1
|
Shi Y, Yang X, Min J, Kong W, Hu X, Zhang J, Chen L. Advancements in culture technology of adipose-derived stromal/stem cells: implications for diabetes and its complications. Front Endocrinol (Lausanne) 2024; 15:1343255. [PMID: 38681772 PMCID: PMC11045945 DOI: 10.3389/fendo.2024.1343255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/29/2024] [Indexed: 05/01/2024] Open
Abstract
Stem cell-based therapies exhibit considerable promise in the treatment of diabetes and its complications. Extensive research has been dedicated to elucidate the characteristics and potential applications of adipose-derived stromal/stem cells (ASCs). Three-dimensional (3D) culture, characterized by rapid advancements, holds promise for efficacious treatment of diabetes and its complications. Notably, 3D cultured ASCs manifest enhanced cellular properties and functions compared to traditional monolayer-culture. In this review, the factors influencing the biological functions of ASCs during culture are summarized. Additionally, the effects of 3D cultured techniques on cellular properties compared to two-dimensional culture is described. Furthermore, the therapeutic potential of 3D cultured ASCs in diabetes and its complications are discussed to provide insights for future research.
Collapse
Affiliation(s)
- Yinze Shi
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Xueyang Yang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Jie Min
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Wen Kong
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Xiang Hu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Jiaoyue Zhang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Lulu Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| |
Collapse
|
2
|
Kavand A, Noverraz F, Gerber-Lemaire S. Recent Advances in Alginate-Based Hydrogels for Cell Transplantation Applications. Pharmaceutics 2024; 16:469. [PMID: 38675129 PMCID: PMC11053880 DOI: 10.3390/pharmaceutics16040469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
With its exceptional biocompatibility, alginate emerged as a highly promising biomaterial for a large range of applications in regenerative medicine. Whether in the form of microparticles, injectable hydrogels, rigid scaffolds, or bioinks, alginate provides a versatile platform for encapsulating cells and fostering an optimal environment to enhance cell viability. This review aims to highlight recent studies utilizing alginate in diverse formulations for cell transplantation, offering insights into its efficacy in treating various diseases and injuries within the field of regenerative medicine.
Collapse
Affiliation(s)
| | | | - Sandrine Gerber-Lemaire
- Group for Functionalized Biomaterials, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; (A.K.); (F.N.)
| |
Collapse
|
3
|
Regeenes R, Rocheleau JV. Twenty years of islet-on-a-chip: microfluidic tools for dissecting islet metabolism and function. LAB ON A CHIP 2024; 24:1327-1350. [PMID: 38277011 DOI: 10.1039/d3lc00696d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Pancreatic islets are metabolically active micron-sized tissues responsible for controlling blood glucose through the secretion of insulin and glucagon. A loss of functional islet mass results in type 1 and 2 diabetes. Islet-on-a-chip devices are powerful microfluidic tools used to trap and study living ex vivo human and murine pancreatic islets and potentially stem cell-derived islet organoids. Devices developed over the past twenty years offer the ability to treat islets with controlled and dynamic microenvironments to mimic in vivo conditions and facilitate diabetes research. In this review, we explore the various islet-on-a-chip devices used to immobilize islets, regulate the microenvironment, and dynamically detect islet metabolism and insulin secretion. We first describe and assess the various methods used to immobilize islets including chambers, dam-walls, and hydrodynamic traps. We subsequently describe the surrounding methods used to create glucose gradients, enhance the reaggregation of dispersed islets, and control the microenvironment of stem cell-derived islet organoids. We focus on the various methods used to measure insulin secretion including capillary electrophoresis, droplet microfluidics, off-chip ELISAs, and on-chip fluorescence anisotropy immunoassays. Additionally, we delve into the various multiparametric readouts (NAD(P)H, Ca2+-activity, and O2-consumption rate) achieved primarily by adopting a microscopy-compatible optical window into the devices. By critical assessment of these advancements, we aim to inspire the development of new devices by the microfluidics community and accelerate the adoption of islet-on-a-chip devices by the wider diabetes research and clinical communities.
Collapse
Affiliation(s)
- Romario Regeenes
- Advanced Diagnostics, Toronto General Hospital Research Institute, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Jonathan V Rocheleau
- Advanced Diagnostics, Toronto General Hospital Research Institute, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Departments of Medicine and Physiology, University of Toronto, ON, Canada
| |
Collapse
|
4
|
Navaei-Nigjeh M, Mirzababaei S, Ghiass MA, Roshanbinfar K, Gholami M, Abdollahi M. Microfluidically fabricated fibers containing pancreatic islets and mesenchymal stromal cells improve longevity and sustained normoglycemia in diabetic rats. Biofabrication 2022; 15. [PMID: 36279872 DOI: 10.1088/1758-5090/ac9d04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/24/2022] [Indexed: 12/13/2022]
Abstract
Type 1 diabetes mellitus is an autoimmune disease characterized by the loss of pancreatic isletβcells. Insulin injections and pancreas transplants are currently available therapies. The former requires daily insulin injections, while the latter is constrained by donor organ availability. Islet transplantation is a promising alternative treatment for type 1 diabetes mellitus that may overcome the limitations of previous techniques. Two challenges, however, must be addressed: limited cell retention as a result of the immune response and limited function of the transplanted cells that survive. To address these problems, we developed a microfluidic technology for a one-step generation of islet-laden fibers to protect them from the immune response. This approach enables continuous generation of microfibers with a diameter suitable for islet encapsulation (275µm). We, then, transplanted islet-laden fibers into diabetic Wistar rats. While islet-laden fibers alone were unable to restore normoglycemia in diabetic rats, adding mesenchymal stromal cells (MSCs) restored normoglycemia for an extended time. It increased the animals' lifespan by up to 75 d. Additionally, it improved the glucose-stimulated response of islets to the point where there was no significant difference between the treatment group and the healthy animals. Additionally, the presence of MSCs suppressed the immune response, as seen by decreased levels of pro-inflammatory cytokines such as tumor necrosis factor-α. Taken together, these fibers including islet and MSCs provide a versatile platform for concurrently improving cell preservation and functioning followingin vivotransplantation.
Collapse
Affiliation(s)
- Mona Navaei-Nigjeh
- Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Soheyl Mirzababaei
- Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Adel Ghiass
- Tissue Engineering Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Kaveh Roshanbinfar
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91054, Germany
| | - Mahdi Gholami
- School of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
5
|
Petry F, Salzig D. The cultivation conditions affect the aggregation and functionality of β-cell lines alone and in coculture with mesenchymal stromal/stem cells. Eng Life Sci 2022; 22:769-783. [PMID: 36514533 PMCID: PMC9731603 DOI: 10.1002/elsc.202100168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 12/16/2022] Open
Abstract
The manufacturing of viable and functional β-cell spheroids is required for diabetes cell therapy and drug testing. Mesenchymal stromal/stem cells (MSCs) are known to improve β-cell viability and functionality. We therefore investigated the aggregation behavior of three different β-cell lines (rat insulinoma-1 cell line [INS-1], mouse insulinoma-6 cell line [MIN6], and a cell line formed by the electrofusion of primary human pancreatic islets and PANC-1 cells [1.1B4]), two MSC types, and mixtures of β-cells and MSCs under different conditions. We screened several static systems to produce uniform β-cell and MSC spheroids, finding cell-repellent plates the most suitable. The three different β-cell lines differed in their aggregation behavior, spheroid size, and growth in the same static environment. We found no major differences in spheroid formation between primary MSCs and an immortalized MSC line, although both differed with regard to the aggregation behavior of the β-cell lines. All spheroids showed a reduced viability due to mass transfer limitations under static conditions. We therefore investigated three dynamic systems (shaking multi-well plates, spinner flasks, and shaking flasks). In shaking flasks, there were no β-cell-line-dependent differences in aggregation behavior, resulting in uniform and highly viable spheroids. We found that the aggregation behavior of the β-cell lines changed in a static coculture with MSCs. The β-cell/MSC coculture conditions must be refined to avoid a rapid segregation into distinct populations under dynamic conditions.
Collapse
Affiliation(s)
- Florian Petry
- Institute of Bioprocess Engineering and Pharmaceutical TechnologyUniversity of Applied Sciences MittelhessenGiessenGermany
| | - Denise Salzig
- Institute of Bioprocess Engineering and Pharmaceutical TechnologyUniversity of Applied Sciences MittelhessenGiessenGermany
| |
Collapse
|
6
|
Perinatal Stem Cell Therapy to Treat Type 1 Diabetes Mellitus: A Never-Say-Die Story of Differentiation and Immunomodulation. Int J Mol Sci 2022; 23:ijms232314597. [PMID: 36498923 PMCID: PMC9738084 DOI: 10.3390/ijms232314597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Human term placenta and other postpartum-derived biological tissues are promising sources of perinatal cells with unique stem cell properties. Among the massive current research on stem cells, one medical focus on easily available stem cells is to exploit them in the design of immunotherapy protocols, in particular for the treatment of chronic non-curable human diseases. Type 1 diabetes is characterized by autoimmune destruction of pancreatic beta cells and perinatal cells can be harnessed both to generate insulin-producing cells for beta cell replenishment and to regulate autoimmune mechanisms via immunomodulation capacity. In this study, the strong points of cells derived from amniotic epithelial cells and from umbilical cord matrix are outlined and their potential for supporting cell therapy development. From a basic research and expert stem cell point of view, the aim of this review is to summarize information regarding the regenerative medicine field, as well as describe the state of the art on possible cell therapy approaches for diabetes.
Collapse
|
7
|
Guo W, Chen Z, Feng Z, Li H, Zhang M, Zhang H, Cui X. Fabrication of Concave Microwells and Their Applications in Micro-Tissue Engineering: A Review. MICROMACHINES 2022; 13:mi13091555. [PMID: 36144178 PMCID: PMC9505614 DOI: 10.3390/mi13091555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 05/27/2023]
Abstract
At present, there is an increasing need to mimic the in vivo micro-environment in the culture of cells and tissues in micro-tissue engineering. Concave microwells are becoming increasingly popular since they can provide a micro-environment that is closer to the in vivo environment compared to traditional microwells, which can facilitate the culture of cells and tissues. Here, we will summarize the fabrication methods of concave microwells, as well as their applications in micro-tissue engineering. The fabrication methods of concave microwells include traditional methods, such as lithography and etching, thermal reflow of photoresist, laser ablation, precision-computerized numerical control (CNC) milling, and emerging technologies, such as surface tension methods, the deformation of soft membranes, 3D printing, the molding of microbeads, air bubbles, and frozen droplets. The fabrication of concave microwells is transferring from professional microfabrication labs to common biochemical labs to facilitate their applications and provide convenience for users. Concave microwells have mostly been used in organ-on-a-chip models, including the formation and culture of 3D cell aggregates (spheroids, organoids, and embryoids). Researchers have also used microwells to study the influence of substrate topology on cellular behaviors. We will briefly review their applications in different aspects of micro-tissue engineering and discuss the further applications of concave microwells. We believe that building multiorgan-on-a-chip by 3D cell aggregates of different cell lines will be a popular application of concave microwells, while integrating physiologically relevant molecular analyses with the 3D culture platform will be another popular application in the near future. Furthermore, 3D cell aggregates from these biosystems will find more applications in drug screening and xenogeneic implantation.
Collapse
Affiliation(s)
- Weijin Guo
- Department of Biomedical Engineering, Shantou University, Shantou 515063, China
| | - Zejingqiu Chen
- Department of Biology, Shantou University, Shantou 515063, China
| | - Zitao Feng
- Department of Biomedical Engineering, Shantou University, Shantou 515063, China
| | - Haonan Li
- Department of Electrical Engineering, Shantou University, Shantou 515063, China
| | - Muyang Zhang
- Department of Electrical Engineering, Shantou University, Shantou 515063, China
| | - Huiru Zhang
- Guangdong Foshan Lianchuang Graduate School of Engineering, Foshan 528311, China
| | - Xin Cui
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|
8
|
Hospodiuk-Karwowski M, Chi K, Pritchard J, Catchmark JM. Vascularized pancreas-on-a-chip device produced using a printable simulated extracellular matrix. Biomed Mater 2022; 17. [PMID: 36001993 DOI: 10.1088/1748-605x/ac8c74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/24/2022] [Indexed: 11/12/2022]
Abstract
The extracellular matrix (ECM) influences cellular behavior, function, and fate. The ECM surrounding Langerhans islets has not been investigated in detail to explain its role in the development and maturation of pancreatic β-cells. Herein, a complex combination of the simulated ECM (sECM) has been examined with a comprehensive analysis of cell response and a variety of controls. The most promising results were obtained from group containing fibrin, collagen type I, Matrigel®, hyaluronic acid, methylcellulose, and two compounds of functionalized, ionically crosslinking bacterial cellulose (sECMbc). Even though the cell viability was not significantly impacted, the performance of group of sECMbc showed 2 to 4x higher sprouting number and length, 2 to 4x higher insulin secretion in static conditions, and 2 to 10x higher gene expression of VEGF-A, Endothelin-1, and NOS3 than the control group of fibrin matrix (sECMf). Each material was tested in a hydrogel-based, perfusable, pancreas-on-a-chip device and the best group - sECMbc has been tested with the drug Sunitinib to show the extended possibilities of the device for both diabetes-like screening as well as PDAC chemotherapeutics screening for potential personal medicine approach. It proved its functionality in 7 days dynamic culture and is suitable as a physiological tissue model. Moreover, the device with the pancreatic-like spheroids was 3D bioprintable and perfusable.
Collapse
Affiliation(s)
- Monika Hospodiuk-Karwowski
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, 201 Old Main, University Park, Pennsylvania, 16802-1503, UNITED STATES
| | - Kai Chi
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, 201 Old Main, University Park, Pennsylvania, 16802-1503, UNITED STATES
| | - Justin Pritchard
- Biomedical Engineering Department, The Pennsylvania State University, 201 Old Main, University Park, Pennsylvania, 16802-1503, UNITED STATES
| | - Jeffrey M Catchmark
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, 201 Old Main, University Park, Pennsylvania, 16802-1503, UNITED STATES
| |
Collapse
|
9
|
Cao M, Zhao Y, Chen T, Zhao Z, Zhang B, Yuan C, Wang X, Chen L, Wang N, Li C, Zhou X. Adipose mesenchymal stem cell-derived exosomal microRNAs ameliorate polycystic ovary syndrome by protecting against metabolic disturbances. Biomaterials 2022; 288:121739. [PMID: 35987860 DOI: 10.1016/j.biomaterials.2022.121739] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 11/09/2022]
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine and metabolic disorder in women of childbearing age. Adipose mesenchymal stem cells (AMSCs) secrete cytokines involved in the regulation of metabolism and immunity. However, it remains unclear whether exosomes secreted by AMSCs (AMSC-EXOs) can rescue the polycystic phenotype and metabolic dysfunction in PCOS ovaries. Here, we show that AMSC-EXOs can protect against metabolic disturbances, ameliorate ovarian polycystic, and improve fertility in a rat model of PCOS. AMSC-EXOs inhibited the expression of B-cell translocation gene 2 by transferring miR-21-5p to the livers of rats with PCOS, thus activating the IRS1/AKT pathway and increasing hepatic metabolism. The role of AMSC-EXOs in transferring miRNAs to the liver to improve metabolic dysfunction in PCOS and reproduction by rescuing a non-coding RNA pathway was also discovered. This study provides a theoretical basis for the use of rat adipose stem cells and their secreted exosomes to treat PCOS.
Collapse
Affiliation(s)
- Maosheng Cao
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Yun Zhao
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Tong Chen
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Zijiao Zhao
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Boqi Zhang
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Chenfeng Yuan
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Xin Wang
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Lu Chen
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Nan Wang
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Chunjin Li
- College of Animal Sciences, Jilin University, Changchun, 130062, China.
| | - Xu Zhou
- College of Animal Sciences, Jilin University, Changchun, 130062, China.
| |
Collapse
|
10
|
Yin J, Meng H, Lin J, Ji W, Xu T, Liu H. Pancreatic islet organoids-on-a-chip: how far have we gone? J Nanobiotechnology 2022; 20:308. [PMID: 35764957 PMCID: PMC9238112 DOI: 10.1186/s12951-022-01518-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/20/2022] [Indexed: 01/10/2023] Open
Abstract
Diabetes mellitus (DM) is a disease caused by dysfunction or disruption of pancreatic islets. The advent and development of microfluidic organoids-on-a-chip platforms have facilitated reproduce of complex and dynamic environment for tissue or organ development and complex disease processes. For the research and treatment of DM, the platforms have been widely used to investigate the physiology and pathophysiology of islets. In this review, we first highlight how pancreatic islet organoids-on-a-chip have improved the reproducibility of stem cell differentiation and organoid culture. We further discuss the efficiency of microfluidics in the functional evaluation of pancreatic islet organoids, such as single-islet-sensitivity detection, long-term real-time monitoring, and automatic glucose adjustment to provide relevant stimulation. Then, we present the applications of islet-on-a-chip technology in disease modeling, drug screening and cell replacement therapy. Finally, we summarize the development and challenges of islet-on-a-chip and discuss the prospects of future research.
Collapse
Affiliation(s)
- Jiaxiang Yin
- Bioland Laboratory, Guangzhou, Guangdong, China.,Guangzhou Laboratory, Guangzhou, Guangdong, China.,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Hao Meng
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | | | - Wei Ji
- Bioland Laboratory, Guangzhou, Guangdong, China.,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Tao Xu
- Guangzhou Laboratory, Guangzhou, Guangdong, China. .,School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China.
| | - Huisheng Liu
- Bioland Laboratory, Guangzhou, Guangdong, China. .,Guangzhou Laboratory, Guangzhou, Guangdong, China. .,School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
11
|
Maji S, Lee H. Engineering Hydrogels for the Development of Three-Dimensional In Vitro Models. Int J Mol Sci 2022; 23:2662. [PMID: 35269803 PMCID: PMC8910155 DOI: 10.3390/ijms23052662] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 02/06/2023] Open
Abstract
The superiority of in vitro 3D cultures over conventional 2D cell cultures is well recognized by the scientific community for its relevance in mimicking the native tissue architecture and functionality. The recent paradigm shift in the field of tissue engineering toward the development of 3D in vitro models can be realized with its myriad of applications, including drug screening, developing alternative diagnostics, and regenerative medicine. Hydrogels are considered the most suitable biomaterial for developing an in vitro model owing to their similarity in features to the extracellular microenvironment of native tissue. In this review article, recent progress in the use of hydrogel-based biomaterial for the development of 3D in vitro biomimetic tissue models is highlighted. Discussions of hydrogel sources and the latest hybrid system with different combinations of biopolymers are also presented. The hydrogel crosslinking mechanism and design consideration are summarized, followed by different types of available hydrogel module systems along with recent microfabrication technologies. We also present the latest developments in engineering hydrogel-based 3D in vitro models targeting specific tissues. Finally, we discuss the challenges surrounding current in vitro platforms and 3D models in the light of future perspectives for an improved biomimetic in vitro organ system.
Collapse
Affiliation(s)
- Somnath Maji
- Department of Mechanical and Biomedical Engineering, Kangwon National University (KNU), Chuncheon 24341, Korea;
| | - Hyungseok Lee
- Department of Mechanical and Biomedical Engineering, Kangwon National University (KNU), Chuncheon 24341, Korea;
- Department of Smart Health Science and Technology, Kangwon National University (KNU), Chuncheon 24341, Korea
| |
Collapse
|
12
|
Enhanced Differentiation Capacity and Transplantation Efficacy of Insulin-Producing Cell Clusters from Human iPSCs Using Permeable Nanofibrous Microwell-Arrayed Membrane for Diabetes Treatment. Pharmaceutics 2022; 14:pharmaceutics14020400. [PMID: 35214135 PMCID: PMC8879814 DOI: 10.3390/pharmaceutics14020400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 11/17/2022] Open
Abstract
Although pancreatic islet transplantation is a potentially curative treatment for insulin-dependent diabetes, a shortage of donor sources, low differentiation capacity, and transplantation efficacy are major hurdles to overcome before becoming a standard therapy. Stem cell-derived insulin-producing cells (IPCs) are a potential approach to overcoming these limitations. To improve the differentiation capacity of the IPCs, cell cluster formation is crucial to mimic the 3D structure of the islet. This study developed a biodegradable polycaprolactone (PCL) electrospun nanofibrous (NF) microwell-arrayed membrane permeable to soluble factors. Based on the numerical analysis and experimental diffusion test, the NF microwell could provide sufficient nutrients, unlike an impermeable PDMS (polydimethylsiloxane) microwell. The IPC clusters in the NF microwells showed higher gene expression of insulin and PDX1 and insulin secretion than the PDMS microwells. The IPC clusters in the NF microwell-arrayed membrane could be directly transplanted. Transplanted IPC clusters in the microwells survived well and expressed PDX1 and insulin. Additionally, human c-peptide was identified in the blood plasma at two months after transplantation of the membranes. The NF microwell-arrayed membrane can be a new platform promoting IPC differentiation capacity and realizing an in situ transplantation technique for diabetic patients.
Collapse
|
13
|
Papoz A, Clément F, Laporte C, Tubbs E, Gidrol X, Pitaval A. [Generating pancreatic islets organoids: Langerhanoids]. Med Sci (Paris) 2022; 38:52-58. [PMID: 35060887 DOI: 10.1051/medsci/2021244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The extension of islet transplantation to a wider number of Type 1 diabetic patients is compromised by the scarcity of donors, the reduced ex vivo survival of pancreatic islets and the use of immunosuppressive treatments. Islets of Langerhans isolated from brain-dead donors are currently the only cell source for transplantation. Thus, it is crucial to find an alternative and an abundant source of functional insulin secreting cells not only for clinical use but also for the development of research dedicated to the screening of drugs and to the development of new therapeutic targets. Several groups around the world, including ours, develop 3D culture models as Langerhanoids that closely mimick human pancreatic islets physiology. In this review, we describe recent advances to mimic the pancreatic niche (extracellular matrix, vascularization, microfluidics) allowing better functionality of Langerhanoids.
Collapse
Affiliation(s)
- Anastasia Papoz
- Univ. Grenoble Alpes, CEA, Inserm, IRIG, Biomics, F-38000, Grenoble, France
| | - Flora Clément
- Univ. Grenoble Alpes, CEA, Inserm, IRIG, Biomics, F-38000, Grenoble, France
| | - Camille Laporte
- Univ. Grenoble Alpes, CEA, Leti, Division for biology and healthcare technologies, Microfluidic systems and bioengineering Lab, F-38000, Grenoble, France
| | - Emily Tubbs
- Univ. Grenoble Alpes, CEA, Inserm, IRIG, Biomics, F-38000, Grenoble, France - Univ. Grenoble Alpes, LBFA et BEeSy, Inserm U1055, F-38000, Grenoble, France
| | - Xavier Gidrol
- Univ. Grenoble Alpes, CEA, Inserm, IRIG, Biomics, F-38000, Grenoble, France
| | - Amandine Pitaval
- Univ. Grenoble Alpes, CEA, Inserm, IRIG, Biomics, F-38000, Grenoble, France
| |
Collapse
|
14
|
Zhang P, Shao N, Qin L. Recent Advances in Microfluidic Platforms for Programming Cell-Based Living Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005944. [PMID: 34270839 DOI: 10.1002/adma.202005944] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/20/2020] [Indexed: 06/13/2023]
Abstract
Cell-based living materials, including single cells, cell-laden fibers, cell sheets, organoids, and organs, have attracted intensive interests owing to their widespread applications in cancer therapy, regenerative medicine, drug development, and so on. Significant progress in materials, microfabrication, and cell biology have promoted the development of numerous promising microfluidic platforms for programming these cell-based living materials with a high-throughput, scalable, and efficient manner. In this review, the recent progress of novel microfluidic platforms for programming cell-based living materials is presented. First, the unique features, categories, and materials and related fabrication methods of microfluidic platforms are briefly introduced. From the viewpoint of the design principles of the microfluidic platforms, the recent significant advances of programming single cells, cell-laden fibers, cell sheets, organoids, and organs in turns are then highlighted. Last, by providing personal perspectives on challenges and future trends, this review aims to motivate researchers from the fields of materials and engineering to work together with biologists and physicians to promote the development of cell-based living materials for human healthcare-related applications.
Collapse
Affiliation(s)
- Pengchao Zhang
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY, 10065, USA
| | - Ning Shao
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY, 10065, USA
| | - Lidong Qin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY, 10065, USA
| |
Collapse
|
15
|
In Vitro Disease Models of the Endocrine Pancreas. Biomedicines 2021; 9:biomedicines9101415. [PMID: 34680532 PMCID: PMC8533367 DOI: 10.3390/biomedicines9101415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
The ethical constraints and shortcomings of animal models, combined with the demand to study disease pathogenesis under controlled conditions, are giving rise to a new field at the interface of tissue engineering and pathophysiology, which focuses on the development of in vitro models of disease. In vitro models are defined as synthetic experimental systems that contain living human cells and mimic tissue- and organ-level physiology in vitro by taking advantage of recent advances in tissue engineering and microfabrication. This review provides an overview of in vitro models and focuses specifically on in vitro disease models of the endocrine pancreas and diabetes. First, we briefly review the anatomy, physiology, and pathophysiology of the human pancreas, with an emphasis on islets of Langerhans and beta cell dysfunction. We then discuss different types of in vitro models and fundamental elements that should be considered when developing an in vitro disease model. Finally, we review the current state and breakthroughs in the field of pancreatic in vitro models and conclude with some challenges that need to be addressed in the future development of in vitro models.
Collapse
|
16
|
Qu Z, Lou Q, Cooper DKC, Pu Z, Lu Y, Chen J, Ni Y, Zhan Y, Chen J, Li Z, Zhan N, Zeng Y, Tu Z, Cao H, Dai Y, Cai Z, Mou L. Potential roles of mesenchymal stromal cells in islet allo- and xenotransplantation for type 1 diabetes mellitus. Xenotransplantation 2021; 28:e12678. [PMID: 33569837 DOI: 10.1111/xen.12678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 01/05/2021] [Accepted: 01/23/2021] [Indexed: 12/14/2022]
Abstract
Islet transplantation is poised to play an important role in the treatment of type 1 diabetes mellitus (T1DM). However, there are several challenges limiting its widespread use, including the instant blood-mediated inflammatory reaction, hypoxic/ischemic injury, and the immune response. Mesenchymal stem/stromal cells (MSCs) are known to exert regenerative, immunoregulatory, angiogenic, and metabolic properties. Here, we review recent reports on the application of MSCs in islet allo- and xenotransplantation. We also document the clinical trials that have been undertaken or are currently underway, relating to the co-transplantation of islets and MSCs. Increasing evidence indicates that co-transplantation of MSCs prolongs islet graft survival by locally secreted protective factors that reduce immune reactivity and promote vascularization, cell survival, and regeneration. MSC therapy may be a promising option for islet transplantation in patients with T1DM.
Collapse
Affiliation(s)
- Zepeng Qu
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Qi Lou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Shenzhen Lansi Institute of Artificial Intelligence in Medicine, Shenzhen, China
| | - David K C Cooper
- Xenotransplantation Program, Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zuhui Pu
- Department of Radiology, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Ying Lu
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Jiao Chen
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yong Ni
- Department of Hepatopancreatobiliary Surgery, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yongqiang Zhan
- Department of Hepatopancreatobiliary Surgery, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Jun Chen
- Department of Hepatopancreatobiliary Surgery, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Zhenjie Li
- Department of Hepatopancreatobiliary Surgery, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Naiyang Zhan
- Department of Hepatopancreatobiliary Surgery, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yi Zeng
- Department of Hepatopancreatobiliary Surgery, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Ziwei Tu
- Department of Hepatopancreatobiliary Surgery, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Huayi Cao
- Department of Hepatopancreatobiliary Surgery, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yifan Dai
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Zhiming Cai
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Lisha Mou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| |
Collapse
|
17
|
Nalbach L, Roma LP, Schmitt BM, Becker V, Körbel C, Wrublewsky S, Pack M, Später T, Metzger W, Menger MM, Frueh FS, Götz C, Lin H, EM Fox J, MacDonald PE, Menger MD, Laschke MW, Ampofo E. Improvement of islet transplantation by the fusion of islet cells with functional blood vessels. EMBO Mol Med 2021; 13:e12616. [PMID: 33135383 PMCID: PMC7799357 DOI: 10.15252/emmm.202012616] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic islet transplantation still represents a promising therapeutic strategy for curative treatment of type 1 diabetes mellitus. However, a limited number of organ donors and insufficient vascularization with islet engraftment failure restrict the successful transfer of this approach into clinical practice. To overcome these problems, we herein introduce a novel strategy for the generation of prevascularized islet organoids by the fusion of pancreatic islet cells with functional native microvessels. These insulin-secreting organoids exhibit a significantly higher angiogenic activity compared to freshly isolated islets, cultured islets, and non-prevascularized islet organoids. This is caused by paracrine signaling between the β-cells and the microvessels, mediated by insulin binding to its corresponding receptor on endothelial cells. In vivo, the prevascularized islet organoids are rapidly blood-perfused after transplantation by the interconnection of their autochthonous microvasculature with surrounding blood vessels. As a consequence, a lower number of islet grafts are required to restore normoglycemia in diabetic mice. Thus, prevascularized islet organoids may be used to improve the success rates of clinical islet transplantation.
Collapse
Affiliation(s)
- Lisa Nalbach
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
| | - Leticia P Roma
- Biophysics DepartmentCenter for Human and Molecular BiologySaarland UniversityHomburg/SaarGermany
| | - Beate M Schmitt
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
| | - Vivien Becker
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
| | - Christina Körbel
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
| | - Selina Wrublewsky
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
| | - Mandy Pack
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
| | - Thomas Später
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
| | - Wolfgang Metzger
- Department of Trauma, Hand and Reconstructive SurgerySaarland UniversityHomburgGermany
| | - Maximilian M Menger
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
- Departement of Trauma and Reconstructive SurgeryEberhar Karls University TuebingenTuebingenGermany
| | - Florian S Frueh
- Division of Plastic Surgery and Hand SurgeryUniversity Hospital ZurichUniversity of ZurichZurichSwitzerland
| | - Claudia Götz
- Medical Biochemistry and Molecular BiologySaarland UniversityHomburgGermany
| | - Haopeng Lin
- Department of PharmacologyAlberta Diabetes InstituteUniversity of AlbertaEdmontonABCanada
| | - Joseline EM Fox
- Department of PharmacologyAlberta Diabetes InstituteUniversity of AlbertaEdmontonABCanada
| | - Patrick E MacDonald
- Department of PharmacologyAlberta Diabetes InstituteUniversity of AlbertaEdmontonABCanada
| | - Michael D Menger
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
| | - Matthias W Laschke
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
| | - Emmanuel Ampofo
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
| |
Collapse
|
18
|
Fuchs S, Ernst AU, Wang LH, Shariati K, Wang X, Liu Q, Ma M. Hydrogels in Emerging Technologies for Type 1 Diabetes. Chem Rev 2020; 121:11458-11526. [DOI: 10.1021/acs.chemrev.0c01062] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Stephanie Fuchs
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Alexander U. Ernst
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Long-Hai Wang
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Kaavian Shariati
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Xi Wang
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Qingsheng Liu
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Minglin Ma
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
19
|
Akolpoglu MB, Inceoglu Y, Bozuyuk U, Sousa AR, Oliveira MB, Mano JF, Kizilel S. Recent advances in the design of implantable insulin secreting heterocellular islet organoids. Biomaterials 2020; 269:120627. [PMID: 33401104 DOI: 10.1016/j.biomaterials.2020.120627] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022]
Abstract
Islet transplantation has proved one of the most remarkable transmissions from an experimental curiosity into a routine clinical application for the treatment of type I diabetes (T1D). Current efforts for taking this technology one-step further are now focusing on overcoming islet donor shortage, engraftment, prolonged islet availability, post-transplant vascularization, and coming up with new strategies to eliminate lifelong immunosuppression. To this end, insulin secreting 3D cell clusters composed of different types of cells, also referred as heterocellular islet organoids, spheroids, or pseudoislets, have been engineered to overcome the challenges encountered by the current islet transplantation protocols. β-cells or native islets are accompanied by helper cells, also referred to as accessory cells, to generate a cell cluster that is not only able to accurately secrete insulin in response to glucose, but also superior in terms of other key features (e.g. maintaining a vasculature, longer durability in vivo and not necessitating immunosuppression after transplantation). Over the past decade, numerous 3D cell culture techniques have been integrated to create an engineered heterocellular islet organoid that addresses current obstacles. Here, we first discuss the different cell types used to prepare heterocellular organoids for islet transplantation and their contribution to the organoids design. We then introduce various cell culture techniques that are incorporated to prepare a fully functional and insulin secreting organoids with select features. Finally, we discuss the challenges and present a future outlook for improving clinical outcomes of islet transplantation.
Collapse
Affiliation(s)
- M Birgul Akolpoglu
- Chemical and Biological Engineering, Koc University, Sariyer, 34450, Istanbul, Turkey
| | - Yasemin Inceoglu
- Chemical and Biological Engineering, Koc University, Sariyer, 34450, Istanbul, Turkey
| | - Ugur Bozuyuk
- Chemical and Biological Engineering, Koc University, Sariyer, 34450, Istanbul, Turkey
| | - Ana Rita Sousa
- Department of Chemistry, CICECO - Aveiro Institute of Materials. University of Aveiro. Campus Universitário de Santiago. 3810-193 Aveiro. Portugal
| | - Mariana B Oliveira
- Department of Chemistry, CICECO - Aveiro Institute of Materials. University of Aveiro. Campus Universitário de Santiago. 3810-193 Aveiro. Portugal.
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials. University of Aveiro. Campus Universitário de Santiago. 3810-193 Aveiro. Portugal
| | - Seda Kizilel
- Chemical and Biological Engineering, Koc University, Sariyer, 34450, Istanbul, Turkey.
| |
Collapse
|
20
|
Lee J, Park D, Seo Y, Chung JJ, Jung Y, Kim SH. Organ-Level Functional 3D Tissue Constructs with Complex Compartments and their Preclinical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002096. [PMID: 33103834 DOI: 10.1002/adma.202002096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/16/2020] [Indexed: 06/11/2023]
Abstract
There is an increasing interest in organ-level 3D tissue constructs, owing to their mirroring of in vivo-like features. This has resulted in a wide range of preclinical applications to obtain cell- or tissue-specific responses. Additionally, the development and improvement of sophisticated technologies, such as organoid generation, microfluidics, hydrogel engineering, and 3D printing, have enhanced 3D tissue constructs to become more elaborate. In particular, recent studies have focused on including complex compartments, i.e., vascular and innervation structured 3D tissue constructs, which mimic the nature of the human body in that all tissues/organs are interconnected and physiological phenomena are mediated through vascular and neural systems. Here, the strategies are categorized according to the number of dimensions (0D, 1D, 2D, and 3D) of the starting materials for scaling up, and novel approaches to introduce increased complexity in 3D tissue constructs are highlighted. Recent advances in preclinical applications are also investigated to gain insight into the future direction of 3D tissue construct research. Overcoming the challenges in improving organ-level functional 3D tissue constructs both in vitro and in vivo will ultimately become a life-saving tool in the biomedical field.
Collapse
Affiliation(s)
- Jaeseo Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - DoYeun Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Biomaterials Research Center, Korea Institute of Science and Technology (KIST), 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Yoojin Seo
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Justin J Chung
- Biomaterials Research Center, Korea Institute of Science and Technology (KIST), 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Youngmee Jung
- Biomaterials Research Center, Korea Institute of Science and Technology (KIST), 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Soo Hyun Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Biomaterials Research Center, Korea Institute of Science and Technology (KIST), 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| |
Collapse
|
21
|
Lee YN, Yi HJ, Goh H, Park JY, Ferber S, Shim IK, Kim SC. Spheroid Fabrication Using Concave Microwells Enhances the Differentiation Efficacy and Function of Insulin-Producing Cells via Cytoskeletal Changes. Cells 2020; 9:cells9122551. [PMID: 33261076 PMCID: PMC7768489 DOI: 10.3390/cells9122551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/11/2020] [Accepted: 11/24/2020] [Indexed: 01/21/2023] Open
Abstract
Pancreatic islet transplantation is the fundamental treatment for insulin-dependent diabetes; however, donor shortage is a major hurdle in its use as a standard treatment. Accordingly, differentiated insulin-producing cells (DIPCs) are being developed as a new islet source. Differentiation efficiency could be enhanced if the spheroid structure of the natural islets could be recapitulated. Here, we fabricated DIPC spheroids using concave microwells, which enabled large-scale production of spheroids of the desired size. We prepared DIPCs from human liver cells by trans-differentiation using transcription factor gene transduction. Islet-related gene expression and insulin secretion levels were higher in spheroids compared to those in single-cell DIPCs, whereas actin–myosin interactions significantly decreased. We verified actin–myosin-dependent insulin expression in single-cell DIPCs by using actin–myosin interaction inhibitors. Upon transplanting cells into the kidney capsule of diabetic mouse, blood glucose levels decreased to 200 mg/dL in spheroid-transplanted mice but not in single cell-transplanted mice. Spheroid-transplanted mice showed high engraftment efficiency in in vivo fluorescence imaging. These results demonstrated that spheroids fabricated using concave microwells enhanced the engraftment and functions of DIPCs via actin–myosin-mediated cytoskeletal changes. Our strategy potentially extends the clinical application of DIPCs for improved differentiation, glycemic control, and transplantation efficiency of islets.
Collapse
Affiliation(s)
- Yu Na Lee
- Asan Medical Center, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea; (Y.N.L.); (H.J.Y.); (H.G.); (J.Y.P.)
- Asan Medical Center, Department of Medical Science, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Hye Jin Yi
- Asan Medical Center, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea; (Y.N.L.); (H.J.Y.); (H.G.); (J.Y.P.)
- Asan Medical Center, Department of Medical Science, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Hanse Goh
- Asan Medical Center, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea; (Y.N.L.); (H.J.Y.); (H.G.); (J.Y.P.)
| | - Ji Yoon Park
- Asan Medical Center, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea; (Y.N.L.); (H.J.Y.); (H.G.); (J.Y.P.)
- Department of Chemistry, Wesleyan University, Middletown, CT 06457, USA
| | - Sarah Ferber
- Regenerative Medicine, Stem Cell and Tissue Engineering Center, Sheba Medical Center, Tel-Hashomer 52621, Israel;
- Dia-Cure, Acad. Nicolae Cajal Institute of Medical Scientific Research, Titu Maiorescu University, 022328 Bucharest, Romania
- Orgenesis Ltd., Ness-Ziona 7403631, Israel
- Department of Human Genetics, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - In Kyong Shim
- Asan Medical Center, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea; (Y.N.L.); (H.J.Y.); (H.G.); (J.Y.P.)
- Asan Medical Center, Department of Medical Science, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine, Seoul 05505, Korea
- Correspondence: or (I.K.S.); (S.C.K.); Tel.: +82-2-3010-4173 (I.K.S.); +82-2-3010-3936 (S.C.K.)
| | - Song Cheol Kim
- Asan Medical Center, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea; (Y.N.L.); (H.J.Y.); (H.G.); (J.Y.P.)
- Asan Medical Center, Department of Medical Science, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine, Seoul 05505, Korea
- Asan Medical Center, Department of Surgery, University of Ulsan College of Medicine, Seoul 05505, Korea
- Correspondence: or (I.K.S.); (S.C.K.); Tel.: +82-2-3010-4173 (I.K.S.); +82-2-3010-3936 (S.C.K.)
| |
Collapse
|
22
|
Watanabe T, Okitsu T, Ozawa F, Nagata S, Matsunari H, Nagashima H, Nagaya M, Teramae H, Takeuchi S. Millimeter-thick xenoislet-laden fibers as retrievable transplants mitigate foreign body reactions for long-term glycemic control in diabetic mice. Biomaterials 2020; 255:120162. [PMID: 32562943 DOI: 10.1016/j.biomaterials.2020.120162] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 05/19/2020] [Accepted: 05/29/2020] [Indexed: 12/20/2022]
Abstract
Transplantation technologies of pancreatic islets as well as stem cell-derived pancreatic beta cells encapsulated in hydrogel for the induction of immunoprotection could advance to treat type 1 diabetes mellitus, if the hydrogel transplants acquire retrievability through mitigating foreign body reactions after transplantation. Here, we demonstrate that the diameter of the fiber-shaped hydrogel transplants determines both in vivo cellular deposition onto themselves and their retrievability. Specifically, we found that the in vivo cellular deposition is significantly mitigated when the diameter is 1.0 mm and larger, and that 1.0 mm-thick xenoislet-laden fiber-shaped hydrogel transplants can be retrieved after being placed in the intraperitoneal cavities of immunocompetent diabetic mice for more than 100 days, during which period the hydrogel transplants can normalize the blood glucose concentrations of the mice. These findings could provide an innovative concept of a transplant that would promote the clinical application of stem cell-derived functional cells through improving their in vivo efficacy and safety.
Collapse
Affiliation(s)
- Takaichi Watanabe
- Institute of Industrial Science (IIS), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Teru Okitsu
- Institute of Industrial Science (IIS), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Fumisato Ozawa
- Institute of Industrial Science (IIS), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Shogo Nagata
- Institute of Industrial Science (IIS), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Hitomi Matsunari
- Meiji University International Institute for Bio-Resource Research, Kawasaki, 214-8571, Japan
| | - Hiroshi Nagashima
- Meiji University International Institute for Bio-Resource Research, Kawasaki, 214-8571, Japan; Laboratory of Developmental Engineering, Meiji University, Kawasaki, 214-8571, Japan
| | - Masaki Nagaya
- Meiji University International Institute for Bio-Resource Research, Kawasaki, 214-8571, Japan
| | - Hiroki Teramae
- Institute of Industrial Science (IIS), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Shoji Takeuchi
- Institute of Industrial Science (IIS), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan; Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
23
|
Liu H, Wang Y, Wang H, Zhao M, Tao T, Zhang X, Qin J. A Droplet Microfluidic System to Fabricate Hybrid Capsules Enabling Stem Cell Organoid Engineering. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903739. [PMID: 32537414 PMCID: PMC7284190 DOI: 10.1002/advs.201903739] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 05/14/2023]
Abstract
Organoids derived from self-organizing stem cells represent a major technological breakthrough with the potential to revolutionize biomedical research. However, building high-fidelity organoids in a reproducible and high-throughput manner remains challenging. Here, a droplet microfluidic system is developed for controllable fabrication of hybrid hydrogel capsules, which allows for massive 3D culture and formation of functional and uniform islet organoids derived from human-induced pluripotent stem cells (hiPSCs). In this all-in-water microfluidic system, an array of droplets is utilized as templates for one-step fabrication of binary capsules relying on interfacial complexation of oppositely charged Na-alginate (NaA) and chitosan (CS). The produced hybrid capsules exhibit high uniformity, and are biocompatible, stable, and permeable. The established system enables capsule production, 3D culture, and self-organizing formation of human islet organoids in a continuous process by encapsulating pancreatic endocrine cells from hiPSCs. The generated islet organoids contain islet-specific α- and β-like cells with high expression of pancreatic hormone specific genes and proteins. Moreover, they exhibit sensitive glucose-stimulated insulin secretion function, demonstrating the capability of these binary capsules to engineer human organoids from hiPSCs. The proposed system is scalable, easy-to-operate, and stable, which can offer a robust platform for advancing human organoids research and translational applications.
Collapse
Affiliation(s)
- Haitao Liu
- H. Liu, Y. Wang, H. Wang, M. Zhao, T. Tao, Prof. J. QinDivision of BiotechnologyCAS Key Laboratory of SSACDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
- H. Liu, Y. Wang, H. Wang, M. Zhao, T. Tao, Prof. J. QinUniversity of Chinese Academy of SciencesBeijing100049China
| | - Yaqing Wang
- H. Liu, Y. Wang, H. Wang, M. Zhao, T. Tao, Prof. J. QinDivision of BiotechnologyCAS Key Laboratory of SSACDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
- H. Liu, Y. Wang, H. Wang, M. Zhao, T. Tao, Prof. J. QinUniversity of Chinese Academy of SciencesBeijing100049China
| | - Hui Wang
- H. Liu, Y. Wang, H. Wang, M. Zhao, T. Tao, Prof. J. QinDivision of BiotechnologyCAS Key Laboratory of SSACDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
- H. Liu, Y. Wang, H. Wang, M. Zhao, T. Tao, Prof. J. QinUniversity of Chinese Academy of SciencesBeijing100049China
| | - Mengqian Zhao
- H. Liu, Y. Wang, H. Wang, M. Zhao, T. Tao, Prof. J. QinDivision of BiotechnologyCAS Key Laboratory of SSACDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
- H. Liu, Y. Wang, H. Wang, M. Zhao, T. Tao, Prof. J. QinUniversity of Chinese Academy of SciencesBeijing100049China
| | - Tingting Tao
- H. Liu, Y. Wang, H. Wang, M. Zhao, T. Tao, Prof. J. QinDivision of BiotechnologyCAS Key Laboratory of SSACDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
- H. Liu, Y. Wang, H. Wang, M. Zhao, T. Tao, Prof. J. QinUniversity of Chinese Academy of SciencesBeijing100049China
| | - Xu Zhang
- Dr. X. ZhangDepartment of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Jianhua Qin
- H. Liu, Y. Wang, H. Wang, M. Zhao, T. Tao, Prof. J. QinDivision of BiotechnologyCAS Key Laboratory of SSACDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
- H. Liu, Y. Wang, H. Wang, M. Zhao, T. Tao, Prof. J. QinUniversity of Chinese Academy of SciencesBeijing100049China
- Prof. J. QinInstitute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
- Prof. J. QinCAS Center for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghai200031China
| |
Collapse
|
24
|
Li X, Lang H, Li B, Zhang C, Sun N, Lin J, Zhang J. Change in Viability and Function of Pancreatic Islets after Coculture with Mesenchymal Stromal Cells: A Systemic Review and Meta-Analysis. J Diabetes Res 2020; 2020:5860417. [PMID: 32309447 PMCID: PMC7132593 DOI: 10.1155/2020/5860417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 03/16/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND There is no clear consensus on the effect of coculture of islets with mesenchymal stem cells (MSCs) on islet function and viability. METHODS We conducted a meta-analysis of relevant studies to evaluate the effect of coculture of islets with MSCs on the function and viability of islets, both in vitro and in vivo. We searched PubMed, Embase, and Web of Science databases for all relevant studies that compared the effect of coculture of islets with MSCs on the function and viability of islets (language of publication: English; reference period: January 2000-May 2019). Data pertaining to islet function and viability, concentrations of some cytokines, and in vivo experimental outcomes were extracted and compared. RESULTS Twenty-four articles were included in the meta-analysis. In comparison to islets cultured alone, coculture of islets with MSCs was associated with a significantly higher islet viability [weighted mean difference (WMD), -15.59; -22.34 to -8.83; P < 0.00001], insulin level (WMD, -5.74; -9.29 to -2.19; P = 0.002), insulin secretion index (WMD, -2.45; -3.70 to -1.21; P = 0.0001), and higher concentrations of interleukin-6 (WMD, -1225.66; -2044.47 to -406.86; P = 0.003) and vascular endothelial growth factor (WMD, -1.19; -2.25 to -0.14; P = 0.03). Direct coculture of islets and MSCs significantly increased islet viability (WMD, -19.82; -26.56 to -13.07; P < 0.00001). In the in vivo experiments, coculture of islets with MSCs induced lower fasting blood glucose level (on postoperative days 21 and 28, WMD, 102.60; 27.14 to 178.05; P = 0.008 and WMD, 121.19; 49.56 to 192.82; P = 0.0009) and better glucose tolerance (blood glucose at 30 minutes after intraperitoneal injection of glucose, WMD, 85.92; 5.33 to 166.51; P = 0.04). CONCLUSION Coculture of islets with MSCs improves insulin secretory function of islets and enhances islet viability. Direct coculture of two cells significantly increased islet viability. MSC-based strategy may be beneficial for clinical islet transplantation for type 1 diabetes in the future.
Collapse
Affiliation(s)
- Xiaohang Li
- Department of Hepatobiliary Surgery and Organ Transplant, First Affiliated Hospital, China Medical University, No. 155, Nanjing North Street, Shenyang, 110001 Liaoning Province, China
| | - Hongxin Lang
- Department of Stem Cells and Regenerative Medicine, Shenyang Key Laboratory for Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, No. 77 Puhe Street, Shenbei New District, Shenyang, 110122 Liaoning Province, China
| | - Baifeng Li
- Department of Hepatobiliary Surgery and Organ Transplant, First Affiliated Hospital, China Medical University, No. 155, Nanjing North Street, Shenyang, 110001 Liaoning Province, China
| | - Chengshuo Zhang
- Department of Hepatobiliary Surgery and Organ Transplant, First Affiliated Hospital, China Medical University, No. 155, Nanjing North Street, Shenyang, 110001 Liaoning Province, China
| | - Ning Sun
- Department of Hepatobiliary Surgery and Organ Transplant, First Affiliated Hospital, China Medical University, No. 155, Nanjing North Street, Shenyang, 110001 Liaoning Province, China
| | - Jianzhen Lin
- Department of Hepatobiliary Surgery and Organ Transplant, First Affiliated Hospital, China Medical University, No. 155, Nanjing North Street, Shenyang, 110001 Liaoning Province, China
| | - Jialin Zhang
- Department of Hepatobiliary Surgery and Organ Transplant, First Affiliated Hospital, China Medical University, No. 155, Nanjing North Street, Shenyang, 110001 Liaoning Province, China
| |
Collapse
|
25
|
Jun Y, Lee J, Choi S, Yang JH, Sander M, Chung S, Lee SH. In vivo-mimicking microfluidic perfusion culture of pancreatic islet spheroids. SCIENCE ADVANCES 2019; 5:eaax4520. [PMID: 31807701 PMCID: PMC6881167 DOI: 10.1126/sciadv.aax4520] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 09/25/2019] [Indexed: 05/18/2023]
Abstract
Native pancreatic islets interact with neighboring cells by establishing three-dimensional (3D) structures, and are surrounded by perfusion at an interstitial flow level. However, flow effects are generally ignored in islet culture models, although cell perfusion is known to improve the cell microenvironment and to mimic in vivo physiology better than static culture systems. Here, we have developed functional islet spheroids using a microfluidic chip that mimics interstitial flow conditions with reduced shear cell damage. Dynamic culture, compared to static culture, enhanced islet health and maintenance of islet endothelial cells, reconstituting the main component of islet extracellular matrix within spheroids. Optimized flow condition allowed localization of secreted soluble factors near spheroids, facilitating diffusion-mediated paracrine interactions within islets, and enabled long-term maintenance of islet morphology and function for a month. The proposed model can aid islet preconditioning before transplantation and has potential applications as an in vitro model for diabetic drug testing.
Collapse
Affiliation(s)
- Yesl Jun
- Departments of Pediatrics and Cellular and Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA
- School of Mechanical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - JaeSeo Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Seongkyun Choi
- School of Mechanical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Ji Hun Yang
- School of Mechanical Engineering, Korea University, Seoul 02841, Republic of Korea
- Next & Bio Inc., Seoul National University, Seoul 08826, Republic of Korea
| | - Maike Sander
- Departments of Pediatrics and Cellular and Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Seok Chung
- School of Mechanical Engineering, Korea University, Seoul 02841, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Sang-Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
26
|
Insulin-producing organoids engineered from islet and amniotic epithelial cells to treat diabetes. Nat Commun 2019; 10:4491. [PMID: 31582751 PMCID: PMC6776618 DOI: 10.1038/s41467-019-12472-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/12/2019] [Indexed: 12/13/2022] Open
Abstract
Maintaining long-term euglycemia after intraportal islet transplantation is hampered by the considerable islet loss in the peri-transplant period attributed to inflammation, ischemia and poor angiogenesis. Here, we show that viable and functional islet organoids can be successfully generated from dissociated islet cells (ICs) and human amniotic epithelial cells (hAECs). Incorporation of hAECs into islet organoids markedly enhances engraftment, viability and graft function in a mouse type 1 diabetes model. Our results demonstrate that the integration of hAECs into islet cell organoids has great potential in the development of cell-based therapies for type 1 diabetes. Engineering of functional mini-organs using this strategy will allow the exploration of more favorable implantation sites, and can be expanded to unlimited (stem-cell-derived or xenogeneic) sources of insulin-producing cells. Islet transplantation is a feasible approach to treat type I diabetes, however inflammation and poor vascularisation impair long-term engraftment. Here the authors show that incorporating human amniotic epithelial cells into islet organoids improves engraftment and function of organoids, through enhanced revascularisation.
Collapse
|
27
|
Hsiao CH, Ji ATQ, Chang CC, Chien MH, Lee LM, Ho JHC. Mesenchymal stem cells restore the sperm motility from testicular torsion-detorsion injury by regulation of glucose metabolism in sperm. Stem Cell Res Ther 2019; 10:270. [PMID: 31445515 PMCID: PMC6708217 DOI: 10.1186/s13287-019-1351-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/11/2019] [Accepted: 07/22/2019] [Indexed: 02/06/2023] Open
Abstract
Background Testicular torsion is an urological emergency that may lead to infertility due to ischemic injury. Promptly surgical correction by orchiopexy is the only way to avoid infertility and no effective treatment for restoration of spermatogenesis. We previously reported that mesenchymal stem cells (MSCs), through local injection upon testicular torsion-detorsion, restored the spermatogenesis without differentiation into sperm. In this study, molecular mechanisms of MSCs in regulating germ cell activity induced by testicular torsion-detorsion were investigated. Methods Sixteen male Sprague-Dawley rats 6–8 weeks old received left testis 720° torsion for 3 h followed by detorsion with or without MSCs. Right inguinal skin incision without testicular torsion served as control. MSCs with 3 × 104 cells were locally injected into left testis 30 min before detorsion. Three days after the surgery, orchiectomy was executed and the testis, epididymis, and sperm were separated to each other. Functional assessments on sperm included counting sperm amount and sperm motility, staining F-actin, and quantifying adenosine triphosphate (ATP) content. The hallmarks of glycogenesis and glycolysis in each tissue segment were measured by Western blot. Results Testicular torsion-detorsion significantly decreased the amount of sperm, inhibited the motility, declined the F-actin expression, and reduced the content of ATP in sperm. Local injection of MSCs improved sperm function, particularly in sperm motility. With MSCs, ATP content and F-actin were preserved after testicular torsion-detorsion. MSCs significantly reversed the imbalance of glycolysis in sperm and testis induced by testicular torsion-detorsion, as evidenced by increasing the expression of phosphoglycerate kinase 2 and glyceraldehyde-3-phosphate dehydrogenase-spermatogenic, activating Akt, and increasing glycogen synthase kinase 3 (GSK3), which led to the increase in glycolysis cascades and ATP production. Human stem cell factor contributed the activation of Akt/GSK3 axis when sperm suffered from testicular torsion-detorsion-induced germ cell injury. Conclusions Local injection of MSCs into a testis damaged by testicular torsion-detorsion restores sperm function mainly through the improvement of sperm motility and energy. MSCs reversed the imbalance of glycogenesis and glycolysis in sperm by regulating Akt/GSK3 axis. Thus, MSCs may potentially rescue torsion-detorsion-induced infertility via local injection.
Collapse
Affiliation(s)
- Chi-Hao Hsiao
- Graduate Institute of Clinical Medicine, Taipei Medical University, #250 Wu-Hsing Street, Taipei, 110, Taiwan.,Department of Urology, Wan Fang Hospital, Taipei Medical University, #111, Section 3, Hsing-Long Road, Taipei, 116, Taiwan
| | - Andrea Tung-Qian Ji
- Center for Stem Cell Research, Wan Fang Hospital, Taipei Medical University, #111, Section 3, Hsing-Long Road, Taipei, 116, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, No.201, Sec.2, Shih-Pai Rd. Peitou, Taipei, 11221, Taiwan
| | - Chih-Cheng Chang
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Pulmonary, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, #291, Zhongzheng Road, Zhonghe District, New Taipei City, 235, Taiwan
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, Taipei Medical University, #250 Wu-Hsing Street, Taipei, 110, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Liang-Ming Lee
- Department of Urology, Wan Fang Hospital, Taipei Medical University, #111, Section 3, Hsing-Long Road, Taipei, 116, Taiwan
| | - Jennifer Hui-Chun Ho
- Graduate Institute of Clinical Medicine, Taipei Medical University, #250 Wu-Hsing Street, Taipei, 110, Taiwan. .,Center for Stem Cell Research, Wan Fang Hospital, Taipei Medical University, #111, Section 3, Hsing-Long Road, Taipei, 116, Taiwan. .,Institute of Clinical Medicine, National Yang-Ming University, No.201, Sec.2, Shih-Pai Rd. Peitou, Taipei, 11221, Taiwan.
| |
Collapse
|
28
|
Pathak V, Pathak NM, O'Neill CL, Guduric-Fuchs J, Medina RJ. Therapies for Type 1 Diabetes: Current Scenario and Future Perspectives. CLINICAL MEDICINE INSIGHTS-ENDOCRINOLOGY AND DIABETES 2019; 12:1179551419844521. [PMID: 31105434 PMCID: PMC6501476 DOI: 10.1177/1179551419844521] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 02/06/2023]
Abstract
Type 1 diabetes (T1D) is caused by autoimmune destruction of insulin-producing β cells located in the endocrine pancreas in areas known as islets of Langerhans. The current standard-of-care for T1D is exogenous insulin replacement therapy. Recent developments in this field include the hybrid closed-loop system for regulated insulin delivery and long-acting insulins. Clinical studies on prediction and prevention of diabetes-associated complications have demonstrated the importance of early treatment and glucose control for reducing the risk of developing diabetic complications. Transplantation of primary islets offers an effective approach for treating patients with T1D. However, this strategy is hampered by challenges such as the limited availability of islets, extensive death of islet cells, and poor vascular engraftment of islets post-transplantation. Accordingly, there are considerable efforts currently underway for enhancing islet transplantation efficiency by harnessing the beneficial actions of stem cells. This review will provide an overview of currently available therapeutic options for T1D, and discuss the growing evidence that supports the use of stem cell approaches to enhance therapeutic outcomes.
Collapse
Affiliation(s)
- Varun Pathak
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Nupur Madhur Pathak
- The SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, United Kingdom
| | - Christina L O'Neill
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Jasenka Guduric-Fuchs
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Reinhold J Medina
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
29
|
Tao T, Wang Y, Chen W, Li Z, Su W, Guo Y, Deng P, Qin J. Engineering human islet organoids from iPSCs using an organ-on-chip platform. LAB ON A CHIP 2019; 19:948-958. [PMID: 30719525 DOI: 10.1039/c8lc01298a] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Human pluripotent stem cell (hPSC)-derived islet cells provide promising resources for diabetes studies, cell replacement treatment and drug screening. Recently, hPSC-derived organoids have represented a new class of in vitro organ models for disease modeling and regenerative medicine. However, rebuilding biomimetic human islet organoids from hPSCs remains challenging. Here, we present a new strategy to engineer human islet organoids derived from human induced pluripotent stem cells (hiPSCs) using an organ-on-a-chip platform combined with stem cell developmental principles. The microsystem contains a multi-layer microfluidic device that allows controllable aggregation of embryoid bodies (EBs), in situ pancreatic differentiation and generation of heterogeneous islet organoids in parallel under perfused 3D culture in a single device. The generated islet organoids contain heterogeneous islet-specific α and β-like cells that exhibit favorable growth and cell viability. They also show enhanced expression of pancreatic β-cell specific genes and proteins (PDX1 and NKX6.1) and increased β-cell hormone specific INS gene and C-peptide protein expressions under perfused 3D culture conditions compared to static cultures. In addition, the islet organoids exhibit more sensitive glucose-stimulated insulin secretion (GSIS) and higher Ca2+ flux, indicating the role of biomimetic mechanical flow in promoting endocrine cell differentiation and maturation of islet organoids. This islet-on-a-chip system is robust and amenable to real-time imaging and in situ tracking of islet organoid growth, which may provide a promising platform for organoid engineering, disease modeling, drug testing and regenerative medicine.
Collapse
Affiliation(s)
- Tingting Tao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Kim TH, Choi JH, Jun Y, Lim SM, Park S, Paek JY, Lee SH, Hwang JY, Kim GJ. 3D-cultured human placenta-derived mesenchymal stem cell spheroids enhance ovary function by inducing folliculogenesis. Sci Rep 2018; 8:15313. [PMID: 30333505 PMCID: PMC6193033 DOI: 10.1038/s41598-018-33575-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 09/18/2018] [Indexed: 12/18/2022] Open
Abstract
Placenta-derived mesenchymal stem cells (PD-MSCs) have numerous advantages over other adult MSCs that make them an attractive cell source for regenerative medicine. Here, we demonstrate the therapeutic effect of PD-MSCs in ovariectomized (Ovx) rats and compare their efficacy when generated via a conventional monolayer culture system (2D, naïve) and a spheroid culture system (3D, spheroid). PD-MSC transplantation significantly increased the estradiol level in Ovx rats compared with the non-transplantation (NTx) group. In particular, the estradiol level in the Spheroid group was significantly higher than that in the Naïve group at 2 weeks. Spheroid PD-MSCs exhibited a significantly higher efficiency of engraftment onto ovarian tissues at 2 weeks. The mRNA and protein expression levels of Nanos3, Nobox, and Lhx8 were also significantly increased in the Spheroid group compared with those in the NTx group at 1 and 2 weeks. These results suggest that PD-MSC transplantation can restore ovarian function in Ovx rats by increasing estrogen production and enhancing folliculogenesis-related gene expression levels and further indicate that spheroid-cultured PD-MSCs have enhanced therapeutic potential via increased engraftment efficiency. These findings improve our understanding of stem-cell-based therapies for reproductive systems and may suggest new avenues for developing efficient therapies using 3D cultivation systems.
Collapse
Affiliation(s)
- Tae-Hee Kim
- Department of Obstetrics and Gynecology, Soonchunhyang University College of Medicine Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon-si, Gyunggi-do, Republic of Korea
| | - Jong Ho Choi
- Department of Biomedical Science, CHA University, 689, Sampyeong-dong, Bundang-gu, Seongnam-si, Gyunggi-do, Republic of Korea
| | - Yesl Jun
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, Republic of Korea
| | - Seung Mook Lim
- Department of Biomedical Science, CHA University, 689, Sampyeong-dong, Bundang-gu, Seongnam-si, Gyunggi-do, Republic of Korea
| | - Sohae Park
- Department of Biomedical Science, CHA University, 689, Sampyeong-dong, Bundang-gu, Seongnam-si, Gyunggi-do, Republic of Korea
| | - Jin-Young Paek
- Department of Clinical Pathology, CHA Gangnam Medical Center, CHA University, School of Medicine, 566 Nonhyun-ro, Gangnam-gu, Seoul, Republic of Korea
| | - Sang-Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, Republic of Korea.,Department of Biomedical Engineering, College of Health Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, Republic of Korea
| | - Ji-Young Hwang
- Department of Biomedical Engineering, College of Health Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, Republic of Korea.
| | - Gi Jin Kim
- Department of Biomedical Science, CHA University, 689, Sampyeong-dong, Bundang-gu, Seongnam-si, Gyunggi-do, Republic of Korea.
| |
Collapse
|
31
|
Barati G, Nadri S, Hajian R, Rahmani A, Mostafavi H, Mortazavi Y, Taromchi AH. Differentiation of microfluidic‐encapsulated trabecular meshwork mesenchymal stem cells into insulin producing cells and their impact on diabetic rats. J Cell Physiol 2018; 234:6801-6809. [DOI: 10.1002/jcp.27426] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 08/22/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Ghasem Barati
- Department of Medical Biotechnology and Nanotechnology School of Medicine, Zanjan University of Medical Sciences Zanjan Iran
| | - Samad Nadri
- Department of Medical Biotechnology and Nanotechnology School of Medicine, Zanjan University of Medical Sciences Zanjan Iran
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences Zanjan Iran
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences Zanjan Iran
| | - Ramin Hajian
- Novel Fluidic Systems Pioneers Co., Innovation & Entrepreneurship Center of Amirkabir University of Technology Tehran Iran
| | - Ali Rahmani
- Department of Medical Biotechnology and Nanotechnology School of Medicine, Zanjan University of Medical Sciences Zanjan Iran
| | - Hossein Mostafavi
- Department of Physiology and Pharmacology School of Medicine, Zanjan University of Medical Sciences Zanjan Iran
| | - Yousef Mortazavi
- Department of Medical Biotechnology and Nanotechnology School of Medicine, Zanjan University of Medical Sciences Zanjan Iran
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences Zanjan Iran
| | - Amir Hossein Taromchi
- Department of Medical Biotechnology and Nanotechnology School of Medicine, Zanjan University of Medical Sciences Zanjan Iran
| |
Collapse
|
32
|
Petry F, Weidner T, Czermak P, Salzig D. Three-Dimensional Bioreactor Technologies for the Cocultivation of Human Mesenchymal Stem/Stromal Cells and Beta Cells. Stem Cells Int 2018; 2018:2547098. [PMID: 29731775 PMCID: PMC5872596 DOI: 10.1155/2018/2547098] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/31/2017] [Indexed: 02/06/2023] Open
Abstract
Diabetes is a prominent health problem caused by the failure of pancreatic beta cells. One therapeutic approach is the transplantation of functional beta cells, but it is difficult to generate sufficient beta cells in vitro and to ensure these cells remain viable at the transplantation site. Beta cells suffer from hypoxia, undergo apoptosis, or are attacked by the host immune system. Human mesenchymal stem/stromal cells (hMSCs) can improve the functionality and survival of beta cells in vivo and in vitro due to direct cell contact or the secretion of trophic factors. Current cocultivation concepts with beta cells are simple and cannot exploit the favorable properties of hMSCs. Beta cells need a three-dimensional (3D) environment to function correctly, and the cocultivation setup is therefore more complex. This review discusses 3D cultivation forms (aggregates, capsules, and carriers) for hMSCs and beta cells and strategies for large-scale cultivation. We have determined process parameters that must be balanced and considered for the cocultivation of hMSCs and beta cells, and we present several bioreactor setups that are suitable for such an innovative cocultivation approach. Bioprocess engineering of the cocultivation processes is necessary to achieve successful beta cell therapy.
Collapse
Affiliation(s)
- Florian Petry
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstraße 14, 35390 Giessen, Germany
| | - Tobias Weidner
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstraße 14, 35390 Giessen, Germany
| | - Peter Czermak
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstraße 14, 35390 Giessen, Germany
- Department of Chemical Engineering, Kansas State University, Manhattan, KS, USA
- Project Group Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Winchesterstr. 3, 35394 Giessen, Germany
| | - Denise Salzig
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstraße 14, 35390 Giessen, Germany
| |
Collapse
|
33
|
Rojas-Canales DM, Waibel M, Forget A, Penko D, Nitschke J, Harding FJ, Delalat B, Blencowe A, Loudovaris T, Grey ST, Thomas HE, Kay TWH, Drogemuller CJ, Voelcker NH, Coates PT. Oxygen-permeable microwell device maintains islet mass and integrity during shipping. Endocr Connect 2018; 7:490-503. [PMID: 29483160 PMCID: PMC5861371 DOI: 10.1530/ec-17-0349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 02/26/2018] [Indexed: 01/05/2023]
Abstract
Islet transplantation is currently the only minimally invasive therapy available for patients with type 1 diabetes that can lead to insulin independence; however, it is limited to only a small number of patients. Although clinical procedures have improved in the isolation and culture of islets, a large number of islets are still lost in the pre-transplant period, limiting the success of this treatment. Moreover, current practice includes islets being prepared at specialized centers, which are sometimes remote to the transplant location. Thus, a critical point of intervention to maintain the quality and quantity of isolated islets is during transportation between isolation centers and the transplanting hospitals, during which 20-40% of functional islets can be lost. The current study investigated the use of an oxygen-permeable PDMS microwell device for long-distance transportation of isolated islets. We demonstrate that the microwell device protected islets from aggregation during transport, maintaining viability and average islet size during shipping.
Collapse
Affiliation(s)
- Darling M Rojas-Canales
- The Centre for Clinical and Experimental Transplantation (CCET) The Royal Adelaide HospitalAdelaide, South Australia, Australia
- Cooperative Research Centre for Cell Therapy Manufacturing (CRC-CTM)Adelaide, South Australia, Australia
- Department of MedicineFaculty of Health and Medical Sciences, University of Adelaide, South Australia, Australia
| | - Michaela Waibel
- Cooperative Research Centre for Cell Therapy Manufacturing (CRC-CTM)Adelaide, South Australia, Australia
- St Vincent's Institute of Medical ResearchFitzroy, Victoria, Australia
- The University of MelbourneDepartment of Medicine, St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Aurelien Forget
- Science and Engineering FacultyQueensland University of Technology, Brisbane, Queensland, Australia
| | - Daniella Penko
- The Centre for Clinical and Experimental Transplantation (CCET) The Royal Adelaide HospitalAdelaide, South Australia, Australia
- Cooperative Research Centre for Cell Therapy Manufacturing (CRC-CTM)Adelaide, South Australia, Australia
- Department of MedicineFaculty of Health and Medical Sciences, University of Adelaide, South Australia, Australia
| | - Jodie Nitschke
- The Centre for Clinical and Experimental Transplantation (CCET) The Royal Adelaide HospitalAdelaide, South Australia, Australia
- Cooperative Research Centre for Cell Therapy Manufacturing (CRC-CTM)Adelaide, South Australia, Australia
- Department of MedicineFaculty of Health and Medical Sciences, University of Adelaide, South Australia, Australia
| | - Fran J Harding
- Cooperative Research Centre for Cell Therapy Manufacturing (CRC-CTM)Adelaide, South Australia, Australia
- Future Industries InstituteUniversity of South Australia, Mawson Lakes, South Australia, Australia
| | - Bahman Delalat
- Cooperative Research Centre for Cell Therapy Manufacturing (CRC-CTM)Adelaide, South Australia, Australia
- Future Industries InstituteUniversity of South Australia, Mawson Lakes, South Australia, Australia
| | - Anton Blencowe
- Cooperative Research Centre for Cell Therapy Manufacturing (CRC-CTM)Adelaide, South Australia, Australia
- Future Industries InstituteUniversity of South Australia, Mawson Lakes, South Australia, Australia
- School of Pharmacy and Medical SciencesUniversity of South Australia, Adelaide, South Australia, Australia
| | - Thomas Loudovaris
- Cooperative Research Centre for Cell Therapy Manufacturing (CRC-CTM)Adelaide, South Australia, Australia
- St Vincent's Institute of Medical ResearchFitzroy, Victoria, Australia
| | - Shane T Grey
- The Centre for Clinical and Experimental Transplantation (CCET) The Royal Adelaide HospitalAdelaide, South Australia, Australia
- Transplantation Immunology GroupGarvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Helen E Thomas
- Cooperative Research Centre for Cell Therapy Manufacturing (CRC-CTM)Adelaide, South Australia, Australia
- St Vincent's Institute of Medical ResearchFitzroy, Victoria, Australia
- The University of MelbourneDepartment of Medicine, St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Thomas W H Kay
- Cooperative Research Centre for Cell Therapy Manufacturing (CRC-CTM)Adelaide, South Australia, Australia
- St Vincent's Institute of Medical ResearchFitzroy, Victoria, Australia
- The University of MelbourneDepartment of Medicine, St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Chris J Drogemuller
- The Centre for Clinical and Experimental Transplantation (CCET) The Royal Adelaide HospitalAdelaide, South Australia, Australia
- Cooperative Research Centre for Cell Therapy Manufacturing (CRC-CTM)Adelaide, South Australia, Australia
- Department of MedicineFaculty of Health and Medical Sciences, University of Adelaide, South Australia, Australia
| | - Nicolas H Voelcker
- Future Industries InstituteUniversity of South Australia, Mawson Lakes, South Australia, Australia
- Monash Institute of Pharmaceutical SciencesMonash University, Parkville, Victoria, Australia
| | - Patrick T Coates
- The Centre for Clinical and Experimental Transplantation (CCET) The Royal Adelaide HospitalAdelaide, South Australia, Australia
- Cooperative Research Centre for Cell Therapy Manufacturing (CRC-CTM)Adelaide, South Australia, Australia
- Department of MedicineFaculty of Health and Medical Sciences, University of Adelaide, South Australia, Australia
| |
Collapse
|
34
|
Lee G, Jun Y, Jang H, Yoon J, Lee J, Hong M, Chung S, Kim DH, Lee S. Enhanced oxygen permeability in membrane-bottomed concave microwells for the formation of pancreatic islet spheroids. Acta Biomater 2018; 65:185-196. [PMID: 29101017 DOI: 10.1016/j.actbio.2017.10.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 10/22/2017] [Accepted: 10/30/2017] [Indexed: 12/20/2022]
Abstract
Oxygen availability is a critical factor in regulating cell viability that ultimately contributes to the normal morphogenesis and functionality of human tissues. Among various cell culture platforms, construction of 3D multicellular spheroids based on microwell arrays has been extensively applied to reconstitute in vitro human tissue models due to its precise control of tissue culture conditions as well as simple fabrication processes. However, an adequate supply of oxygen into the spheroidal cellular aggregation still remains one of the main challenges to producing healthy in vitro spheroidal tissue models. Here, we present a novel design for controlling the oxygen distribution in concave microwell arrays. We show that oxygen permeability into the microwell is tightly regulated by varying the poly-dimethylsiloxane (PDMS) bottom thickness of the concave microwells. Moreover, we validate the enhanced performance of the engineered microwell arrays by culturing non-proliferated primary rat pancreatic islet spheroids on varying bottom thickness from 10 μm to 1050 μm. Morphological and functional analyses performed on the pancreatic islet spheroids grown for 14 days prove the long-term stability, enhanced viability, and increased hormone secretion under the sufficient oxygen delivery conditions. We expect our results could provide knowledge on oxygen distribution in 3-dimensional spheroidal cell structures and critical design concept for tissue engineering applications. STATEMENT OF SIGNIFICANCE In this study, we present a noble design to control the oxygen distribution in concave microwell arrays for the formation of highly functional pancreatic islet spheroids by engineering the bottom of the microwells. Our new platform significantly enhanced oxygen permeability that turned out to improve cell viability and spheroidal functionality compared to the conventional thick-bottomed 3-D culture system. Therefore, we believe that this could be a promising medical biotechnology platform to further develop high-throughput tissue screening system as well as in vivo-mimicking customised 3-D tissue culture systems.
Collapse
|
35
|
Berezin AE. New Trends in Stem Cell Transplantation in Diabetes Mellitus Type I and Type II. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-3-319-55687-1_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
36
|
Pancreatic Islet Transplantation Technologies: State of the Art of Micro- and Macro-Encapsulation. CURRENT TRANSPLANTATION REPORTS 2017. [DOI: 10.1007/s40472-017-0154-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
37
|
Lee SI, Ko Y, Park JB. Evaluation of the shape, viability, stemness and osteogenic differentiation of cell spheroids formed from human gingiva-derived stem cells and osteoprecursor cells. Exp Ther Med 2017; 13:3467-3473. [PMID: 28587426 PMCID: PMC5450690 DOI: 10.3892/etm.2017.4388] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 03/17/2017] [Indexed: 12/14/2022] Open
Abstract
The present study was performed to create stem cell spheroids from human gingiva-derived stem cells and osteoprecursor cells and to evaluate the maintenance of the stemness, the viability and osteogenic differentiation of the cell spheroids. Gingiva-derived stem cells were isolated, and a total of 6×105 stem cells and osteoprecursor cells were seeded into concave micromolds at various ratios. Gingiva-derived stem cells and/or osteoprecursor cells formed spheroids in concave microwells. The spheroids demonstrated a smaller diameter when the number of osteoprecursor cells seeded was lower. The majority of cells in the spheroids were identified to be live cells and the cell spheroids preserved viability throughout the experimental period. The cell spheroids, which contained stem cells, were positive for stem-cell markers. Cell spheroids in concave microwells demonstrated a statistically significant increase in alkaline phosphatase activity as time progressed (P<0.05). A statistically significant difference in phosphatase activity was observed in the stem cell alone group when compared with the osteoprecursor cell group at day 5 (P<0.05). Mineralized extracellular deposits were observed in each group after Alizarin Red S staining. Within the limits of the present study, cell spheroids from gingival cells and osteoprecursor cells maintained shape, viability, stemness and osteogenic differentiation potential.
Collapse
Affiliation(s)
- Sung-Il Lee
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Youngkyung Ko
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jun-Beom Park
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
38
|
de Souza BM, Bouças AP, de Oliveira FDS, Reis KP, Ziegelmann P, Bauer AC, Crispim D. Effect of co-culture of mesenchymal stem/stromal cells with pancreatic islets on viability and function outcomes: a systematic review and meta-analysis. Islets 2017; 9:30-42. [PMID: 28151049 PMCID: PMC5345749 DOI: 10.1080/19382014.2017.1286434] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/05/2017] [Accepted: 01/20/2017] [Indexed: 12/12/2022] Open
Abstract
The maintenance of viable and functional pancreatic islets is crucial for successful islet transplantation from brain-dead donors. To overcome islet quality loss during culture, some studies have co-cultured islets with mesenchymal stem/stromal cells (MSC). However, it is still uncertain if MSC-secreted factors are enough to improve islet quality or if a physical contact between MSCs and islets is needed. Therefore, we performed a systematic review and meta-analysis to clarify the effect of different culture contact systems of islets with MSCs on viability and insulin secretion outcomes. Pubmed and Embase were searched. Twenty studies fulfilled the eligibility criteria and were included in the qualitative synthesis and/or meta-analysis. For both outcomes, pooled weighted mean differences (WMD) between islet cultured alone (control group) and the co-culture condition were calculated. Viability mean was higher in islets co-cultured with MSCs compared with islet cultured alone [WMD = 18.08 (95% CI 12.59-23.57)]. The improvement in viability was higher in islets co-cultured in indirect or mixed contact with MSCs than in direct physical contact (P <0.001). Moreover, the mean of insulin stimulation index (ISI) was higher in islets from co-culture condition compared with islet cultured alone [WMD = 0.83 (95% CI 0.54-1.13)], independently of contact system. Results from the studies that were analyzed only qualitatively are in accordance with meta-analysis data. Co-culture of islets with MSCs has the potential for protecting islets from injury during culture period. Moreover, culture time appears to influence the beneficial effect of different methods of co-culture on viability and function of islets.
Collapse
Affiliation(s)
- Bianca Marmontel de Souza
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Paula Bouças
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernanda dos Santos de Oliveira
- Laboratory of Cell Differentiation, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Karina Pires Reis
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Patrícia Ziegelmann
- Statistics Department and Post-Graduation Program in Epidemiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Andrea Carla Bauer
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Daisy Crispim
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
39
|
Ozawa F, Okitsu T, Takeuchi S. Improvement in the Mechanical Properties of Cell-Laden Hydrogel Microfibers Using Interpenetrating Polymer Networks. ACS Biomater Sci Eng 2017; 3:392-398. [DOI: 10.1021/acsbiomaterials.6b00619] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Fumisato Ozawa
- Institute
of Industrial Science (IIS), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- Takeuchi
Biohybrid Innovation Project, Exploratory Research for Advanced Technology
(ERATO), Japan Science and Technology (JST), Komaba Open Laboratory (KOL), Room
M202, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Teru Okitsu
- Institute
of Industrial Science (IIS), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- Takeuchi
Biohybrid Innovation Project, Exploratory Research for Advanced Technology
(ERATO), Japan Science and Technology (JST), Komaba Open Laboratory (KOL), Room
M202, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Shoji Takeuchi
- Institute
of Industrial Science (IIS), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- Takeuchi
Biohybrid Innovation Project, Exploratory Research for Advanced Technology
(ERATO), Japan Science and Technology (JST), Komaba Open Laboratory (KOL), Room
M202, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
40
|
Continuous Jetting of Alginate Microfiber in Atmosphere Based on a Microfluidic Chip. MICROMACHINES 2017. [PMCID: PMC6190460 DOI: 10.3390/mi8010008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
41
|
Cheng J, Jun Y, Qin J, Lee SH. Electrospinning versus microfluidic spinning of functional fibers for biomedical applications. Biomaterials 2017; 114:121-143. [DOI: 10.1016/j.biomaterials.2016.10.040] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/29/2016] [Accepted: 10/27/2016] [Indexed: 12/31/2022]
|
42
|
Kaviani M, Azarpira N. Insight into microenvironment remodeling in pancreatic endocrine tissue engineering: Biological and biomaterial approaches. Tissue Eng Regen Med 2016; 13:475-484. [PMID: 30603429 PMCID: PMC6170842 DOI: 10.1007/s13770-016-0014-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 02/03/2016] [Accepted: 02/05/2016] [Indexed: 01/04/2023] Open
Abstract
The treatment of diabetes mellitus, as a chronic and complicated disease, is a valuable purpose. Islet transplantation can provide metabolic stability and insulin independence in type 1 diabetes patients. Diet and insulin therapy are only diabetes controllers and cannot remove all of the diabetes complications. Moreover, islet transplantation is more promising treatment than whole pancreas transplantation because of lesser invasive surgical procedure and morbidity and mortality. According to the importance of extracellular matrix for islet viability and function, microenvironment remodeling of pancreatic endocrine tissue can lead to more success in diabetes treatment by pancreatic islets. Production of bioengineered pancreas and remodeling of pancreas extracellular matrix provide essential microenvironment for re-vascularization, re-innervation and signaling cascades triggering. Therefore, islets show better viability and function in these conditions. Researchers conduct various scaffolds with different biomaterials for the improvement of islet viability, function and transplantation outcome. The attention to normal pancreas anatomy, embryology and histology is critical to understand the pancreatic Langerhans islets niche and finally to achieve efficient engineered structure. Therefore, in the present study, the status and components of the islets niche is mentioned and fundamental issues related to the tissue engineering of this structure is considered. The purpose of this review article is summarization of recent progress in the endocrine pancreas tissue engineering and biomaterials and biological aspects of it.
Collapse
Affiliation(s)
- Maryam Kaviani
- Transplant Research Center, Shiraz University of Medical Sciences, Mohamad Rasulallah Research Tower, Khalili street, Shiraz, 7193635899 Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Mohamad Rasulallah Research Tower, Khalili street, Shiraz, 7193635899 Iran
| |
Collapse
|
43
|
Song W, Tung CK, Lu YC, Pardo Y, Wu M, Das M, Kao DI, Chen S, Ma M. Dynamic self-organization of microwell-aggregated cellular mixtures. SOFT MATTER 2016; 12:5739-5746. [PMID: 27275624 DOI: 10.1039/c6sm00456c] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cells with different cohesive properties self-assemble in a spatiotemporal and context-dependent manner. Previous studies on cell self-organization mainly focused on the spontaneous structural development within a short period of time during which the cell numbers remained constant. However the effect of cell proliferation over time on the self-organization of cells is largely unexplored. Here, we studied the spatiotemporal dynamics of self-organization of a co-culture of MDA-MB-231 and MCF10A cells seeded in a well defined space (i.e. non-adherent microfabricated wells). When cell-growth was chemically inhibited, high cohesive MCF10A cells formed a core surrounded by low cohesive MDA-MB-231 cells on the periphery, consistent with the differential adhesion hypothesis (DAH). Interestingly, this aggregate morphology was completely inverted when the cells were free to grow. At an initial seeding ratio of 1 : 1 (MDA-MB-231 : MCF10A), the fast growing MCF10A cells segregated in the periphery while the slow growing MDA-MB-231 cells stayed in the core. Another morphology developed at an inequal seeding ratio (4 : 1), that is, the cell mixtures developed a side-by-side aggregate morphology. We conclude that the cell self-organization depends not only on the cell cohesive properties but also on the cell seeding ratio and proliferation. Furthermore, by taking advantage of the cell self-organization, we purified human embryonic stem cells-derived pancreatic progenitors (hESCs-PPs) from co-cultured feeder cells without using any additional tools or labels.
Collapse
Affiliation(s)
- Wei Song
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA.
| | - Chih-Kuan Tung
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA. and Department of Physics, North Carolina A&T State University, Greensboro, North Carolina 27411, USA
| | - Yen-Chun Lu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA.
| | - Yehudah Pardo
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Mingming Wu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA.
| | - Moumita Das
- School of Physics and Astronomy, Rochester Institute of Technology, Rochester, New York 14623, USA
| | - Der-I Kao
- Department of Surgery, Weill Medical College of Cornell University, New York City, New York 10065, USA
| | - Shuibing Chen
- Department of Surgery, Weill Medical College of Cornell University, New York City, New York 10065, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA.
| |
Collapse
|
44
|
Ichihara Y, Utoh R, Yamada M, Shimizu T, Uchigata Y. Size effect of engineered islets prepared using microfabricated wells on islet cell function and arrangement. Heliyon 2016; 2:e00129. [PMID: 27441299 PMCID: PMC4946309 DOI: 10.1016/j.heliyon.2016.e00129] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/29/2016] [Accepted: 06/23/2016] [Indexed: 01/02/2023] Open
Abstract
Pancreatic islets are heterogeneous clusters mainly composed of α and β cells, and these clusters range in diameter from 50 to several hundred micrometers. Native small islets are known to have a higher insulin secretion ability in vitro and to provide better transplantation outcomes when compared with large islets. In this study, we prepared microengineered pseudo-islets from dispersed rat islet cells using precisely-fabricated agarose gel-based microwells with different diameters (100, 300, or 500 μm) to investigate the function and survival of islet cell aggregates with well-controlled sizes. We observed that dead cells were rarely present in the small pseudo-islets with an average diameter of ∼60 μm prepared using 100 μm microwells. In contrast, we observed more dead cells in the larger pseudo-islets prepared using 300 and 500 μm microwells. The relative amount of hypoxic cells was significantly low in the small pseudo-islets whereas a hypoxic condition was present in the core region of the larger pseudo-islets. In addition, we found that the small-sized pseudo-islets reconstituted the in vivo-tissue like arrangement of the α and β cells, and restored the high insulin secretory capacity in response to high glucose. These results clearly suggest that precise size control of pseudo-islets is essential for maintaining islet cell function and survival in vitro. The small-sized pseudo-islets may be advantageous for providing a better therapeutic approach for treating type 1 diabetes mellitus via islet reorganization and transplantation.
Collapse
Affiliation(s)
- Yumie Ichihara
- Diabetes Center, Tokyo Women's Medical University School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Rie Utoh
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
- Corresponding author at: Research Fellow of the Japan Society for the Promotion of Science (JSPS). Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1–33 Yayoi-cho, Inage-ku, Chiba 263–8522, Japan.Department of Applied Chemistry and BiotechnologyGraduate School of EngineeringChiba University1-33 Yayoi-choInage-kuChiba263-8522Japan
| | - Masumi Yamada
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Yasuko Uchigata
- Diabetes Center, Tokyo Women's Medical University School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| |
Collapse
|
45
|
Park YS, Hwang JY, Jun Y, Jin YM, Kim G, Kim HY, Kim HS, Lee SH, Jo I. Scaffold-free parathyroid tissue engineering using tonsil-derived mesenchymal stem cells. Acta Biomater 2016; 35:215-27. [PMID: 26945633 DOI: 10.1016/j.actbio.2016.03.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/27/2016] [Accepted: 03/01/2016] [Indexed: 01/01/2023]
Abstract
To restore damaged parathyroid function, parathyroid tissue engineering is the best option. Previously, we reported that differentiated tonsil-derived mesenchymal stem cells (dTMSC) restore in vivo parathyroid function, but only if they are embedded in a scaffold. Because of the limited biocompatibility of Matrigel, however, here we developed a more clinically applicable, scaffold-free parathyroid regeneration system. Scaffold-free dTMSC spheroids were engineered in concave microwell plates made of polydimethylsiloxane in control culture medium for the first 7days and differentiation medium (containing activin A and sonic hedgehog) for next 7days. The size of dTMSC spheroids showed a gradual and significant decrease up to day 5, whereafter it decreased much less. Cells in dTMSC spheroids were highly viable (>80%). They expressed high levels of intact parathyroid hormone (iPTH), the parathyroid secretory protein 1, and cell adhesion molecule, N-cadherin. Furthermore, dTMSC spheroids-implanted parathyroidectomized (PTX) rats revealed higher survival rates (50%) over a 3-month period with physiological levels of both serum iPTH (57.7-128.2pg/mL) and ionized calcium (0.70-1.15mmol/L), compared with PTX rats treated with either vehicle or undifferentiated TMSC spheroids. This is the first report of a scaffold-free, human stem cell-based parathyroid tissue engineering and represents a more clinically feasible strategy for hypoparathyroidism treatment than those requiring scaffolds. STATEMENT OF SIGNIFICANCE Herein, we have for the first time developed a scaffold-free parathyroid tissue spheroids using differentiated tonsil-derived mesenchymal stem cells (dTMSC) to restore in vivo parathyroid cell functions. This new strategy is effective, even for long periods (3months), and is thus likely to be more feasible in clinic for hypoparathyroidism treatment. Development of TMSC spheroids may also provide a convenient and efficient scaffold-free platform for researchers investigating conditions involving abnormal calcium homeostasis, such as osteoporosis.
Collapse
|
46
|
Lee GH, Lee JS, Wang X, Hoon Lee S. Bottom-Up Engineering of Well-Defined 3D Microtissues Using Microplatforms and Biomedical Applications. Adv Healthc Mater 2016; 5:56-74. [PMID: 25880830 DOI: 10.1002/adhm.201500107] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/17/2015] [Indexed: 12/26/2022]
Abstract
During the last decades, the engineering of well-defined 3D tissues has attracted great attention because it provides in vivo mimicking environment and can be a building block for the engineering of bioartificial organs. In this Review, diverse engineering methods of 3D tissues using microscale devices are introduced. Recent progress of microtechnologies has enabled the development of microplatforms for bottom-up assembly of diverse shaped 3D tissues consisting of various cells. Micro hanging-drop plates, microfluidic chips, and arrayed microwells are the typical examples. The encapsulation of cells in hydrogel microspheres and microfibers allows the engineering of 3D microtissues with diverse shapes. Applications of 3D microtissues in biomedical fields are described, and the future direction of microplatform-based engineering of 3D micro-tissues is discussed.
Collapse
Affiliation(s)
- Geon Hui Lee
- KU-KIST Graduate School of Converging, Science and Technology; Korea University; Seoul 136-701 Republic of Korea
| | - Jae Seo Lee
- KU-KIST Graduate School of Converging, Science and Technology; Korea University; Seoul 136-701 Republic of Korea
| | - Xiaohong Wang
- Center of Organ Manufacturing; Department of Mechanical Engineering; Tsinghua University; Beijing 100084 P. R. China
| | - Sang Hoon Lee
- School of Biomedical Engineering; College of Health Science; Korea University; Seoul 136-701 Republic of Korea
| |
Collapse
|
47
|
Lee SI, Yeo SI, Kim BB, Ko Y, Park JB. Formation of size-controllable spheroids using gingiva-derived stem cells and concave microwells: Morphology and viability tests. Biomed Rep 2015; 4:97-101. [PMID: 26870343 DOI: 10.3892/br.2015.539] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/18/2015] [Indexed: 01/19/2023] Open
Abstract
Human mesenchymal stem cells have previously been isolated and characterized from the gingiva, and gingiva-derived stem cells have been applied for tissue engineering purposes. The present study was performed to generate size-controllable stem cell spheroids using concave microwells. Gingiva-derived stem cells were isolated, and the stem cells of 1×105 (group A) or 2×105 (group B) cells were seeded in polydimethylsiloxane-based, concave micromolds with 600 µm diameters. The morphology of the microspheres was viewed under an inverted microscope, and the changes in the diameter and cell viability were analyzed. The gingiva-derived stem cells formed spheroids in the concave microwells. The diameters of the spheroids were larger in group A compared to group B. No significant changes in shape or diameter were noted with increases in incubation time. Cell viability was higher in group B at each time point when compared with group A. Within the limits of the study, the size-controllable stem cell spheroids could be generated from gingival cells using microwells. The shape of the spheroids and their viability were clearly maintained during the experimental periods.
Collapse
Affiliation(s)
- Sung-Il Lee
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | | | - Bo-Bae Kim
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Youngkyung Ko
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jun-Beom Park
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
48
|
Park D, Lim J, Park JY, Lee SH. Concise Review: Stem Cell Microenvironment on a Chip: Current Technologies for Tissue Engineering and Stem Cell Biology. Stem Cells Transl Med 2015; 4:1352-68. [PMID: 26450425 DOI: 10.5966/sctm.2015-0095] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/29/2015] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED Stem cells have huge potential in many therapeutic areas. With conventional cell culture methods, however, it is difficult to achieve in vivo-like microenvironments in which a number of well-controlled stimuli are provided for growing highly sensitive stem cells. In contrast, microtechnology-based platforms offer advantages of high precision, controllability, scalability, and reproducibility, enabling imitation of the complex physiological context of in vivo. This capability may fill the gap between the present knowledge about stem cells and that required for clinical stem cell-based therapies. We reviewed the various types of microplatforms on which stem cell microenvironments are mimicked. We have assigned the various microplatforms to four categories based on their practical uses to assist stem cell biologists in using them for research. In particular, many examples are given of microplatforms used for the production of embryoid bodies and aggregates of stem cells in vitro. We also categorized microplatforms based on the types of factors controlling the behaviors of stem cells. Finally, we outline possible future directions for microplatform-based stem cell research, such as research leading to the production of well-defined environments for stem cells to be used in scaled-up systems or organs-on-a-chip, the regulation of induced pluripotent stem cells, and the study of the genetic states of stem cells on microplatforms. SIGNIFICANCE Stem cells are highly sensitive to a variety of physicochemical cues, and their fate can be easily altered by a slight change of environment; therefore, systematic analysis and discrimination of the extracellular signals and intracellular pathways controlling the fate of cells and experimental realization of sensitive and controllable niche environments are critical. This review introduces diverse microplatforms to provide in vitro stem cell niches. Microplatforms could control microenvironments around cells and have recently attracted much attention in biology including stem cell research. These microplatforms and the future directions of stem cell microenvironment are described.
Collapse
Affiliation(s)
- DoYeun Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Jaeho Lim
- School of Biomedical Engineering, College of Health Science, Korea University, Seoul, Republic of Korea
| | - Joong Yull Park
- School of Mechanical Engineering, College of Engineering, Chung-ang University, Seoul, Republic of Korea
| | - Sang-Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea School of Biomedical Engineering, College of Health Science, Korea University, Seoul, Republic of Korea
| |
Collapse
|
49
|
Yoon No D, Lee KH, Lee J, Lee SH. 3D liver models on a microplatform: well-defined culture, engineering of liver tissue and liver-on-a-chip. LAB ON A CHIP 2015; 15:3822-37. [PMID: 26279012 DOI: 10.1039/c5lc00611b] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The liver, the largest organ in the human body, is a multi-functional organ with diverse metabolic activities that plays a critical role in maintaining the body and sustaining life. Although the liver has excellent regenerative and recuperative properties, damages caused by chronic liver diseases or viral infection may lead to permanent loss of liver functions. Studies of liver disease mechanism have focused on drug screening and liver tissue engineering techniques, including strategies based on in vitro models. However, conventional liver models are plagued by a number of limitations, which have motivated the development of 'liver-on-a-chip' and microplatform-based bioreactors that can provide well-defined microenvironments. Microtechnology is a promising tool for liver tissue engineering and liver system development, as it can mimic the complex in vivo microenvironment and microlevel ultrastructure, by using a small number of human cells under two-dimensional (2D) and three-dimensional (3D) culture conditions. These systems provided by microtechnology allow improved liver-specific functions and can be expanded to encompass diverse 3D culture methods, which are critical for the maintenance of liver functions and recapitulation of the features of the native liver. In this review, we provide an overview of microtechnologies that have been used for liver studies, describe biomimetic technologies for constructing microscale 2D and 3D liver models as well as liver-on-a-chip systems and microscale bioreactors, and introduce applications of liver microtechnology and future trends in the field.
Collapse
Affiliation(s)
- Da Yoon No
- Department of Biomedical Engineering, College of Health Science, Korea University, Anamro 145, Seongbuk-gu, Seoul 136-701, Republic of Korea.
| | | | | | | |
Collapse
|
50
|
Guo X, Li S, Ji Q, Lian R, Chen J. Enhanced viability and neural differential potential in poor post-thaw hADSCs by agarose multi-well dishes and spheroid culture. Hum Cell 2015; 28:175-89. [PMID: 26054839 DOI: 10.1007/s13577-015-0116-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/09/2015] [Indexed: 01/06/2023]
Abstract
Human adipose-derived stem cells (hADSCs) are potential adult stem cells source for cell therapy. But hADSCs with multi-passage or cryopreservation often revealed poor growth performance. The aim of our work was to improve the activity of poor post-thaw hADSCs by simple and effective means. We describe here a simple method based on commercially available silicone micro-wells for creating hADSCs spheroids to improve viability and neural differentiation potential on poor post-thaw hADSCs. The isolated hADSCs positively expresse d CD29, CD44, CD105, and negatively expressed CD34, CD45, HLA-DR by flow cytometry. Meanwhile, they had adipogenic and osteogenic differentiation capacity. The post-thaw and post-spheroid hADSCs from poor growth status hADSCs showed a marked increase in cell proliferation by CKK-8 analysis, cell cycle analysis and Ki67/P27 quantitative polymerase chain reaction (qPCR) analysis. They also displayed an increase viability of anti-apoptosis by annexin v and propidium iodide assays and mitochondrial membrane potential assays. After 3 days of neural induction, the neural differentiation potential of post-thaw and post-spheroid hADSCs could be enhanced by qPCR analysis and western blotting analysis. These results suggested that the spheroid formation could improve the viability and neural differentiation potential of bad growth status hADSCs, which is conducive to ADSCs research and cell therapy.
Collapse
Affiliation(s)
- Xiaoling Guo
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - Shanyi Li
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - Qingshan Ji
- Department of Ophthalmology, Affiliated Anhui Provincial Hospital of Anhui Medical University, Hefei, China
| | - Ruiling Lian
- Department of Ophthalmology, The First Clinical Medical College of Jinan University, Jinan University, Guangzhou, 510632, China
| | - Jiansu Chen
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China. .,Eye Institute, Medical College of Jinan University, Jinan University, Guangzhou, China. .,Department of Ophthalmology, The First Clinical Medical College of Jinan University, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|