1
|
Song HH, Choi H, Kim S, Kim HG, An S, Kim S, Jang H. Nitrogen-doped carbon quantum dot regulates cell proliferation and differentiation by endoplasmic reticulum stress. Anim Cells Syst (Seoul) 2024; 28:481-494. [PMID: 39364144 PMCID: PMC11448352 DOI: 10.1080/19768354.2024.2409452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/19/2024] [Accepted: 04/25/2024] [Indexed: 10/05/2024] Open
Abstract
Quantum dots have diverse biomedical applications, from constructing biological infrastructures like medical imaging to advancing pharmaceutical research. However, concerns about human health arise due to the toxic potential of quantum dots based on heavy metals. Therefore, research on quantum dots has predominantly focused on oxidative stress, cell death, and other broader bodily toxicities. This study investigated the toxicity and cellular responses of mouse embryonic stem cells (mESCs) and mouse adult stem cells (mASCs) to nitrogen-doped carbon quantum dots (NCQDs) made of non-metallic materials. Cells were exposed to NCQDs, and we utilized a fluorescent ubiquitination-based cell system to verify whether NCQDs induce cytotoxicity. Furthermore, we validated the differentiation-inducing impact of NCQDs by utilizing embryonic stem cells equipped with the Oct4 enhancer-GFP reporter system. By analyzing gene expression including Crebzf, Chop, and ATF6, we also observed that NCQDs robustly elicited endoplasmic reticulum (ER) stress. We confirmed that NCQDs induced cytotoxicity and abnormal differentiation. Interestingly, we also confirmed that low concentrations of NCQDs stimulated cell proliferation in both mESCs and mASCs. In conclusion, NCQDs modulate cell death, proliferation, and differentiation in a concentration-dependent manner. Indiscriminate biological applications of NCQDs have the potential to cause cancer development by affecting normal cell division or to fail to induce normal differentiation by affecting embryonic development during pregnancy. Therefore, we propose that future biomedical applications of NCQDs necessitate comprehensive and diverse biological studies.
Collapse
Affiliation(s)
- Hyun Hee Song
- Department of Life Science, Jeonbuk National University, Jeonju, Republic of Korea
| | - Hyunwoo Choi
- Department of Animal Science, Jeonbuk National University, Jeonju, Republic of Korea
| | - Seonghan Kim
- School of Chemical Engineering, Clean Energy Research Center, Jeonbuk National University, Jeonju, Republic of Korea
| | - Hwan Gyu Kim
- Department of Life Science, Jeonbuk National University, Jeonju, Republic of Korea
| | - Sangmin An
- Department of Physics, Jeonbuk National University, Jeonju, Republic of Korea
| | - Sejung Kim
- School of Chemical Engineering, Clean Energy Research Center, Jeonbuk National University, Jeonju, Republic of Korea
- Department of JBNU-KIST Industry-Academia Convergence Research, Jeonbuk National University, Jeonju, Republic of Korea
| | - Hoon Jang
- Department of Life Science, Jeonbuk National University, Jeonju, Republic of Korea
- Quantabiom Co., Ltd., Jeonju, Republic of Korea
| |
Collapse
|
2
|
Makhado BP, Oladipo AO, Gumbi NN, De Kock LA, Andraos C, Gulumian M, Nxumalo EN. Unravelling the toxicity of carbon nanomaterials - From cellular interactions to mechanistic understanding. Toxicol In Vitro 2024; 100:105898. [PMID: 39029601 DOI: 10.1016/j.tiv.2024.105898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/03/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
The application of carbon nanomaterials in diverse fields has substantially increased their demand for commercial usage. Within the earliest decade, the development of functional materials has further increased the significance of this element. Despite the advancements recorded, the potential harmful impacts of embracing carbon nanomaterials for biological applications must be balanced against their advantages. Interestingly, many studies have neglected the intriguing and dynamic cellular interaction of carbon nanomaterials and the mechanistic understanding of their property-driven behaviour, even though common toxicity profiles have been reported. Reiterating the toxicity issue, several researchers conclude that these materials have minimal toxicity and may be safe for contact with biological systems at certain dosages. Here, we aim to provide a report on the significance of some of the properties that influence their toxicity. After that, a description of the implication of nanotoxicology in humans and living systems, revealing piece by piece their exposure routes and possible risks, will be provided. Then, an extensive discussion of the mechanistic puzzle modulating the interface between various human cellular systems and carbon nanomaterials such as carbon nanotubes, carbon dots, graphene, fullerenes, and nanodiamonds will follow. Finally, this review also sheds light on the organization that handles the risk associated with nanomaterials.
Collapse
Affiliation(s)
- Bveledzani P Makhado
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Roodepoort 1710, South Africa
| | - Adewale O Oladipo
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Roodepoort 1710, South Africa
| | - Nozipho N Gumbi
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Roodepoort 1710, South Africa
| | - Lueta A De Kock
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Roodepoort 1710, South Africa
| | - Charlene Andraos
- Water Research Group, Unit for Environmental Sciences and Management, North-West University Potchefstroom, South Africa; National Institute for Occupational Health (NIOH), National Health Laboratory Service (NHLS), Johannesburg, South Africa; School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mary Gulumian
- Water Research Group, Unit for Environmental Sciences and Management, North-West University Potchefstroom, South Africa
| | - Edward N Nxumalo
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Roodepoort 1710, South Africa.
| |
Collapse
|
3
|
Osorio HM, Castillo-Solís F, Barragán SY, Rodríguez-Pólit C, Gonzalez-Pastor R. Graphene Quantum Dots from Natural Carbon Sources for Drug and Gene Delivery in Cancer Treatment. Int J Mol Sci 2024; 25:10539. [PMID: 39408866 PMCID: PMC11476599 DOI: 10.3390/ijms251910539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 10/20/2024] Open
Abstract
Cancer therapy is constantly evolving, with a growing emphasis on targeted and efficient treatment options. In this context, graphene quantum dots (GQDs) have emerged as promising agents for precise drug and gene delivery due to their unique attributes, such as high surface area, photoluminescence, up-conversion photoluminescence, and biocompatibility. GQDs can damage cancer cells and exhibit intrinsic photothermal conversion and singlet oxygen generation efficiency under specific light irradiation, enhancing their effectiveness. They serve as direct therapeutic agents and versatile drug delivery platforms capable of being easily functionalized with various targeting molecules and therapeutic agents. However, challenges such as achieving uniform size and morphology, precise bandgap engineering, and scalability, along with minimizing cytotoxicity and the environmental impact of their production, must be addressed. Additionally, there is a need for a more comprehensive understanding of cellular mechanisms and drug release processes, as well as improved purification methods. Integrating GQDs into existing drug delivery systems enhances the efficacy of traditional treatments, offering more efficient and less invasive options for cancer patients. This review highlights the transformative potential of GQDs in cancer therapy while acknowledging the challenges that researchers must overcome for broader application.
Collapse
Affiliation(s)
- Henrry M. Osorio
- Departamento de Física, Escuela Politécnica Nacional, Av. Ladrón de Guevara E11-253, Quito 170525, Ecuador; (H.M.O.); (S.Y.B.)
| | - Fabián Castillo-Solís
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (F.C.-S.); (C.R.-P.)
| | - Selena Y. Barragán
- Departamento de Física, Escuela Politécnica Nacional, Av. Ladrón de Guevara E11-253, Quito 170525, Ecuador; (H.M.O.); (S.Y.B.)
| | - Cristina Rodríguez-Pólit
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (F.C.-S.); (C.R.-P.)
- Escuela de Salud Pública, Universidad San Francisco de Quito USFQ, Quito 170527, Ecuador
- Centro de Referencia Nacional de Genómica, Secuenciación y Bioinformática, Instituto Nacional de Investigación en Salud Pública “Leopoldo Izquieta Pérez”, Quito 170403, Ecuador
| | - Rebeca Gonzalez-Pastor
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (F.C.-S.); (C.R.-P.)
| |
Collapse
|
4
|
Liu Y, Tan X, Wang R, Fan L, Yan Q, Chen C, Wang W, Ren Z, Ning X, Ku T, Sang N. Retinal Degeneration Response to Graphene Quantum Dots: Disruption of the Blood-Retina Barrier Modulated by Surface Modification-Dependent DNA Methylation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14629-14640. [PMID: 39102579 DOI: 10.1021/acs.est.4c02179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Graphene quantum dots (GQDs) are used in diverse fields from chemistry-related materials to biomedicines, thus causing their substantial release into the environment. Appropriate visual function is crucial for facilitating the decision-making process within the nervous system. Given the direct interaction of eyes with the environment and even nanoparticles, herein, GQDs, sulfonic acid-doped GQDs (S-GQDs), and amino-functionalized GQDs (A-GQDs) were employed to understand the potential optic neurotoxicity disruption mechanism by GQDs. The negatively charged GQDs and S-GQDs disturbed the response to light stimulation and impaired the structure of the retinal nuclear layer of zebrafish larvae, causing vision disorder and retinal degeneration. Albeit with sublethal concentrations, a considerably reduced expression of the retinal vascular sprouting factor sirt1 through increased DNA methylation damaged the blood-retina barrier. Importantly, the regulatory effect on vision function was influenced by negatively charged GQDs and S-GQDs but not positively charged A-GQDs. Moreover, cluster analysis and computational simulation studies indicated that binding affinities between GQDs and the DNMT1-ligand binding might be the dominant determinant of the vision function response. The previously unknown pathway of blood-retinal barrier interference offers opportunities to investigate the biological consequences of GQD-based nanomaterials, guiding innovation in the industry toward environmental sustainability.
Collapse
Affiliation(s)
- Yutong Liu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xin Tan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Rui Wang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Lifan Fan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Qiqi Yan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Chen Chen
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Wenhao Wang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Zhihua Ren
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xia Ning
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Tingting Ku
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
5
|
Kim J, Johnson DH, Bharucha TS, Yoo JM, Zeno WF. Graphene Quantum Dots Inhibit Lipid Peroxidation in Biological Membranes. ACS APPLIED BIO MATERIALS 2024; 7:5597-5608. [PMID: 39032174 DOI: 10.1021/acsabm.4c00688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Excessive reactive oxygen species (ROS) in cellular environments leads to oxidative stress, which underlies numerous diseases, including inflammatory diseases, neurodegenerative diseases, cardiovascular diseases, and cancer. Oxidative stress can be particularly damaging to biological membranes such as those found in mitochondria, which are abundant with polyunsaturated fatty acids (PUFAs). Oxidation of these biological membranes results in concomitant disruption of membrane structure and function, which ultimately leads to cellular dysfunction. Graphene quantum dots (GQDs) have garnered significant interest as a therapeutic agent for numerous diseases that are linked to oxidative stress. Specifically, GQDs have demonstrated an ability to protect mitochondrial structure and function under oxidative stress conditions. However, the fundamental mechanisms by which GQDs interact with membranes in oxidative environments are poorly understood. Here, we used C11-BODIPY, a fluorescent lipid oxidation probe, to develop quantitative fluorescence assays that determine both the extent and rate of oxidation that occurs to PUFAs in biological membranes. Based on kinetics principles, we have developed a generalizable model that can be used to assess the potency of antioxidants that scavenge ROS in the presence of biological membranes. By augmenting our fluorescence assays with 1H NMR spectroscopy, the results demonstrate that GQDs scavenge nascent hydroxyl and peroxyl ROS that interact with membranes and that GQDs are potent inhibitors of ROS-induced lipid oxidation in PUFA-containing biological membranes. The antioxidant potency of GQDs is comparable to or even greater than established antioxidant molecules, such as ascorbic acid and Trolox. This work provides mechanistic insights into the mitoprotective properties of GQDs under oxidative stress conditions, as well as a quantitative framework for assessing antioxidant interactions in biological membrane systems.
Collapse
Affiliation(s)
- Juhee Kim
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - David H Johnson
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Trushita S Bharucha
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Je Min Yoo
- Chaperone Ventures LLC., Los Angeles, California 90005, United States
| | - Wade F Zeno
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
6
|
Einafshar E, Ghorbani A. Advances in Black Phosphorus Quantum Dots for Cancer Research: Synthesis, Characterization, and Applications. Top Curr Chem (Cham) 2024; 382:25. [PMID: 39009867 DOI: 10.1007/s41061-024-00470-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024]
Abstract
In the past few years, there has been notable advancement in nanotechnology, leading to the development of new materials with potential uses in the medical field, especially in cancer diagnosis, imaging, and therapy. Black phosphorus quantum dots (BPQDs) are one of the emerging nanomaterials that have generated interest due to their unique properties and potential in biomedical applications. This review aims to give a detailed overview of how BPQDs are synthesized, characterized, and utilized. The synthesis methods of BPQDs are discussed, with a focus on obtaining size-controlled and high-quality BPQDs. Two main approaches, top-down exfoliation and bottom-up techniques, are described. Despite advancements in synthesis, there are challenges hindering the practical application of BPQDs, such as poor dispersion and short durability. To address these issues, techniques to enhance biocompatibility and reduce potential toxicity, such as surface modifications, are discussed. BPQDs have potential in bioimaging as they offer higher resolution and sensitivity compared with traditional imaging agents. Their small size and expansive surface area make them suitable for drug delivery systems, enabling the effective incorporation of therapeutic substances. By functionalizing BPQDs with targeting ligands, they can selectively bind to cancer cells or tissue, making them ideal for targeted therapies. Moreover, BPQDs can serve as biosensors to detect biomarkers in bodily fluids, further expanding their biomedical applications. However, before they can be successfully translated into clinical settings, further research is needed to optimize the synthesis methods of BPQDs and evaluate their long-term safety profiles. Nonetheless, with ongoing research and development, the medical uses of BPQDs are expected to expand.
Collapse
Affiliation(s)
- Elham Einafshar
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Ahmad Ghorbani
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Szymaszek P, Tyszka-Czochara M, Ortyl J. Application of Photoactive Compounds in Cancer Theranostics: Review on Recent Trends from Photoactive Chemistry to Artificial Intelligence. Molecules 2024; 29:3164. [PMID: 38999115 PMCID: PMC11243723 DOI: 10.3390/molecules29133164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
According to the World Health Organization (WHO) and the International Agency for Research on Cancer (IARC), the number of cancer cases and deaths worldwide is predicted to nearly double by 2030, reaching 21.7 million cases and 13 million fatalities. The increase in cancer mortality is due to limitations in the diagnosis and treatment options that are currently available. The close relationship between diagnostics and medicine has made it possible for cancer patients to receive precise diagnoses and individualized care. This article discusses newly developed compounds with potential for photodynamic therapy and diagnostic applications, as well as those already in use. In addition, it discusses the use of artificial intelligence in the analysis of diagnostic images obtained using, among other things, theranostic agents.
Collapse
Affiliation(s)
- Patryk Szymaszek
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland
| | | | - Joanna Ortyl
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland
- Photo HiTech Ltd., Bobrzyńskiego 14, 30-348 Kraków, Poland
- Photo4Chem Ltd., Juliusza Lea 114/416A-B, 31-133 Cracow, Poland
| |
Collapse
|
8
|
Ahlawat A, Dhiman TK, Solanki PR, Rana PS. Facile synthesis of carbon dots via pyrolysis and their application in photocatalytic degradation of rhodamine B (RhB). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46752-46759. [PMID: 36750518 DOI: 10.1007/s11356-023-25604-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Carbon Quantum dot (CQDs) is one of the newest materials in carbon-based nanomaterials. It is pertinent to study the synthesis and the application of these carbon dots. Here we have studied the effect of precursor on the optical, morphological, and photocatalytic properties of CQDs. We have synthesized CQDs using pyrolysis method using the precursors citric acid, urea, polyethyleneimine. We have synthesized two samples: CQD-S1; synthesized using urea and polyethyleneimine, and CQD-S2; synthesized using citric acid and polyethyleneimine. In optical properties study two distinct peaks have been obtained at 243 nm and 345 nm for CQD-S1, and at 265 nm and 335 nm for CQD-S2. In fluorescence study, the maximum emission was found at excitation wavelength of 340 nm for CQD-S1 and at excitation wavelength of 350 nm for CQD-S2. In morphological studies, Transmission Electron Microscope (TEM) revealed particle size of sample CQD-S1 and CQD-S2 were 1.91 nm and 1.61 nm, respectively. EDX confirmed the elemental composition in both samples. The rhodamine B (RhB) dye degradation percentages in dark and under visible and UV light were found to 6, 13, and 98.4% respectively for CQD-S1. Similarly, dye degradation for CQD-S2 were 7, 11, and 99.63%, respectively. Effective degradation of photocatalysis performed under UV-light within 100 min using mineralization process.
Collapse
Affiliation(s)
- Amit Ahlawat
- Department of Physics, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Haryana, 131039, India
- Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Tarun Kumar Dhiman
- Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Pratima R Solanki
- Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Pawan S Rana
- Department of Physics, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Haryana, 131039, India.
| |
Collapse
|
9
|
Santarelli G, Perini G, Salustri A, Palucci I, Rosato R, Palmieri V, Iacovelli C, Bellesi S, Sali M, Sanguinetti M, De Spirito M, Papi M, Delogu G, De Maio F. Unraveling the potential of graphene quantum dots against Mycobacterium tuberculosis infection. Front Microbiol 2024; 15:1395815. [PMID: 38774507 PMCID: PMC11107295 DOI: 10.3389/fmicb.2024.1395815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/22/2024] [Indexed: 05/24/2024] Open
Abstract
Introduction The emergence of drug-resistant Mycobacterium tuberculosis (Mtb) strains has underscored the urgent need for novel therapeutic approaches. Carbon-based nanomaterials, such as graphene oxide (GO), have shown potential in anti-TB activities but suffer from significant toxicity issues. Methods This study explores the anti-TB potential of differently functionalized graphene quantum dots (GQDs) - non-functionalized, L-GQDs, aminated (NH2-GQDs), and carboxylated (COOH-GQDs) - alone and in combination with standard TB drugs (isoniazid, amikacin, and linezolid). Their effects were assessed in both axenic cultures and in vitro infection models. Results GQDs alone did not demonstrate direct mycobactericidal effects nor trapping activity. However, the combination of NH2-GQDs with amikacin significantly reduced CFUs in in vitro models. NH2-GQDs and COOH-GQDs also enhanced the antimicrobial activity of amikacin in infected macrophages, although L-GQDs and COOH-GQDs alone showed no significant activity. Discussion The results suggest that specific types of GQDs, particularly NH2-GQDs, can enhance the efficacy of existing anti-TB drugs. These nanoparticles might serve as effective adjuvants in anti-TB therapy by boosting drug performance and reducing bacterial counts in host cells, highlighting their potential as part of advanced drug delivery systems in tuberculosis treatment. Further investigations are needed to better understand their mechanisms and optimize their use in clinical settings.
Collapse
Affiliation(s)
- Giulia Santarelli
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie-Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giordano Perini
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Rome, Italy
| | - Alessandro Salustri
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie-Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ivana Palucci
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie-Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Rome, Italy
| | - Roberto Rosato
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie-Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Valentina Palmieri
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
- Istituto dei Sistemi Complessi, CNR, Rome, Italy
| | - Camilla Iacovelli
- Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Rome, Italy
| | - Silvia Bellesi
- Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Rome, Italy
| | - Michela Sali
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie-Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Rome, Italy
| | - Maurizio Sanguinetti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie-Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Rome, Italy
| | - Marco De Spirito
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Rome, Italy
| | - Massimiliano Papi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Rome, Italy
| | - Giovanni Delogu
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie-Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
- Mater Olbia Hospital, Olbia, Italy
| | - Flavio De Maio
- Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Rome, Italy
| |
Collapse
|
10
|
Khorshidi A, Bahari A, Hamidabadi VF. Compounding Methylene Blue with Selenium-decorated Graphene Quantum Dots to Improve Singlet Oxygen Production for Photodynamic Therapy Application. J Fluoresc 2024:10.1007/s10895-024-03719-4. [PMID: 38619731 DOI: 10.1007/s10895-024-03719-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
Graphene quantum dots (GQDs) are known as suitable material to be applied in different fields such as photodynamic therapy (PDT). Herein, GQDs were synthesized by the pyrolysis method and then decorated with selenium (Se). Afterward, they were combined with methylene blue (MB) to increase singlet oxygen generation as well as to apply them more effectively in the PDT method. Furthermore, GQDs were investigated by transmission electron microscope (TEM), photoluminescence spectrum (PL), Fourier-transform infrared spectroscopy (FTIR), field emission scanning electron microscope (FESEM), reactive oxygen species (ROS) measurement, and cytotoxicity measurement. GQDs showed no dependence on the excitation wavelength. The result of ROS measurement proves that the combination of GQD-Se and MB increases singlet oxygen production. Moreover, afterglow measurement approved the beneficial effect of GQD-Se on even deep and near skin tumor treatment. Cytotoxicity measurements under dark conditions, cell viability, and the side effects on human cells were determined by (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) (MTT) assay. Our findings show that under dark conditions, even high concentrations of nanoparticles have no significant effect on cell viability. These findings and the high biocompatibility of GQDs indicate the effective application of GQD-Se-MB in PDT.
Collapse
Affiliation(s)
- Ammar Khorshidi
- Department of Solid State Physics, Faculty of Sciences, University of Mazandaran, Babolsar, 4741695447, Iran
- , Babolsar, Iran
| | - Ali Bahari
- Department of Solid State Physics, Faculty of Sciences, University of Mazandaran, Babolsar, 4741695447, Iran.
| | - Vaheed Fallah Hamidabadi
- Department of Solid State Physics, Faculty of Sciences, University of Mazandaran, Babolsar, 4741695447, Iran
| |
Collapse
|
11
|
Luo Y, Gu Z, Chen H, Huang Y. Potential toxicity of graphene (oxide) quantum dots via directly covering the active site of anterior gradient homolog 2 protein. Sci Rep 2024; 14:7091. [PMID: 38528032 PMCID: PMC10963778 DOI: 10.1038/s41598-024-57677-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/20/2024] [Indexed: 03/27/2024] Open
Abstract
Graphene quantum dots (GQDs) have attracted significant attention in biomedicine, while extensive investigations have revealed a reverse regarding the potential biotoxicity of GQDs. In order to supplementing the understanding of the toxicity profile of GQDs, this study employs a molecular dynamics (MD) simulation approach to systematically investigate the potential toxicity of both GQDs and Graphene Oxide Quantum Dots (GOQDs) on the Anterior Gradient Homolog 2 (AGR2) protein, a key protein capable of protecting the intestine. We construct two typical simulation systems, in which an AGR2 protein is encircled by either GQDs or GOQDs. The MD results demonstrate that both GQDs and GOQDs can directly make contact with and even cover the active site (specifically, the Cys81 amino acid) of the AGR2 protein. This suggests that GQDs and GOQDs have the capability to inhibit or interfere with the normal biological interaction of the AGR2 active site with its target protein. Thus, GQDs and GOQDs exhibit potential detrimental effects on the AGR2 protein. Detailed analyses reveal that GQDs adhere to the Cys81 residue due to van der Waals (vdW) interaction forces, whereas GOQDs attach to the Cys81 residue through a combination of vdW (primary) and Coulomb (secondary) interactions. Furthermore, GQDs aggregation typically adsorb onto the AGR2 active site, while GOQDs adsorb to the active site of AGR2 one by one. Consequently, these findings shed new light on the potential adverse impact of GQDs and GOQDs on the AGR2 protein via directly covering the active site of AGR2, providing valuable molecular insights for the toxicity profile of GQD nanomaterials.
Collapse
Affiliation(s)
- Yuqi Luo
- Department of Gastrointestinal and Hepatobiliary Surgery, Shenzhen Longhua District Central Hospital, No. 187, Guanlan Road, Longhua District, Shenzhen, 518110, Guangdong, China.
| | - Zonglin Gu
- College of Physical Science and Technology, Yangzhou University, Jiangsu, 225009, China
| | - Hailiang Chen
- Department of Gastrointestinal and Hepatobiliary Surgery, Shenzhen Longhua District Central Hospital, No. 187, Guanlan Road, Longhua District, Shenzhen, 518110, Guangdong, China
| | - Yaoxing Huang
- Department of Gastrointestinal and Hepatobiliary Surgery, Shenzhen Longhua District Central Hospital, No. 187, Guanlan Road, Longhua District, Shenzhen, 518110, Guangdong, China.
- Department of Gastroenterology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China.
| |
Collapse
|
12
|
Xu Q, Li C, Meng X, Duo X, Feng Y. Polyethylenimine-modified graphene quantum dots promote endothelial cell proliferation. Regen Biomater 2024; 11:rbae013. [PMID: 38525325 PMCID: PMC10960926 DOI: 10.1093/rb/rbae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 03/26/2024] Open
Abstract
Endothelial cell proliferation plays an important role in angiogenesis and treatment of related diseases. The aim of this study was to evaluate the effect of polyethylenimine (PEI)-modified graphene quantum dots (GQDs) gene vectors on endothelial cell proliferation. The GQDs-cationic polymer gene vectors were synthesized by amidation reaction, and used to deliver pZNF580 gene to Human umbilical vein endothelial cells (HUVECs) for promoting their proliferation. The chemical modification of GQDs can adjust gene vectors' surface properties and charge distribution, thereby enhancing their interaction with gene molecules, which could effectively compress the pZNF580 gene. The CCK-8 assay showed that the cell viability was higher than 80% at higher vector concentration (40 μg/mL), demonstrating that the GQDs-cationic polymer gene vectors and their gene complex nanoparticles (NPs) having low cytotoxicity. The results of the live/dead cell double staining assay were consistent with those of the CCK-8 assay, in which the cell viability of the A-GQDs/pZNF580 (94.38 ± 6.39%), C-GQDs-PEI- polylactic acid-co-polyacetic acid (PLGA)/pZNF580 (98.65 ± 6.60%) and N-GQDs-PEI-PLGA/pZNF580 (90.08 ± 1.60%) groups was significantly higher than that of the Lipofectamine 2000/pZNF580 (71.98 ± 3.53%) positive treatment group. The results of transfection and western blot experiments showed that the vector significantly enhanced the delivery of plasmid to HUVECs and increased the expression of pZNF580 in HUVECs. In addition, the gene NPs better promote endothelial cell migration and proliferation. The cell migration rate and proliferation ability of C-GQDs-PEI-PLGA/pZNF580 and N-GQDs-PEI-PLGA/pZNF580 treatment groups were higher than those of Lipofectamine 2000/pDNA treatment group. Modified GQDs possess the potential to serve as efficient gene carriers. They tightly bind gene molecules through charge and other non-covalent interactions, significantly improving the efficiency of gene delivery and ensuring the smooth release of genes within the cell. This innovative strategy provides a powerful means to promote endothelial cell proliferation.
Collapse
Affiliation(s)
- Qirong Xu
- School of Chemistry and Chemical Engineering, Qinghai University for Nationalities, Xining 810007, PR China
- Key Laboratory of National Ethnic Affairs Commission of Resource Chemistry and Ecological Environment Protection on Qinghai-Tibet Plateau, Xining 810007, PR China
| | - Chen Li
- School of Chemistry and Chemical Engineering, Qinghai University for Nationalities, Xining 810007, PR China
- Key Laboratory of National Ethnic Affairs Commission of Resource Chemistry and Ecological Environment Protection on Qinghai-Tibet Plateau, Xining 810007, PR China
| | - Xiangyan Meng
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, PR China
| | - Xinghong Duo
- School of Chemistry and Chemical Engineering, Qinghai University for Nationalities, Xining 810007, PR China
- Key Laboratory of National Ethnic Affairs Commission of Resource Chemistry and Ecological Environment Protection on Qinghai-Tibet Plateau, Xining 810007, PR China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
13
|
Iranpour S, Bahrami AR, Dayyani M, Saljooghi AS, Matin MM. A potent multifunctional ZIF-8 nanoplatform developed for colorectal cancer therapy by triple-delivery of chemo/radio/targeted therapy agents. J Mater Chem B 2024; 12:1096-1114. [PMID: 38229578 DOI: 10.1039/d3tb02571c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
BACKGROUND Multimodal cancer therapy has garnered significant interest due to its ability to target tumor cells from various perspectives. The advancement of novel nano-delivery platforms represents a promising approach for improving treatment effectiveness while minimizing detrimental effects on healthy tissues. METHODS This study aimed to develop a multifunctional nano-delivery system capable of simultaneously delivering an anti-cancer drug, a radiosensitizer agent, and a targeting moiety (three-in-one) for the triple combination therapy of colorectal cancer (CRC). This unique nano-platform, called Apt-PEG-DOX/ZIF-8@GQD, encapsulated both doxorubicin (DOX) and graphene quantum dots (GQDs) within the zeolitic imidazolate framework-8 (ZIF-8). To enhance the safety and anti-cancer potential of the platform, heterobifunctional polyethylene glycol (PEG) and an epithelial cell adhesion molecule (EpCAM) aptamer were conjugated with the system, resulting in the formation of targeted Apt-PEG-DOX/ZIF-8@GQD NPs. The physical and chemical characteristics of Apt-PEG-DOX/ZIF-8@GQD were thoroughly examined, and its therapeutic efficacy was evaluated in combination with radiotherapy (RT) against both EpCAM-positive HT-29 and EpCAM-negative CHO cells. Furthermore, the potential of Apt-PEG-DOX/ZIF-8@GQD as a tumor-specific, radio-enhancing, non-toxic, and controllable delivery system for in vivo cancer treatment was explored using immunocompromised C57BL/6 mice bearing human HT-29 tumors. RESULTS The large surface area of ZIF-8 (1013 m2 g-1) enabled successful loading of DOX with an encapsulation efficiency of approximately ∼90%. The synthesis of Apt-PEG-DOX/ZIF-8@GQD resulted in uniform particles with an average diameter of 100 nm. This targeted platform exhibited rapid decomposition under acidic conditions, facilitating an on-demand release of DOX after endosomal escape. In vitro experiments revealed that the biocompatible nano-platform induced selective toxicity in HT-29 cells by enhancing X-ray absorption. Moreover, in vivo experiments demonstrated that the therapeutic efficacy of Apt-PEG-ZIF-8/DOX@GQD against HT-29 tumors was enhanced through the synergistic effects of chemotherapy, radiotherapy, and targeted therapy, with minimal side effects. CONCLUSION The combination of Apt-PEG-DOX/ZIF-8@GQD with RT as a multimodal therapy approach demonstrated promising potential for the targeted treatment of CRC and enhancing therapeutic effectiveness. The co-delivery of DOX and GQD using this nano-platform holds great promise for improving the outcome of CRC treatment.
Collapse
Affiliation(s)
- Sonia Iranpour
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mahdieh Dayyani
- Radiation Oncology Department, Reza Radiotherapy and Oncology Center, Mashhad, Iran
| | - Amir Sh Saljooghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
14
|
Luo Y, Li J, Gu Z, Huang Y. Graphene quantum dots blocking the channel egresses of cytochrome P450 enzyme (CYP3A4) reveals potential toxicity. Sci Rep 2023; 13:21091. [PMID: 38036640 PMCID: PMC10689800 DOI: 10.1038/s41598-023-48618-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023] Open
Abstract
Graphene quantum dots (GQDs) have garnered significant attention, particularly in the biomedical domain. However, extensive research reveals a dichotomy concerning the potential toxicity of GQDs, presenting contrasting outcomes. Therefore, a comprehensive understanding of GQD biosafety necessitates a detailed supplementation of their toxicity profile. In this study, employing a molecular dynamics (MD) simulation approach, we systematically investigate the potential toxicity of GQDs on the CYP3A4 enzyme. We construct two distinct simulation systems, wherein a CYP3A4 protein is enveloped by either GQDs or GOQDs (graphene oxide quantum dots). Our results elucidate that GQDs come into direct contact with the bottleneck residues of Channels 2a and 2b of CYP3A4. Furthermore, GQDs entirely cover the exits of Channels 2a and 2b, implying a significant hindrance posed by GQDs to these channels and consequently leading to toxicity towards CYP3A4. In-depth analysis reveals that the adsorption of GQDs to the exits of Channels 2a and 2b is driven by a synergistic interplay of hydrophobic and van der Waals (vdW) interactions. In contrast, GOQDs only partially obstruct Channel 1 of CYP3A4, indicating a weaker influence on CYP3A4 compared to GQDs. Our findings underscore the potential deleterious impact of GQDs on the CYP3A4 enzyme, providing crucial molecular insights into GQD toxicology.
Collapse
Affiliation(s)
- Yuqi Luo
- Department of Gastrointestinal and Hepatobiliary Surgery, Shenzhen Longhua District Central Hospital, No. 187, Guanlan Road, Longhua District, Shenzhen, 518110, Guangdong Province, China.
| | - Jinjun Li
- Department of Gastrointestinal and Hepatobiliary Surgery, Shenzhen Longhua District Central Hospital, No. 187, Guanlan Road, Longhua District, Shenzhen, 518110, Guangdong Province, China
| | - Zonglin Gu
- College of Physical Science and Technology, Yangzhou University, Jiangsu, 225009, China
| | - Yaoxing Huang
- Department of Gastrointestinal and Hepatobiliary Surgery, Shenzhen Longhua District Central Hospital, No. 187, Guanlan Road, Longhua District, Shenzhen, 518110, Guangdong Province, China.
- Department of Gastroenterology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong Province, China.
| |
Collapse
|
15
|
Ding Y, Bertram JR, Nagpal P. Utilizing Atmospheric Carbon Dioxide and Sunlight in Graphene Quantum Dot-Based Nano-Biohybrid Organisms for Making Carbon-Negative and Carbon-Neutral Products. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53464-53475. [PMID: 37953629 DOI: 10.1021/acsami.3c12524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Increasing emissions of greenhouse gases compounded with legacy emissions in the earth's atmosphere poses an existential threat to human survival. One potential solution is creating carbon-negative and carbon-neutral materials, specifically for commodities used heavily throughout the globe, using a low-cost, scalable, and technologically and economically feasible process that can be deployed without the need for extensive infrastructure or skill requirements. Here, we demonstrate that nickel-functionalized graphene quantum dots (GQDs) can effectively couple to nonphotosynthetic bacteria at a cellular, molecular, and optoelectronic level, creating nanobiohybrid organisms (nanorgs) that enable the utilization of sunlight to convert carbon dioxide, air, and water into high-value-added chemicals such as ammonia (NH3), ethylene (C2H4), isopropanol (IPA), 2,3-butanediol (BDO), C11-C15 methyl ketones (MKs), and degradable bioplastics poly hydroxybutyrate (PHB) with high efficiency and selectivity. We demonstrate a high turnover number (TON) of up to 108 (mol of product per mol of cells), ease of application, facile scalability (demonstrated using a 30 L tank in a lab), and sustainable generation of carbon nanomaterials from recovered bacteria for creating nanorgs without the use of any toxic chemicals or materials. These findings can have important implications for the further development of sustainable processes for making carbon-negative materials using nanorgs.
Collapse
Affiliation(s)
- Yuchen Ding
- Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - John R Bertram
- Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | | |
Collapse
|
16
|
Kulahava T, Belko N, Parkhats M, Bahdanava A, Lepeshkevich S, Chizhevsky V, Mogilevtsev D. Photostability and phototoxicity of graphene quantum dots interacting with red blood cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 248:112800. [PMID: 37857078 DOI: 10.1016/j.jphotobiol.2023.112800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
Here we discuss fluorescent properties of graphene quantum dots (GQDs) interacting with the membranes of red blood cells. We report the results of spectroscopic, microscopic, and photon-counting measurements of the GQDs in different surroundings for uncovering specific features of the GQD fluorescence, and describe two observed phenomena important for implementation of the GQDs as fluorescent labels and agents for drug delivery. Firstly, the GQDs can suffer from photodegradation but also can be stabilized in the presence of antioxidants (reduced glutathione, N-acetylcysteine, or 1,4-hydroquinone). Secondly, GQDs can accumulate in red blood cell membranes without compromising the viability of the cells but also can induce hemolysis in the presence of visible light. We discuss mechanisms and regimes of the photodegradation, stabilization, interaction of the GQDs with red blood cell membranes, and hemolysis. Notably, photohemolysis for the case is dependent on the light dose and GQD concentration but not caused by the production of reactive oxygen species.
Collapse
Affiliation(s)
- Tatsiana Kulahava
- Institute for Nuclear Problems of the Belarusian State University, Bobruiskaya str. 11, Minsk 220006, Belarus
| | - Nikita Belko
- B.I. Stepanov Institute of Physics, NAS of Belarus, Nezavisimosty ave. 68, Minsk 220072, Belarus.
| | - Marina Parkhats
- B.I. Stepanov Institute of Physics, NAS of Belarus, Nezavisimosty ave. 68, Minsk 220072, Belarus
| | - Anastasiya Bahdanava
- Institute for Nuclear Problems of the Belarusian State University, Bobruiskaya str. 11, Minsk 220006, Belarus
| | - Sergei Lepeshkevich
- B.I. Stepanov Institute of Physics, NAS of Belarus, Nezavisimosty ave. 68, Minsk 220072, Belarus
| | - Vyacheslav Chizhevsky
- B.I. Stepanov Institute of Physics, NAS of Belarus, Nezavisimosty ave. 68, Minsk 220072, Belarus
| | - Dmitri Mogilevtsev
- B.I. Stepanov Institute of Physics, NAS of Belarus, Nezavisimosty ave. 68, Minsk 220072, Belarus.
| |
Collapse
|
17
|
Dutta SD, Moniruzzaman M, Hexiu J, Sarkar S, Ganguly K, Patel DK, Mondal J, Lee YK, Acharya R, Kim J, Lim KT. Polyphenolic Carbon Quantum Dots with Intrinsic Reactive Oxygen Species Amplification for Two-Photon Bioimaging and In Vivo Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37905899 DOI: 10.1021/acsami.3c07547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Recent studies indicate that mitochondrial dysfunctions and DNA damage have a critical influence on cell survival, which is considered one of the therapeutic targets for cancer therapy. In this study, we demonstrated a comparative study of the effect of polyphenolic carbon quantum dots (CQDs) on in vitro and in vivo antitumor efficacy. Dual emissive (green and yellow) shape specific polyphenolic CQDs (G-CQDs and Y-CQDs) were synthesized from easily available nontoxic precursors (phloroglucinol), and the antitumor property of the as-synthesized probe was investigated as compared to round-shaped blue emissive CQDs (B-CQDs) derived from well-reported precursor citric acid and urea. The B-CQDs had a nuclei-targeting property, and G-CQDs and Y-CQDs had mitochondria-targeting properties. We have found that the polyphenol containing CQDs (at a dose of 100 μg mL-1) specifically attack mitochondria by excess accumulation, altering the metabolism, inhibiting branching pattern, imbalanced Bax/Bcl-2 homeostasis, and ultimately generating oxidative stress levels, leading to oxidative stress-induced cell death in cancer cells in vitro. We show that G-CQDs are the main cause of oxidative stress in cancer cells because of their ability to produce sufficient •OH- and 1O2 radicals, evidenced by electron paramagnetic resonance spectroscopy and a terephthalic acid test. Moreover, the near-infrared absorption properties of the CQDs were exhibited in two-photon (TP) emission, which was utilized for TP cellular imaging of cancer cells without photobleaching. The in vivo antitumor test further discloses that intratumoral injection of G-CQDs can significantly augment the treatment efficacy of subcutaneous tumors without any adverse effects on BalB/c nude mice. We believe that shape-specific polyphenolic CQD-based nanotheranostic agents have a potential role in tumor therapy, thus proving an insight on treatment of malignant cancers.
Collapse
Affiliation(s)
- Sayan Deb Dutta
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Md Moniruzzaman
- Department of Chemical and Biological Engineering, Gachon University, Seongnam, Gyeonggi-do 1342, Republic of Korea
| | - Jin Hexiu
- Department of Plastic and Traumatic Surgery, Capital Medical University, Fengtai, Beijing 100069, China
| | - Sourav Sarkar
- Department of Chemistry, Pohang University of Science and Technology, Pohang, Gyungbuk 37673, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Dinesh K Patel
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Jagannath Mondal
- Department of Green Bioengineering, Korea National University of Transportation, Chungju 27470, Republic of Korea
| | - Yong-Kyu Lee
- Department of Green Bioengineering, Korea National University of Transportation, Chungju 27470, Republic of Korea
| | - Rumi Acharya
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Jongsung Kim
- Department of Chemical and Biological Engineering, Gachon University, Seongnam, Gyeonggi-do 1342, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| |
Collapse
|
18
|
Wong PC, Kurniawan D, Wu JL, Wang WR, Chen KH, Chen CY, Chen YC, Veeramuthu L, Kuo CC, Ostrikov KK, Chiang WH. Plasma-Enabled Graphene Quantum Dot Hydrogel-Magnesium Composites as Bioactive Scaffolds for In Vivo Bone Defect Repair. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44607-44620. [PMID: 37722031 DOI: 10.1021/acsami.3c05297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Bioactive and mechanically stable metal-based scaffolds are commonly used for bone defect repair. However, conventional metal-based scaffolds induce nonuniform cell growth, limiting damaged tissue restoration. Here, we develop a plasma nanotechnology-enhanced graphene quantum dot (GQD) hydrogel-magnesium (Mg) composite scaffold for functional bone defect repair by integrating a bioresource-derived nitrogen-doped GQD (NGQD) hydrogel into the Mg ZK60 alloy. Each scaffold component brings major synergistic advantages over the current alloy-based state of the art, including (1) mechanical support of the cortical bone and calcium deposition by the released Mg2+ during degradation; (2) enhanced uptake, migration, and distribution of osteoblasts by the porous hydrogel; and (3) improved osteoblast adhesion and proliferation, osteogenesis, and mineralization by the NGQDs in the hydrogel. Through an in vivo study, the hybrid scaffold with the much enhanced osteogenic ability induced by the above synergy promotes a more rapid, uniform, and directional bone growth across the hydrogel channel, compared with the control Mg-based scaffold. This work provides insights into the design of multifunctional hybrid scaffolds, which can be applied in other areas well beyond the demonstrated bone defect repair.
Collapse
Affiliation(s)
- Pei-Chun Wong
- Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
- Orthopedics Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Darwin Kurniawan
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Jia-Lin Wu
- Orthopedics Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Orthopedics, Taipei Medical University Hospital, Taipei 110, Taiwan
- Centers for Regional Anesthesia and Pain Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan
| | - Wei-Ru Wang
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Kuan-Hao Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei 235, Taiwan
| | - Chieh-Ying Chen
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Ying-Chun Chen
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Loganathan Veeramuthu
- Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 106, Taiwan
| | - Chi-Ching Kuo
- Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 106, Taiwan
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics, Centre for Biomedical Technologies and Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
19
|
Kuznietsova H, Géloën A, Dziubenko N, Zaderko A, Alekseev S, Lysenko V, Skryshevsky V. In vitro and in vivo toxicity of carbon dots with different chemical compositions. DISCOVER NANO 2023; 18:111. [PMID: 37682347 PMCID: PMC10491573 DOI: 10.1186/s11671-023-03891-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023]
Abstract
Carbon dots (CDs) are easy-obtained nanoparticles with wide range of biological activity; however, their toxicity after prolonged exposure is poorly investigated. So, in vitro and in vivo toxicity of CDs with the surfaces enriched with hydroxylated hydrocarbon chains and methylene groups (CD_GE), carboxyl and phenol groups accompanied with nitrogen (CD_3011), trifluoromethyl (CDF19) or toluidine and aniline groups (CDN19) were aimed to be discovered. CDs' in vitro toxicity was assessed on A549 cells (real-time cell analysis of impedance, fluorescence microscopy) after 24 h of incubation, and we observed no changes in cell viability and morphology. CDs' in vivo toxicity was assessed on C57Bl6 mice after multiple dosages (5 mg/kg subcutaneously) for 14 days. Lethality (up to 50%) was observed in CDN19 and CD_3011 groups on different days of dosing, accompanied by toxicity signs in case of CD_3011. There were no changes in serum biochemical parameters except Urea (increased in CDF19 and CD_3011 groups), nor substantial kidney, liver, and spleen injuries. The most impactful for all organs were also CD_3011 and CDF19, causing renal tubule injury and liver blood supply violation. Thus, CDs with a surface enriched with oxygen- and nitrogen-containing functional groups might be toxic after multiple everyday dosing, without, however, significant damages of internal organs in survived animals.
Collapse
Affiliation(s)
- Halyna Kuznietsova
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, Volodymyrska Street, 64, Kiev, 01601, Ukraine.
- Corporation Science Park, Taras Shevchenko University of Kyiv, 60 Volodymyrska Str., Kiev, 01033, Ukraine.
| | - Alain Géloën
- Laboratoire Ecologie Microbienne (LEM), UMR CNRS 5557, INRAE 1418, VetAgroSup, Université Lyon 1, Domaine Scientifique de La Doua, 69100, Villeurbanne, France
| | - Nataliia Dziubenko
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, Volodymyrska Street, 64, Kiev, 01601, Ukraine
- Corporation Science Park, Taras Shevchenko University of Kyiv, 60 Volodymyrska Str., Kiev, 01033, Ukraine
| | - Alexander Zaderko
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, Volodymyrska Street, 64, Kiev, 01601, Ukraine
- Corporation Science Park, Taras Shevchenko University of Kyiv, 60 Volodymyrska Str., Kiev, 01033, Ukraine
- Department of Ecology, Faculty of Humanities and Natural Science, University of Presov, 17Th November Str. 1, 08001, Presov, Slovak Republic
| | - Sergei Alekseev
- Faculty of Chemistry, Taras Shevchenko National University of Kyiv, Lva Tolstoho Street, 12, Kiev, 01033, Ukraine
| | - Vladimir Lysenko
- Light Matter Institute, UMR-5306, Claude Bernard University of Lyon/CNRS, Université de Lyon, 69622, Villeurbanne Cedex, France
| | - Valeriy Skryshevsky
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, Volodymyrska Street, 64, Kiev, 01601, Ukraine
- Corporation Science Park, Taras Shevchenko University of Kyiv, 60 Volodymyrska Str., Kiev, 01033, Ukraine
| |
Collapse
|
20
|
Kim SD, Kim K, Shin M. Recent advances in 3D printable conductive hydrogel inks for neural engineering. NANO CONVERGENCE 2023; 10:41. [PMID: 37679589 PMCID: PMC10484881 DOI: 10.1186/s40580-023-00389-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023]
Abstract
Recently, the 3D printing of conductive hydrogels has undergone remarkable advances in the fabrication of complex and functional structures. In the field of neural engineering, an increasing number of reports have been published on tissue engineering and bioelectronic approaches over the last few years. The convergence of 3D printing methods and electrically conducting hydrogels may create new clinical and therapeutic possibilities for precision regenerative medicine and implants. In this review, we summarize (i) advancements in preparation strategies for conductive materials, (ii) various printing techniques enabling the fabrication of electroconductive hydrogels, (iii) the required physicochemical properties of the printed constructs, (iv) their applications in bioelectronics and tissue regeneration for neural engineering, and (v) unconventional approaches and outlooks for the 3D printing of conductive hydrogels. This review provides technical insights into 3D printable conductive hydrogels and encompasses recent developments, specifically over the last few years of research in the neural engineering field.
Collapse
Affiliation(s)
- Sung Dong Kim
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
| | - Kyoungryong Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Mikyung Shin
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea.
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
21
|
Edrisi F, Baheiraei N, Razavi M, Roshanbinfar K, Imani R, Jalilinejad N. Potential of graphene-based nanomaterials for cardiac tissue engineering. J Mater Chem B 2023; 11:7280-7299. [PMID: 37427687 DOI: 10.1039/d3tb00654a] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Cardiovascular diseases are the primary cause of death worldwide. Despite significant advances in pharmacological treatments and surgical interventions to restore heart function after myocardial infarction, it can progress to heart failure due to the restricted inherent potential of adult cardiomyocytes to self-regenerate. Hence, the evolution of new therapeutic methods is critical. Nowadays, novel approaches in tissue engineering have assisted in restoring biological and physical specifications of the injured myocardium and, hence, cardiac function. The incorporation of a supporting matrix that could mechanically and electronically support the heart tissue and stimulate the cells to proliferate and regenerate will be advantageous. Electroconductive nanomaterials can facilitate intracellular communication and aid synchronous contraction via electroactive substrate creation, preventing the issue of arrhythmia in the heart. Among a wide range of electroconductive materials, graphene-based nanomaterials (GBNs) are promising for cardiac tissue engineering (CTE) due to their outstanding features including high mechanical strength, angiogenesis, antibacterial and antioxidant properties, low cost, and scalable fabrication. In the present review, we discuss the effect of applying GBNs on angiogenesis, proliferation, and differentiation of implanted stem cells, their antibacterial and antioxidant properties, and their role in improving the electrical and mechanical properties of the scaffolds for CTE. Also, we summarize the recent research that has applied GBNs in CTE. Finally, we present a concise discussion on the challenges and prospects.
Collapse
Affiliation(s)
- Fatemeh Edrisi
- Modern Technologies in Engineering Group, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran
| | - Nafiseh Baheiraei
- Tissue Engineering and Applied Cell Sciences Division, Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran.
| | - Mehdi Razavi
- Biionix (Bionic Materials, Implants & Interfaces) Cluster, Department of Medicine, University of Central Florida College of Medicine, Orlando, Florida 32827, USA
- Department of Material Sciences and Engineering, University of Central Florida, Orlando, Florida 32816, USA
| | - Kaveh Roshanbinfar
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Muscle Research Center Erlangen (MURCE), 91054 Erlangen, Germany
| | - Rana Imani
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran 1591634311, Iran
| | - Negin Jalilinejad
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
22
|
Ye T, Yang Y, Bai J, Wu FY, Zhang L, Meng LY, Lan Y. The mechanical, optical, and thermal properties of graphene influencing its pre-clinical use in treating neurological diseases. Front Neurosci 2023; 17:1162493. [PMID: 37360172 PMCID: PMC10288862 DOI: 10.3389/fnins.2023.1162493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/17/2023] [Indexed: 06/28/2023] Open
Abstract
Rapid progress in nanotechnology has advanced fundamental neuroscience and innovative treatment using combined diagnostic and therapeutic applications. The atomic scale tunability of nanomaterials, which can interact with biological systems, has attracted interest in emerging multidisciplinary fields. Graphene, a two-dimensional nanocarbon, has gained increasing attention in neuroscience due to its unique honeycomb structure and functional properties. Hydrophobic planar sheets of graphene can be effectively loaded with aromatic molecules to produce a defect-free and stable dispersion. The optical and thermal properties of graphene make it suitable for biosensing and bioimaging applications. In addition, graphene and its derivatives functionalized with tailored bioactive molecules can cross the blood-brain barrier for drug delivery, substantially improving their biological property. Therefore, graphene-based materials have promising potential for possible application in neuroscience. Herein, we aimed to summarize the important properties of graphene materials required for their application in neuroscience, the interaction between graphene-based materials and various cells in the central and peripheral nervous systems, and their potential clinical applications in recording electrodes, drug delivery, treatment, and as nerve scaffolds for neurological diseases. Finally, we offer insights into the prospects and limitations to aid graphene development in neuroscience research and nanotherapeutics that can be used clinically.
Collapse
Affiliation(s)
- Ting Ye
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China
- Interdisciplinary Program of Biological Functional Molecules, College of Intergration Science, Yanbian University, Yanji, Jilin, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yi Yang
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China
| | - Jin Bai
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China
| | - Feng-Ying Wu
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China
- Interdisciplinary Program of Biological Functional Molecules, College of Intergration Science, Yanbian University, Yanji, Jilin, China
| | - Lu Zhang
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China
| | - Long-Yue Meng
- Department of Environmental Science, Department of Chemistry, Yanbian University, Yanji, Jilin, China
| | - Yan Lan
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China
| |
Collapse
|
23
|
Yang Y, Wang B, Zhang X, Li H, Yue S, Zhang Y, Yang Y, Liu M, Ye C, Huang P, Zhou X. Activatable Graphene Quantum-Dot-Based Nanotransformers for Long-Period Tumor Imaging and Repeated Photodynamic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211337. [PMID: 37025038 DOI: 10.1002/adma.202211337] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/06/2023] [Indexed: 06/09/2023]
Abstract
Photodynamic therapy (PDT) is considered as an emerging therapeutic modality against cancer with high spatiotemporal selectivity because the utilized photosensitizers (PSs) are only active and toxic upon light irradiation. To maximize its effectiveness, PDT is usually applied repetitively for ablating various tumors. However, the total overdose of PSs from repeated administrations causes severe side effects. Herein, acidity-activated graphene quantum dots-based nanotransformers (GQD NT) are developed as PS vehicles for long-period tumor imaging and repeated PDT. Under the guidance of Arg-Gly-Asp peptide, GQD NT targets to tumor tissues actively, and then loosens and enlarges in tumor acidity, thus promising long tumor retention. Afterwards, GQD NT transforms into small pieces for better penetration in tumor. Upon laser irradiation, GQD NT generates mild hyperthermia that enhances cell membrane permeability and further promotes the PSs uptake. Most intriguingly, the as-prepared GQD NT not only "turns-on" fluorescence/magnetic resonance signals, but also achieves efficient repeated PDT. Notably, the total PSs dose is reduced to 3.5 µmol kg-1 , which is 10-30 times lower than that of other reported works. Overall, this study exploits a smart vehicle to enhance accumulation, retention, and release of PSs in tumors through programmed deformation, thus overcoming the overdose obstacle in repeated PDT.
Collapse
Affiliation(s)
- Yuqi Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
- Optics Valley Laboratory, Wuhan, Hubei, 430073, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baolong Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
- Optics Valley Laboratory, Wuhan, Hubei, 430073, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xu Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
- Optics Valley Laboratory, Wuhan, Hubei, 430073, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongchuang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
- Optics Valley Laboratory, Wuhan, Hubei, 430073, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sen Yue
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
- Optics Valley Laboratory, Wuhan, Hubei, 430073, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yifan Zhang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Yunhuang Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
- Optics Valley Laboratory, Wuhan, Hubei, 430073, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
- Optics Valley Laboratory, Wuhan, Hubei, 430073, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chaohui Ye
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
- Optics Valley Laboratory, Wuhan, Hubei, 430073, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
- Optics Valley Laboratory, Wuhan, Hubei, 430073, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
24
|
Gao W, Liang Y, Wu D, Deng S, Qiu R. Graphene quantum dots enhance the osteogenic differentiation of PDLSCs in the inflammatory microenvironment. BMC Oral Health 2023; 23:331. [PMID: 37244994 DOI: 10.1186/s12903-023-03026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/09/2023] [Indexed: 05/29/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Graphene quantum dots (GQDs), a type of carbon-based nanomaterial, have remarkable biological, physical, and chemical properties. This study investigated the biological mechanisms of the proliferation and osteogenic differentiation of human periodontal ligament stem cells (PDLSCs) induced by GQDs in an inflammatory microenvironment. MATERIALS AND METHODS PDLSCs were cultured in osteogenic-induced medium with various concentrations of GQDs in standard medium or medium mimicking a proinflammatory environment. The effects of GQDs on the proliferation and osteogenic differentiation activity of PDLSCs were tested by CCK-8 assay, Alizarin Red S staining, and qRT‒PCR. In addition, Wnt/β-catenin signalling pathway-related gene expression was measured by qRT‒PCR. RESULTS Compared with the control group, the mRNA expression levels of ALP, RUNX2, and OCN and the number of mineralized nodules were all increased in PDLSCs after treatment with GQDs. Moreover, during the osteogenic differentiation of PDLSCs, the expression levels of LRP6 and β-catenin, which are Wnt/β-catenin signalling pathway-related genes, were upregulated. CONCLUSION In the inflammatory microenvironment, GQDs might promote the osteogenic differentiation ability of PDLSCs by activating the Wnt/β-catenin signalling pathway.
Collapse
Grants
- No.2021KY0119 Project of Basic Research Capacity Improvement in Young and Middle-aged Teachers in Guangxi universities
- No.2021KY0119 Project of Basic Research Capacity Improvement in Young and Middle-aged Teachers in Guangxi universities
- No.2021KY0119 Project of Basic Research Capacity Improvement in Young and Middle-aged Teachers in Guangxi universities
- No.2021KY0119 Project of Basic Research Capacity Improvement in Young and Middle-aged Teachers in Guangxi universities
- No.2021KY0119 Project of Basic Research Capacity Improvement in Young and Middle-aged Teachers in Guangxi universities
- NO.S2020041 Guangxi Medical and Health appropriate Technology Development and Promotion and Application Project
- NO.S2020041 Guangxi Medical and Health appropriate Technology Development and Promotion and Application Project
- NO.S2020041 Guangxi Medical and Health appropriate Technology Development and Promotion and Application Project
- NO.S2020041 Guangxi Medical and Health appropriate Technology Development and Promotion and Application Project
- NO.S2020041 Guangxi Medical and Health appropriate Technology Development and Promotion and Application Project
- NO.2020039 Science and Technology Plan Project of Qingxiu District, Nanning City, Guangxi
- NO.2020039 Science and Technology Plan Project of Qingxiu District, Nanning City, Guangxi
- NO.2020039 Science and Technology Plan Project of Qingxiu District, Nanning City, Guangxi
- NO.2020039 Science and Technology Plan Project of Qingxiu District, Nanning City, Guangxi
- NO.2020039 Science and Technology Plan Project of Qingxiu District, Nanning City, Guangxi
- NO. 2021AB11097 Key R & D projects of Guangxi science and Technology Department
- NO. 2021AB11097 Key R & D projects of Guangxi science and Technology Department
- NO. 2021AB11097 Key R & D projects of Guangxi science and Technology Department
- NO. 2021AB11097 Key R & D projects of Guangxi science and Technology Department
- NO. 2021AB11097 Key R & D projects of Guangxi science and Technology Department
Collapse
Affiliation(s)
- Wanshan Gao
- College of Stomatology, Hospital of Stomatology Guangxi Medical University , Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning, 530021, Guangxi, China
| | - Yan Liang
- College of Stomatology, Hospital of Stomatology Guangxi Medical University , Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning, 530021, Guangxi, China
| | - Dongyan Wu
- College of Stomatology, Hospital of Stomatology Guangxi Medical University , Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning, 530021, Guangxi, China
| | - Sicheng Deng
- College of Stomatology, Hospital of Stomatology Guangxi Medical University , Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning, 530021, Guangxi, China
| | - Rongmin Qiu
- College of Stomatology, Hospital of Stomatology Guangxi Medical University , Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning, 530021, Guangxi, China.
- Key Laboratory of Research and Application of Stomatological Equipment College of Stomatology Hospital of Stomatology Guangxi Medical University, Education Department of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China, 530021.
| |
Collapse
|
25
|
Taşdemir Ş, Morçimen ZG, Doğan AA, Görgün C, Şendemir A. Surface Area of Graphene Governs Its Neurotoxicity. ACS Biomater Sci Eng 2023. [PMID: 37201186 DOI: 10.1021/acsbiomaterials.3c00104] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Due to their unique physicochemical properties, graphene and its derivatives are widely exploited for biomedical applications. It has been shown that graphene may exert different degrees of toxicity in in vivo or in vitro models when administered via different routes and penetrated through physiological barriers, subsequently being distributed within tissues or located within cells. In this study, in vitro neurotoxicity of graphene with different surface areas (150 and 750 m2/g) was examined on dopaminergic neuron model cells. SH-SY5Y cells were treated with graphene possessing two different surface areas (150 and 750 m2/g) in different concentrations between 400 and 3.125 μg/mL, and the cytotoxic and genotoxic effects were investigated. Both sizes of graphene have shown increased cell viability in decreasing concentrations. Cell damage increased with higher surface area. Lactate dehydrogenase (LDH) results have concluded that the viability loss of the cells is not through membrane damage. Neither of the two graphene types showed damage through lipid peroxidation (MDA) oxidative stress pathway. Glutathione (GSH) values increased within the first 24 and 48 h for both types of graphene. This increase suggests that graphene has an antioxidant effect on the SH-SY5Y model neurons. Comet analysis shows that graphene does not show genotoxicity on either surface area. Although there are many studies on graphene and its derivatives on their use with different cells in the literature, there are conflicting results in these studies, and most of the literature is focused on graphene oxide. Among these studies, no study examining the effect of graphene surface areas on the cell was found. Our study contributes to the literature in terms of examining the cytotoxic and genotoxic behavior of graphene with different surface areas.
Collapse
Affiliation(s)
- Şeyma Taşdemir
- Bioengineering Department, Celal Bayar University, Manisa 45140, Turkey
| | | | | | - Cansu Görgün
- Department of Experimental Medicine (DIMES), University of Genova, Genova 16126, Italy
| | - Aylin Şendemir
- Department of Bioengineering, Ege University, Izmir 35040, Turkey
- Department of Biomedical Technologies, Ege University, Izmir 35040, Turkey
| |
Collapse
|
26
|
Rostamzadeh F, Jafarinejad-Farsangi S, Ansari-Asl Z, Farrokhi MS, Jafari E. Treatment for Myocardial Infarction: In Vivo Evaluation of Curcumin-Loaded PEGylated-GQD Nanoparticles. J Cardiovasc Pharmacol 2023; 81:361-372. [PMID: 36822208 DOI: 10.1097/fjc.0000000000001410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 02/04/2023] [Indexed: 02/25/2023]
Abstract
ABSTRACT Curcumin (Cur) has been suggested as a complementary treatment for cardiovascular diseases. Its efficiency, however, is modest due to poor biocompatibility. This study examined the effects of curcumin loaded on polyethylene glycol-graphene quantum dots (Cur-PEG-GQDs) on hemodynamic and cardiac function in rats with myocardial infarction (MI). The study groups included control, MI, MI+Cur-3, MI + Cur-7, MI + Cur-15, MI + PEG-GQDs-5, MI + PEG-GQDs-10, MI + Cur-PEG-GQDs-5, and MI + Cur-PEG-GQDs-10. MI was established by left anterior descending artery ligation. Two weeks after intraperitoneal administration of vehicle, Cur, PEG-GQDs, and Cur-PEG-GQDs, blood pressure and heart contractility indices were measured. Triphenyl tetrazolium chloride, colorimetry, and clinical laboratory methods were used to measure the infarct size, the oxidant and antioxidant content, and the kidney and liver function parameters, respectively. In the MI animals, Cur-7, PEG-GQDs-10, Cur-PEG-GQDs-5, and Cur-PEG-GQDs-10 recovered systolic blood pressure, diastolic blood pressure, left ventricular systolic pressure, and ±dp/dt max disturbances and reduced myocardial infarct size, fibrosis, and left ventricular end-diastolic pressure. Curcumin lowered antioxidant markers and elevated 1 oxidant marker in the heart in a dose-dependent manner. Although Cur-PEG-GQDs-5 and Cur-PEG-GQDs-10 reduced curcumin's oxidative stress effects, the superoxide dismutase, glutathione peroxidase, and total antioxidant capacity levels were significantly lower in Cur-PEG-GQDs-5 and Cur-PEG-GQDs-10 groups compared with the MI group. Malondialdehyde levels were lower in Cur-PEG-GQDs-5 and -10 groups compared with the Cur-3, Cur-7, and Cur-15 groups. The glutathione/glutathione disulfide ratio improved in the groups treated by Cur-7, PEG-GQDs-10, Cur-PEG-GQDs-5, and Cur-PEG-GQDs-10. The findings indicated that Cur-PEG-GQDs mitigated MI-induced cardiac dysfunction. However, because of the increase in oxidative stress in the heart, nonclassic mechanisms may be involved in the beneficial effect of Cur-PEG-GQDs on MI-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Farzaneh Rostamzadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman
| | - Saeideh Jafarinejad-Farsangi
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman
| | - Zeinab Ansari-Asl
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz
| | - Mitra Shadkam Farrokhi
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman; and
| | - Elham Jafari
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
27
|
Kuo YC, De S. Development of carbon dots to manage Alzheimer's disease and Parkinson's disease. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
28
|
Kashyap BK, Singh VV, Solanki MK, Kumar A, Ruokolainen J, Kesari KK. Smart Nanomaterials in Cancer Theranostics: Challenges and Opportunities. ACS OMEGA 2023; 8:14290-14320. [PMID: 37125102 PMCID: PMC10134471 DOI: 10.1021/acsomega.2c07840] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Cancer is ranked as the second leading cause of death globally. Traditional cancer therapies including chemotherapy are flawed, with off-target and on-target toxicities on the normal cells, requiring newer strategies to improve cell selective targeting. The application of nanomaterial has been extensively studied and explored as chemical biology tools in cancer theranostics. It shows greater applications toward stability, biocompatibility, and increased cell permeability, resulting in precise targeting, and mitigating the shortcomings of traditional cancer therapies. The nanoplatform offers an exciting opportunity to gain targeting strategies and multifunctionality. The advent of nanotechnology, in particular the development of smart nanomaterials, has transformed cancer diagnosis and treatment. The large surface area of nanoparticles is enough to encapsulate many molecules and the ability to functionalize with various biosubstrates such as DNA, RNA, aptamers, and antibodies, which helps in theranostic action. Comparatively, biologically derived nanomaterials perceive advantages over the nanomaterials produced by conventional methods in terms of economy, ease of production, and reduced toxicity. The present review summarizes various techniques in cancer theranostics and emphasizes the applications of smart nanomaterials (such as organic nanoparticles (NPs), inorganic NPs, and carbon-based NPs). We also critically discussed the advantages and challenges impeding their translation in cancer treatment and diagnostic applications. This review concludes that the use of smart nanomaterials could significantly improve cancer theranostics and will facilitate new dimensions for tumor detection and therapy.
Collapse
Affiliation(s)
- Brijendra Kumar Kashyap
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi 284128, Uttar Pradesh, India
| | - Virendra Vikram Singh
- Defence Research and Development Establishment, DRDO, Gwalior 474002, Madhya Pradesh, India
| | - Manoj Kumar Solanki
- Faculty of Natural Sciences, Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Anil Kumar
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Cheri-Manatu, Karmre, Kanke 835222, Ranchi, India
| | - Janne Ruokolainen
- Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Vikkinkaari 1, 00100 Helsinki, Finland
| |
Collapse
|
29
|
Jovanović S, Marković Z, Budimir M, Prekodravac J, Zmejkoski D, Kepić D, Bonasera A, Marković BT. Lights and Dots toward Therapy-Carbon-Based Quantum Dots as New Agents for Photodynamic Therapy. Pharmaceutics 2023; 15:pharmaceutics15041170. [PMID: 37111655 PMCID: PMC10145889 DOI: 10.3390/pharmaceutics15041170] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
The large number of deaths induced by carcinoma and infections indicates that the need for new, better, targeted therapy is higher than ever. Apart from classical treatments and medication, photodynamic therapy (PDT) is one of the possible approaches to cure these clinical conditions. This strategy offers several advantages, such as lower toxicity, selective treatment, faster recovery time, avoidance of systemic toxic effects, and others. Unfortunately, there is a small number of agents that are approved for usage in clinical PDT. Novel, efficient, biocompatible PDT agents are, thus, highly desired. One of the most promising candidates is represented by the broad family of carbon-based quantum dots, such as graphene quantum dots (GQDs), carbon quantum dots (CQDs), carbon nanodots (CNDs), and carbonized polymer dots (CPDs). In this review paper, these new smart nanomaterials are discussed as potential PDT agents, detailing their toxicity in the dark, and when they are exposed to light, as well as their effects on carcinoma and bacterial cells. The photoinduced effects of carbon-based quantum dots on bacteria and viruses are particularly interesting, since dots usually generate several highly toxic reactive oxygen species under blue light. These species are acting as bombs on pathogen cells, causing various devastating and toxic effects on those targets.
Collapse
Affiliation(s)
- Svetlana Jovanović
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Zoran Marković
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Milica Budimir
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Jovana Prekodravac
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Danica Zmejkoski
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Dejan Kepić
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Aurelio Bonasera
- Palermo Research Unit, Department of Physics and Chemistry-Emilio Segrè, University of Palermo and Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 90128 Palermo, Italy
| | - Biljana Todorović Marković
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| |
Collapse
|
30
|
Yan H, Wang Q, Wang J, Shang W, Xiong Z, Zhao L, Sun X, Tian J, Kang F, Yun SH. Planted Graphene Quantum Dots for Targeted, Enhanced Tumor Imaging and Long-Term Visualization of Local Pharmacokinetics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210809. [PMID: 36740642 PMCID: PMC10374285 DOI: 10.1002/adma.202210809] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/07/2022] [Indexed: 06/18/2023]
Abstract
While photoluminescent graphene quantum dots (GQDs) have long been considered very suitable for bioimaging owing to their protein-like size, superhigh photostability and in vivo long-term biosafety, their unique and crucial bioimaging applications in vivo remain unreachable. Herein, planted GQDs are presented as an excellent tool for in vivo fluorescent, sustainable and multimodality tumor bioimaging in various scenarios. The GQDs are in situ planted in the poly(ethylene glycol) (PEG) layer of PEGylated nanoparticles via a bottom-up molecular approach to obtain the NPs-GQDs-PEG nanocomposite. The planted GQDs show more than four times prolonged blood circulation and 7-8 times increased tumor accumulation than typical GQDs in vivo. After accessible specificity modification, the multifunctional NPs-GQDs-PEG provides targeted, multimodal molecular imaging for various tumor models in vitro or in vivo. Moreover, the highly photostable GQDs enable long-term, real-time visualization of the local pharmacokinetics of NPs in vivo. Planting GQDs in PEGylated nanomedicine offers a new strategy for broad in vivo biomedical applications of GQDs.
Collapse
Affiliation(s)
- Hao Yan
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Boston 02139, USA
| | - Qian Wang
- Department of Diagnostic Imaging, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jingyun Wang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Wenting Shang
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Beijing 100190, China
| | - Zhiyuan Xiong
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Lingyun Zhao
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaodan Sun
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Beijing 100190, China
| | - Feiyu Kang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Seok-Hyun Yun
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Boston 02139, USA
| |
Collapse
|
31
|
Engineered Graphene Quantum Dots as a Magnetic Resonance Signal Amplifier for Biomedical Imaging. Molecules 2023; 28:molecules28052363. [PMID: 36903608 PMCID: PMC10005761 DOI: 10.3390/molecules28052363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/19/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
The application of magnetic resonance imaging (MRI) nano-contrast agents (nano-CAs) has increasingly attracted scholarly interest owing to their size, surface chemistry, and stability. Herein, a novel T1 nano-CA (Gd(DTPA)-GQDs) was successfully prepared through the functionalization of graphene quantum dots with poly(ethylene glycol) bis(amine) and their subsequent incorporation into Gd-DTPA. Remarkably, the resultant as-prepared nano-CA displayed an exceptionally high longitudinal proton relaxivity (r1) of 10.90 mM-1 s-1 (R2 = 0.998), which was significantly higher than that of commercial Gd-DTPA (4.18 mM-1 s-1, R2 = 0.996). The cytotoxicity studies indicated that the Gd(DTPA)-GQDs were not cytotoxic by themselves. The results of the hemolysis assay and the in vivo safety evaluation demonstrate the outstanding biocompatibility of Gd(DTPA)-GQDs. The in vivo MRI study provides evidence that Gd(DTPA)-GQDs exhibit exceptional performance as T1-CAs. This research constitutes a viable approach for the development of multiple potential nano-CAs with high-performance MR imaging capabilities.
Collapse
|
32
|
Sheikh Mohd Ghazali SAI, Fatimah I, Zamil ZN, Zulkifli NN, Adam N. Graphene quantum dots: A comprehensive overview. OPEN CHEM 2023. [DOI: 10.1515/chem-2022-0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
Abstract
Because of their prospective applications and exceptional features, graphene quantum dots (GQDs) have gotten a lot of recognition as a new class of fluorescent carbon materials. One of the carbon family’s newest superstars is the GQD. Due to its exceptional optoelectrical qualities, it has sparked a lot of curiosity since its debut in 2008. Two of the most important traits are a band gap that is not zero, biocompatibility, and highly changeable characteristics. GQDs have several important characteristics. GQDs have shown potential in a variety of fields, for instance, catalysis, sensing, energy devices, drug delivery, bioimaging, photothermal, and photodynamic therapy. Because this area constantly evolves, it is vital to recognize emerging GQD concerns in the current breakthroughs, primarily since some specific uses and developments in the case of GQDs synthesis have not been thoroughly investigated through previous studies. The current results in the properties, synthesis, as well as benefits of GQDs are discussed in this review study. As per the findings of this research, the GQD’s future investigation is boundless, mainly if the approaching investigation focuses on purifying simplicity and environmentally friendly synthesis, as well as boosting photoluminescence quantum output and manufacturing output of GQDs.
Collapse
Affiliation(s)
| | - Is Fatimah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia , Kampus Terpadu UII, Jl. Kaliurang Km 14 , Sleman, Yogyakarta 55584 , Indonesia
| | - Zaireen Natasya Zamil
- Faculty of Applied Sciences, Universiti Teknologi MARA Cawangan Negeri Sembilan, Kampus Kuala Pilah , Kuala Pilah 72000, Negeri Sembilan , Malaysia
| | - Nur Nadia Zulkifli
- Faculty of Applied Sciences, Universiti Teknologi MARA Cawangan Negeri Sembilan, Kampus Kuala Pilah , Kuala Pilah 72000, Negeri Sembilan , Malaysia
| | - Nurain Adam
- Kontra Pharma (M) SdnBhd(90082-V) Kontra Technology Centre (Block B) 1, 2 & 3, Industrial Estate , 75250, Jalan Ttc12 , Malacca , Malaysia
| |
Collapse
|
33
|
Green Synthesis of Blue-Emitting Graphene Oxide Quantum Dots for In Vitro CT26 and In Vivo Zebrafish Nano-Imaging as Diagnostic Probes. Pharmaceutics 2023; 15:pharmaceutics15020632. [PMID: 36839953 PMCID: PMC9960939 DOI: 10.3390/pharmaceutics15020632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/02/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Graphene oxide quantum dots (GOQDs) are prepared using black carbon as a feedstock and H2O2 as a green oxidizing agent in a straightforward and environmentally friendly manner. The process adopted microwave energy and only took two minutes. The GOQDs are 20 nm in size and have stable blue fluorescence at 440 nm. The chemical characteristics and QD morphology were confirmed by thorough analysis using scanning electron microscope (SEM), transmission electron microscope (TEM), atomic force microscope (AFM), Fourier transmission infra-red (FT-IR), and X-ray photoelectron spectroscopy (XPS). The biocompatibility test was used to evaluate the toxicity of GOQDs in CT26 cells in vitro and the IC50 was found to be 200 µg/mL with excellent survival rates. Additional in vivo toxicity assessment in the developing zebrafish (Danio rerio) embryo model found no observed abnormalities even at a high concentration of 400 μg/mL after 96 h post fertilization. The GOQDs luminescence was also tested both in vitro and in vivo. They showed excellent internal distribution in the cytoplasm, cell nucleus, and throughout the zebrafish body. As a result, the prepared GOQDs are expected to be simple and inexpensive materials for nano-imaging and diagnostic probes in nanomedicine.
Collapse
|
34
|
Fu C, Qin X, Zhang J, Zhang T, Song Y, Yang J, Wu G, Luo D, Jiang N, Bikker FJ. In vitro and in vivo toxicological evaluation of carbon quantum dots originating from Spinacia oleracea. Heliyon 2023; 9:e13422. [PMID: 36820041 PMCID: PMC9937992 DOI: 10.1016/j.heliyon.2023.e13422] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Food-derived carbon quantum dots (CQDs) can relatively easily be synthesized and chemically manipulated for a broad spectrum of biomedical applications. However, their toxicity may hinder their actual use. Here, Spinacia oleracea-derived CQDs i.e., CQD-1 and CQD-2, were synthesized by means of different shredding methods and followed by a microwave-assisted hydrothermal approach. Subsequently, these CQDs were analyzed in vitro and in an in vivo mice model to test their biocompatibility and potential use as bioimaging agents and for activation of osteogenic differentiation. When comparing CQD-1 and CQD-2, it was found that CQD-1 exhibited 7.6 times higher photoluminescent (PL) emission intensity around 411 nm compared to CQD-2. Besides, it was found that the size distribution of CQD-1 was 2.05 ± 0.08 nm, compared with 2.14 ± 0.04 nm for CQD-2. Upon exposure to human bone marrow-derived mesenchymal stem cells (hBMSCs) in vitro, CQD-1 was endocytosed into the cytoplasm and significantly increased the differentiation of hBMSCs up to 10 μg mL-1 after 7 and 14 days. Apparently, the presence of relatively low doses of CQD-1 showed virtually no toxic or histological effects in the major organs in vivo. In contrast, high doses of CQD-1 (1 mg mL-1) caused cell death in vitro ranging from 35% on day 1 to 80% on day 3 post-exposure, and activated the apoptotic machinery and increased lymphocyte aggregates in the liver tissue. In conclusion, S. oleracea-derived CQDs have the potential for biomedical applications in bioimaging and activation of stem cells osteogenic differentiation. Therefore, it is postulated that CQD-1 from S. oleracea remains potential prospective material at appropriate doses and specifications.
Collapse
Affiliation(s)
- Cuicui Fu
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam 1081LA, the Netherlands
| | - Xiaoyun Qin
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Jin Zhang
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Ting Zhang
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Yeqing Song
- Central Laboratory, Peking University School and Hospital of Stomatology, #22 Zhongguancun, South Avenue, Haidian District, Beijing 100081, China
| | - Jiaqi Yang
- Shanxi Medical University School and Hospital of Stomatology& Shanxi Province Key, Laboratory of Oral Diseases Prevention and New Materials, Shanxi 030605, China
| | - Gang Wu
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic, Center for Dentistry Amsterdam (ACTA), Amsterdam Movement Science, Vrije Universiteit Amsterdam, Amsterdam 1081LA, the Netherlands
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam 1081LA, the Netherlands
| | - Dan Luo
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Corresponding author. CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China.
| | - Nan Jiang
- Central Laboratory, Peking University School and Hospital of Stomatology, #22 Zhongguancun, South Avenue, Haidian District, Beijing 100081, China
- Corresponding author.
| | - Floris J. Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam 1081LA, the Netherlands
- Corresponding author.
| |
Collapse
|
35
|
Chakraborty G, Bondarde MP, Ray AK, Some S. Photophysical Modulation of Rhodamine‐B via π‐π stacking with GQD and Its Further Tuning by Cucurbit[7]uril**. ChemistrySelect 2023. [DOI: 10.1002/slct.202203689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Goutam Chakraborty
- Laser and Plasma Technology Division, Bhabha Atomic Research Centre Mumbai 400085 India
| | - Mahesh P. Bondarde
- Department of Speciality Chemicals Technology Institute of Chemical Technology, Matunga Mumbai 400019 India
| | - Alok K. Ray
- Laser and Plasma Technology Division, Bhabha Atomic Research Centre Mumbai 400085 India
- Homi Bhabha National Institute Mumbai 400094 India
| | - Surajit Some
- Department of Speciality Chemicals Technology Institute of Chemical Technology, Matunga Mumbai 400019 India
| |
Collapse
|
36
|
Liu X, Liu Y, Qiang L, Ren Y, Lin Y, Li H, Chen Q, Gao S, Yang X, Zhang C, Fan M, Zheng P, Li S, Wang J. Multifunctional 3D-printed bioceramic scaffolds: Recent strategies for osteosarcoma treatment. J Tissue Eng 2023; 14:20417314231170371. [PMID: 37205149 PMCID: PMC10186582 DOI: 10.1177/20417314231170371] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/31/2023] [Indexed: 05/21/2023] Open
Abstract
Osteosarcoma is the most prevalent bone malignant tumor in children and teenagers. The bone defect, recurrence, and metastasis after surgery severely affect the life quality of patients. Clinically, bone grafts are implanted. Primary bioceramic scaffolds show a monomodal osteogenesis function. With the advances in three-dimensional printing technology and materials science, while maintaining the osteogenesis ability, scaffolds become more patient-specific and obtain additional anti-tumor ability with functional agents being loaded. Anti-tumor therapies include photothermal, magnetothermal, old and novel chemo-, gas, and photodynamic therapy. These strategies kill tumors through novel mechanisms to treat refractory osteosarcoma due to drug resistance, and some have shown the potential to reverse drug resistance and inhibit metastasis. Therefore, multifunctional three-dimensional printed bioceramic scaffolds hold excellent promise for osteosarcoma treatments. To better understand, we review the background of osteosarcoma, primary 3D-printed bioceramic scaffolds, and different therapies and have a prospect for the future.
Collapse
Affiliation(s)
- Xingran Liu
- Shanghai Key Laboratory of Orthopedic
Implant, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Yihao Liu
- Shanghai Key Laboratory of Orthopedic
Implant, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Lei Qiang
- Southwest Jiaotong University, Chengdu,
China
| | - Ya Ren
- Southwest Jiaotong University, Chengdu,
China
| | - Yixuan Lin
- Shanghai Key Laboratory of Orthopedic
Implant, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Han Li
- Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Qiuhan Chen
- Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Shuxin Gao
- Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Xue Yang
- Southwest Jiaotong University, Chengdu,
China
| | - Changru Zhang
- Shanghai Key Laboratory of Orthopedic
Implant, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Minjie Fan
- Department of Orthopaedic Surgery,
Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Pengfei Zheng
- Department of Orthopaedic Surgery,
Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Shuai Li
- Department of Orthopedics, The First
Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinwu Wang
- Shanghai Key Laboratory of Orthopedic
Implant, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of
Medicine, Shanghai, China
- Southwest Jiaotong University, Chengdu,
China
- Shanghai Jiao Tong University,
Shanghai, China
- Weifang Medical University School of
Rehabilitation Medicine, Weifang, Shandong Province, China
| |
Collapse
|
37
|
Engineering and surface modification of carbon quantum dots for cancer bioimaging. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
38
|
Guo F, Li Q, Zhang X, Liu Y, Jiang J, Cheng S, Yu S, Zhang X, Liu F, Li Y, Rose G, Zhang H. Applications of Carbon Dots for the Treatment of Alzheimer's Disease. Int J Nanomedicine 2022; 17:6621-6638. [PMID: 36582459 PMCID: PMC9793737 DOI: 10.2147/ijn.s388030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/29/2022] [Indexed: 12/25/2022] Open
Abstract
There are currently approximately 50 million victims of Alzheimer's disease (AD) worldwide. The exact cause of the disease is unknown at this time, but amyloid plaques and neurofibrillary tangles in the brain are hallmarks of the disease. Current drug treatments for AD may slow the progression of the disease and improve the quality of life of patients, but they are often only minimally effective and are not cures. A major obstacle to developing and delivering more effective drug therapies is the presence of the blood-brain barrier (BBB), which prevents many compounds with therapeutic potential from reaching the central nervous system. Nanotechnology may provide a solution to this problem. Among the medical nanomaterials currently being studied, carbon dots (CDs) have attracted widespread attention because of their ability to cross the BBB, non-toxicity, and potential for drug/gene delivery.
Collapse
Affiliation(s)
- Feng Guo
- Public Research Laboratory of Hainan Medical University, Haikou, 571199, People’s Republic of China
| | - Qingman Li
- Public Research Laboratory of Hainan Medical University, Haikou, 571199, People’s Republic of China
| | - Xiaolin Zhang
- Key Laboratory of Child Cognition & Behavior Development of Hainan Province, Qiongtai Normal University, Haikou, 571127, People’s Republic of China
| | - Yiheng Liu
- Haikou Hospital Affiliated to Central South University Xiangya School of Medicine, Haikou, 570208, People’s Republic of China
| | - Jie Jiang
- Scientific Experiment Center of Hainan Medical University, Haikou, 571199, People’s Republic of China
| | - Shuanghuai Cheng
- Public Research Laboratory of Hainan Medical University, Haikou, 571199, People’s Republic of China
| | - Si Yu
- Public Research Laboratory of Hainan Medical University, Haikou, 571199, People’s Republic of China
| | - Xingfang Zhang
- Public Research Laboratory of Hainan Medical University, Haikou, 571199, People’s Republic of China,The First Affiliated Hospital of Hainan Medical College, Haikou, 570102, People’s Republic of China
| | - Fangfang Liu
- Laboratory Department, Nanping First Hospital Affiliated to Fujian Medical University, Fujian, 353006, People’s Republic of China
| | - Yiying Li
- Public Research Laboratory of Hainan Medical University, Haikou, 571199, People’s Republic of China
| | - Gregory Rose
- Departments of Anatomy and Physiology, Southern Illinois University School of Medicine, Carbondale, IL, 62901, USA,Correspondence: Gregory Rose, Departments of Anatomy and Physiology, Southern Illinois University School of Medicine, Carbondale, IL, 62901, USA, Tel +1 618-303-6503, Email
| | - Haiying Zhang
- Public Research Laboratory of Hainan Medical University, Haikou, 571199, People’s Republic of China,Haiying Zhang, Public Research Laboratory of Hainan Medical University, Haikou, 571199, People’s Republic of China, Tel +86 13907533247, Email
| |
Collapse
|
39
|
Kaur H, Garg R, Singh S, Jana A, Bathula C, Kim HS, Kumbar SG, Mittal M. Progress and challenges of graphene and its congeners for biomedical applications. J Mol Liq 2022; 368:120703. [PMID: 38130892 PMCID: PMC10735213 DOI: 10.1016/j.molliq.2022.120703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nanomaterials by virtue of their small size and enhanced surface area, present unique physicochemical properties that enjoy widespread applications in bioengineering, biomedicine, biotechnology, disease diagnosis, and therapy. In recent years, graphene and its derivatives have attracted a great deal of attention in various applications, including photovoltaics, electronics, energy storage, catalysis, sensing, and biotechnology owing to their exceptional structural, optical, thermal, mechanical, and electrical. Graphene is a two-dimensional sheet of sp2 hybridized carbon atoms of atomic thickness, which are arranged in a honeycomb crystal lattice structure. Graphene derivatives are graphene oxide (GO) and reduced graphene oxide (rGO), which are highly oxidized and less oxidized forms of graphene, respectively. Another form of graphene is graphene quantum dots (GQDs), having a size of less than 20 nm. Contemporary graphene research focuses on using graphene nanomaterials for biomedical purposes as they have a large surface area for loading biomolecules and medicine and offer the potential for the conjugation of fluorescent dyes or quantum dots for bioimaging. The present review begins with the synthesis, purification, structure, and properties of graphene nanomaterials. Then, we focussed on the biomedical application of graphene nanomaterials with special emphasis on drug delivery, bioimaging, biosensing, tissue engineering, gene delivery, and chemotherapy. The implications of graphene nanomaterials on human health and the environment have also been summarized due to their exposure to their biomedical applications. This review is anticipated to offer useful existing understanding and inspire new concepts to advance secure and effective graphene nanomaterials-based biomedical devices.
Collapse
Affiliation(s)
- Harshdeep Kaur
- Department of Chemistry, University institute of science, Chandigarh University, Gharuan, Punjab 140413, India
| | - Rahul Garg
- Department of Chemical Engineering, Indian Institute of Technology Ropar, Nangal Rd, Hussainpur, Rupnagar, Punjab 140001, India
| | - Sajan Singh
- AMBER/School of Chemistry, Trinity College of Dublin, Ireland
| | - Atanu Jana
- Division of Physics and Semiconductor Science, Dongguk University-Seoul, Seoul 04620, South Korea
| | - Chinna Bathula
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, South Korea
| | - Hyun-Seok Kim
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, South Korea
| | - Sangamesh G. Kumbar
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Mona Mittal
- Department of Chemistry, University institute of science, Chandigarh University, Gharuan, Punjab 140413, India
- Department of Chemistry, Galgotia college of engineering, Knowledge Park, I, Greater Noida, Uttar Pradesh 201310, India
| |
Collapse
|
40
|
Pyne DK, Chatterjee S, Pramanik S, Saha P, Biswas T, Bali S, Dutta P, Halder A. Tuning of Photoluminescence of Graphene Oxide Based Nanomaterials in the UV‐Visible Region: Formation of Aggregates by H‐Bonding through Water Molecules. ChemistrySelect 2022. [DOI: 10.1002/slct.202202707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Dinesh Kumar Pyne
- Department of Chemistry Presidency University 86/1 College Street Kolkata 700073 India
| | - Shovon Chatterjee
- Department of Chemistry Indian Institute of Technology Kanpur Kanpur 208016 India
| | - Soumalya Pramanik
- Department of Chemistry Presidency University 86/1 College Street Kolkata 700073 India
| | - Prosenjit Saha
- Department of Chemistry Presidency University 86/1 College Street Kolkata 700073 India
| | - Tuyan Biswas
- Department of Chemistry Presidency University 86/1 College Street Kolkata 700073 India
| | - Somnath Bali
- Department of Chemistry Presidency University 86/1 College Street Kolkata 700073 India
| | - Partha Dutta
- Department of Chemistry Maharaja Manindra Chandra College Kolkata 700003 India
| | - Arnab Halder
- Department of Chemistry Presidency University 86/1 College Street Kolkata 700073 India
| |
Collapse
|
41
|
Tan J, Song Y, Dai X, Wang G, Zhou L. One-pot synthesis of robust dendritic sulfur quantum dots for two-photon fluorescence imaging and "off-on" detection of hydroxyl radicals and ascorbic acid. NANOSCALE ADVANCES 2022; 4:4035-4040. [PMID: 36285217 PMCID: PMC9514557 DOI: 10.1039/d2na00498d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
The straightforward preparation of fluorescent sulfur quantum dots (SQDs) with good photostability and biocompatibility and multifunction remains a challenge. Herein, a simple method to improve the performance of SQDs is reported, that is, using hyperbranched polyglycerol (HPG) as a ligand to direct the synthesis of dendritic HPG-SQD nanocomposites from cheap elemental sulfur. Thanks to the protection of HPG, the HPG-SQDs show much better biocompatibility and photostability as compared with the widely reported polyethylene glycol (PEG) ligand-capped SQDs (PEG-SQDs). In addition, the HPG-SQDs also present excellent aqueous solubility, stable fluorescence against environmental variation, good cell uptake capability, and strong single- and two-photon fluorescence. Moreover, the HPG-SQDs display sensitive and selective fluorescence "off-on" behavior to hydroxyl radicals (˙OH) and ascorbic acid (AA), respectively, and thereby hold potential as a fluorescent switch to detect ˙OH and AA. For the first time, the utilization of two-photon fluorescence of HPG-SQDs to monitor ˙OH and AA in cells is demonstrated in this study.
Collapse
Affiliation(s)
- Jisuan Tan
- Key Laboratory of New Processing Technology for Nonferrous Metal and Materials (Ministry of Education), Guangxi Key Laboratory of Optical and Electronic Materials and Devices, and College of Materials Science and Engineering, Guilin University of Technology Guilin 541004 China
| | - Yiheng Song
- Key Laboratory of New Processing Technology for Nonferrous Metal and Materials (Ministry of Education), Guangxi Key Laboratory of Optical and Electronic Materials and Devices, and College of Materials Science and Engineering, Guilin University of Technology Guilin 541004 China
| | - Xuanjun Dai
- Key Laboratory of New Processing Technology for Nonferrous Metal and Materials (Ministry of Education), Guangxi Key Laboratory of Optical and Electronic Materials and Devices, and College of Materials Science and Engineering, Guilin University of Technology Guilin 541004 China
| | - Guan Wang
- Institute of Sustainability for Chemicals, Energy and Environment, ASTAR Singapore 138634 Singapore
| | - Li Zhou
- Key Laboratory of New Processing Technology for Nonferrous Metal and Materials (Ministry of Education), Guangxi Key Laboratory of Optical and Electronic Materials and Devices, and College of Materials Science and Engineering, Guilin University of Technology Guilin 541004 China
| |
Collapse
|
42
|
Quantum dots: The cutting-edge nanotheranostics in brain cancer management. J Control Release 2022; 350:698-715. [PMID: 36057397 DOI: 10.1016/j.jconrel.2022.08.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 12/14/2022]
Abstract
Quantum dots (QDs) are semiconductor nanocrystals possessing unique optoelectrical properties in that they can emit light energy of specific tunable wavelengths when excited by photons. They are gaining attention nowadays owing to their all-around ability to allow high-quality bio-imaging along with targeted drug delivery. The most lethal central nervous system (CNS) disorders are brain cancers or malignant brain tumors. CNS is guarded by the blood-brain barrier which poses a selective blockade toward drug delivery into the brain. QDs have displayed strong potential to deliver therapeutic agents into the brain successfully. Their bio-imaging capability due to photoluminescence and specific targeting ability through the attachment of ligand biomolecules make them preferable clinical tools for coming times. Biocompatible QDs are emerging as nanotheranostic tools to identify/diagnose and selectively kill cancer cells. The current review focuses on QDs and associated nanoformulations as potential futuristic clinical aids in the continuous battle against brain cancer.
Collapse
|
43
|
3D-Printing Graphene Scaffolds for Bone Tissue Engineering. Pharmaceutics 2022; 14:pharmaceutics14091834. [PMID: 36145582 PMCID: PMC9503344 DOI: 10.3390/pharmaceutics14091834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Graphene-based materials have recently gained attention for regenerating various tissue defects including bone, nerve, cartilage, and muscle. Even though the potential of graphene-based biomaterials has been realized in tissue engineering, there are significantly many more studies reporting in vitro and in vivo data in bone tissue engineering. Graphene constructs have mainly been studied as two-dimensional (2D) substrates when biological organs are within a three-dimensional (3D) environment. Therefore, developing 3D graphene scaffolds is the next clinical standard, yet most have been fabricated as foams which limit control of consistent morphology and porosity. To overcome this issue, 3D-printing technology is revolutionizing tissue engineering, due to its speed, accuracy, reproducibility, and overall ability to personalize treatment whereby scaffolds are printed to the exact dimensions of a tissue defect. Even though various 3D-printing techniques are available, practical applications of 3D-printed graphene scaffolds are still limited. This can be attributed to variations associated with fabrication of graphene derivatives, leading to variations in cell response. This review summarizes selected works describing the different fabrication techniques for 3D scaffolds, the novelty of graphene materials, and the use of 3D-printed scaffolds of graphene-based nanoparticles for bone tissue engineering.
Collapse
|
44
|
A Review on Graphene Quantum Dots for Electrochemical Detection of Emerging Pollutants. J Fluoresc 2022; 32:2223-2236. [PMID: 36042154 DOI: 10.1007/s10895-022-03018-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/19/2022] [Indexed: 10/14/2022]
Abstract
Graphene quantum dots which are known as zero-dimensional materials are gaining increasing attention from researchers all over the world. This is predicated upon their relatively unique chemiluminescent, fluorescent, electrochemiluminescent, and electronic properties. The precise mechanism of electrochemiluminescence continues to be a subject of debate in the research world, and this is important in identifying synthetic pathways for graphene quantum dots. Heavy metals and other emerging pollutants are global health and environmental concerns. Several studies have reported the sensitivity and limit of detection of graphene quantum dots up to the nano-, pico-, and femto- levels when used as sensors. This review seeks to bridge information gaps on the reported electrochemiluminescence chemosensors for emerging pollutants using graphene quantum dots under the sub-headings, synthesis, characterization, electrochemiluminescence chemosensor detection, and comparison with other detection methods.
Collapse
|
45
|
Uprety B, Abrahamse H. Semiconductor quantum dots for photodynamic therapy: Recent advances. Front Chem 2022; 10:946574. [PMID: 36034651 PMCID: PMC9405672 DOI: 10.3389/fchem.2022.946574] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Photodynamic therapy is a promising cancer treatment that induces apoptosis as a result of the interactions between light and a photosensitizing drug. Lately, the emergence of biocompatible nanoparticles has revolutionized the prospects of photodynamic therapy (PDT) in clinical trials. Consequently, a lot of research is now being focused on developing non-toxic, biocompatible nanoparticle-based photosensitizers for effective cancer treatments using PDT. In this regard, semiconducting quantum dots have shown encouraging results. Quantum dots are artificial semiconducting nanocrystals with distinct chemical and physical properties. Their optical properties can be fine-tuned by varying their size, which usually ranges from 1 to 10 nm. They present many advantages over conventional photosensitizers, mainly their emission properties can be manipulated within the near IR region as opposed to the visible region by the former. Consequently, low intensity light can be used to penetrate deeper tissues owing to low scattering in the near IR region. Recently, successful reports on imaging and PDT of cancer using carbon (carbon, graphene based) and metallic (Cd based) based quantum dots are promising. This review aims to summarize the development and the status quo of quantum dots for cancer treatment.
Collapse
|
46
|
Suresh RR, Kulandaisamy AJ, Nesakumar N, Nagarajan S, Lee JH, Rayappan JBB. Graphene Quantum Dots – Hydrothermal Green Synthesis, Material Characterization and Prospects for Cervical Cancer Diagnosis Applications: A Review. ChemistrySelect 2022. [DOI: 10.1002/slct.202200655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Raghavv Raghavender Suresh
- Department of Bioengineering School of Chemical & Biotechnology SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB) SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
| | - Arockia Jayalatha Kulandaisamy
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB) SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
- School of Electrical & Electronics Engineering SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
| | - Noel Nesakumar
- Department of Bioengineering School of Chemical & Biotechnology SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB) SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
| | - Saisubramanian Nagarajan
- Center for Research in Infectious Diseases (CRID) School of Chemical and Biotechnology SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
| | - Jung Heon Lee
- Research Center for Advanced Materials Technology School of Advanced Materials Science & Engineering Biomedical Institute for Convergence at SKKU (BICS) Sungkyunkwan University (SKKU) Suwon 16419 South Korea
| | - John Bosco Balaguru Rayappan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB) SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
- School of Electrical & Electronics Engineering SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
| |
Collapse
|
47
|
Krasteva N, Georgieva M. Promising Therapeutic Strategies for Colorectal Cancer Treatment Based on Nanomaterials. Pharmaceutics 2022; 14:pharmaceutics14061213. [PMID: 35745786 PMCID: PMC9227901 DOI: 10.3390/pharmaceutics14061213] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a global health problem responsible for 10% of all cancer incidences and 9.4% of all cancer deaths worldwide. The number of new cases increases per annum, whereas the lack of effective therapies highlights the need for novel therapeutic approaches. Conventional treatment methods, such as surgery, chemotherapy and radiotherapy, are widely applied in oncology practice. Their therapeutic success is little, and therefore, the search for novel technologies is ongoing. Many efforts have focused recently on the development of safe and efficient cancer nanomedicines. Nanoparticles are among them. They are uniquewith their properties on a nanoscale and hold the potential to exploit intrinsic metabolic differences between cancer and healthy cells. This feature allows them to induce high levels of toxicity in cancer cells with little damage to the surrounding healthy tissues. Graphene oxide is a promising 2D material found to play an important role in cancer treatments through several strategies: direct killing and chemosensitization, drug and gene delivery, and phototherapy. Several new treatment approaches based on nanoparticles, particularly graphene oxide, are currently under research in clinical trials, and some have already been approved. Here, we provide an update on the recent advances in nanomaterials-based CRC-targeted therapy, with special attention to graphene oxide nanomaterials. We summarise the epidemiology, carcinogenesis, stages of the CRCs, and current nanomaterials-based therapeutic approaches for its treatment.
Collapse
Affiliation(s)
- Natalia Krasteva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. Georgi Bonchev” Str., bl. 21, 1113 Sofia, Bulgaria
- Correspondence: (N.K.); (M.G.); Tel.: +359-889-577-074 (N.K.); +359-896-833-604 (M.G.)
| | - Milena Georgieva
- Institute of Molecular Biology “Acad. R. Tsanev”, Bulgarian Academy of Sciences, “Acad. Georgi Bonchev” Str., bl. 21, 1113 Sofia, Bulgaria
- Correspondence: (N.K.); (M.G.); Tel.: +359-889-577-074 (N.K.); +359-896-833-604 (M.G.)
| |
Collapse
|
48
|
Cui F, Li T, Wang D, Yi S, Li J, Li X. Recent advances in carbon-based nanomaterials for combating bacterial biofilm-associated infections. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128597. [PMID: 35247736 DOI: 10.1016/j.jhazmat.2022.128597] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 05/27/2023]
Abstract
The prevalence of bacterial pathogens among humans has increased rapidly and poses a great threat to health. Two-thirds of bacterial infections are associated with biofilms. Recently, nanomaterials have emerged as anti-biofilm agents due to their enormous potential for combating biofilm-associated infections and infectious disease management. Among these, relatively high biocompatibility and unique physicochemical properties of carbon-based nanomaterials (CBNs) have attracted wide attention. This review presented the current advances in anti-biofilm CBNs. Different kinds of CBNs and their physicochemical characteristics were introduced first. Then, the various potential mechanisms underlying the action of anti-biofilm CBNs during different stages were discussed, including anti-biofouling activity, inhibition of quorum sensing, photothermal/photocatalytic inactivation, oxidative stress, and electrostatic and hydrophobic interactions. In particular, the review focused on the pivotal role played by CBNs as anti-biofilm agents and delivery vehicles. Finally, it described the challenges and outlook for the development of more efficient and bio-safer anti-biofilm CBNs.
Collapse
Affiliation(s)
- Fangchao Cui
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China; College of Food Science and Technology, Bohai University, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian, Liaoning 116029, China
| | - Dangfeng Wang
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China; College of Food Science and Technology, Bohai University, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China; College of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Shumin Yi
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China; College of Food Science and Technology, Bohai University, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Jianrong Li
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China; College of Food Science and Technology, Bohai University, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China.
| | - Xuepeng Li
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China; College of Food Science and Technology, Bohai University, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| |
Collapse
|
49
|
Deng S, Zhang E, Wang Y, Zhao Y, Yang Z, Zheng B, Mu X, Deng X, Shen H, Rong H, Pei D. In vivo toxicity assessment of four types of graphene quantum dots (GQDs) using mRNA sequencing. Toxicol Lett 2022; 363:55-66. [DOI: 10.1016/j.toxlet.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022]
|
50
|
Kansara V, Tiwari S, Patel M. Graphene quantum dots: A review on the effect of synthesis parameters and theranostic applications. Colloids Surf B Biointerfaces 2022; 217:112605. [PMID: 35688109 DOI: 10.1016/j.colsurfb.2022.112605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
Abstract
The rising demand for early-stage diagnosis of diseases such as cancer, diabetes, neurodegenerative can be met with the development of materials offering high sensitivity and specificity. Graphene quantum dots (GQDs) have been investigated extensively for theranostic applications owing to their superior photostability and high aqueous dispersibility. These are attractive for a range of biomedical applications as their physicochemical and optoelectronic properties can be tuned precisely. However, many aspects of these properties remain to be explored. In the present review, we have discussed the effect of synthetic parameters upon their physicochemical characteristics relevant to bioimaging. We have highlighted the effect of particle properties upon sensing of biological molecules through 'turn-on' and 'turn-off' fluorescence and generation of electrochemical signals. After describing the effect of surface chemistry and solution pH on optical properties, an inclusive view on application of GQDs in drug delivery and radiation therapy has been given. Finally, a brief overview on their application in gene therapy has also been included.
Collapse
Affiliation(s)
- Vrushti Kansara
- Maliba Pharmacy College, Uka Tarsadia University, Gujarat, India
| | - Sanjay Tiwari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Raebareli, Uttar Pradesh, India
| | - Mitali Patel
- Maliba Pharmacy College, Uka Tarsadia University, Gujarat, India.
| |
Collapse
|