1
|
Kapnick SM, Martin CA, Jewell CM. Engineering metabolism to modulate immunity. Adv Drug Deliv Rev 2024; 204:115122. [PMID: 37935318 PMCID: PMC10843796 DOI: 10.1016/j.addr.2023.115122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 07/19/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023]
Abstract
Metabolic programming and reprogramming have emerged as pivotal mechanisms for altering immune cell function. Thus, immunometabolism has become an attractive target area for treatment of immune-mediated disorders. Nonetheless, many hurdles to delivering metabolic cues persist. In this review, we consider how biomaterials are poised to transform manipulation of immune cell metabolism through integrated control of metabolic configurations to affect outcomes in autoimmunity, regeneration, transplant, and cancer. We emphasize the features of nanoparticles and other biomaterials that permit delivery of metabolic cues to the intracellular compartment of immune cells, or strategies for altering signals in the extracellular space. We then provide perspectives on the potential for reciprocal regulation of immunometabolism by the physical properties of materials themselves. Lastly, opportunities for clinical translation are highlighted. This discussion contributes to our understanding of immunometabolism, biomaterials-based strategies for altering metabolic configurations in immune cells, and emerging concepts in this evolving field.
Collapse
Affiliation(s)
- Senta M Kapnick
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, USA; Department of Veterans Affairs, VA Maryland Health Care System, 10 N Green Street, Baltimore, MD, USA
| | - Corinne A Martin
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, USA
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, USA; Department of Veterans Affairs, VA Maryland Health Care System, 10 N Green Street, Baltimore, MD, USA; Robert E. Fischell Institute for Biomedical Devices, 8278 Paint Branch Drive, College Park, MD, USA; Marlene and Stewart Greenebaum Comprehensive Cancer Center, 22 S Greene Street, Suite N9E17, Baltimore, MD, USA.
| |
Collapse
|
2
|
Li H, He W, Feng Q, Chen J, Xu X, Lv C, Zhu C, Dong H. Engineering superstable islets-laden chitosan microgels with carboxymethyl cellulose coating for long-term blood glucose regulation in vivo. Carbohydr Polym 2024; 323:121425. [PMID: 37940297 DOI: 10.1016/j.carbpol.2023.121425] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/07/2023] [Accepted: 09/19/2023] [Indexed: 11/10/2023]
Abstract
Islet transplantation to restore endogenous insulin secretion is a promising therapy for type 1 diabetes in clinic. However, host immune rejection seriously limits the survival of transplanted islets. Despite of the various encapsulation strategies and materials developed so far to provide immune isolation for transplanted islets, long-term blood glucose regulation is still difficult due to the inherent defects of the encapsulation materials. Herein, a novel islet-encapsulation composite material with low immunogenicity, good biocompatibility and excellent stability is reported. Specifically, chitosan (CS) microgels (diameter: ∼302 μm) are prepared via Michael addition reaction between maleimide grafted chitosan (CS-Mal) and thiol grafted chitosan (CS-NAC) in droplet-based microfluidic device, and then zwitterionic surface layer is constructed on CS microgel surface by covalent binding between maleimide groups on CS and thiol groups on thiol modified carboxymethyl cellulose (CMC-SH). The as-formed carboxymethyl cellulose coated chitosan (CS@CMC) microgels show not only long-term stability in vivo owing to the non-biodegradability of CMC, but also fantastic anti-adsorption and antifibrosis because of the stable zwitterionic surface layer. As a result, islets encapsulated in the CS@CMC microgels exhibit high viability and good insulin secretion function in vivo, and long-term blood glucose regulation is achieved for 180 days in diabetic mice post-transplantation.
Collapse
Affiliation(s)
- Haofei Li
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Weijun He
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Qi Feng
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Junlin Chen
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Xinbin Xu
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Chuhan Lv
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Changchun Zhu
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Hua Dong
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
3
|
Tol MC, de Bont DFA, Boon WPC, de Koning EJP, van Apeldoorn AA. Preferred Islet Delivery Device Characteristics and Implantation Strategies of Patients With Type 1 Diabetes. Transpl Int 2023; 36:11077. [PMID: 37908676 PMCID: PMC10614671 DOI: 10.3389/ti.2023.11077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 09/21/2023] [Indexed: 11/02/2023]
Abstract
Islet delivery devices (IDDs) offer potential benefits for islet transplantation and stem cell-based replacement in type 1 diabetes. Little is known about patient preferences regarding islet delivery device characteristics and implantation strategies. Patient preferences for IDDs and implantation strategies remain understudied. We invited patients, parents and caregivers to fill in an online questionnaire regarding IDDs. An online survey gathered responses from 809 type 1 diabetes patients and 47 caregivers. We also assessed diabetes distress in a subgroup of 412 patients. A significant majority (97%) expressed willingness to receive an IDD. Preferred IDD attributes included a 3.5 cm diameter for 37.7% of respondents, while when provided with all options, 30.4% found dimensions unimportant. Respondents were open to approximately 4 implants, each with a 5 cm incision. Many favored a device functioning for 12 months (33.4%) or 24 months (24.8%). Younger participants (16-30) were more inclined to accept a 6 months functional duration (p < 0.001). Functional duration outweighed implant quantity and size (p < 0.001) in device importance. This emphasizes patients' willingness to accommodate burdens related to IDD features and implantation methods, crucial for designing future beta cell replacement strategies.
Collapse
Affiliation(s)
- Maarten C. Tol
- Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
- LUMC Transplant Center, Leiden University Medical Center, Leiden, Netherlands
| | - Denise F. A. de Bont
- Cell Biology-Inspired Tissue Engineering (cBITE), MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Wouter P. C. Boon
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, Netherlands
| | - Eelco J. P. de Koning
- Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
- LUMC Transplant Center, Leiden University Medical Center, Leiden, Netherlands
| | - Aart A. van Apeldoorn
- Cell Biology-Inspired Tissue Engineering (cBITE), MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
- Lighthouse Biomedical B.V., Maastricht, Netherlands
| |
Collapse
|
4
|
Asuaje Pfeifer M, Langehein H, Grupe K, Müller S, Seyda J, Liebmann M, Rustenbeck I, Scherneck S. PyCreas: a tool for quantification of localization and distribution of endocrine cell types in the islets of Langerhans. Front Endocrinol (Lausanne) 2023; 14:1250023. [PMID: 37772078 PMCID: PMC10523144 DOI: 10.3389/fendo.2023.1250023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/25/2023] [Indexed: 09/30/2023] Open
Abstract
Manifest diabetes, but also conditions of increased insulin resistance such as pregnancy or obesity can lead to islet architecture remodeling. The contributing mechanisms are as poorly understood as the consequences of altered cell arrangement. For the quantification of the different cell types but also the frequency of different cell-cell contacts within the islets, different approaches exist. However, few methods are available to characterize islet cell distribution in a statistically valid manner. Here we describe PyCreas, an open-source tool written in Python that allows semi-automated analysis of islet cell distribution based on images of pancreatic sections stained by immunohistochemistry or immunofluorescence. To ensure that the PyCreas tool is suitable for quantitative analysis of cell distribution in the islets at different metabolic states, we studied the localization and distribution of alpha, beta, and delta cells during gestation and prediabetes. We compared the islet cell distribution of pancreatic islets from metabolically healthy NMRI mice with that of New Zealand obese (NZO) mice, which exhibit impaired glucose tolerance (IGT) both preconceptionally and during gestation, and from C57BL/6 N (B6) mice, which acquire this IGT only during gestation. Since substrain(s) of the NZO mice are known to show a variant in the Abcc8 gene, we additionally examined preconceptional SUR1 knock-out (SUR1-KO) mice. PyCreas provided quantitative evidence that alterations in the Abcc8 gene are associated with an altered distribution pattern of islet cells. Moreover, our data indicate that this cannot be a consequence of prolonged hyperglycemia, as islet architecture is already altered in the prediabetic state. Furthermore, the quantitative analysis suggests that states of transient IGT, such as during common gestational diabetes mellitus (GDM), are not associated with changes in islet architecture as observed during long-term IGT. PyCreas provides the ability to systematically analyze the localization and distribution of islet cells at different stages of metabolic disease to better understand the underlying pathophysiology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Stephan Scherneck
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
5
|
The Potential of Cell Sheet Technology for Beta Cell Replacement Therapy. CURRENT TRANSPLANTATION REPORTS 2022. [DOI: 10.1007/s40472-022-00371-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Abstract
Purpose of Review
Here, we review the use of cell sheet technology using different cell types and its potential for restoring the extracellular matrix microenvironment, perfusion, and immunomodulatory action on islets and beta cells.
Recent Findings
Cell sheets can be produced with different fabrication techniques ranging from the widely used temperature responsive system to the magnetic system. A variety of cells have been used to produce cell sheets including skin fibroblasts, smooth muscle cells, human umbilical vein endothelial cells, and mesenchymal stem cells.
Summary
CST would allow to recreate the ECM of islets which would provide cues to support islet survival and improvement of islet function. Depending on the used cell type, different additional supporting properties like immunoprotection or cues for better revascularization could be provided. Furthermore, CST offers the possibility to use other implantation sites than inside the liver. Further research should focus on cell sheet thickness and size to generate a potential translational therapy.
Collapse
|
6
|
Accolla RP, Simmons AM, Stabler CL. Integrating Additive Manufacturing Techniques to Improve Cell-Based Implants for the Treatment of Type 1 Diabetes. Adv Healthc Mater 2022; 11:e2200243. [PMID: 35412030 PMCID: PMC9262806 DOI: 10.1002/adhm.202200243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/22/2022] [Indexed: 12/12/2022]
Abstract
The increasing global prevalence of endocrine diseases like type 1 diabetes mellitus (T1DM) elevates the need for cellular replacement approaches, which can potentially enhance therapeutic durability and outcomes. Central to any cell therapy is the design of delivery systems that support cell survival and integration. In T1DM, well-established fabrication methods have created a wide range of implants, ranging from 3D macro-scale scaffolds to nano-scale coatings. These traditional methods, however, are often challenged by their inherent limitations in reproducible and discrete fabrication, particularly when scaling to the clinic. Additive manufacturing (AM) techniques provide a means to address these challenges by delivering improved control over construct geometry and microscale component placement. While still early in development in the context of T1DM cellular transplantation, the integration of AM approaches serves to improve nutrient material transport, vascularization efficiency, and the accuracy of cell, matrix, and local therapeutic placement. This review highlights current methods in T1DM cellular transplantation and the potential of AM approaches to overcome these limitations. In addition, emerging AM technologies and their broader application to cell-based therapy are discussed.
Collapse
Affiliation(s)
- Robert P. Accolla
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Amberlyn M. Simmons
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Cherie L. Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Department of Immunology and Pathology, College of Medicine, University of Florida, Gainesville, FL, USA
- University of Florida Diabetes Institute, Gainesville, FL, USA
| |
Collapse
|
7
|
Paget MB, Murray HE, Bailey CJ, Downing R. From insulin injections to islet transplantation: An overview of the journey. Diabetes Obes Metab 2022; 24 Suppl 1:5-16. [PMID: 34431589 DOI: 10.1111/dom.14526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/21/2022]
Abstract
When, in 1869, Paul Langerhans detected the "islands of tissue" in the pancreas, he took the first step on a journey towards islet transplantation as a treatment for type 1 diabetes. The route has embraced developments across biosciences, surgery, gene therapy and clinical research. This review highlights major milestones along that journey involving whole pancreas transplantation, islet transplantation, the creation of surrogate insulin-secreting cells and novel islet-like structures using genetic and bio-engineering technologies. To obviate the paucity of human tissue, pluripotent stem cells and non-β-cells within the pancreas have been modified to create physiologically responsive insulin-secreting cells. Before implantation, these can be co-cultured with endothelial cells to promote vascularisation and with immune defence cells such as placental amnion cells to reduce immune rejection. Scaffolds to contain grafts and facilitate surgical placement provide further opportunities to achieve physiological insulin delivery. Alternatively, xenotransplants such as porcine islets might be reconsidered as opportunities exist to circumvent safety concerns and immune rejection. Thus, despite a long and arduous journey, the prospects for increased use of tissue transplantation to provide physiological insulin replacement are drawing ever closer.
Collapse
Affiliation(s)
- Michelle B Paget
- Islet Research Laboratory, Worcestershire Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, UK
| | - Hilary E Murray
- Islet Research Laboratory, Worcestershire Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, UK
| | | | - Richard Downing
- Islet Research Laboratory, Worcestershire Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, UK
| |
Collapse
|
8
|
Razavi M, Wang J, Thakor AS. Localized drug delivery graphene bioscaffolds for cotransplantation of islets and mesenchymal stem cells. SCIENCE ADVANCES 2021; 7:eabf9221. [PMID: 34788097 PMCID: PMC8597999 DOI: 10.1126/sciadv.abf9221] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 09/28/2021] [Indexed: 06/01/2023]
Abstract
In the present work, we developed, characterized, and tested an implantable graphene bioscaffold which elutes dexamethasone (Dex) that can accommodate islets and adipose tissue–derived mesenchymal stem cells (AD-MSCs). In vitro studies demonstrated that islets in graphene–0.5 w/v% Dex bioscaffolds had a substantial higher viability and function compared to islets in graphene-alone bioscaffolds or islets cultured alone (P < 0.05). In vivo studies, in which bioscaffolds were transplanted into the epididymal fat pad of diabetic mice, demonstrated that, when islet:AD-MSC units were seeded into graphene–0.5 w/v% Dex bioscaffolds, this resulted in complete restoration of glycemic control immediately after transplantation with these islets also showing a faster response to glucose challenges (P < 0.05). Hence, this combination approach of using a graphene bioscaffold that can be functionalized for local delivery of Dex into the surrounding microenvironment, together with AD-MSC therapy, can significantly improve the survival and function of transplanted islets.
Collapse
Affiliation(s)
- Mehdi Razavi
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Biionix™ (Bionic Materials, Implants & Interfaces) Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Jing Wang
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Avnesh S. Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| |
Collapse
|
9
|
Guttenplan APM, Tahmasebi Birgani Z, Giselbrecht S, Truckenmüller RK, Habibović P. Chips for Biomaterials and Biomaterials for Chips: Recent Advances at the Interface between Microfabrication and Biomaterials Research. Adv Healthc Mater 2021; 10:e2100371. [PMID: 34033239 PMCID: PMC11468311 DOI: 10.1002/adhm.202100371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/08/2021] [Indexed: 12/24/2022]
Abstract
In recent years, the use of microfabrication techniques has allowed biomaterials studies which were originally carried out at larger length scales to be miniaturized as so-called "on-chip" experiments. These miniaturized experiments have a range of advantages which have led to an increase in their popularity. A range of biomaterial shapes and compositions are synthesized or manufactured on chip. Moreover, chips are developed to investigate specific aspects of interactions between biomaterials and biological systems. Finally, biomaterials are used in microfabricated devices to replicate the physiological microenvironment in studies using so-called "organ-on-chip," "tissue-on-chip" or "disease-on-chip" models, which can reduce the use of animal models with their inherent high cost and ethical issues, and due to the possible use of human cells can increase the translation of research from lab to clinic. This review gives an overview of recent developments at the interface between microfabrication and biomaterials science, and indicates potential future directions that the field may take. In particular, a trend toward increased scale and automation is apparent, allowing both industrial production of micron-scale biomaterials and high-throughput screening of the interaction of diverse materials libraries with cells and bioengineered tissues and organs.
Collapse
Affiliation(s)
- Alexander P. M. Guttenplan
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Zeinab Tahmasebi Birgani
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Stefan Giselbrecht
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Roman K. Truckenmüller
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Pamela Habibović
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| |
Collapse
|
10
|
Mridha AR, Dargaville TR, Dalton PD, Carroll L, Morris MB, Vaithilingam V, Tuch BE. Prevascularized Retrievable Hybrid Implant to Enhance Function of Subcutaneous Encapsulated Islets. Tissue Eng Part A 2020; 28:212-224. [PMID: 33081600 DOI: 10.1089/ten.tea.2020.0179] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Replacement of pancreatic β-cells is one of the most promising treatment options for treatment of type 1 diabetes (T1D), even though, toxic immunosuppressive drugs are required. In this study, we aim to deliver allogeneic β-cell therapies without antirejection drugs using a bioengineered hybrid device that contains microencapsulated β-cells inside 3D polycaprolactone (PCL) scaffolds printed using melt electrospin writing (MEW). Mouse β-cell (MIN6) pseudoislets and QS mouse islets are encapsulated in alginate microcapsules, without affecting viability and insulin secretion. Microencapsulated MIN6 cells are then seeded within 3D MEW scaffolds, and these hybrid devices implanted subcutaneously in streptozotocin-treated diabetic NOD/SCID and BALB/c mice. Similar to NOD/SCID mice, blood glucose levels (BGL) are lowered from 30.1 to 4.8 mM in 25-41 days in BALB/c. In contrast, microencapsulated islets placed in prevascularized MEW scaffold 3 weeks after implantation in BALB/c mice normalize BGL (<12 mM) more rapidly, lasting for 60-105 days. The lowering of glucose levels is confirmed by an intraperitoneal glucose tolerance test. Vascularity within the implanted grafts is demonstrated and quantified by 3D-doppler ultrasound, with a linear increase over 4 weeks (r = 0.65). Examination of the device at 5 weeks shows inflammatory infiltrates of neutrophils, macrophages, and B-lymphocytes on the MEW scaffolds, but not on microcapsules, which have infrequent profibrotic walling. In conclusion, we demonstrate the fabrication of an implantable and retrievable hybrid device for vascularization and enhancing the survival of encapsulated islets implanted subcutaneously in an allotransplantation setting without immunosuppression. This study provides proof-of-concept for the application of such devices for human use, but, will require modifications to allow translation to people with T1D. Impact statement The retrievable 3D printed PCL scaffold we have produced promotes vascularization when implanted subcutaneously and allows seeded microencapsulated insulin-producing cells to normalize blood glucose of diabetic mice for at least 2 months, without the need for antirejection drugs to be administered. The scaffold is scalable for possible human use, but will require modification to ensure that normalization of blood glucose levels can be maintained long term.
Collapse
Affiliation(s)
- Auvro R Mridha
- Discipline of Physiology, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, Australia.,Australian Foundation for Diabetes Research, Sydney, Australia.,Bosch Institute, The University of Sydney, Sydney, Australia
| | - Tim R Dargaville
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland, Australia
| | - Paul D Dalton
- Department of Functional Materials in Medicine and Dentistry, University of Würzburg, Würzburg, Germany
| | - Luke Carroll
- Discipline of Physiology, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, Australia.,Australian Foundation for Diabetes Research, Sydney, Australia.,Now Based at NHMRC Clinical Trials Centre, The University of Sydney, Sydney, Australia
| | - Michael B Morris
- Discipline of Physiology, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, Australia.,Bosch Institute, The University of Sydney, Sydney, Australia
| | - Vijayaganapathy Vaithilingam
- Australian Foundation for Diabetes Research, Sydney, Australia.,Cell Biology Inspired Tissue Engineering (CBITE), MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Bernard E Tuch
- Discipline of Physiology, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, Australia.,Australian Foundation for Diabetes Research, Sydney, Australia
| |
Collapse
|
11
|
Clough DW, King JL, Li F, Shea LD. Integration of Islet/Beta-Cell Transplants with Host Tissue Using Biomaterial Platforms. Endocrinology 2020; 161:bqaa156. [PMID: 32894299 PMCID: PMC8253249 DOI: 10.1210/endocr/bqaa156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/27/2020] [Indexed: 12/30/2022]
Abstract
Cell-based therapies are emerging for type I diabetes mellitus (T1D), an autoimmune disease characterized by the destruction of insulin-producing pancreatic β-cells, as a means to provide long-term restoration of glycemic control. Biomaterial scaffolds provide an opportunity to enhance the manufacturing and transplantation of islets or stem cell-derived β-cells. In contrast to encapsulation strategies that prevent host contact with the graft, recent approaches aim to integrate the transplant with the host to facilitate glucose sensing and insulin distribution, while also needing to modulate the immune response. Scaffolds can provide a supportive niche for cells either during the manufacturing process or following transplantation at extrahepatic sites. Scaffolds are being functionalized to deliver oxygen, angiogenic, anti-inflammatory, or trophic factors, and may facilitate cotransplantation of cells that can enhance engraftment or modulate immune responses. This local engineering of the transplant environment can complement systemic approaches for maximizing β-cell function or modulating immune responses leading to rejection. This review discusses the various scaffold platforms and design parameters that have been identified for the manufacture of human pluripotent stem cell-derived β-cells, and the transplantation of islets/β-cells to maintain normal blood glucose levels.
Collapse
Affiliation(s)
- Daniel W Clough
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Jessica L King
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Feiran Li
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
12
|
Baptista D, Teixeira LM, Birgani ZT, van Riet S, Pasman T, Poot A, Stamatialis D, Rottier RJ, Hiemstra PS, Habibović P, van Blitterswijk C, Giselbrecht S, Truckenmüller R. 3D alveolar in vitro model based on epithelialized biomimetically curved culture membranes. Biomaterials 2020; 266:120436. [PMID: 33120199 DOI: 10.1016/j.biomaterials.2020.120436] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 08/30/2020] [Accepted: 10/06/2020] [Indexed: 01/25/2023]
Abstract
There is increasing evidence that surface curvature at a near-cell-scale influences cell behaviour. Epithelial or endothelial cells lining small acinar or tubular body lumens, as those of the alveoli or blood vessels, experience such highly curved surfaces. In contrast, the most commonly used culture substrates for in vitro modelling of these human tissue barriers, ion track-etched membranes, offer only flat surfaces. Here, we propose a more realistic culture environment for alveolar cells based on biomimetically curved track-etched membranes, preserving the mainly spherical geometry of the cells' native microenvironment. The curved membranes were created by a combination of three-dimensional (3D) micro film (thermo)forming and ion track technology. We could successfully demonstrate the formation, the growth and a first characterization of confluent layers of lung epithelial cell lines and primary alveolar epithelial cells on membranes shaped into an array of hemispherical microwells. Besides their application in submerged culture, we could also demonstrate the compatibility of the bioinspired membranes for air-exposed culture. We observed a distinct cellular response to membrane curvature. Cells (or cell layers) on the curved membranes reveal significant differences compared to cells on flat membranes concerning membrane epithelialization, areal cell density of the formed epithelial layers, their cross-sectional morphology, and proliferation and apoptosis rates, and the same tight barrier function as on the flat membranes. The presented 3D membrane technology might pave the way for more predictive barrier in vitro models in future.
Collapse
Affiliation(s)
- D Baptista
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - L Moreira Teixeira
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands; Department of Developmental BioEngineering, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, the Netherlands
| | - Z Tahmasebi Birgani
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - S van Riet
- Department of Pulmonology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - T Pasman
- Department of Biomaterials Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, the Netherlands
| | - A Poot
- Department of Biomaterials Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, the Netherlands
| | - D Stamatialis
- Department of Biomaterials Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, the Netherlands
| | - R J Rottier
- Department of Pediatric Surgery/Cell Biology, Erasmus (University) Medical Center - Sophia Children's Hospital, Doctor Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - P S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - P Habibović
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - C van Blitterswijk
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - S Giselbrecht
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - R Truckenmüller
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands.
| |
Collapse
|
13
|
White Adipose Tissue as a Site for Islet Transplantation. TRANSPLANTOLOGY 2020. [DOI: 10.3390/transplantology1010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Although islet transplantation is recognized as a useful cellular replacement therapy for severe diabetes, surgeons face difficulties in islet engraftment. The transplant site is a pivotal factor that influences the engraftment. Although the liver is the current representative site for clinical islet transplantation, it is not the best site because of limitations in immunity, inflammation, and hypoxia. White adipose tissue, including omentum, is recognized as a useful candidate site for islet transplantation. Its effectiveness has been evaluated in not only various basic and translational studies using small and large animals but also in some recent clinical trials. In this review, we attempt to shed light on the characteristics and usefulness of white adipose tissue as a transplant site for islets.
Collapse
|
14
|
White Adipose Tissue as a Site for Islet Transplantation. TRANSPLANTOLOGY 2020. [DOI: 10.3390/transplantology1020006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Although islet transplantation is recognized as a useful cellular replacement therapy for severe diabetes, surgeons face difficulties in islet engraftment. The transplant site is a pivotal factor that influences the engraftment. Although the liver is the current representative site for clinical islet transplantation, it is not the best site because of limitations in immunity, inflammation, and hypoxia. White adipose tissue, including omentum, is recognized as a useful candidate site for islet transplantation. Its effectiveness has been evaluated in not only various basic and translational studies using small and large animals but also in some recent clinical trials. In this review, we attempt to shed light on the characteristics and usefulness of white adipose tissue as a transplant site for islets.
Collapse
|
15
|
Hadavi E, de Vries RHW, Smink AM, de Haan B, Leijten J, Schwab LW, Karperien MHBJ, de Vos P, Dijkstra PJ, van Apeldoorn AA. In vitro degradation profiles and in vivo biomaterial-tissue interactions of microwell array delivery devices. J Biomed Mater Res B Appl Biomater 2020; 109:117-127. [PMID: 32672384 PMCID: PMC7754331 DOI: 10.1002/jbm.b.34686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 05/28/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022]
Abstract
To effectively apply microwell array cell delivery devices their biodegradation rate must be tailored towards their intended use and implantation location. Two microwell array devices with distinct degradation profiles, either suitable for the fabrication of retrievable systems in the case of slow degradation, or cell delivery systems capable of extensive remodeling using a fast degrading polymer, were compared in this study. Thin films of a poly(ethylene glycol)‐poly(butylene terephthalate) (PEOT‐PBT) and a poly(ester urethane) were evaluated for their in vitro degradation profiles over 34 weeks incubation in PBS at different pH values. The PEOT‐PBT films showed minimal in vitro degradation over time, while the poly(ester urethane) films showed extensive degradation and fragmentation over time. Subsequently, microwell array cell delivery devices were fabricated from these polymers and intraperitoneally implanted in Albino Oxford rats to study their biocompatibility over a 12‐week period. The PEOT‐PBT implants shown to be capable to maintain the microwell structure over time. Implants provoked a foreign body response resulting in multilayer fibrosis that integrated into the surrounding tissue. The poly(ester urethane) implants showed a loss of the microwell structures over time, as well as a fibrotic response until the onset of fragmentation, at least 4 weeks post implantation. It was concluded that the PEOT‐PBT implants could be used as retrievable cell delivery devices while the poly(ester urethane) implants could be used for cell delivery devices that require remodeling within a 4–12 week period.
Collapse
Affiliation(s)
- Elahe Hadavi
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - Rick H W de Vries
- Department of Cell Biology - Inspired Tissue Engineering (cBITE), MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Alexandra M Smink
- Department of Pathology and Medical Biology, Section of Immunoendocrinology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bart de Haan
- Department of Pathology and Medical Biology, Section of Immunoendocrinology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jeroen Leijten
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | | | - Marcel H B J Karperien
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - Paul de Vos
- Department of Pathology and Medical Biology, Section of Immunoendocrinology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Pieter J Dijkstra
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - Aart A van Apeldoorn
- Department of Cell Biology - Inspired Tissue Engineering (cBITE), MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
16
|
RAZAVI MEHDI, PRIMAVERA ROSITA, KEVADIYA BHAVESHD, WANG JING, BUCHWALD PETER, THAKOR AVNESHS. A Collagen Based Cryogel Bioscaffold that Generates Oxygen for Islet Transplantation. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1902463. [PMID: 33071709 PMCID: PMC7567341 DOI: 10.1002/adfm.201902463] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Indexed: 05/24/2023]
Abstract
The aim of this work was to develop, characterize and test a novel 3D bioscaffold matrix which can accommodate pancreatic islets and provide them with a continuous, controlled and steady source of oxygen to prevent hypoxia-induced damage following transplantation. Hence, we made a collagen based cryogel bioscaffold which incorporated calcium peroxide (CPO) into its matrix. The optimal concentration of CPO integrated into bioscaffolds was 0.25wt.% and this generated oxygen at 0.21±0.02mM/day (day 1), 0.19±0.01mM/day (day 6), 0.13±0.03mM/day (day 14), and 0.14±0.02mM/day (day 21). Accordingly, islets seeded into cryogel-CPO bioscaffolds had a significantly higher viability and function compared to islets seeded into cryogel alone bioscaffolds or islets cultured alone on traditional cell culture plates; these findings were supported by data from quantitative computational modelling. When syngeneic islets were transplanted into the epididymal fat pad (EFP) of diabetic mice, our cryogel-0.25wt.%CPO bioscaffold improved islet function with diabetic animals re-establishing glycemic control. Mice transplanted with cryogel-0.25wt.%CPO bioscaffolds showed faster responses to intraperitoneal glucose injections and had a higher level of insulin content in their EFP compared to those transplanted with islets alone (P<0.05). Biodegradability studies predicted that our cryogel-CPO bioscaffolds will have long-lasting biostability for approximately 5 years (biodegradation rate: 16.00±0.65%/year). Long term implantation studies (i.e. 6 months) showed that our cryogel-CPO bioscaffold is biocompatible and integrated into the surrounding fat tissue with minimal adverse tissue reaction; this was further supported by no change in blood parameters (i.e. electrolyte, metabolic, chemistry and liver panels). Our novel oxygen-generating bioscaffold (i.e. cryogel-0.25wt.%CPO) therefore provides a biostable and biocompatible 3D microenvironment for islets which can facilitate islet survival and function at extra-hepatic sites of transplantation.
Collapse
Affiliation(s)
- MEHDI RAZAVI
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, California 94304, USA
- Biionix™ (Bionic Materials, Implants & Interfaces) Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, Florida 32827, USA
| | - ROSITA PRIMAVERA
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, California 94304, USA
| | - BHAVESH D KEVADIYA
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, California 94304, USA
| | - JING WANG
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, California 94304, USA
| | - PETER BUCHWALD
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
| | - AVNESH S THAKOR
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, California 94304, USA
| |
Collapse
|
17
|
Bowers DT, Song W, Wang LH, Ma M. Engineering the vasculature for islet transplantation. Acta Biomater 2019; 95:131-151. [PMID: 31128322 PMCID: PMC6824722 DOI: 10.1016/j.actbio.2019.05.051] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/13/2019] [Accepted: 05/20/2019] [Indexed: 12/17/2022]
Abstract
The microvasculature in the pancreatic islet is highly specialized for glucose sensing and insulin secretion. Although pancreatic islet transplantation is a potentially life-changing treatment for patients with insulin-dependent diabetes, a lack of blood perfusion reduces viability and function of newly transplanted tissues. Functional vasculature around an implant is not only necessary for the supply of oxygen and nutrients but also required for rapid insulin release kinetics and removal of metabolic waste. Inadequate vascularization is particularly a challenge in islet encapsulation. Selectively permeable membranes increase the barrier to diffusion and often elicit a foreign body reaction including a fibrotic capsule that is not well vascularized. Therefore, approaches that aid in the rapid formation of a mature and robust vasculature in close proximity to the transplanted cells are crucial for successful islet transplantation or other cellular therapies. In this paper, we review various strategies to engineer vasculature for islet transplantation. We consider properties of materials (both synthetic and naturally derived), prevascularization, local release of proangiogenic factors, and co-transplantation of vascular cells that have all been harnessed to increase vasculature. We then discuss the various other challenges in engineering mature, long-term functional and clinically viable vasculature as well as some emerging technologies developed to address them. The benefits of physiological glucose control for patients and the healthcare system demand vigorous pursuit of solutions to cell transplant challenges. STATEMENT OF SIGNIFICANCE: Insulin-dependent diabetes affects more than 1.25 million people in the United States alone. Pancreatic islets secrete insulin and other endocrine hormones that control glucose to normal levels. During preparation for transplantation, the specialized islet blood vessel supply is lost. Furthermore, in the case of cell encapsulation, cells are protected within a device, further limiting delivery of nutrients and absorption of hormones. To overcome these issues, this review considers methods to rapidly vascularize sites and implants through material properties, pre-vascularization, delivery of growth factors, or co-transplantation of vessel supporting cells. Other challenges and emerging technologies are also discussed. Proper vascular growth is a significant component of successful islet transplantation, a treatment that can provide life-changing benefits to patients.
Collapse
Affiliation(s)
- Daniel T Bowers
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Wei Song
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Long-Hai Wang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
18
|
Ernst AU, Bowers DT, Wang LH, Shariati K, Plesser MD, Brown NK, Mehrabyan T, Ma M. Nanotechnology in cell replacement therapies for type 1 diabetes. Adv Drug Deliv Rev 2019; 139:116-138. [PMID: 30716349 PMCID: PMC6677642 DOI: 10.1016/j.addr.2019.01.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/17/2019] [Accepted: 01/28/2019] [Indexed: 12/12/2022]
Abstract
Islet transplantation is a promising long-term, compliance-free, complication-preventing treatment for type 1 diabetes. However, islet transplantation is currently limited to a narrow set of patients due to the shortage of donor islets and side effects from immunosuppression. Encapsulating cells in an immunoisolating membrane can allow for their transplantation without the need for immunosuppression. Alternatively, "open" systems may improve islet health and function by allowing vascular ingrowth at clinically attractive sites. Many processes that enable graft success in both approaches occur at the nanoscale level-in this review we thus consider nanotechnology in cell replacement therapies for type 1 diabetes. A variety of biomaterial-based strategies at the nanometer range have emerged to promote immune-isolation or modulation, proangiogenic, or insulinotropic effects. Additionally, coating islets with nano-thin polymer films has burgeoned as an islet protection modality. Materials approaches that utilize nanoscale features manipulate biology at the molecular scale, offering unique solutions to the enduring challenges of islet transplantation.
Collapse
Affiliation(s)
- Alexander U Ernst
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Daniel T Bowers
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Long-Hai Wang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Kaavian Shariati
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Mitchell D Plesser
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Natalie K Brown
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Tigran Mehrabyan
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
19
|
Navarro-Tableros V, Gomez Y, Brizzi MF, Camussi G. Generation of Human Stem Cell-Derived Pancreatic Organoids (POs) for Regenerative Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1212:179-220. [PMID: 31025308 DOI: 10.1007/5584_2019_340] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Insulin-dependent diabetes mellitus or type 1 diabetes mellitus (T1DM) is an auto-immune condition characterized by the loss of pancreatic β-cells. The curative approach for highly selected patients is the pancreas or the pancreatic islet transplantation. Nevertheless, these options are limited by a growing shortage of donor organs and by the requirement of immunosuppression.Xenotransplantation of porcine islets has been extensively investigated. Nevertheless, the strong xenoimmunity and the risk of transmission of porcine endogenous retroviruses, have limited their application in clinic. Generation of β-like cells from stem cells is one of the most promising strategies in regenerative medicine. Embryonic, and more recently, adult stem cells are currently the most promising cell sources exploited to generate functional β-cells in vitro. A number of studies demonstrated that stem cells could generate functional pancreatic organoids (POs), able to restore normoglycemia when implanted in different preclinical diabetic models. Nevertheless, a gradual loss of function and cell dead are commonly detected when POs are transplanted in immunocompetent animals. So far, the main issue to be solved is the post-transplanted islet loss, due to the host immune attack. To avoid this hurdle, nanotechnology has provided a number of polymers currently under investigation for islet micro and macro-encapsulation. These new approaches, besides conferring PO immune protection, are able to supply oxygen and nutrients and to preserve PO morphology and long-term viability.Herein, we summarize the current knowledge on bioengineered POs and the stem cell differentiation platforms. We also discuss the in vitro strategies used to generate functional POs, and the protocols currently used to confer immune-protection against the host immune attack (micro- and macro-encapsulation). In addition, the most relevant ongoing clinical trials, and the most relevant hurdles met to move towards clinical application are revised.
Collapse
Affiliation(s)
- Victor Navarro-Tableros
- 2i3T Società per la gestione dell'incubatore di imprese e per il trasferimento tecnologico Scarl, University of Turin, Turin, Italy
| | - Yonathan Gomez
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, Turin, Italy.
- Fondazione per la Ricerca Biomedica-ONLUS, Turin, Italy.
| |
Collapse
|
20
|
Salg GA, Giese NA, Schenk M, Hüttner FJ, Felix K, Probst P, Diener MK, Hackert T, Kenngott HG. The emerging field of pancreatic tissue engineering: A systematic review and evidence map of scaffold materials and scaffolding techniques for insulin-secreting cells. J Tissue Eng 2019; 10:2041731419884708. [PMID: 31700597 PMCID: PMC6823987 DOI: 10.1177/2041731419884708] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/04/2019] [Indexed: 12/18/2022] Open
Abstract
A bioartificial endocrine pancreas is proposed as a future alternative to current treatment options. Patients with insulin-secretion deficiency might benefit. This is the first systematic review that provides an overview of scaffold materials and techniques for insulin-secreting cells or cells to be differentiated into insulin-secreting cells. An electronic literature survey was conducted in PubMed/MEDLINE and Web of Science, limited to the past 10 years. A total of 197 articles investigating 60 different materials met the inclusion criteria. The extracted data on materials, cell types, study design, and transplantation sites were plotted into two evidence gap maps. Integral parts of the tissue engineering network such as fabrication technique, extracellular matrix, vascularization, immunoprotection, suitable transplantation sites, and the use of stem cells are highlighted. This systematic review provides an evidence-based structure for future studies. Accumulating evidence shows that scaffold-based tissue engineering can enhance the viability and function or differentiation of insulin-secreting cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Gabriel Alexander Salg
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Nathalia A Giese
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Miriam Schenk
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix J Hüttner
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Klaus Felix
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Pascal Probst
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus K Diener
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Thilo Hackert
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Hannes Götz Kenngott
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
21
|
3D-Models of Insulin-Producing β-Cells: from Primary Islet Cells to Stem Cell-Derived Islets. Stem Cell Rev Rep 2018; 14:177-188. [PMID: 29181780 DOI: 10.1007/s12015-017-9783-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is a need for physiologically relevant assay platforms to provide functionally relevant models of diabetes, to accelerate the discovery of new treatment options and boost developments in drug discovery. In this review, we compare several 3D-strategies that have been used to increase the functional relevance of ex vivo human primary pancreatic islets and developments into the generation of stem cell derived pancreatic beta-cells (β-cells). Special attention will be given to recent approaches combining the use of extracellular matrix (ECM) scaffolds with pancreatic molecular memory, which can be used to improve yield and functionality of in vitro stem cell-derived pancreatic models. The ultimate goal is to develop scalable cell-based platforms for diabetes research and drug screening. This article will critically assess key aspects related to in vitro pancreatic 3D-ECM models and highlight the most promising approaches for future research.
Collapse
|
22
|
Perez-Basterrechea M, Esteban MM, Vega JA, Obaya AJ. Tissue-engineering approaches in pancreatic islet transplantation. Biotechnol Bioeng 2018; 115:3009-3029. [PMID: 30144310 DOI: 10.1002/bit.26821] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/08/2018] [Accepted: 08/14/2018] [Indexed: 12/15/2022]
Abstract
Pancreatic islet transplantation is a promising alternative to whole-pancreas transplantation as a treatment of type 1 diabetes mellitus. This technique has been extensively developed during the past few years, with the main purpose of minimizing the complications arising from the standard protocols used in organ transplantation. By using a variety of strategies used in tissue engineering and regenerative medicine, pancreatic islets have been successfully introduced in host patients with different outcomes in terms of islet survival and functionality, as well as the desired normoglycemic control. Here, we describe and discuss those strategies to transplant islets together with different scaffolds, in combination with various cell types and diffusible factors, and always with the aim of reducing host immune response and achieving islet survival, regardless of the site of transplantation.
Collapse
Affiliation(s)
- Marcos Perez-Basterrechea
- Unidad de Terapia Celular y Medicina Regenerativa, Servicio de Hematología y Hemoterapia, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain.,Plataforma de Terapias Avanzadas, Instituto de Investigación Biosanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Manuel M Esteban
- Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Spain
| | - Jose A Vega
- Departamento de Morfología y Biología Celular, Universidad de Oviedo, Oviedo, Spain.,Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Alvaro J Obaya
- Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
23
|
Smink AM, de Haan BJ, Lakey JRT, de Vos P. Polymer scaffolds for pancreatic islet transplantation - Progress and challenges. Am J Transplant 2018; 18:2113-2119. [PMID: 29790274 DOI: 10.1111/ajt.14942] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/18/2018] [Accepted: 05/10/2018] [Indexed: 02/06/2023]
Abstract
Pancreatic-islet transplantation is a safe and noninvasive therapy for type 1 diabetes. However, the currently applied site for transplantation, ie, the liver, is not the optimal site for islet survival. Because the human body has shortcomings in providing an optimal site, artificial transplantation sites have been proposed. Such an artificial site could consist of a polymeric scaffold that mimics the pancreatic microenvironment and supports islet function. Recently, remarkable progress has been made in the technology of engineering scaffolds. The polymer-islet interactions, the site of implantation, and scaffold prevascularization are critical factors for success or failure of the scaffolds. This article critically reviews these factors while also discussing translation of experimental studies to human application as well as the steps required to create a clinically applicable prevascularized, retrievable scaffold for implantation of insulin-producing cells for treatment of type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Alexandra M Smink
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bart J de Haan
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jonathan R T Lakey
- Department of Surgery, University of California Irvine, Orange, CA, USA.,Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Paul de Vos
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
24
|
Razavi M, Hu S, Thakor AS. A collagen based cryogel bioscaffold coated with nanostructured polydopamine as a platform for mesenchymal stem cell therapy. J Biomed Mater Res A 2018; 106:2213-2228. [PMID: 29637738 PMCID: PMC6161703 DOI: 10.1002/jbm.a.36428] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 03/28/2018] [Indexed: 02/06/2023]
Abstract
Cryo-hydrogels (cryogels) are polymer hydrogels formed at sub-zero temperatures. Bioscaffolds created from cryogels have interconnected macropores which allow for cell migration, tissue-ingrowth, unhindered diffusion of solutes and mass transport of therapeutics. In this study, we developed collagen based cryogel bioscaffolds and coated them with polydopamine using a simple two-step technique. Cryogel bioscaffolds were synthesized by collagen crosslinking at -20°C and exhibited a macroporous interconnected architecture with 75% ± 3% porosity. Two groups of pore sizes were observed: 300 ± 50 µm and 30 ± 10 µm in diameter. The addition of a polydopamine coating to cryogel bioscaffolds was confirmed using composition analysis. This resulted in a 41% ± 5% decrease in water uptake, 81% ± 10% decrease in swelling rate and 12% ± 3% decrease in their degree of dissolution (p < 0.05), with a 48% ± 2% increase in stiffness and 57% ± 5% increase in compressive strength (p < 0.05). Seeding adipose tissue-derived mesenchymal stem cells (AD-MSCs) into polydopamine coated-cryogel bioscaffolds resulted in cells demonstrating a 52% ± 4% increase in viability and 33% ± 3% increase in proliferation when compared to AD-MSCs seeded into uncoated-cryogel bioscaffolds (p < 0.05). In summary, our novel polydopamine coated-cryogel bioscaffold represents an efficient and low-cost bioscaffold platform to support MSC therapies. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2213-2228, 2018.
Collapse
Affiliation(s)
- Mehdi Razavi
- Department of Radiology, Stanford University, Palo Alto, California, 94304
| | - Sophia Hu
- Department of Radiology, Stanford University, Palo Alto, California, 94304
| | - Avnesh S Thakor
- Department of Radiology, Stanford University, Palo Alto, California, 94304
| |
Collapse
|
25
|
Gebe JA, Preisinger A, Gooden MD, D'Amico LA, Vernon RB. Local, Controlled Release In Vivo of Vascular Endothelial Growth Factor Within a Subcutaneous Scaffolded Islet Implant Reduces Early Islet Necrosis and Improves Performance of the Graft. Cell Transplant 2018; 27:531-541. [PMID: 29756517 PMCID: PMC6038045 DOI: 10.1177/0963689718754562] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Islet transplantation remains the only alternative to daily insulin therapy for control of type 1 diabetes (T1D) in humans. To avoid the drawbacks of intrahepatic islet transplantation, we are developing a scaffolded islet implant to transplant islets into nonhepatic sites. The implant test bed, sized for mice, consists of a limited (2-mm) thickness, large-pore polymeric sponge scaffold perforated with peripheral cavities that contain islets suspended in a collagen hydrogel. A central cavity in the scaffold holds a 2-mm diameter alginate sphere for controlled release of the angiogenic cytokine vascular endothelial growth factor ( VEGF). Host microvessels readily penetrate the scaffold and collagen gel to vascularize the islets. Here, we evaluate the performance of the implant in a subcutaneous (SC) graft site. Implants incorporating 500 syngeneic islets reversed streptozotocin-induced diabetes in mice approximately 30 d after SC placement. Controlled release of a modest quantity (20 ng) of VEGF within the implant significantly reduced the time to normoglycemia compared to control implants lacking VEGF. Investigation of underlying causes for this effect revealed that inclusion of 20 ng of VEGF in the implants significantly reduced central necrosis of islets 24 h after grafting and increased implant vascularization (measured 12 d after grafting). Collectively, our results demonstrate (1) that the scaffolded islet implant design can reverse diabetes in SC sites in the absence of prevascularization of the graft site and (2) that relatively low quantities of VEGF, delivered by controlled release within the implant, can be a useful approach to limit islet stress after grafting.
Collapse
Affiliation(s)
- John A Gebe
- 1 Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Anton Preisinger
- 1 Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Michel D Gooden
- 1 Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Leonard A D'Amico
- 1 Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA.,2 Cancer Immunotherapy Trials, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Robert B Vernon
- 1 Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| |
Collapse
|