, United States; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
48
|
de la Vega L, Lee C, Sharma R, Amereh M, Willerth SM. 3D bioprinting models of neural tissues: The current state of the field and future directions. Brain Res Bull 2019; 150:240-249. [DOI: 10.1016/j.brainresbull.2019.06.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 05/30/2019] [Accepted: 06/06/2019] [Indexed: 01/01/2023]
|
49
|
Seidlits SK, Liang J, Bierman RD, Sohrabi A, Karam J, Holley SM, Cepeda C, Walthers CM. Peptide-modified, hyaluronic acid-based hydrogels as a 3D culture platform for neural stem/progenitor cell engineering. J Biomed Mater Res A 2019; 107:704-718. [PMID: 30615255 PMCID: PMC8862560 DOI: 10.1002/jbm.a.36603] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/23/2018] [Accepted: 01/03/2019] [Indexed: 07/26/2023]
Abstract
Neural stem/progenitor cell (NS/PC)-based therapies have shown exciting potential for regeneration of the central nervous system (CNS) and NS/PC cultures represent an important resource for disease modeling and drug screening. However, significant challenges limiting clinical translation remain, such as generating large numbers of cells required for model cultures or transplantation, maintaining physiologically representative phenotypes ex vivo and directing NS/PC differentiation into specific fates. Here, we report that culture of human NS/PCs in 3D, hyaluronic acid (HA)-rich biomaterial microenvironments increased differentiation toward oligodendrocytes and neurons over 2D cultures on laminin-coated glass. Moreover, NS/PCs in 3D culture exhibited a significant reduction in differentiation into reactive astrocytes. Many NS/PC-derived neurons in 3D, HA-based hydrogels expressed synaptophysin, indicating synapse formation, and displayed electrophysiological characteristics of immature neurons. While inclusion of integrin-binding, RGD peptides into hydrogels resulted in a modest increase in numbers of viable NS/PCs, no combination of laminin-derived, adhesive peptides affected differentiation outcomes. Notably, 3D cultures of differentiating NS/PCs were maintained for at least 70 days in medium with minimal growth factor supplementation. In sum, results demonstrate the use of 3D, HA-based biomaterials for long-term expansion and differentiation of NS/PCs toward oligodendroglial and neuronal fates, while inhibiting astroglial fates. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 704-718, 2019.
Collapse
Affiliation(s)
- Stephanie K. Seidlits
- Department of Bioengineering, UCLA, Los Angels, California
- Board Stem Cell Research Center, UCLA, Los Angels, California
- Brain Research Institute, UCLA, Los Angels, California
- Jonsson Comprehensive Cancer Center, UCLA, Los Angels, California
- Center for Minimally Invasive Therapeutics, UCLA, Los Angels, California
| | - Jesse Liang
- Department of Bioengineering, UCLA, Los Angels, California
| | | | | | - Joshua Karam
- Department of Bioengineering, UCLA, Los Angels, California
| | - Sandra M. Holley
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, California
| | | |
Collapse
|
50
|
|