1
|
Malkani S, Prado O, Stevens KR. Sacrificial Templating for Accelerating Clinical Translation of Engineered Organs. ACS Biomater Sci Eng 2025; 11:1-12. [PMID: 39701582 PMCID: PMC11733865 DOI: 10.1021/acsbiomaterials.4c01824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024]
Abstract
Transplantable engineered organs could one day be used to treat patients suffering from end-stage organ failure. Yet, producing hierarchical vascular networks that sustain the viability and function of cells within human-scale organs remains a major challenge. Sacrificial templating has emerged as a promising biofabrication method that could overcome this challenge. Here, we explore and evaluate various strategies and materials that have been used for sacrificial templating. First, we emphasize fabrication approaches that use highly biocompatible sacrificial reagents and minimize the duration that cells spend in fabrication conditions without oxygen and nutrients. We then discuss strategies to create continuous, hierarchical vascular networks, both using biofabrication alone and using hybrid methods that integrate biologically driven vascular self-assembly into sacrificial templating workflows. Finally, we address the importance of structurally reinforcing engineered vessel walls to achieve stable blood flow in vivo, so that engineered organs remain perfused and functional long after implantation. Together, these sacrificial templating strategies have the potential to overcome many current limitations in biofabrication and accelerate clinical translation of transplantable, fully functional engineered organs to rescue patients from organ failure.
Collapse
Affiliation(s)
- Sherina Malkani
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Department
of Bioengineering, Rice University, Houston, Texas 77005, United States
- Institute
for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98195, United States
| | - Olivia Prado
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Institute
for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98195, United States
| | - Kelly R. Stevens
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Institute
for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98195, United States
- Department
of Laboratory Medicine and Pathology, University
of Washington, Seattle, Washington 98195, United States
- Brotman
Baty Institute for Precision Medicine, Seattle, Washington 98195, United States
| |
Collapse
|
2
|
Ewoldt JK, DePalma SJ, Jewett ME, Karakan MÇ, Lin YM, Mir Hashemian P, Gao X, Lou L, McLellan MA, Tabares J, Ma M, Salazar Coariti AC, He J, Toussaint KC, Bifano TG, Ramaswamy S, White AE, Agarwal A, Lejeune E, Baker BM, Chen CS. Induced pluripotent stem cell-derived cardiomyocyte in vitro models: benchmarking progress and ongoing challenges. Nat Methods 2025; 22:24-40. [PMID: 39516564 DOI: 10.1038/s41592-024-02480-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 09/15/2024] [Indexed: 11/16/2024]
Abstract
Recent innovations in differentiating cardiomyocytes from human induced pluripotent stem cells (hiPSCs) have unlocked a viable path to creating in vitro cardiac models. Currently, hiPSC-derived cardiomyocytes (hiPSC-CMs) remain immature, leading many in the field to explore approaches to enhance cell and tissue maturation. Here, we systematically analyzed 300 studies using hiPSC-CM models to determine common fabrication, maturation and assessment techniques used to evaluate cardiomyocyte functionality and maturity and compiled the data into an open-access database. Based on this analysis, we present the diversity of, and current trends in, in vitro models and highlight the most common and promising practices for functional assessments. We further analyzed outputs spanning structural maturity, contractile function, electrophysiology and gene expression and note field-wide improvements over time. Finally, we discuss opportunities to collectively pursue the shared goal of hiPSC-CM model development, maturation and assessment that we believe are critical for engineering mature cardiac tissue.
Collapse
Affiliation(s)
- Jourdan K Ewoldt
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Samuel J DePalma
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Maggie E Jewett
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - M Çağatay Karakan
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
- Photonics Center, Boston University, Boston, MA, USA
| | - Yih-Mei Lin
- Department of Biomedical Engineering, Florida International University, Miami, FL, USA
| | - Paria Mir Hashemian
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
- Photonics Center, Boston University, Boston, MA, USA
| | - Xining Gao
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Lihua Lou
- Department of Mechanical and Material Engineering, Florida International University, Miami, FL, USA
| | - Micheal A McLellan
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Jonathan Tabares
- Department of Physics, Florida International University, Miami, FL, USA
| | - Marshall Ma
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
- Photonics Center, Boston University, Boston, MA, USA
| | | | - Jin He
- Department of Physics, Florida International University, Miami, FL, USA
| | - Kimani C Toussaint
- School of Engineering, Brown University, Providence, RI, USA
- Brown-Lifespan Center for Digital Health, Providence, RI, USA
| | - Thomas G Bifano
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
- Photonics Center, Boston University, Boston, MA, USA
| | - Sharan Ramaswamy
- Department of Biomedical Engineering, Florida International University, Miami, FL, USA
| | - Alice E White
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
- Photonics Center, Boston University, Boston, MA, USA
- Division of Materials Science and Engineering, Boston University, Boston, MA, USA
- Department of Physics, Boston University, Boston, MA, USA
| | - Arvind Agarwal
- Department of Mechanical and Material Engineering, Florida International University, Miami, FL, USA
| | - Emma Lejeune
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | - Brendon M Baker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - Christopher S Chen
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| |
Collapse
|
3
|
Chauhan M, Roopmani P, Rajendran J, Narayan KP, Giri J. Injectable, in-situ forming, tunable, biocompatible gelatin hydrogels for biomedical applications. Int J Biol Macromol 2024; 285:138200. [PMID: 39617237 DOI: 10.1016/j.ijbiomac.2024.138200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/19/2024] [Accepted: 11/28/2024] [Indexed: 12/08/2024]
Abstract
Gelatin hydrogels have drawn attention for their diverse biomedical applications due to their flexible physiochemical properties. However, such gelatin hydrogels are made of toxic crosslinkers and photoinitiators, restricting their non-invasive deep tissue application. The in-situ forming chemical crosslinked without such toxic crosslinker and UV light has not been explored under physiological conditions. This study establishes a simple method to fabricate an injectable click-chemistry-based in-situ forming gelatin hydrogel in a physiological environment (without toxic UV or photoinitiator) with tunable physiochemical properties to modulate cellular response. Using Divinyl Sulfone (DVS) modification, gelatin hydrogel (GelVS) is optimized with tunable degradation properties, moduli (100 Pa -1000 Pa), gelation time, swelling, degradation, and viscoelastic behaviour. The in-vitro results using fibroblast and stem cells show that the hydrogel and its precursors were cytocompatible with diverging feedback of cells as the modulus varies. The in-vivo analysis for injectability, degradation, and biocompatibility of the GelVS hydrogel displays their biocompatible nature and lasts up to 30 days at the injecting site. Overall results indicate that DVS-modified GelVS hydrogel will be a great system with tunable physicochemical properties to modulate favorable cellular response for tissue regeneration and non-invasive deep tissue application.
Collapse
Affiliation(s)
- Meenakshi Chauhan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Purandhi Roopmani
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Jayakumar Rajendran
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Kumar Pranav Narayan
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, Hyderabad Campus, Telangana, India
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India.
| |
Collapse
|
4
|
Martinović A, Mantovani M, Trpchevska N, Novak E, Milev NB, Bode L, Ewald CY, Bischof E, Reichmuth T, Lapides R, Navarini A, Saravi B, Roider E. Climbing the longevity pyramid: overview of evidence-driven healthcare prevention strategies for human longevity. FRONTIERS IN AGING 2024; 5:1495029. [PMID: 39659760 PMCID: PMC11628525 DOI: 10.3389/fragi.2024.1495029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024]
Abstract
Longevity medicine is an emerging and iterative healthcare discipline focusing on early detection, preventive measures, and personalized approaches that aim to extend healthy lifespan and promote healthy aging. This comprehensive review introduces the innovative concept of the "Longevity Pyramid." This conceptual framework delineates progressive intervention levels, providing a structured approach to understanding the diverse strategies available in longevity medicine. At the base of the Longevity Pyramid lies the level of prevention, emphasizing early detection strategies and advanced diagnostics or timely identification of potential health issues. Moving upwards, the next step involves lifestyle modifications, health-promoting behaviors, and proactive measures to delay the onset of age-related conditions. The Longevity Pyramid further explores the vast range of personalized interventions, highlighting the importance of tailoring medical approaches based on genetic predispositions, lifestyle factors, and unique health profiles, thereby optimizing interventions for maximal efficacy. These interventions aim to extend lifespan and reduce the impact and severity of age-related conditions, ensuring that additional years are characterized by vitality and wellbeing. By outlining these progressive levels of intervention, this review offers valuable insights into the evolving field of longevity medicine. This structured framework guides researchers and practitioners toward a nuanced strategic approach to advancing the science and practice of healthy aging.
Collapse
Affiliation(s)
- Anđela Martinović
- Maximon AG, Zug, Switzerland
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | | | | | | | | | | | - Collin Y. Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Evelyne Bischof
- Shanghai University of Medicine and Health Sciences, Shanghai, China
- Sheba Longevity Center, Sheba Medical Center Tel Aviv, Ramat Gan, Israel
| | | | - Rebecca Lapides
- The Robert Larner, M.D., College of Medicine at the University of Vermont, Burlington, VT, United States
| | - Alexander Navarini
- Department of Dermatology, University Hospital Basel, Basel, Switzerland
| | - Babak Saravi
- Department of Orthopedics and Trauma Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Elisabeth Roider
- Maximon AG, Zug, Switzerland
- Department of Dermatology, University Hospital of Basel, Basel, Switzerland
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| |
Collapse
|
5
|
Hwang B, Korsnick L, Shen M, Jin L, Singh Y, Abdalla M, Bauser-Heaton H, Serpooshan V. FSTL-1 loaded 3D bioprinted vascular patch regenerates the ischemic heart tissue. iScience 2024; 27:110770. [PMID: 39398249 PMCID: PMC11466656 DOI: 10.1016/j.isci.2024.110770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/07/2024] [Accepted: 08/15/2024] [Indexed: 10/15/2024] Open
Abstract
Cardiac patch strategies are developed as a promising approach to regenerate the injured heart after myocardial infarction (MI). This study integrated 3D bioprinting and cardioprotective paracrine signaling to fabricate vascular patch devices containing endothelial cells (ECs) and the regenerative follistatin-like 1 (FSTL1) peptide. Engineered patch supported the 3D culture of ECs in both static and dynamic culture, forming a uniform endothelium on the printed channels. Implantation of vascular patch onto a rat model of acute MI resulted in significant reduction of scar formation, left ventricle dilation, and wall thinning, as well as enhanced ejection fraction. Furthermore, increased vascularization and proliferation of cardiomyocytes were observed in hearts treated with patches. These findings highlight the remarkable capacity of 3D bioprinted vascular patch to augment the endogenous regenerative capacity of mammalian heart, together with the exogenous cardioprotective function, to serve as a robust therapeutic device to treat acute MI.
Collapse
Affiliation(s)
- Boeun Hwang
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, USA
| | - Lauren Korsnick
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, USA
| | - Ming Shen
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Linqi Jin
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, USA
| | - Yamini Singh
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, USA
| | - Mostafa Abdalla
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, USA
| | - Holly Bauser-Heaton
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Children’s Healthcare of Atlanta, Atlanta, GA, USA
- Sibley Heart Center at Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Vahid Serpooshan
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Children’s Healthcare of Atlanta, Atlanta, GA, USA
| |
Collapse
|
6
|
Du X, Jia H, Chang Y, Zhao Y, Song J. Progress of organoid platform in cardiovascular research. Bioact Mater 2024; 40:88-103. [PMID: 38962658 PMCID: PMC11220467 DOI: 10.1016/j.bioactmat.2024.05.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 07/05/2024] Open
Abstract
Cardiovascular disease is a significant cause of death in humans. Various models are necessary for the study of cardiovascular diseases, but once cellular and animal models have some defects, such as insufficient fidelity. As a new technology, organoid has certain advantages and has been used in many applications in the study of cardiovascular diseases. This article aims to summarize the application of organoid platforms in cardiovascular diseases, including organoid construction schemes, modeling, and application of cardiovascular organoids. Advances in cardiovascular organoid research have provided many models for different cardiovascular diseases in a variety of areas, including myocardium, blood vessels, and valves. Physiological and pathological models of different diseases, drug research models, and methods for evaluating and promoting the maturation of different kinds of organ tissues are provided for various cardiovascular diseases, including cardiomyopathy, myocardial infarction, and atherosclerosis. This article provides a comprehensive overview of the latest research progress in cardiovascular organ tissues, including construction protocols for cardiovascular organoid tissues and their evaluation system, different types of disease models, and applications of cardiovascular organoid models in various studies. The problems and possible solutions in organoid development are summarized.
Collapse
Affiliation(s)
- Xingchao Du
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Hao Jia
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Yuan Chang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Yiqi Zhao
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Jiangping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| |
Collapse
|
7
|
Xu F, Jin H, Liu L, Yang Y, Cen J, Wu Y, Chen S, Sun D. Architecture design and advanced manufacturing of heart-on-a-chip: scaffolds, stimulation and sensors. MICROSYSTEMS & NANOENGINEERING 2024; 10:96. [PMID: 39006908 PMCID: PMC11239895 DOI: 10.1038/s41378-024-00692-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/18/2024] [Accepted: 02/28/2024] [Indexed: 07/16/2024]
Abstract
Heart-on-a-chip (HoC) has emerged as a highly efficient, cost-effective device for the development of engineered cardiac tissue, facilitating high-throughput testing in drug development and clinical treatment. HoC is primarily used to create a biomimetic microphysiological environment conducive to fostering the maturation of cardiac tissue and to gather information regarding the real-time condition of cardiac tissue. The development of architectural design and advanced manufacturing for these "3S" components, scaffolds, stimulation, and sensors is essential for improving the maturity of cardiac tissue cultivated on-chip, as well as the precision and accuracy of tissue states. In this review, the typical structures and manufacturing technologies of the "3S" components are summarized. The design and manufacturing suggestions for each component are proposed. Furthermore, key challenges and future perspectives of HoC platforms with integrated "3S" components are discussed. Architecture design concepts of scaffolds, stimulation and sensors in chips.
Collapse
Affiliation(s)
- Feng Xu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102 China
| | - Hang Jin
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102 China
| | - Lingling Liu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102 China
| | - Yuanyuan Yang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102 China
| | - Jianzheng Cen
- Guangdong Provincial People’s Hospital, Guangzhou, 510080 China
| | - Yaobin Wu
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China
| | - Songyue Chen
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102 China
| | - Daoheng Sun
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102 China
| |
Collapse
|
8
|
Devlin C, Tomov ML, Chen H, Nama S, Ali S, Neelakantan S, Avazmohammadi R, Dasi LP, Bauser-Heaton HD, Serpooshan V. Patient-specific 3D in vitro modeling and fluid dynamic analysis of primary pulmonary vein stenosis. Front Cardiovasc Med 2024; 11:1432784. [PMID: 39026997 PMCID: PMC11254695 DOI: 10.3389/fcvm.2024.1432784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction Primary pulmonary vein stenosis (PVS) is a rare congenital heart disease that proves to be a clinical challenge due to the rapidly progressive disease course and high rates of treatment complications. PVS intervention is frequently faced with in-stent restenosis and persistent disease progression despite initial venous recanalization with balloon angioplasty or stenting. Alterations in wall shear stress (WSS) have been previously associated with neointimal hyperplasia and venous stenosis underlying PVS progression. Thus, the development of patient-specific three-dimensional (3D) in vitro models is needed to further investigate the biomechanical outcomes of endovascular and surgical interventions. Methods In this study, deidentified computed tomography images from three patients were segmented to generate perfusable phantom models of pulmonary veins before and after catheterization. These 3D reconstructions were 3D printed using a clear resin ink and used in a benchtop experimental setup. Computational fluid dynamic (CFD) analysis was performed on models in silico utilizing Doppler echocardiography data to represent the in vivo flow conditions at the inlets. Particle image velocimetry was conducted using the benchtop perfusion setup to analyze WSS and velocity profiles and the results were compared with those predicted by the CFD model. Results Our findings indicated areas of undesirable alterations in WSS before and after catheterization, in comparison with the published baseline levels in the healthy in vivo tissues that may lead to regional disease progression. Discussion The established patient-specific 3D in vitro models and the developed in vitro-in silico platform demonstrate great promise to refine interventional approaches and mitigate complications in treating patients with primary PVS.
Collapse
Affiliation(s)
- Christian Devlin
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, United States
| | - Martin L. Tomov
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, United States
| | - Huang Chen
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, United States
| | - Sindhu Nama
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, United States
| | - Siraj Ali
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, United States
| | - Sunder Neelakantan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
| | - Reza Avazmohammadi
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
- J. Mike Walker ‘66 Department of Mechanical Engineering, Texas A&M University, College Station, TX, United States
- School of Engineering Medicine, Texas A&M University, Houston, TX, United States
| | - Lakshmi Prasad Dasi
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, United States
| | - Holly D. Bauser-Heaton
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Children’s Healthcare of Atlanta, Atlanta, GA, United States
- Sibley Heart Center, Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Vahid Serpooshan
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Children’s Healthcare of Atlanta, Atlanta, GA, United States
| |
Collapse
|
9
|
Wu Q, Xue R, Zhao Y, Ramsay K, Wang EY, Savoji H, Veres T, Cartmell SH, Radisic M. Automated fabrication of a scalable heart-on-a-chip device by 3D printing of thermoplastic elastomer nanocomposite and hot embossing. Bioact Mater 2024; 33:46-60. [PMID: 38024233 PMCID: PMC10654006 DOI: 10.1016/j.bioactmat.2023.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
The successful translation of organ-on-a-chip devices requires the development of an automated workflow for device fabrication, which is challenged by the need for precise deposition of multiple classes of materials in micro-meter scaled configurations. Many current heart-on-a-chip devices are produced manually, requiring the expertise and dexterity of skilled operators. Here, we devised an automated and scalable fabrication method to engineer a Biowire II multiwell platform to generate human iPSC-derived cardiac tissues. This high-throughput heart-on-a-chip platform incorporated fluorescent nanocomposite microwires as force sensors, produced from quantum dots and thermoplastic elastomer, and 3D printed on top of a polystyrene tissue culture base patterned by hot embossing. An array of built-in carbon electrodes was embedded in a single step into the base, flanking the microwells on both sides. The facile and rapid 3D printing approach efficiently and seamlessly scaled up the Biowire II system from an 8-well chip to a 24-well and a 96-well format, resulting in an increase of platform fabrication efficiency by 17,5000-69,000% per well. The device's compatibility with long-term electrical stimulation in each well facilitated the targeted generation of mature human iPSC-derived cardiac tissues, evident through a positive force-frequency relationship, post-rest potentiation, and well-aligned sarcomeric apparatus. This system's ease of use and its capacity to gauge drug responses in matured cardiac tissue make it a powerful and reliable platform for rapid preclinical drug screening and development.
Collapse
Affiliation(s)
- Qinghua Wu
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
- Toronto General Research Institute, University Health Network, Toronto, Ontario, M5G 2C4, Canada
| | - Ruikang Xue
- Department of Materials, School of Natural Sciences, Faculty of Science and Engineering and The Henry Royce Institute, Royce Hub Building, The University of Manchester, Manchester, UK
| | - Yimu Zhao
- Toronto General Research Institute, University Health Network, Toronto, Ontario, M5G 2C4, Canada
| | - Kaitlyn Ramsay
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
| | - Erika Yan Wang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Houman Savoji
- Institute of Biomedical Engineering and Department of Pharmacology and Physiology, University of Montreal, Montreal, Quebec, H3T 1J4, Canada
- Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec, H3T 1C5, Canada
- Montreal TransMedTech Institute, Montreal, Quebec, H3T 1J4, Canada
| | - Teodor Veres
- National Research Council of Canada, Boucherville, QC, J4B 6Y4, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, M5S 3G8, Canada
| | - Sarah H. Cartmell
- Department of Materials, School of Natural Sciences, Faculty of Science and Engineering and The Henry Royce Institute, Royce Hub Building, The University of Manchester, Manchester, UK
| | - Milica Radisic
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
- Toronto General Research Institute, University Health Network, Toronto, Ontario, M5G 2C4, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| |
Collapse
|
10
|
Bakhshandeh B, Sorboni SG, Ranjbar N, Deyhimfar R, Abtahi MS, Izady M, Kazemi N, Noori A, Pennisi CP. Mechanotransduction in tissue engineering: Insights into the interaction of stem cells with biomechanical cues. Exp Cell Res 2023; 431:113766. [PMID: 37678504 DOI: 10.1016/j.yexcr.2023.113766] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Stem cells in their natural microenvironment are exposed to biochemical and biophysical cues emerging from the extracellular matrix (ECM) and neighboring cells. In particular, biomechanical forces modulate stem cell behavior, biological fate, and early developmental processes by sensing, interpreting, and responding through a series of biological processes known as mechanotransduction. Local structural changes in the ECM and mechanics are driven by reciprocal activation of the cell and the ECM itself, as the initial deposition of matrix proteins sequentially affects neighboring cells. Recent studies on stem cell mechanoregulation have provided insight into the importance of biomechanical signals on proper tissue regeneration and function and have shown that precise spatiotemporal control of these signals exists in stem cell niches. Against this background, the aim of this work is to review the current understanding of the molecular basis of mechanotransduction by analyzing how biomechanical forces are converted into biological responses via cellular signaling pathways. In addition, this work provides an overview of advanced strategies using stem cells and biomaterial scaffolds that enable precise spatial and temporal control of mechanical signals and offer great potential for the fields of tissue engineering and regenerative medicine will be presented.
Collapse
Affiliation(s)
- Behnaz Bakhshandeh
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran.
| | | | - Nika Ranjbar
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Roham Deyhimfar
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Maryam Sadat Abtahi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mehrnaz Izady
- Department of Cellular and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Navid Kazemi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Atefeh Noori
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Cristian Pablo Pennisi
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Denmark.
| |
Collapse
|
11
|
Li H, Ye W, Yu B, Yan X, Lin Y, Zhan J, Chen P, Song X, Yang P, Cai Y. Supramolecular Assemblies of Glycopeptides Enhance Gap Junction Maturation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes via Inducing Spheroids Formation to Optimize Cardiac Repair. Adv Healthc Mater 2023; 12:e2300696. [PMID: 37338936 DOI: 10.1002/adhm.202300696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/14/2023] [Indexed: 06/21/2023]
Abstract
Stem cell-based therapies have demonstrated significant potential for use in heart regeneration. An effective paradigm for heart repair in rodent and large animal models is the transplantation of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Despite this, the functional and phenotypical immaturity of 2D-cultured hiPSC-CMs, particularly their low electrical integration, poses a caveat for clinical translation. In this study, a supramolecular assembly of a glycopeptide containing a cell adhesion motif-RGD, and saccharide-glucose (Bio-Gluc-RGD) is designed to enable the 3D spheroid formation of hiPSC-CMs, promoting cell-cell and cell-matrix interactions that occur during spontaneous morphogenesis. HiPSC-CMs in spheroids are prone to be phenotypically mature and developed robust gap junctions via activation of the integrin/ILK/p-AKT/Gata4 pathway. Monodispersed hiPSC-CMs encapsulated in the Bio-Gluc-RGD hydrogel are more likely to form aggregates and, therefore, survive in the infarcted myocardium of mice, accompanied by more robust gap junction formation in the transplanted cells, and hiPSC-CMs delivered with the hydrogels also displayed angiogenic effect and anti-apoptosis capacity in the peri-infarct area, enhancing their overall therapeutic efficacy in myocardial infarction. Collectively, the findings illustrate a novel concept for modulating hiPSC-CM maturation by spheroid induction, which has the potential for post-MI heart regeneration.
Collapse
Affiliation(s)
- Hekai Li
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Wenyu Ye
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Bin Yu
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Xin Yan
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yuhui Lin
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Jie Zhan
- Department of Laboratory Medicine, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Peier Chen
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Xudong Song
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Pingzhen Yang
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yanbin Cai
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
12
|
Kaou MH, Furkó M, Balázsi K, Balázsi C. Advanced Bioactive Glasses: The Newest Achievements and Breakthroughs in the Area. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2287. [PMID: 37630871 PMCID: PMC10459405 DOI: 10.3390/nano13162287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/28/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
Bioactive glasses (BGs) are especially useful materials in soft and bone tissue engineering and even in dentistry. They can be the solution to many medical problems, and they have a huge role in the healing processes of bone fractures. Interestingly, they can also promote skin regeneration and wound healing. Bioactive glasses are able to attach to the bone tissues and form an apatite layer which further initiates the biomineralization process. The formed intermediate apatite layer makes a connection between the hard tissue and the bioactive glass material which results in faster healing without any complications or side effects. This review paper summarizes the most recent advancement in the preparation of diverse types of BGs, such as silicate-, borate- and phosphate-based bioactive glasses. We discuss their physical, chemical, and mechanical properties detailing how they affect their biological performances. In order to get a deeper insight into the state-of-the-art in this area, we also consider their medical applications, such as bone regeneration, wound care, and dental/bone implant coatings.
Collapse
Affiliation(s)
- Maroua H. Kaou
- Centre for Energy Research, Institute of Technical Physics and Materials Science, Konkoly-Thege M. Str. 29-33, 1121 Budapest, Hungary; (M.H.K.); (M.F.); (K.B.)
- Doctoral School of Materials Science and Technologies, Óbuda University, Bécsi Str. 96/B, 1030 Budapest, Hungary
| | - Mónika Furkó
- Centre for Energy Research, Institute of Technical Physics and Materials Science, Konkoly-Thege M. Str. 29-33, 1121 Budapest, Hungary; (M.H.K.); (M.F.); (K.B.)
| | - Katalin Balázsi
- Centre for Energy Research, Institute of Technical Physics and Materials Science, Konkoly-Thege M. Str. 29-33, 1121 Budapest, Hungary; (M.H.K.); (M.F.); (K.B.)
| | - Csaba Balázsi
- Centre for Energy Research, Institute of Technical Physics and Materials Science, Konkoly-Thege M. Str. 29-33, 1121 Budapest, Hungary; (M.H.K.); (M.F.); (K.B.)
| |
Collapse
|
13
|
Vuorenpää H, Björninen M, Välimäki H, Ahola A, Kroon M, Honkamäki L, Koivumäki JT, Pekkanen-Mattila M. Building blocks of microphysiological system to model physiology and pathophysiology of human heart. Front Physiol 2023; 14:1213959. [PMID: 37485060 PMCID: PMC10358860 DOI: 10.3389/fphys.2023.1213959] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023] Open
Abstract
Microphysiological systems (MPS) are drawing increasing interest from academia and from biomedical industry due to their improved capability to capture human physiology. MPS offer an advanced in vitro platform that can be used to study human organ and tissue level functions in health and in diseased states more accurately than traditional single cell cultures or even animal models. Key features in MPS include microenvironmental control and monitoring as well as high biological complexity of the target tissue. To reach these qualities, cross-disciplinary collaboration from multiple fields of science is required to build MPS. Here, we review different areas of expertise and describe essential building blocks of heart MPS including relevant cardiac cell types, supporting matrix, mechanical stimulation, functional measurements, and computational modelling. The review presents current methods in cardiac MPS and provides insights for future MPS development with improved recapitulation of human physiology.
Collapse
Affiliation(s)
- Hanna Vuorenpää
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| | - Miina Björninen
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| | - Hannu Välimäki
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Micro- and Nanosystems Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Antti Ahola
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Computational Biophysics and Imaging Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mart Kroon
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Biomaterials and Tissue Engineering Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Laura Honkamäki
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Neuro Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jussi T. Koivumäki
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Computational Biophysics and Imaging Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mari Pekkanen-Mattila
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Heart Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
14
|
Nguyen T, Wei Y, Nakada Y, Chen JY, Zhou Y, Walcott G, Zhang J. Analysis of cardiac single-cell RNA-sequencing data can be improved by the use of artificial-intelligence-based tools. Sci Rep 2023; 13:6821. [PMID: 37100826 PMCID: PMC10133286 DOI: 10.1038/s41598-023-32293-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/25/2023] [Indexed: 04/28/2023] Open
Abstract
Single-cell RNA sequencing (scRNAseq) enables researchers to identify and characterize populations and subpopulations of different cell types in hearts recovering from myocardial infarction (MI) by characterizing the transcriptomes in thousands of individual cells. However, the effectiveness of the currently available tools for processing and interpreting these immense datasets is limited. We incorporated three Artificial Intelligence (AI) techniques into a toolkit for evaluating scRNAseq data: AI Autoencoding separates data from different cell types and subpopulations of cell types (cluster analysis); AI Sparse Modeling identifies genes and signaling mechanisms that are differentially activated between subpopulations (pathway/gene set enrichment analysis), and AI Semisupervised Learning tracks the transformation of cells from one subpopulation into another (trajectory analysis). Autoencoding was often used in data denoising; yet, in our pipeline, Autoencoding was exclusively used for cell embedding and clustering. The performance of our AI scRNAseq toolkit and other highly cited non-AI tools was evaluated with three scRNAseq datasets obtained from the Gene Expression Omnibus database. Autoencoder was the only tool to identify differences between the cardiomyocyte subpopulations found in mice that underwent MI or sham-MI surgery on postnatal day (P) 1. Statistically significant differences between cardiomyocytes from P1-MI mice and mice that underwent MI on P8 were identified for six cell-cycle phases and five signaling pathways when the data were analyzed via Sparse Modeling, compared to just one cell-cycle phase and one pathway when the data were analyzed with non-AI techniques. Only Semisupervised Learning detected trajectories between the predominant cardiomyocyte clusters in hearts collected on P28 from pigs that underwent apical resection (AR) on P1, and on P30 from pigs that underwent AR on P1 and MI on P28. In another dataset, the pig scRNAseq data were collected after the injection of CCND2-overexpression Human-induced Pluripotent Stem Cell-derived cardiomyocytes (CCND2hiPSC) into injured P28 pig heart; only the AI-based technique could demonstrate that the host cardiomyocytes increase proliferating by through the HIPPO/YAP and MAPK signaling pathways. For the cluster, pathway/gene set enrichment, and trajectory analysis of scRNAseq datasets generated from studies of myocardial regeneration in mice and pigs, our AI-based toolkit identified results that non-AI techniques did not discover. These different results were validated and were important in explaining myocardial regeneration.
Collapse
Affiliation(s)
- Thanh Nguyen
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Yuhua Wei
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Yuji Nakada
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Jake Y Chen
- Informatics Institute, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Yang Zhou
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Gregory Walcott
- Department of Medicine, Cardiovascular Diseases, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Jianyi Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
- Department of Medicine, Cardiovascular Diseases, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, 1670 University Blvd, Volker Hall G094J, Birmingham, AL, 35233, USA.
| |
Collapse
|
15
|
Mao M, Qu X, Zhang Y, Gu B, Li C, Liu R, Li X, Zhu H, He J, Li D. Leaf-venation-directed cellular alignment for macroscale cardiac constructs with tissue-like functionalities. Nat Commun 2023; 14:2077. [PMID: 37045852 PMCID: PMC10097867 DOI: 10.1038/s41467-023-37716-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Recapitulating the complex structural, mechanical, and electrophysiological properties of native myocardium is crucial to engineering functional cardiac tissues. Here, we report a leaf-venation-directed strategy that enables the compaction and remodeling of cell-hydrogel hybrids into highly aligned and densely packed organizations in predetermined patterns. This strategy contributes to interconnected tubular structures with cell alignment along the hierarchical channels. Compared to randomly-distributed cells, the engineered leaf-venation-directed-cardiac tissues from neonatal rat cardiomyocytes manifest advanced maturation and functionality as evidenced by detectable electrophysiological activity, macroscopically synchronous contractions, and upregulated maturation genes. As a demonstration, human induced pluripotent stem cell-derived leaf-venation-directed-cardiac tissues are engineered with evident structural and functional improvement over time. With the elastic scaffolds, leaf-venation-directed tissues are assembled into 3D centimeter-scale cardiac constructs with programmed mechanical properties, which can be delivered through tubing without affecting cell viability. The present strategy may generate cardiac constructs with multifaceted functionalities to meet clinical demands.
Collapse
Affiliation(s)
- Mao Mao
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Xiaoli Qu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Yabo Zhang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Bingsong Gu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Chen Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Rongzhi Liu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Xiao Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Hui Zhu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Jiankang He
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China.
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, PR China.
| | - Dichen Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, PR China
| |
Collapse
|
16
|
Wu P, Sai X, Li Z, Ye X, Jin L, Liu G, Li G, Yang P, Zhao M, Zhu S, Liu N, Zhu P. Maturation of induced pluripotent stem cell-derived cardiomyocytes and its therapeutic effect on myocardial infarction in mouse. Bioact Mater 2023; 20:286-305. [PMID: 35702609 PMCID: PMC9167678 DOI: 10.1016/j.bioactmat.2022.05.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 11/30/2022] Open
Abstract
Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) have an irreplaceable role in the treatment of myocardial infarction (MI), which can be injected into the transplanted area with new cardiomyocytes (Cardiomyocytes, CMs), and improve myocardial function. However, the immaturity of the structure and function of iPSC-CMs is the main bottleneck at present. Since collagen participates in the formation of extracellular matrix (ECM), we synthesized nano colloidal gelatin (Gel) with collagen as the main component, and confirmed that the biomaterial has good biocompatibility and is suitable for cellular in vitro growth. Subsequently, we combined the PI3K/AKT/mTOR pathway inhibitor BEZ-235 with Gel and found that the two combined increased the sarcomere length and action potential amplitude (APA) of iPSC-CMs, and improved the Ca2+ processing ability, the maturation of mitochondrial morphological structure and metabolic function. Not only that, Gel can also prolong the retention rate of iPSC-CMs in the myocardium and increase the expression of Cx43 and angiogenesis in the transplanted area of mature iPSC-CMs, which also provides a reliable basis for the subsequent treatment of mature iPSC-CMs. BEZ-235 + Gel promotes the maturation of sarcomere structure in iPSC-CMs. BEZ-235 + Gel promotes electrophysiological maturation of iPSC-CMs. BEZ-235 + Gel increases mitochondrial respiration in iPSC-CMs. Gel loaded with mature iPSC-CMs enhanced angiogenesis and gap junction formation at the injection site.
Collapse
|
17
|
Lehtonen AJ, Arasalo O, Srbova L, Heilala M, Pokki J. Magnetic microrheometry of tumor-relevant stiffness levels and probabilistic quantification of viscoelasticity differences inside 3D cell culture matrices. PLoS One 2023; 18:e0282511. [PMID: 36947558 PMCID: PMC10032533 DOI: 10.1371/journal.pone.0282511] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/16/2023] [Indexed: 03/23/2023] Open
Abstract
The progression of breast cancer involves cancer-cell invasions of extracellular matrices. To investigate the progression, 3D cell cultures are widely used along with different types of matrices. Currently, the matrices are often characterized using parallel-plate rheometry for matrix viscoelasticity, or liquid-like viscous and stiffness-related elastic characteristics. The characterization reveals averaged information and sample-to-sample variation, yet, it neglects internal heterogeneity within matrices, experienced by cancer cells in 3D culture. Techniques using optical tweezers and magnetic microrheometry have measured heterogeneity in viscoelasticity in 3D culture. However, there is a lack of probabilistic heterogeneity quantification and cell-size-relevant, microscale-viscoelasticity measurements at breast-tumor tissue stiffness up to ≃10 kPa in Young's modulus. Here, we have advanced methods, for the purpose, which use a magnetic microrheometer that applies forces on magnetic spheres within matrices, and detects the spheres displacements. We present probabilistic heterogeneity quantification using microscale-viscoelasticity measurements in 3D culture matrices at breast-tumor-relevant stiffness levels. Bayesian multilevel modeling was employed to distinguish heterogeneity in viscoelasticity from the effects of experimental design and measurement errors. We report about the heterogeneity of breast-tumor-relevant agarose, GrowDex, GrowDex-collagen and fibrin matrices. The degree of heterogeneity differs for stiffness, and phase angle (i.e. ratio between viscous and elastic characteristics). Concerning stiffness, agarose and GrowDex show the lowest and highest heterogeneity, respectively. Concerning phase angle, fibrin and GrowDex-collagen present the lowest and the highest heterogeneity, respectively. While this heterogeneity information involves softer matrices, probed by ≃30 μm magnetic spheres, we employ larger ≃100 μm spheres to increase magnetic forces and acquire a sufficient displacement signal-to-noise ratio in stiffer matrices. Thus, we show pointwise microscale viscoelasticity measurements within agarose matrices up to Young's moduli of 10 kPa. These results establish methods that combine magnetic microrheometry and Bayesian multilevel modeling for enhanced heterogeneity analysis within 3D culture matrices.
Collapse
Affiliation(s)
- Arttu J Lehtonen
- Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
| | - Ossi Arasalo
- Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
| | - Linda Srbova
- Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
| | - Maria Heilala
- Department of Applied Physics, Aalto University, Espoo, Finland
| | - Juho Pokki
- Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
| |
Collapse
|
18
|
Barreto MEV, Medeiros RP, Shearer A, Fook MVL, Montazerian M, Mauro JC. Gelatin and Bioactive Glass Composites for Tissue Engineering: A Review. J Funct Biomater 2022; 14:23. [PMID: 36662070 PMCID: PMC9861949 DOI: 10.3390/jfb14010023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Nano-/micron-sized bioactive glass (BG) particles are attractive candidates for both soft and hard tissue engineering. They can chemically bond to the host tissues, enhance new tissue formation, activate cell proliferation, stimulate the genetic expression of proteins, and trigger unique anti-bacterial, anti-inflammatory, and anti-cancer functionalities. Recently, composites based on biopolymers and BG particles have been developed with various state-of-the-art techniques for tissue engineering. Gelatin, a semi-synthetic biopolymer, has attracted the attention of researchers because it is derived from the most abundant protein in the body, viz., collagen. It is a polymer that can be dissolved in water and processed to acquire different configurations, such as hydrogels, fibers, films, and scaffolds. Searching "bioactive glass gelatin" in the tile on Scopus renders 80 highly relevant articles published in the last ~10 years, which signifies the importance of such composites. First, this review addresses the basic concepts of soft and hard tissue engineering, including the healing mechanisms and limitations ahead. Then, current knowledge on gelatin/BG composites including composition, processing and properties is summarized and discussed both for soft and hard tissue applications. This review explores physical, chemical and mechanical features and ion-release effects of such composites concerning osteogenic and angiogenic responses in vivo and in vitro. Additionally, recent developments of BG/gelatin composites using 3D/4D printing for tissue engineering are presented. Finally, the perspectives and current challenges in developing desirable composites for the regeneration of different tissues are outlined.
Collapse
Affiliation(s)
- Maria E. V. Barreto
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Rebeca P. Medeiros
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Adam Shearer
- Department of Materials Science and Engineering, The Pennsylvania State University, State College, PA 16802, USA
| | - Marcus V. L. Fook
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Maziar Montazerian
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - John C. Mauro
- Department of Materials Science and Engineering, The Pennsylvania State University, State College, PA 16802, USA
| |
Collapse
|
19
|
Sikic L, Schulman E, Kosklin A, Saraswathibhatla A, Chaudhuri O, Pokki J. Nanoscale Tracking Combined with Cell-Scale Microrheology Reveals Stepwise Increases in Force Generated by Cancer Cell Protrusions. NANO LETTERS 2022; 22:7742-7750. [PMID: 35950832 PMCID: PMC9523704 DOI: 10.1021/acs.nanolett.2c01327] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/26/2022] [Indexed: 06/15/2023]
Abstract
In early breast cancer progression, cancer cells invade through a nanoporous basement membrane (BM) as a first key step toward metastasis. This invasion is thought to be mediated by a combination of proteases, which biochemically degrade BM matrix, and physical forces, which mechanically open up holes in the matrix. To date, techniques that quantify cellular forces of BM invasion in 3D culture have been unavailable. Here, we developed cellular-force measurements for breast cancer cell invasion in 3D culture that combine multiple-particle tracking of force-induced BM-matrix displacements at the nanoscale, and magnetic microrheometry of localized matrix mechanics. We find that cancer-cell protrusions exert forces from picoNewtons up to nanoNewtons during invasion. Strikingly, the protrusions extension involves stepwise increases in force, in steps of 0.2 to 0.5 nN exerted from every 30 s to 6 min. Thus, this technique reveals previously unreported dynamics of force generation by invasive protrusions in cancer cells.
Collapse
Affiliation(s)
- Luka Sikic
- Department
of Electrical Engineering and Automation, Aalto University, Espoo, FI-02150,Finland
| | - Ester Schulman
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Anna Kosklin
- Department
of Electrical Engineering and Automation, Aalto University, Espoo, FI-02150,Finland
| | - Aashrith Saraswathibhatla
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Ovijit Chaudhuri
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Juho Pokki
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
- Department
of Electrical Engineering and Automation, Aalto University, Espoo, FI-02150,Finland
| |
Collapse
|
20
|
Ning L, Shim J, Tomov ML, Liu R, Mehta R, Mingee A, Hwang B, Jin L, Mantalaris A, Xu C, Mahmoudi M, Goldsmith KC, Serpooshan V. A 3D Bioprinted in vitro Model of Neuroblastoma Recapitulates Dynamic Tumor-Endothelial Cell Interactions Contributing to Solid Tumor Aggressive Behavior. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200244. [PMID: 35644929 PMCID: PMC9376856 DOI: 10.1002/advs.202200244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/02/2022] [Indexed: 05/04/2023]
Abstract
Neuroblastoma (NB) is the most common extracranial tumor in children resulting in substantial morbidity and mortality. A deeper understanding of the NB tumor microenvironment (TME) remains an area of active research but there is a lack of reliable and biomimetic experimental models. This study utilizes a 3D bioprinting approach, in combination with NB spheroids, to create an in vitro vascular model of NB for exploring the tumor function within an endothelialized microenvironment. A gelatin methacryloyl (gelMA) bioink is used to create multi-channel cubic tumor analogues with high printing fidelity and mechanical tunability. Human-derived NB spheroids and human umbilical vein endothelial cells (HUVECs) are incorporated into the biomanufactured gelMA and cocultured under static versus dynamic conditions, demonstrating high levels of survival and growth. Quantification of NB-EC integration and tumor cell migration suggested an increased aggressive behavior of NB when cultured in bioprinted endothelialized models, when cocultured with HUVECs, and also as a result of dynamic culture. This model also allowed for the assessment of metabolic, cytokine, and gene expression profiles of NB spheroids under varying TME conditions. These results establish a high throughput research enabling platform to study the TME-mediated cellular-molecular mechanisms of tumor growth, aggression, and response to therapy.
Collapse
Affiliation(s)
- Liqun Ning
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30332USA
| | - Jenny Shim
- Department of PediatricsEmory University School of MedicineAtlantaGA30322USA
- Aflac Cancer and Blood Disorders CenterChildren's Healthcare of AtlantaAtlantaGA30342USA
- Children's Healthcare of AtlantaAtlantaGA30322USA
| | - Martin L. Tomov
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30332USA
| | - Rui Liu
- Department of PediatricsEmory University School of MedicineAtlantaGA30322USA
| | - Riya Mehta
- Department of BiologyEmory UniversityAtlantaGA30322USA
| | - Andrew Mingee
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30332USA
| | - Boeun Hwang
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30332USA
| | - Linqi Jin
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30332USA
| | - Athanasios Mantalaris
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30332USA
| | - Chunhui Xu
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30332USA
- Department of PediatricsEmory University School of MedicineAtlantaGA30322USA
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health ProgramMichigan State UniversityEast LansingMI48824USA
| | - Kelly C. Goldsmith
- Department of PediatricsEmory University School of MedicineAtlantaGA30322USA
- Aflac Cancer and Blood Disorders CenterChildren's Healthcare of AtlantaAtlantaGA30342USA
- Children's Healthcare of AtlantaAtlantaGA30322USA
| | - Vahid Serpooshan
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30332USA
- Department of PediatricsEmory University School of MedicineAtlantaGA30322USA
- Children's Healthcare of AtlantaAtlantaGA30322USA
| |
Collapse
|
21
|
Querceto S, Santoro R, Gowran A, Grandinetti B, Pompilio G, Regnier M, Tesi C, Poggesi C, Ferrantini C, Pioner JM. The harder the climb the better the view: The impact of substrate stiffness on cardiomyocyte fate. J Mol Cell Cardiol 2022; 166:36-49. [PMID: 35139328 PMCID: PMC11270945 DOI: 10.1016/j.yjmcc.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/22/2021] [Accepted: 02/02/2022] [Indexed: 12/27/2022]
Abstract
The quest for novel methods to mature human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) for cardiac regeneration, modelling and drug testing has emphasized a need to create microenvironments with physiological features. Many studies have reported on how cardiomyocytes sense substrate stiffness and adapt their morphological and functional properties. However, these observations have raised new biological questions and a shared vision to translate it into a tissue or organ context is still elusive. In this review, we will focus on the relevance of substrates mimicking cardiac extracellular matrix (cECM) rigidity for the understanding of the biomechanical crosstalk between the extracellular and intracellular environment. The ability to opportunely modulate these pathways could be a key to regulate in vitro hiPSC-CM maturation. Therefore, both hiPSC-CM models and substrate stiffness appear as intriguing tools for the investigation of cECM-cell interactions. More understanding of these mechanisms may provide novel insights on how cECM affects cardiac cell function in the context of genetic cardiomyopathies.
Collapse
Affiliation(s)
- Silvia Querceto
- Division of Physiology, Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, Florence, Italy
| | - Rosaria Santoro
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino IRCCS, via Carlo Parea 4, Milan, Italy; Department of Electronics, Information and Biomedical Engineering, Politecnico di Milano, Milan, Italy
| | - Aoife Gowran
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino IRCCS, via Carlo Parea 4, Milan, Italy
| | - Bruno Grandinetti
- European Laboratory for Non-Linear Spectroscopy (LENS), Sesto Fiorentino, FI, Italy
| | - Giulio Pompilio
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino IRCCS, via Carlo Parea 4, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan, Italy
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Chiara Tesi
- Division of Physiology, Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, Florence, Italy
| | - Corrado Poggesi
- Division of Physiology, Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, Florence, Italy
| | - Cecilia Ferrantini
- Division of Physiology, Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, Florence, Italy
| | - Josè Manuel Pioner
- Department of Biology, Università degli Studi di Firenze, Florence, Italy.
| |
Collapse
|
22
|
Varzideh F, Mone P, Santulli G. Bioengineering Strategies to Create 3D Cardiac Constructs from Human Induced Pluripotent Stem Cells. Bioengineering (Basel) 2022; 9:168. [PMID: 35447728 PMCID: PMC9028595 DOI: 10.3390/bioengineering9040168] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 12/12/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) can be used to generate various cell types in the human body. Hence, hiPSC-derived cardiomyocytes (hiPSC-CMs) represent a significant cell source for disease modeling, drug testing, and regenerative medicine. The immaturity of hiPSC-CMs in two-dimensional (2D) culture limit their applications. Cardiac tissue engineering provides a new promise for both basic and clinical research. Advanced bioengineered cardiac in vitro models can create contractile structures that serve as exquisite in vitro heart microtissues for drug testing and disease modeling, thereby promoting the identification of better treatments for cardiovascular disorders. In this review, we will introduce recent advances of bioengineering technologies to produce in vitro cardiac tissues derived from hiPSCs.
Collapse
Affiliation(s)
- Fahimeh Varzideh
- Department of Medicine, Wilf Family Cardiovascular Research Institute, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (F.V.); (P.M.)
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Pasquale Mone
- Department of Medicine, Wilf Family Cardiovascular Research Institute, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (F.V.); (P.M.)
| | - Gaetano Santulli
- Department of Medicine, Wilf Family Cardiovascular Research Institute, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (F.V.); (P.M.)
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
23
|
Wickramasinghe NM, Sachs D, Shewale B, Gonzalez DM, Dhanan-Krishnan P, Torre D, LaMarca E, Raimo S, Dariolli R, Serasinghe MN, Mayourian J, Sebra R, Beaumont K, Iyengar S, French DL, Hansen A, Eschenhagen T, Chipuk JE, Sobie EA, Jacobs A, Akbarian S, Ischiropoulos H, Ma'ayan A, Houten SM, Costa K, Dubois NC. PPARdelta activation induces metabolic and contractile maturation of human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell 2022; 29:559-576.e7. [PMID: 35325615 PMCID: PMC11072853 DOI: 10.1016/j.stem.2022.02.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 06/30/2021] [Accepted: 02/24/2022] [Indexed: 02/09/2023]
Abstract
Pluripotent stem-cell-derived cardiomyocytes (PSC-CMs) provide an unprecedented opportunity to study human heart development and disease, but they are functionally and structurally immature. Here, we induce efficient human PSC-CM (hPSC-CM) maturation through metabolic-pathway modulations. Specifically, we find that peroxisome-proliferator-associated receptor (PPAR) signaling regulates glycolysis and fatty acid oxidation (FAO) in an isoform-specific manner. While PPARalpha (PPARa) is the most active isoform in hPSC-CMs, PPARdelta (PPARd) activation efficiently upregulates the gene regulatory networks underlying FAO, increases mitochondrial and peroxisome content, enhances mitochondrial cristae formation, and augments FAO flux. PPARd activation further increases binucleation, enhances myofibril organization, and improves contractility. Transient lactate exposure, which is frequently used for hPSC-CM purification, induces an independent cardiac maturation program but, when combined with PPARd activation, still enhances oxidative metabolism. In summary, we investigate multiple metabolic modifications in hPSC-CMs and identify a role for PPARd signaling in inducing the metabolic switch from glycolysis to FAO in hPSC-CMs.
Collapse
Affiliation(s)
- Nadeera M Wickramasinghe
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - David Sachs
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bhavana Shewale
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - David M Gonzalez
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Priyanka Dhanan-Krishnan
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Denis Torre
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Elizabeth LaMarca
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Serena Raimo
- Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Rafael Dariolli
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Madhavika N Serasinghe
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joshua Mayourian
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kristin Beaumont
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Srinivas Iyengar
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Deborah L French
- Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Arne Hansen
- University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | | | - Jerry E Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Eric A Sobie
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adam Jacobs
- Department of Obstetrics and Gynecology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Schahram Akbarian
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Harry Ischiropoulos
- Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Avi Ma'ayan
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sander M Houten
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kevin Costa
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nicole C Dubois
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
24
|
Progress in Bioengineering Strategies for Heart Regenerative Medicine. Int J Mol Sci 2022; 23:ijms23073482. [PMID: 35408844 PMCID: PMC8998628 DOI: 10.3390/ijms23073482] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 02/05/2023] Open
Abstract
The human heart has the least regenerative capabilities among tissues and organs, and heart disease continues to be a leading cause of mortality in the industrialized world with insufficient therapeutic options and poor prognosis. Therefore, developing new therapeutic strategies for heart regeneration is a major goal in modern cardiac biology and medicine. Recent advances in stem cell biology and biotechnologies such as human pluripotent stem cells (hPSCs) and cardiac tissue engineering hold great promise for opening novel paths to heart regeneration and repair for heart disease, although these areas are still in their infancy. In this review, we summarize and discuss the recent progress in cardiac tissue engineering strategies, highlighting stem cell engineering and cardiomyocyte maturation, development of novel functional biomaterials and biofabrication tools, and their therapeutic applications involving drug discovery, disease modeling, and regenerative medicine for heart disease.
Collapse
|
25
|
Jamee R, Araf Y, Naser IB, Promon SK. The promising rise of bioprinting in revolutionalizing medical science: Advances and possibilities. Regen Ther 2021; 18:133-145. [PMID: 34189195 PMCID: PMC8213915 DOI: 10.1016/j.reth.2021.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/19/2021] [Accepted: 05/26/2021] [Indexed: 12/24/2022] Open
Abstract
Bioprinting is a relatively new yet evolving technique predominantly used in regenerative medicine and tissue engineering. 3D bioprinting techniques combine the advantages of creating Extracellular Matrix (ECM)like environments for cells and computer-aided tailoring of predetermined tissue shapes and structures. The essential application of bioprinting is for the regeneration or restoration of damaged and injured tissues by producing implantable tissues and organs. The capability of bioprinting is yet to be fully scrutinized in sectors like the patient-specific spatial distribution of cells, bio-robotics, etc. In this review, currently developed experimental systems and strategies for the bioprinting of different types of tissues as well as for drug delivery and cancer research are explored for potential applications. This review also digs into the most recent opportunities and future possibilities for the efficient implementation of bioprinting to restructure medical and technological practices.
Collapse
Affiliation(s)
- Radia Jamee
- Department of Mathematics and Natural Sciences, School of Data and Sciences, Brac University, Dhaka, Bangladesh
- Mechamind, Dhaka, Bangladesh
| | - Yusha Araf
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Iftekhar Bin Naser
- Department of Mathematics and Natural Sciences, School of Data and Sciences, Brac University, Dhaka, Bangladesh
| | - Salman Khan Promon
- Department of Mathematics and Natural Sciences, School of Data and Sciences, Brac University, Dhaka, Bangladesh
- Mechamind, Dhaka, Bangladesh
| |
Collapse
|
26
|
Yousefi-Ahmadipour A, Asadi F, Pirsadeghi A, Nazeri N, Vahidi R, Abazari MF, Afgar A, Mirzaei-Parsa MJ. Current Status of Stem Cell Therapy and Nanofibrous Scaffolds in Cardiovascular Tissue Engineering. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021. [DOI: 10.1007/s40883-021-00230-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Lou L, Lopez KO, Nautiyal P, Agarwal A. Integrated Perspective of Scaffold Designing and Multiscale Mechanics in Cardiac Bioengineering. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Lihua Lou
- Department of Mechanical and Materials Engineering Florida International University Miami FL 33174 USA
| | - Kazue Orikasa Lopez
- Department of Mechanical and Materials Engineering Florida International University Miami FL 33174 USA
| | - Pranjal Nautiyal
- Mechanical Engineering and Applied Mechanics University of Pennsylvania Philadelphia PA 19104 USA
| | - Arvind Agarwal
- Plasma Forming Laboratory Advanced Materials Engineering Research Institute (AMERI) Mechanical and Materials Engineering College of Engineering and Computing Florida International University Miami FL 33174 USA
| |
Collapse
|
28
|
Cetnar AD, Tomov ML, Ning L, Jing B, Theus AS, Kumar A, Wijntjes AN, Bhamidipati SR, Pham K, Mantalaris A, Oshinski JN, Avazmohammadi R, Lindsey BD, Bauser-Heaton HD, Serpooshan V. Patient-Specific 3D Bioprinted Models of Developing Human Heart. Adv Healthc Mater 2021; 10:e2001169. [PMID: 33274834 PMCID: PMC8175477 DOI: 10.1002/adhm.202001169] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/19/2020] [Indexed: 12/19/2022]
Abstract
The heart is the first organ to develop in the human embryo through a series of complex chronological processes, many of which critically rely on the interplay between cells and the dynamic microenvironment. Tight spatiotemporal regulation of these interactions is key in heart development and diseases. Due to suboptimal experimental models, however, little is known about the role of microenvironmental cues in the heart development. This study investigates the use of 3D bioprinting and perfusion bioreactor technologies to create bioartificial constructs that can serve as high-fidelity models of the developing human heart. Bioprinted hydrogel-based, anatomically accurate models of the human embryonic heart tube (e-HT, day 22) and fetal left ventricle (f-LV, week 33) are perfused and analyzed both computationally and experimentally using ultrasound and magnetic resonance imaging. Results demonstrate comparable flow hemodynamic patterns within the 3D space. We demonstrate endothelial cell growth and function within the bioprinted e-HT and f-LV constructs, which varied significantly in varying cardiac geometries and flow. This study introduces the first generation of anatomically accurate, 3D functional models of developing human heart. This platform enables precise tuning of microenvironmental factors, such as flow and geometry, thus allowing the study of normal developmental processes and underlying diseases.
Collapse
Affiliation(s)
- Alexander D. Cetnar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Martin L. Tomov
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Liqun Ning
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Bowen Jing
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Andrea S. Theus
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Akaash Kumar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Amanda N. Wijntjes
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | | | - Katherine Pham
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Athanasios Mantalaris
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - John N. Oshinski
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine,Atlanta, Georgia, USA
| | - Reza Avazmohammadi
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Brooks D. Lindsey
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Holly D. Bauser-Heaton
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
- Sibley Heart Center at Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Vahid Serpooshan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| |
Collapse
|
29
|
Maturation strategies and limitations of induced pluripotent stem cell-derived cardiomyocytes. Biosci Rep 2021; 41:226678. [PMID: 33057659 PMCID: PMC8209171 DOI: 10.1042/bsr20200833] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 10/06/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) have the ability to differentiate into cardiomyocytes (CMs). They are not only widely used in cardiac pharmacology screening, human heart disease modeling, and cell transplantation-based treatments, but also the most promising source of CMs for experimental and clinical applications. However, their use is largely restricted by the immature phenotype of structure and function, which is similar to embryonic or fetal CMs and has certain differences from adult CMs. In order to overcome this critical issue, many studies have explored and revealed new strategies to induce the maturity of iPSC-CMs. Therefore, this article aims to review recent induction methods of mature iPSC-CMs, related mechanisms, and limitations.
Collapse
|
30
|
Tenreiro MF, Louro AF, Alves PM, Serra M. Next generation of heart regenerative therapies: progress and promise of cardiac tissue engineering. NPJ Regen Med 2021; 6:30. [PMID: 34075050 PMCID: PMC8169890 DOI: 10.1038/s41536-021-00140-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/10/2021] [Indexed: 02/04/2023] Open
Abstract
The adult heart is a vital and highly specialized organ of the human body, with limited capability of self-repair and regeneration in case of injury or disease. Engineering biomimetic cardiac tissue to regenerate the heart has been an ambition in the field of tissue engineering, tracing back to the 1990s. Increased understanding of human stem cell biology and advances in process engineering have provided an unlimited source of cells, particularly cardiomyocytes, for the development of functional cardiac muscle, even though pluripotent stem cell-derived cardiomyocytes poorly resemble those of the adult heart. This review outlines key biology-inspired strategies reported to improve cardiomyocyte maturation features and current biofabrication approaches developed to engineer clinically relevant cardiac tissues. It also highlights the potential use of this technology in drug discovery science and disease modeling as well as the current efforts to translate it into effective therapies that improve heart function and promote regeneration.
Collapse
Affiliation(s)
- Miguel F Tenreiro
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biologica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana F Louro
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biologica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Paula M Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biologica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Margarida Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal.
- Instituto de Tecnologia Química e Biologica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
31
|
Kato B, Wisser G, Agrawal DK, Wood T, Thankam FG. 3D bioprinting of cardiac tissue: current challenges and perspectives. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:54. [PMID: 33956236 PMCID: PMC8102287 DOI: 10.1007/s10856-021-06520-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/30/2021] [Indexed: 05/02/2023]
Abstract
Demand for donor hearts has increased globally due to cardiovascular diseases. Recently, three-dimensional (3D) bioprinting technology has been aimed at creating clinically viable cardiac constructs for the management of myocardial infarction (MI) and associated complications. Advances in 3D bioprinting show promise in aiding cardiac tissue repair following injury/infarction and offer an alternative to organ transplantation. This article summarizes the basic principles of 3D bioprinting and recent attempts at reconstructing functional adult native cardiac tissue with a focus on current challenges and prospective strategies.
Collapse
Affiliation(s)
- Brian Kato
- Department of Translational Research, Western University of Health Sciences, Pomona, CA, USA
| | - Gary Wisser
- Department of Translational Research, Western University of Health Sciences, Pomona, CA, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, CA, USA
| | - Tim Wood
- Department of Translational Research, Western University of Health Sciences, Pomona, CA, USA
| | - Finosh G Thankam
- Department of Translational Research, Western University of Health Sciences, Pomona, CA, USA.
| |
Collapse
|
32
|
Rufaihah AJ, Chen CK, Yap CH, Mattar CNZ. Mending a broken heart: In vitro, in vivo and in silico models of congenital heart disease. Dis Model Mech 2021; 14:dmm047522. [PMID: 33787508 PMCID: PMC8033415 DOI: 10.1242/dmm.047522] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Birth defects contribute to ∼0.3% of global infant mortality in the first month of life, and congenital heart disease (CHD) is the most common birth defect among newborns worldwide. Despite the significant impact on human health, most treatments available for this heterogenous group of disorders are palliative at best. For this reason, the complex process of cardiogenesis, governed by multiple interlinked and dose-dependent pathways, is well investigated. Tissue, animal and, more recently, computerized models of the developing heart have facilitated important discoveries that are helping us to understand the genetic, epigenetic and mechanobiological contributors to CHD aetiology. In this Review, we discuss the strengths and limitations of different models of normal and abnormal cardiogenesis, ranging from single-cell systems and 3D cardiac organoids, to small and large animals and organ-level computational models. These investigative tools have revealed a diversity of pathogenic mechanisms that contribute to CHD, including genetic pathways, epigenetic regulators and shear wall stresses, paving the way for new strategies for screening and non-surgical treatment of CHD. As we discuss in this Review, one of the most-valuable advances in recent years has been the creation of highly personalized platforms with which to study individual diseases in clinically relevant settings.
Collapse
Affiliation(s)
- Abdul Jalil Rufaihah
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228
| | - Ching Kit Chen
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228
| | - Choon Hwai Yap
- Division of Cardiology, Department of Paediatrics, Khoo Teck Puat -National University Children's Medical Institute, National University Health System, Singapore 119228
- Department of Bioengineering, Imperial College London, London, UK
| | - Citra N Z Mattar
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
- Department of Obstetrics and Gynaecology, National University Health System, Singapore 119228
| |
Collapse
|
33
|
Jorba I, Mostert D, Hermans LH, van der Pol A, Kurniawan NA, Bouten CV. In Vitro Methods to Model Cardiac Mechanobiology in Health and Disease. Tissue Eng Part C Methods 2021; 27:139-151. [PMID: 33514281 PMCID: PMC7984657 DOI: 10.1089/ten.tec.2020.0342] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/26/2021] [Indexed: 12/17/2022] Open
Abstract
In vitro cardiac modeling has taken great strides in the past decade. While most cell and engineered tissue models have focused on cell and tissue contractile function as readouts, mechanobiological cues from the cell environment that affect this function, such as matrix stiffness or organization, are less well explored. In this study, we review two-dimensional (2D) and three-dimensional (3D) models of cardiac function that allow for systematic manipulation or precise control of mechanobiological cues under simulated (patho)physiological conditions while acquiring multiple readouts of cell and tissue function. We summarize the cell types used in these models and highlight the importance of linking 2D and 3D models to address the multiscale organization and mechanical behavior. Finally, we provide directions on how to advance in vitro modeling for cardiac mechanobiology using next generation hydrogels that mimic mechanical and structural environmental features at different length scales and diseased cell types, along with the development of new tissue fabrication and readout techniques. Impact statement Understanding the impact of mechanobiology in cardiac (patho)physiology is essential for developing effective tissue regeneration and drug discovery strategies and requires detailed cause-effect studies. The development of three-dimensional in vitro models allows for such studies with high experimental control, while integrating knowledge from complementary cell culture models and in vivo studies for this purpose. Complemented by the use of human-induced pluripotent stem cells, with or without predisposed genetic diseases, these in vitro models will offer promising outlooks to delineate the impact of mechanobiological cues on human cardiac (patho)physiology in a dish.
Collapse
Affiliation(s)
- Ignasi Jorba
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven, The Netherlands
| | - Dylan Mostert
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven, The Netherlands
| | - Leon H.L. Hermans
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven, The Netherlands
| | - Atze van der Pol
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven, The Netherlands
| | - Nicholas A. Kurniawan
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven, The Netherlands
| | - Carlijn V.C. Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven, The Netherlands
| |
Collapse
|
34
|
Wang L, Serpooshan V, Zhang J. Engineering Human Cardiac Muscle Patch Constructs for Prevention of Post-infarction LV Remodeling. Front Cardiovasc Med 2021; 8:621781. [PMID: 33718449 PMCID: PMC7952323 DOI: 10.3389/fcvm.2021.621781] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/04/2021] [Indexed: 12/20/2022] Open
Abstract
Tissue engineering combines principles of engineering and biology to generate living tissue equivalents for drug testing, disease modeling, and regenerative medicine. As techniques for reprogramming human somatic cells into induced pluripotent stem cells (iPSCs) and subsequently differentiating them into cardiomyocytes and other cardiac cells have become increasingly efficient, progress toward the development of engineered human cardiac muscle patch (hCMP) and heart tissue analogs has accelerated. A few pilot clinical studies in patients with post-infarction LV remodeling have been already approved. Conventional methods for hCMP fabrication include suspending cells within scaffolds, consisting of biocompatible materials, or growing two-dimensional sheets that can be stacked to form multilayered constructs. More recently, advanced technologies, such as micropatterning and three-dimensional bioprinting, have enabled fabrication of hCMP architectures at unprecedented spatiotemporal resolution. However, the studies working on various hCMP-based strategies for in vivo tissue repair face several major obstacles, including the inadequate scalability for clinical applications, poor integration and engraftment rate, and the lack of functional vasculature. Here, we review many of the recent advancements and key concerns in cardiac tissue engineering, focusing primarily on the production of hCMPs at clinical/industrial scales that are suitable for administration to patients with myocardial disease. The wide variety of cardiac cell types and sources that are applicable to hCMP biomanufacturing are elaborated. Finally, some of the key challenges remaining in the field and potential future directions to address these obstacles are discussed.
Collapse
Affiliation(s)
- Lu Wang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Vahid Serpooshan
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Jianyi Zhang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
35
|
Liu J, Lu Y, Xing F, Liang J, Wang Q, Fan Y, Zhang X. Cell-free scaffolds functionalized with bionic cartilage acellular matrix microspheres to enhance the microfracture treatment of articular cartilage defects. J Mater Chem B 2021; 9:1686-1697. [PMID: 33491727 DOI: 10.1039/d0tb02616f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Microfracture surgery remains the most popular treatment for articular cartilage lesions in the clinic, but often leads to the formation of inferior fibrocartilage tissue and damage to subchondral bone. To overcome these problems, extracellular matrix (ECM) scaffolds derived from decellularized natural cartilaginous tissues were introduced and showed excellent biological properties to direct the differentiation of bone marrow stem cells. However, besides the limited allogenic/allogenic supply and the risk of disease transfer from xenogeneic tissues, the effectiveness of ECM scaffolds always varied with a high variability of natural tissue quality. In this study, we developed composite scaffolds functionalized with a cell-derived ECM source, namely, bionic cartilage acellular matrix microspheres (BCAMMs), that support the chondrogenic differentiation of bone marrow cells released from microfracture. The scaffolds with BCAMMs at different developmental stages were investigated in articular cartilage regeneration and subchondral bone repair. Compared to microfracture, the addition of cell-free BCAMM scaffolds has demonstrated a great improvement of regenerated cartilage tissue quality in a rabbit model as characterized by a semi-quantitative analysis of cells, histology and biochemical assays as well as micro-CT images. Moreover, the variation in ECM properties was found to significantly affect the cartilage regeneration, highlighting the challenges of homogenous scaffolds in working with microfracture. Together, our results demonstrate that the biofunctionalized BCAMM scaffold with cell-derived ECM shows great potential to combine with microfracture for clinical translation to repair cartilage defects.
Collapse
Affiliation(s)
- Jun Liu
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China. and State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yan Lu
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| | - Fei Xing
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, Sichuan, China
| | - Jie Liang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| | - Qiguang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| |
Collapse
|
36
|
Wei X, Zhuang L, Li H, He C, Wan H, Hu N, Wang P. Advances in Multidimensional Cardiac Biosensing Technologies: From Electrophysiology to Mechanical Motion and Contractile Force. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2005828. [PMID: 33230867 DOI: 10.1002/smll.202005828] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Cardiovascular disease is currently a leading killer to human, while drug-induced cardiotoxicity remains the main cause of the withdrawal and attrition of drugs. Taking clinical correlation and throughput into account, cardiomyocyte is perfect as in vitro cardiac model for heart disease modeling, drug discovery, and cardiotoxicity assessment by accurately measuring the physiological multiparameters of cardiomyocytes. Remarkably, cardiomyocytes present both electrophysiological and biomechanical characteristics due to the unique excitation-contraction coupling, which plays a significant role in studying the cardiomyocytes. This review mainly focuses on the recent advances of biosensing technologies for the 2D and 3D cardiac models with three special properties: electrophysiology, mechanical motion, and contractile force. These high-performance multidimensional cardiac models are popular and effective to rebuild and mimic the heart in vitro. To help understand the high-quality and accurate physiologies, related detection techniques are highly demanded, from microtechnology to nanotechnology, from extracellular to intracellular recording, from multiple cells to single cell, and from planar to 3D models. Furthermore, the characteristics, advantages, limitations, and applications of these cardiac biosensing technologies, as well as the future development prospects should contribute to the systematization and expansion of knowledge.
Collapse
Affiliation(s)
- Xinwei Wei
- Department of Biomedical Engineering, Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou, 310027, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Liujing Zhuang
- Department of Biomedical Engineering, Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou, 310027, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Hongbo Li
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510006, China
| | - Chuanjiang He
- Department of Biomedical Engineering, Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou, 310027, China
| | - Hao Wan
- Department of Biomedical Engineering, Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou, 310027, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Ning Hu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ping Wang
- Department of Biomedical Engineering, Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou, 310027, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| |
Collapse
|
37
|
Ma J, Huang C. Composition and Mechanism of Three-Dimensional Hydrogel System in Regulating Stem Cell Fate. TISSUE ENGINEERING. PART B, REVIEWS 2020; 26:498-518. [PMID: 32272868 DOI: 10.1089/ten.teb.2020.0021] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Three-dimensional (3D) hydrogel systems integrating different types of stem cells and scaffolding biomaterials have an important application in tissue engineering. The biomimetic hydrogels that pattern cell suspensions within 3D configurations of biomaterial networks allow for the transport of bioactive factors and mimic the stem cell niche in vivo, thereby supporting the proliferation and differentiation of stem cells. The composition of a 3D hydrogel system determines the physical and chemical characteristics that regulate stem cell function through a biological mechanism. Here, we discuss the natural and synthetic hydrogel compositions that have been employed in 3D scaffolding, focusing on their characteristics, fabrication, biocompatibility, and regulatory effects on stem cell proliferation and differentiation. We also discuss the regulatory mechanisms of cell-matrix interaction and cell-cell interaction in stem cell activities in various types of 3D hydrogel systems. Understanding hydrogel compositions and their cellular mechanisms can yield insights into how scaffolding biomaterials and stem cells interact and can lead to the development of novel hydrogel systems of stem cells in tissue engineering and stem cell-based regenerative medicine. Impact statement Three-dimensional hydrogel system of stem cell mimicking the stemcell niche holds significant promise in tissue engineering and regenerative medicine. Exactly how hydrogel composition regulates stem cell fate is not well understood. This review focuses on the composition of hydrogel, and how the hydrogel composition and its properties regulate the stem cell adhesion, growth, and differentiation. We propose that cell-matrix interaction and cell-cell interaction are important regulatory mechanisms in stem cell activities. Our review provides key insights into how the hydrogel composition regulates the stem cell fate, untangling the engineering of three-dimensional hydrogel systems for stem cells.
Collapse
Affiliation(s)
- Jianrui Ma
- Center for Neurobiology, Shantou University Medical College, Shantou, China
| | - Chengyang Huang
- Center for Neurobiology, Shantou University Medical College, Shantou, China
- Department of Biological Chemistry, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California at Los Angeles (UCLA), Los Angeles, California, USA
| |
Collapse
|
38
|
Ning L, Mehta R, Cao C, Theus A, Tomov M, Zhu N, Weeks ER, Bauser-Heaton H, Serpooshan V. Embedded 3D Bioprinting of Gelatin Methacryloyl-Based Constructs with Highly Tunable Structural Fidelity. ACS APPLIED MATERIALS & INTERFACES 2020; 12:44563-44577. [PMID: 32966746 DOI: 10.1021/acsami.0c15078] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Three-dimensional (3D) bioprinting of hydrogel-based constructs at adequate consistency and reproducibility can be obtained through a compromise between the hydrogel's inherent instability and printing fidelity. There is an increasing demand to develop bioprinting modalities that enable high-fidelity fabrication of 3D hydrogel structures that closely correspond to the envisioned design. In this work, we performed a systematic, in-depth characterization and optimization of embedded 3D bioprinting to create 3D gelatin-methacryloyl (gelMA) structures with highly controlled fidelity using Carbopol as suspension bath. The role of various embedded printing process parameters in bioprinting fidelity was investigated using a combination of experimental and theoretical approaches. We examined the effect of rheological properties of gelMA and Carbopol at varying concentrations, as well as printing conditions on the volumetric flow rate of gelMA bioink. Printing speed was examined and optimized to successfully print gelMA into the support bath at varying Carbopol concentrations. Printing fidelity was characterized in terms of printed strand diameter, uniformity, angle, and area. The optimal Carbopol solution that retained filament shape at highest fidelity was determined. The efficacy of developed bioprinting approach was then demonstrated by fabricating 3D hydrogel constructs with varying geometries and visualized using an advanced synchrotron-based imaging technique. We also investigated the influence of the Carbopol medium on cross-linking and the resulting stiffness of gelMA constructs. Finally, in vitro cytotoxicity of the developed bioprinting approach was assessed by printing human umbilical vein endothelial cells encapsulated in the gelMA bioink. These results demonstrate the significance of the close interplay between bioink-support bath rheology and printing parameters and help to establish an optimized workflow for creating 3D hydrogel structures with high fidelity and cytocompatibility via embedded bioprinting techniques. This robust platform could further expand the application of bioprinted soft tissue constructs in a wide variety of biomedical applications.
Collapse
Affiliation(s)
- Liqun Ning
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia 30322, United States
- Department of Pediatrics, Emory University, Atlanta, Georgia 30322, United States
| | - Riya Mehta
- Department of Biology, Emory University, Atlanta, Georgia 30322, United States
| | - Cong Cao
- Department of Physics, Emory University, Atlanta, Georgia 30322, United States
| | - Andrea Theus
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia 30322, United States
- Department of Pediatrics, Emory University, Atlanta, Georgia 30322, United States
| | - Martin Tomov
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia 30322, United States
- Department of Pediatrics, Emory University, Atlanta, Georgia 30322, United States
| | - Ning Zhu
- Canadian Light Source, Saskatoon, S7N 2 V3 Saskatchewan, Canada
| | - Eric R Weeks
- Department of Physics, Emory University, Atlanta, Georgia 30322, United States
| | - Holly Bauser-Heaton
- Department of Pediatrics, Emory University, Atlanta, Georgia 30322, United States
- Children's Healthcare of Atlanta, Atlanta, Georgia 30322, United States
- Sibley Heart Center at Children's Healthcare of Atlanta, Atlanta, Georgia 30322 United States
| | - Vahid Serpooshan
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia 30322, United States
- Department of Pediatrics, Emory University, Atlanta, Georgia 30322, United States
- Children's Healthcare of Atlanta, Atlanta, Georgia 30322, United States
| |
Collapse
|
39
|
Cui H, Liu C, Esworthy T, Huang Y, Yu ZX, Zhou X, San H, Lee SJ, Hann SY, Boehm M, Mohiuddin M, Fisher JP, Zhang LG. 4D physiologically adaptable cardiac patch: A 4-month in vivo study for the treatment of myocardial infarction. SCIENCE ADVANCES 2020; 6:eabb5067. [PMID: 32637623 PMCID: PMC7314523 DOI: 10.1126/sciadv.abb5067] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/11/2020] [Indexed: 05/20/2023]
Abstract
There has been considerable progress in engineering cardiac scaffolds for the treatment of myocardial infarction (MI). However, it is still challenging to replicate the structural specificity and variability of cardiac tissues using traditional bioengineering approaches. In this study, a four-dimensional (4D) cardiac patch with physiological adaptability has been printed by beam-scanning stereolithography. By combining a unique 4D self-morphing capacity with expandable microstructure, the specific design has been shown to improve both the biomechanical properties of the patches themselves and the dynamic integration of the patch with the beating heart. Our results demonstrate improved vascularization and cardiomyocyte maturation in vitro under physiologically relevant mechanical stimulation, as well as increased cell engraftment and vascular supply in a murine chronic MI model. This work not only potentially provides an effective treatment method for MI but also contributes a cutting-edge methodology to enhance the structural design of complex tissues for organ regeneration.
Collapse
Affiliation(s)
- Haitao Cui
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Chengyu Liu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Timothy Esworthy
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Yimin Huang
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zu-xi Yu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xuan Zhou
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Hong San
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Se-jun Lee
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Sung Yun Hann
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Manfred Boehm
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Muhammad Mohiuddin
- Cardiac Xenotransplantation Program, Department of Surgery, University of Maryland, Baltimore, MD 21201, USA
| | - John P. Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
- Department of Electrical and Computer Engineering, The George Washington University, Washington, DC 20052, USA
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
- Department of Medicine, The George Washington University, Washington, DC 20052, USA
- Corresponding author.
| |
Collapse
|
40
|
Niu L, Jia Y, Wu M, Liu H, Feng Y, Hu Y, Zhang X, Gao D, Xu F, Huang G. Matrix stiffness controls cardiac fibroblast activation through regulating YAP via AT 1 R. J Cell Physiol 2020; 235:8345-8357. [PMID: 32239716 DOI: 10.1002/jcp.29678] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/10/2020] [Indexed: 12/27/2022]
Abstract
Cardiac fibrosis is a common pathway leading to heart failure and involves continued activation of cardiac fibroblasts (CFs) into myofibroblasts during myocardium damage, causing excessive deposition of the extracellular matrix (ECM) and thus increases matrix stiffness. Increasing evidence has shown that stiffened matrix plays an important role in promoting CF activation and cardiac fibrosis, and several signaling factors mediating CF mechanotransduction have been identified. However, the key molecules that perceive matrix stiffness to regulate CF activation remain to be further explored. Here, we detected significantly increased expression and nuclear localization of Yes-associated protein (YAP) in native fibrotic cardiac tissues. By using mechanically regulated in vitro cell culture models, we found that a stiff matrix-induced high expression and nuclear localization of YAP in CFs, accompanied by enhanced cell activation. We also demonstrated that YAP knockdown decreased fibrogenic response of CFs and that YAP overexpression promoted CF activation, indicating that YAP plays an important role in mediating matrix stiffness-induced CF activation. Further mechanistic studies revealed that the YAP pathway is an important signaling branch downstream of angiotensin II type 1 receptor in CF mechanotransduction. The findings help elucidate the mechanism of fibrotic mechanotransduction and may contribute to the development of new approaches for treating fibrotic diseases.
Collapse
Affiliation(s)
- Lele Niu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Yuanbo Jia
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Mian Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Han Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Yanjing Feng
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Hu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Xiaohui Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Dengfeng Gao
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Guoyou Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China.,Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, China
| |
Collapse
|
41
|
Mehrotra S, de Melo BAG, Hirano M, Keung W, Li RA, Mandal BB, Shin SR. Nonmulberry Silk Based Ink for Fabricating Mechanically Robust Cardiac Patches and Endothelialized Myocardium-on-a-Chip Application. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1907436. [PMID: 33071707 PMCID: PMC7566555 DOI: 10.1002/adfm.201907436] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Indexed: 05/20/2023]
Abstract
Bioprinting holds great promise towards engineering functional cardiac tissue constructs for regenerative medicine and as drug test models. However, it is highly limited by the choice of inks that require maintaining a balance between the structure and functional properties associated with the cardiac tissue. In this regard, we have developed a novel and mechanically robust biomaterial-ink based on non-mulberry silk fibroin protein. The silk-based ink demonstrated suitable mechanical properties required in terms of elasticity and stiffness (~40 kPa) for developing clinically relevant cardiac tissue constructs. The ink allowed the fabrication of stable anisotropic scaffolds using a dual crosslinking method, which were able to support formation of aligned sarcomeres, high expression of gap junction proteins as connexin-43, and maintain synchronously beating of cardiomyocytes. The printed constructs were found to be non-immunogenic in vitro and in vivo. Furthermore, delving into an innovative method for fabricating a vascularized myocardial tissue-on-a-chip, the silk-based ink was used as supporting hydrogel for encapsulating human induced pluripotent stem cell derived cardiac spheroids (hiPSC-CSs) and creating perfusable vascularized channels via an embedded bioprinting technique. We confirmed the ability of silk-based supporting hydrogel towards maturation and viability of hiPSC-CSs and endothelial cells, and for applications in evaluating drug toxicity.
Collapse
Affiliation(s)
- Shreya Mehrotra
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Cambridge, MA 02139, USA
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Bruna A. G. de Melo
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Cambridge, MA 02139, USA
- Department of Engineering of Materials and Bioprocesses, School of Chemical Engineering, University of Campinas, Campinas, SP 13083-852, Brazil
| | - Minoru Hirano
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Cambridge, MA 02139, USA
- Future Vehicle Research Department, Toyota Research Institute North America, Toyota Motor North America Inc., 1555 Woodridge Ave Ann Arbor, MI 48105, USA
| | - Wendy Keung
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong
| | - Ronald A. Li
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong
| | - Biman B. Mandal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
- Center for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Cambridge, MA 02139, USA
| |
Collapse
|
42
|
Abstract
Cardiovascular diseases (CVDs) pose a serious threat to human health, which are characterized by high disability and mortality rate globally such as myocardial infarction (MI), atherosclerosis, and heart failure. Although stem cells transplantation and growth factors therapy are promising, their low survival rate and loss at the site of injury are major obstacles to this therapy. Recently, the development of hydrogel scaffold materials provides a new way to solve this problem, which have shown the potential to treat CVD. Among these scaffold materials, environmentally responsive hydrogels have great prospects in repairing the microenvironment of cardiovascular tissues and vascular regeneration. They provide a new method for the treatment of cardiovascular tissue repair and space-time control for the release of various therapeutic drugs, including small-molecule drugs, growth factors, and stem cells. Herein, this article reviews the occurrence and current treatment of CVD, as well as the repair of cardiovascular injury by several environmental responsive hydrogels systems currently used, mainly focusing on the delivery of growth factors or the application of cell therapy to revascularization. In addition, we will also discuss the enormous potential and personal perspectives of environmentally responsive hydrogels in cardiovascular repair.
Collapse
|
43
|
Argentati C, Morena F, Tortorella I, Bazzucchi M, Porcellati S, Emiliani C, Martino S. Insight into Mechanobiology: How Stem Cells Feel Mechanical Forces and Orchestrate Biological Functions. Int J Mol Sci 2019; 20:E5337. [PMID: 31717803 PMCID: PMC6862138 DOI: 10.3390/ijms20215337] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/23/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022] Open
Abstract
The cross-talk between stem cells and their microenvironment has been shown to have a direct impact on stem cells' decisions about proliferation, growth, migration, and differentiation. It is well known that stem cells, tissues, organs, and whole organisms change their internal architecture and composition in response to external physical stimuli, thanks to cells' ability to sense mechanical signals and elicit selected biological functions. Likewise, stem cells play an active role in governing the composition and the architecture of their microenvironment. Is now being documented that, thanks to this dynamic relationship, stemness identity and stem cell functions are maintained. In this work, we review the current knowledge in mechanobiology on stem cells. We start with the description of theoretical basis of mechanobiology, continue with the effects of mechanical cues on stem cells, development, pathology, and regenerative medicine, and emphasize the contribution in the field of the development of ex-vivo mechanobiology modelling and computational tools, which allow for evaluating the role of forces on stem cell biology.
Collapse
Affiliation(s)
- Chiara Argentati
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
| | - Ilaria Tortorella
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
| | - Martina Bazzucchi
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
| | - Serena Porcellati
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
- CEMIN, Center of Excellence on Nanostructured Innovative Materials, Via del Giochetto, 06126 Perugia, Italy
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
- CEMIN, Center of Excellence on Nanostructured Innovative Materials, Via del Giochetto, 06126 Perugia, Italy
| |
Collapse
|
44
|
Enhancement of human iPSC-derived cardiomyocyte maturation by chemical conditioning in a 3D environment. J Mol Cell Cardiol 2019; 138:1-11. [PMID: 31655038 DOI: 10.1016/j.yjmcc.2019.10.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/30/2019] [Accepted: 10/06/2019] [Indexed: 12/18/2022]
Abstract
Recent advances in the understanding and use of pluripotent stem cells have produced major changes in approaches to the diagnosis and treatment of human disease. An obstacle to the use of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) for regenerative medicine, disease modeling and drug discovery is their immature state relative to adult myocardium. We show the effects of a combination of biochemical factors, thyroid hormone, dexamethasone, and insulin-like growth factor-1 (TDI) on the maturation of hiPSC-CMs in 3D cardiac microtissues (CMTs) that recapitulate aspects of the native myocardium. Based on a comparison of the gene expression profiles and the structural, ultrastructural, and electrophysiological properties of hiPSC-CMs in monolayers and CMTs, and measurements of the mechanical and pharmacological properties of CMTs, we find that TDI treatment in a 3D tissue context yields a higher fidelity adult cardiac phenotype, including sarcoplasmic reticulum function and contractile properties consistent with promotion of the maturation of hiPSC derived cardiomyocytes.
Collapse
|
45
|
Tomov ML, Gil CJ, Cetnar A, Theus AS, Lima BJ, Nish JE, Bauser-Heaton HD, Serpooshan V. Engineering Functional Cardiac Tissues for Regenerative Medicine Applications. Curr Cardiol Rep 2019; 21:105. [PMID: 31367922 PMCID: PMC7153535 DOI: 10.1007/s11886-019-1178-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW Tissue engineering has expanded into a highly versatile manufacturing landscape that holds great promise for advancing cardiovascular regenerative medicine. In this review, we provide a summary of the current state-of-the-art bioengineering technologies used to create functional cardiac tissues for a variety of applications in vitro and in vivo. RECENT FINDINGS Studies over the past few years have made a strong case that tissue engineering is one of the major driving forces behind the accelerating fields of patient-specific regenerative medicine, precision medicine, compound screening, and disease modeling. To date, a variety of approaches have been used to bioengineer functional cardiac constructs, including biomaterial-based, cell-based, and hybrid (using cells and biomaterials) approaches. While some major progress has been made using cellular approaches, with multiple ongoing clinical trials, cell-free cardiac tissue engineering approaches have also accomplished multiple breakthroughs, although drawbacks remain. This review summarizes the most promising methods that have been employed to generate cardiovascular tissue constructs for basic science or clinical applications. Further, we outline the strengths and challenges that are inherent to this field as a whole and for each highlighted technology.
Collapse
Affiliation(s)
- Martin L Tomov
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, 1760 Haygood Dr. NE, HSRB Bldg., Suite E480, Atlanta, GA, 30322, USA
| | - Carmen J Gil
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, 1760 Haygood Dr. NE, HSRB Bldg., Suite E480, Atlanta, GA, 30322, USA
| | - Alexander Cetnar
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, 1760 Haygood Dr. NE, HSRB Bldg., Suite E480, Atlanta, GA, 30322, USA
| | - Andrea S Theus
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, 1760 Haygood Dr. NE, HSRB Bldg., Suite E480, Atlanta, GA, 30322, USA
| | - Bryanna J Lima
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, 1760 Haygood Dr. NE, HSRB Bldg., Suite E480, Atlanta, GA, 30322, USA
| | - Joy E Nish
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, 1760 Haygood Dr. NE, HSRB Bldg., Suite E480, Atlanta, GA, 30322, USA
| | - Holly D Bauser-Heaton
- Division of Pediatric Cardiology, Children's Healthcare of Atlanta Sibley Heart Center, Atlanta, GA, 30322, USA
| | - Vahid Serpooshan
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, 1760 Haygood Dr. NE, HSRB Bldg., Suite E480, Atlanta, GA, 30322, USA.
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30309, USA.
- Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA.
| |
Collapse
|
46
|
Schroer A, Pardon G, Castillo E, Blair C, Pruitt B. Engineering hiPSC cardiomyocyte in vitro model systems for functional and structural assessment. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 144:3-15. [PMID: 30579630 PMCID: PMC6919215 DOI: 10.1016/j.pbiomolbio.2018.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 09/24/2018] [Accepted: 12/04/2018] [Indexed: 02/06/2023]
Abstract
The study of human cardiomyopathies and the development and testing of new therapies has long been limited by the availability of appropriate in vitro model systems. Cardiomyocytes are highly specialized cells whose internal structure and contractile function are sensitive to the local microenvironment and the combination of mechanical and biochemical cues they receive. The complementary technologies of human induced pluripotent stem cell (hiPSC) derived cardiomyocytes (CMs) and microphysiological systems (MPS) allow for precise control of the genetics and microenvironment of human cells in in vitro contexts. These combined systems also enable quantitative measurement of mechanical function and intracellular organization. This review describes relevant factors in the myocardium microenvironment that affect CM structure and mechanical function and demonstrates the application of several engineered microphysiological systems for studying development, disease, and drug discovery.
Collapse
Affiliation(s)
- Alison Schroer
- Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, 94305, USA.
| | - Gaspard Pardon
- Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Erica Castillo
- Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, 94305, USA; Department of Mechanical Engineering, University of California at Santa Barbara, USA
| | - Cheavar Blair
- Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, 94305, USA; Department of Mechanical Engineering, University of California at Santa Barbara, USA
| | - Beth Pruitt
- Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, 94305, USA; Department of Mechanical Engineering, University of California at Santa Barbara, USA
| |
Collapse
|
47
|
Echave MC, Hernáez-Moya R, Iturriaga L, Pedraz JL, Lakshminarayanan R, Dolatshahi-Pirouz A, Taebnia N, Orive G. Recent advances in gelatin-based therapeutics. Expert Opin Biol Ther 2019; 19:773-779. [PMID: 31009588 DOI: 10.1080/14712598.2019.1610383] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Biomaterials have provided a wide range of exciting opportunities in tissue engineering and regenerative medicine. Gelatin, a collagen-derived natural biopolymer, has been extensively used in regenerative medicine applications over the years, due to its cell-responsive properties and the capacity to deliver a wide range of biomolecules. AREAS COVERED The most relevant properties of gelatin as biomaterial are presented together with its main therapeutic applications. The latter includes drug delivery systems, tissue engineering approaches, potential uses as ink for 3D/4D Bioprinting, and its relevance in organ-on-a-chip platforms. EXPERT OPINION Advances in polymer chemistry, mechanobiology, imaging technologies, and 3D biofabrication techniques have expanded the application of gelatin in multiple biomedical research applications ranging from bone and cartilage tissue engineering, to wound healing and anti-cancer therapy. Here, we highlight the latest advances in gelatin-based approaches within the fields of biomaterial-based drug delivery and tissue engineering together with some of the most relevant challenges and limitations.
Collapse
Affiliation(s)
- Mari Carmen Echave
- a NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy , University of the Basque Country UPV/EHU, Paseo de la Universidad 7 , Vitoria-Gasteiz , Spain.,b Biomedical Research Networking Centre in Bioengineering , Biomaterials and Nanomedicine (CIBER-BBN) , Vitoria-Gasteiz , Spain
| | - Raquel Hernáez-Moya
- a NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy , University of the Basque Country UPV/EHU, Paseo de la Universidad 7 , Vitoria-Gasteiz , Spain.,b Biomedical Research Networking Centre in Bioengineering , Biomaterials and Nanomedicine (CIBER-BBN) , Vitoria-Gasteiz , Spain
| | - Leire Iturriaga
- a NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy , University of the Basque Country UPV/EHU, Paseo de la Universidad 7 , Vitoria-Gasteiz , Spain.,b Biomedical Research Networking Centre in Bioengineering , Biomaterials and Nanomedicine (CIBER-BBN) , Vitoria-Gasteiz , Spain
| | - José Luis Pedraz
- a NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy , University of the Basque Country UPV/EHU, Paseo de la Universidad 7 , Vitoria-Gasteiz , Spain.,b Biomedical Research Networking Centre in Bioengineering , Biomaterials and Nanomedicine (CIBER-BBN) , Vitoria-Gasteiz , Spain
| | - Rajamani Lakshminarayanan
- c Anti-Infectives Research Group , Singapore Eye Research Institute, The Academia , Discovery Tower , Singapore.,d Ophthalmology and Visual Sciences Academic Clinical Program , Duke-NUS Graduate Medical School , Singapore
| | - Alireza Dolatshahi-Pirouz
- e Center for Intestinal Absorption and Transport of Biopharmaceuticals , Technical University of Denmark, DTU Nanotech , Copenhagen , Denmark.,f Department of Dentistry - Regenerative Biomaterials, Radboud University Medical Center , Nijmegen , The Netherlands
| | - Nayere Taebnia
- e Center for Intestinal Absorption and Transport of Biopharmaceuticals , Technical University of Denmark, DTU Nanotech , Copenhagen , Denmark
| | - Gorka Orive
- a NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy , University of the Basque Country UPV/EHU, Paseo de la Universidad 7 , Vitoria-Gasteiz , Spain.,b Biomedical Research Networking Centre in Bioengineering , Biomaterials and Nanomedicine (CIBER-BBN) , Vitoria-Gasteiz , Spain.,c Anti-Infectives Research Group , Singapore Eye Research Institute, The Academia , Discovery Tower , Singapore.,g University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua) , Vitoria , Spain
| |
Collapse
|
48
|
Liang J, Huang W, Jiang L, Paul C, Li X, Wang Y. Concise Review: Reduction of Adverse Cardiac Scarring Facilitates Pluripotent Stem Cell-Based Therapy for Myocardial Infarction. Stem Cells 2019; 37:844-854. [PMID: 30913336 PMCID: PMC6599570 DOI: 10.1002/stem.3009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/27/2019] [Accepted: 03/12/2019] [Indexed: 12/13/2022]
Abstract
Pluripotent stem cells (PSCs) are an attractive, reliable source for generating functional cardiomyocytes for regeneration of infarcted heart. However, inefficient cell engraftment into host tissue remains a notable challenge to therapeutic success due to mechanical damage or relatively inhospitable microenvironment. Evidence has shown that excessively formed scar tissues around cell delivery sites present as mechanical and biological barriers that inhibit migration and engraftment of implanted cells. In this review, we focus on the functional responses of stem cells and cardiomyocytes during the process of cardiac fibrosis and scar formation. Survival, migration, contraction, and coupling function of implanted cells may be affected by matrix remodeling, inflammatory factors, altered tissue stiffness, and presence of electroactive myofibroblasts in the fibrotic microenvironment. Although paracrine factors from implanted cells can improve cardiac fibrosis, the transient effect is insufficient for complete repair of an infarcted heart. Furthermore, investigation of interactions between implanted cells and fibroblasts including myofibroblasts helps the identification of new targets to optimize the host substrate environment for facilitating cell engraftment and functional integration. Several antifibrotic approaches, including the use of pharmacological agents, gene therapies, microRNAs, and modified biomaterials, can prevent progression of heart failure and have been developed as adjunct therapies for stem cell-based regeneration. Investigation and optimization of new biomaterials is also required to enhance cell engraftment of engineered cardiac tissue and move PSCs from a laboratory setting into translational medicine.
Collapse
Affiliation(s)
- Jialiang Liang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Lin Jiang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Christian Paul
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Xiangnan Li
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA.,The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
49
|
Chen R, He J, Wang Y, Guo Y, Zhang J, Peng L, Wang D, Lin Q, Zhang J, Guo Z, Li L. Qualitative transcriptional signatures for evaluating the maturity degree of pluripotent stem cell-derived cardiomyocytes. Stem Cell Res Ther 2019; 10:113. [PMID: 30925936 PMCID: PMC6440140 DOI: 10.1186/s13287-019-1205-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/22/2019] [Accepted: 03/03/2019] [Indexed: 12/29/2022] Open
Abstract
Background Pluripotent stem cell-derived cardiomyocytes (PSC-CMs) are widely used models for regenerative medicine and disease research. However, PSC-CMs are usually immature in morphology and functionality and the maturity of PSC-CMs could not be determined accurately. In order to reasonably interpret the experimental results obtained by PSC-CMs, it is necessary to evaluate the maturity of PSC-CMs and find the key genes related to maturation. Methods Using the gene expression profiles of normal adult cardiac tissue and embryonic stem cell (ESC) samples, we identified gene pairs with identically relative expression orderings (REOs) within adult cardiac tissue but reversely identical in ESCs. Then, for a PSC-CM model, we calculated the maturity score as the percentage of these gene pairs that exhibit the same REOs in adult cardiac tissue. Lastly, the CellComp method was used to identify the maturation-related genes. Results The maturity score increased gradually from 0.8401 for 18-week fetal cardiac tissue to 0.9997 for adult cardiac tissue. For four human PSC-CM models, the mature scores increased with prolonged culture time but were all below 0.8. The genes involved in energy metabolism, angiogenesis, immunity, and proliferation were dysregulated in the 1-year PSC-CMs compared with adult cardiac tissue. Conclusion We proposed a qualitative transcriptional signature to score the maturity degree of PSC-CMs. This score can reasonably track the maturity of PSC-CMs and be used to compare different PSC-CM culture methods. Electronic supplementary material The online version of this article (10.1186/s13287-019-1205-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rou Chen
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun He
- Fujian Key Laboratory of Medical Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Yumei Wang
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - You Guo
- Medical Big Data and Bioinformatics Research Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Juan Zhang
- Fujian Key Laboratory of Medical Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Luying Peng
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Duo Wang
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qin Lin
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Zhang
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zheng Guo
- Fujian Key Laboratory of Medical Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China.
| | - Li Li
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
50
|
Callaghan NI, Hadipour-Lakmehsari S, Lee SH, Gramolini AO, Simmons CA. Modeling cardiac complexity: Advancements in myocardial models and analytical techniques for physiological investigation and therapeutic development in vitro. APL Bioeng 2019; 3:011501. [PMID: 31069331 PMCID: PMC6481739 DOI: 10.1063/1.5055873] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/31/2018] [Indexed: 02/06/2023] Open
Abstract
Cardiomyopathies, heart failure, and arrhythmias or conduction blockages impact millions of patients worldwide and are associated with marked increases in sudden cardiac death, decline in the quality of life, and the induction of secondary pathologies. These pathologies stem from dysfunction in the contractile or conductive properties of the cardiomyocyte, which as a result is a focus of fundamental investigation, drug discovery and therapeutic development, and tissue engineering. All of these foci require in vitro myocardial models and experimental techniques to probe the physiological functions of the cardiomyocyte. In this review, we provide a detailed exploration of different cell models, disease modeling strategies, and tissue constructs used from basic to translational research. Furthermore, we highlight recent advancements in imaging, electrophysiology, metabolic measurements, and mechanical and contractile characterization modalities that are advancing our understanding of cardiomyocyte physiology. With this review, we aim to both provide a biological framework for engineers contributing to the field and demonstrate the technical basis and limitations underlying physiological measurement modalities for biologists attempting to take advantage of these state-of-the-art techniques.
Collapse
Affiliation(s)
| | | | | | | | - Craig A. Simmons
- Author to whom correspondence should be addressed: . Present address: Ted Rogers Centre for Heart
Research, 661 University Avenue, 14th Floor Toronto, Ontario M5G 1M1, Canada. Tel.:
416-946-0548. Fax: 416-978-7753
| |
Collapse
|