1
|
Gao W, Yu X, Zhang C, Du H, Yang S, Wang H, Zhu J, Luo Y, Zhang M. Facile fabrications of poly (acrylic acid)-mesoporous zinc phosphate/polydopamine Janus nanoparticles as a biosafe photothermal therapy agent and a pH/NIR-responsive drug carrier. Acta Biomater 2024; 187:328-339. [PMID: 39178927 DOI: 10.1016/j.actbio.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/25/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024]
Abstract
Balancing biocompatibility and drug-loading efficiency in nanoparticles presents a significant challenge. In this study, we describe the facile fabrication of poly (acrylic acid)-mesoporous zinc phosphate/polydopamine (PAA-mZnP/PDA) Janus nanoparticles (JNPs). The PDA half-shell itself can serve as a photothermal agent for photothermal therapy (PTT), as well as to offers sites for polyethylene glycol (PEG) to enhance biocompatibility. Concurrently, the mesoporous ZnP core allows high loading of doxorubicin (DOX) for chemotherapy and the Cy5.5 dye for fluorescence imaging. The resultant PAA-mZnP/PDA-PEG JNPs exhibit exceptional biocompatibility, efficient drug loading (0.5 mg DOX/1 mg JNPs), and dual pH/NIR-responsive drug release properties. We demonstrate the JNPs' satisfactory anti-cancer efficacy, highlighting the synergistic effects of chemotherapy and PTT. Furthermore, the potential for synergistic fluorescence imaging-guided chemo-phototherapy in cancer treatment is illustrated. Thus, this work exemplifies the development of biosafe, multifunctional JNPs for advanced applications in cancer theranostics. STATEMENT OF SIGNIFICANCE: Facile fabrication of monodispersed nanomedicine with multi-cancer killing modalities organically integrated is nontrivial and becomes more challenging under the biocompatibility requirement that is necessary for the practical applications of nanomedicines. In this study, we creatively designed PAA-mZnP/PDA JNPs and fabricated them under mild conditions. Our method reliably yields uniform JNPs with excellent monodispersity. To maximize functionalities, we achieve fourfold advantages including efficient drug/fluorescent dye loading, PTT, pH/NIR dual-responsive properties, and optimal biocompatibility. The as-fabricated JNPs exhibit satisfactory anti-cancer performance both in vitro and in vivo, and demonstrate the potential of JNPs in fluorescence imaging-guided synergistic cancer chemo-phototherapy. Overall, our research establishes a pathway in versatile inorganic/polymer JNPs for enhanced cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Wei Gao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xinyuan Yu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Chunpeng Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Haoyang Du
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Shiya Yang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Hao Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jiuxin Zhu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, China.
| | - Yakun Luo
- National Health Commission Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China.
| | - Manjie Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, China.
| |
Collapse
|
2
|
Rong J, Liu T, Yin X, Shao M, Zhu K, Li B, Wang S, Zhu Y, Zhang S, Yin L, Liu Q, Wang X, Zhang L. Co-delivery of camptothecin and MiR-145 by lipid nanoparticles for MRI-visible targeted therapy of hepatocellular carcinoma. J Exp Clin Cancer Res 2024; 43:247. [PMID: 39215325 PMCID: PMC11363558 DOI: 10.1186/s13046-024-03167-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Camptothecin (CPT) is one of the frequently used small chemotherapy drugs for treating hepatocellular carcinoma (HCC), but its clinical application is limited due to severe toxicities and acquired resistance. Combined chemo-gene therapy has been reported to be an effective strategy for counteracting drug resistance while sensitizing cancer cells to cytotoxic agents. Thus, we hypothesized that combining CPT with miR-145 could synergistically suppress tumor proliferation and enhance anti-tumor activity. METHODS Lactobionic acid (LA) modified lipid nanoparticles (LNPs) were developed to co-deliver CPT and miR-145 into asialoglycoprotein receptors-expressing HCC in vitro and in vivo. We evaluated the synergetic antitumor effect of miR-145 and CPT using CCK8, Western blotting, apoptosis and wound scratch assay in vitro, and the mechanisms underlying the synergetic antitumor effects were further investigated. Tumor inhibitory efficacy, safety evaluation and MRI-visible ability were assessed using diethylnitrosamine (DEN) + CCl4-induced HCC mouse model. RESULTS The LA modification improved the targeting delivery of cargos to HCC cells and tissues. The LA-CMGL-mediated co-delivery of miR-145 and CPT is more effective on tumor inhibitory than LA-CPT-L or LA-miR-145-L treatment alone, both in vitro and in vivo, with almost no side effects during the treatment period. Mechanistically, miR-145 likely induces apoptosis by targeting SUMO-specific peptidase 1 (SENP1)-mediated hexokinase (HK2) SUMOylation and glycolysis pathways and, in turn, sensitizing the cancer cells to CPT. In vitro and in vivo tests confirmed that the loaded Gd-DOTA served as an effective T1-weighted contrast agent for noninvasive tumor detection as well as real-time monitoring of drug delivery and biodistribution. CONCLUSIONS The LA-CMGL-mediated co-delivery of miR-145 and CPT displays a synergistic therapy against HCC. The novel MRI-visible, actively targeted chemo-gene co-delivery system for HCC therapy provides a scientific basis and a useful idea for the development of HCC treatment strategies in the future.
Collapse
Affiliation(s)
- Jing Rong
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230022, China
| | - Tongtong Liu
- School of Pharmacy, Key Laboratory of Anti-inflammatory of Immune Medicines of Ministry of Education, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China
| | - Xiujuan Yin
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230022, China
| | - Min Shao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230022, China
| | - Kun Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230022, China
| | - Bin Li
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230022, China
| | - Shiqi Wang
- School of Pharmacy, Key Laboratory of Anti-inflammatory of Immune Medicines of Ministry of Education, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China
| | - Yujie Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230022, China
| | - Saisai Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230022, China
| | - Likang Yin
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230022, China
| | - Qi Liu
- School of Pharmacy, Key Laboratory of Anti-inflammatory of Immune Medicines of Ministry of Education, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China.
| | - Xiao Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230022, China.
| | - Lei Zhang
- School of Pharmacy, Key Laboratory of Anti-inflammatory of Immune Medicines of Ministry of Education, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
3
|
Wang B, Hu S, Teng Y, Chen J, Wang H, Xu Y, Wang K, Xu J, Cheng Y, Gao X. Current advance of nanotechnology in diagnosis and treatment for malignant tumors. Signal Transduct Target Ther 2024; 9:200. [PMID: 39128942 PMCID: PMC11323968 DOI: 10.1038/s41392-024-01889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/04/2024] [Accepted: 06/02/2024] [Indexed: 08/13/2024] Open
Abstract
Cancer remains a significant risk to human health. Nanomedicine is a new multidisciplinary field that is garnering a lot of interest and investigation. Nanomedicine shows great potential for cancer diagnosis and treatment. Specifically engineered nanoparticles can be employed as contrast agents in cancer diagnostics to enable high sensitivity and high-resolution tumor detection by imaging examinations. Novel approaches for tumor labeling and detection are also made possible by the use of nanoprobes and nanobiosensors. The achievement of targeted medication delivery in cancer therapy can be accomplished through the rational design and manufacture of nanodrug carriers. Nanoparticles have the capability to effectively transport medications or gene fragments to tumor tissues via passive or active targeting processes, thus enhancing treatment outcomes while minimizing harm to healthy tissues. Simultaneously, nanoparticles can be employed in the context of radiation sensitization and photothermal therapy to enhance the therapeutic efficacy of malignant tumors. This review presents a literature overview and summary of how nanotechnology is used in the diagnosis and treatment of malignant tumors. According to oncological diseases originating from different systems of the body and combining the pathophysiological features of cancers at different sites, we review the most recent developments in nanotechnology applications. Finally, we briefly discuss the prospects and challenges of nanotechnology in cancer.
Collapse
Affiliation(s)
- Bilan Wang
- Department of Pharmacy, Evidence-based Pharmacy Center, Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Shiqi Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yan Teng
- Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, P.R. China
| | - Junli Chen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Haoyuan Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yezhen Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Kaiyu Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jianguo Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yongzhong Cheng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
4
|
Fang Y, Zheng Y, Chi C, Jiang S, Qin W, Zhang Y, Liu H, Chen Q. PAA-PU Janus Hydrogels Stabilized by Janus Particles and its Interfacial Performance During Hemostatic Processing. Adv Healthc Mater 2024; 13:e2303802. [PMID: 38341630 DOI: 10.1002/adhm.202303802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Hydrogel is a very promising dressing for hemostasis and wound healing due to its good adhesion and long-term moist environment. However, secondary injury caused by tissue adhesion due to homogeneous hydrogel cannot be ignored. The obvious interface existing in Janus hydrogel will weaken its asymmetric function. Here, a hierarchical adhesive polyacrylic acid-polyurushiol water-oil Janus hydrogel (JPs@PAA-PU) without adhesive layer is fabricated by one-pot method in the stabilization of polystyrene@silica-siliver Janus particles (JPs). The morphological structure, mechanical properties, anisotropic chemical composition, and adhesion performance, in vivo, and in vitro hemostatic properties of Janus hydrogel are investigated. Result shows that the obtained Janus hydrogel possesses obvious compartmentalization in microstructure, functional groups, and chemical elements. Janus hydrogel is provided with asymmetric interfacial toughness with top 52.45 ± 2.29 Kpa and bottom 7.04 ± 0.88 Kpa on porcine liver. The adhesion properties of PAA side to tissue, red blood cells and platelets, promoting effect of PU side on coagulation cascade reaction and its physical battier endow Janus hydrogel with shorter hemostatic time and less blood loss than control group. It also exhibits excellent antibacterial effects against Escherichia coli and Staphylococcus aureus (>90%). Janus hydrogel possesses biosafety, providing safety guarantee for clinical applications in the future.
Collapse
Affiliation(s)
- Yan Fang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Yanyan Zheng
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Chongyi Chi
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Sai Jiang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Wanbang Qin
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Yicheng Zhang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Haiqing Liu
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
- Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Qinhui Chen
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
- Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, 350007, P. R. China
| |
Collapse
|
5
|
Shirvalilou S, Khoei S, Khoee S, Soleymani M, Shirvaliloo M, Ali BH, Mahabadi VP. Dual-drug delivery by thermo-responsive Janus nanogel for improved cellular uptake, sustained release, and combination chemo-thermal therapy. Int J Pharm 2024; 653:123888. [PMID: 38342325 DOI: 10.1016/j.ijpharm.2024.123888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
The goal of this work was to examine the heat-sensitizing effects of Janus-coated magnetic nanoparticles (JMNPs) as a vehicle for 5-fluorouracil (5-Fu) and Quercetin (Qu) in C6 and OLN-93 cell lines. The cellular uptake of nanoparticles was evaluated using Prussian blue staining and ICP-OES after monolayer culturing of C6 (rat brain cancer cell) and OLN-93 (normal rat brain cell) cells. The cells were treated with free 5-Fu, Qu, and MJNPs loaded with Qu/5-Fu for 24 h, followed by magnetic hyperthermia under an alternating magnetic field (AMF) at a temperature of 43 °C. Using the MTT test and Flow cytometry, the C6 and OLN-93 cells were investigated after being subjected to hyperthermia with and without magnetic nanoparticles. The results of Prussian blue staining confirmed the potential of MJNPs as carriers that facilitate the uptake of drugs by cancer cells. The results showed that the combined application of Qu/5-Fu/MJNPs with hyperthermia significantly increased the amount of ROS production compared to interventions without MJNPs. The therapeutic results demonstrated that the combination of Qu/5-Fu/MJNPs with hyperthermia considerably enhanced the rate of apoptotic and necrotic cell death compared to that of interventions without MJNPs. Furthermore, MTT findings indicated that controlled exposure of Qu/5-Fu/MJNPs to AMF caused a synergistic effect. The advanced Janus magnetic nanoparticles in this study can be proposed as a promising dual drug carrier (Qu/5-Fu) and thermosensitizer platform for dual-modal synergistic cancer therapy.
Collapse
Affiliation(s)
- Sakine Shirvalilou
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Samideh Khoei
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sepideh Khoee
- Department of Polymer Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Maryam Soleymani
- Department of Polymer Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Milad Shirvaliloo
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran; Future Science Group, Unitec House, 2 Albert Place, London N3 1QB, United Kingdom
| | - Bahareh Haji Ali
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
6
|
Amarjargal A, Cegielska O, Kolbuk D, Kalaska B, Sajkiewicz P. On-Demand Sequential Release of Dual Drug from pH-Responsive Electrospun Janus Nanofiber Membranes toward Wound Healing and Infection Control. ACS APPLIED MATERIALS & INTERFACES 2024; 16:153-165. [PMID: 38150182 DOI: 10.1021/acsami.3c13676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Drugs against bacteria and abnormal cells, such as antibiotics and anticancer drugs, may save human lives. However, drug resistance is becoming more common in the clinical world. Nowadays, a synergistic action of multiple bioactive compounds and their combination with smart nanoplatforms has been considered an alternative therapeutic strategy to fight drug resistance in multidrug-resistant cancers and microorganisms. The present study reports a one-step fabrication of innovative pH-responsive Janus nanofibers loaded with two active compounds, each in separate polymer compartments for synergistic combination therapy. By dissolving one of the compartments from the nanofibers, we could clearly demonstrate a highly yielded anisotropic Janus structure with two faces by scanning electron microscopy (SEM) analysis. To better understand the distinctive attributes of Janus nanofibers, several analytical methods, such as X-ray diffraction (XRD), FTIR spectroscopy, and contact angle goniometry, were utilized to examine and compare them to those of monolithic nanofibers. Furthermore, a drug release test was conducted in pH 7.4 and 6.0 media since the properties of Janus nanofibers correlate significantly with different environmental pH levels. This resulted in the on-demand sequential codelivery of octenidine (OCT) and curcumin (CUR) to the corresponding pH stimulus. Accordingly, the antibacterial properties of Janus fibers against Escherichia coli and Staphylococcus aureus, tested in a suspension test, were pH-dependent, i.e., greater in pH 6 due to the synergistic action of two active compounds, and Eudragit E100 (EE), and highly satisfactory. The biocompatibility of the Janus fibers was confirmed in selected tests.
Collapse
Affiliation(s)
- Altangerel Amarjargal
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, Warsaw 02-106, Poland
- Power Engineering School, Mongolian University of Science and Technology, 8th khoroo, Baga toiruu, Sukhbaatar district, Ulaanbaatar 14191, Mongolia
| | - Olga Cegielska
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, Warsaw 02-106, Poland
| | - Dorota Kolbuk
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, Warsaw 02-106, Poland
| | - Bartlomiej Kalaska
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2c, Bialystok 15-089, Poland
| | - Pawel Sajkiewicz
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, Warsaw 02-106, Poland
| |
Collapse
|
7
|
Mierke CT. Extracellular Matrix Cues Regulate Mechanosensing and Mechanotransduction of Cancer Cells. Cells 2024; 13:96. [PMID: 38201302 PMCID: PMC10777970 DOI: 10.3390/cells13010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/29/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
Extracellular biophysical properties have particular implications for a wide spectrum of cellular behaviors and functions, including growth, motility, differentiation, apoptosis, gene expression, cell-matrix and cell-cell adhesion, and signal transduction including mechanotransduction. Cells not only react to unambiguously mechanical cues from the extracellular matrix (ECM), but can occasionally manipulate the mechanical features of the matrix in parallel with biological characteristics, thus interfering with downstream matrix-based cues in both physiological and pathological processes. Bidirectional interactions between cells and (bio)materials in vitro can alter cell phenotype and mechanotransduction, as well as ECM structure, intentionally or unintentionally. Interactions between cell and matrix mechanics in vivo are of particular importance in a variety of diseases, including primarily cancer. Stiffness values between normal and cancerous tissue can range between 500 Pa (soft) and 48 kPa (stiff), respectively. Even the shear flow can increase from 0.1-1 dyn/cm2 (normal tissue) to 1-10 dyn/cm2 (cancerous tissue). There are currently many new areas of activity in tumor research on various biological length scales, which are highlighted in this review. Moreover, the complexity of interactions between ECM and cancer cells is reduced to common features of different tumors and the characteristics are highlighted to identify the main pathways of interaction. This all contributes to the standardization of mechanotransduction models and approaches, which, ultimately, increases the understanding of the complex interaction. Finally, both the in vitro and in vivo effects of this mechanics-biology pairing have key insights and implications for clinical practice in tumor treatment and, consequently, clinical translation.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Biological Physics Division, Peter Debye Institute of Soft Matter Physics, Faculty of Physics and Earth Science, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany
| |
Collapse
|
8
|
Chen X, Hou M, Zhang X, Liu H, Li W, Hong W. Active Targeted Janus Theranostic Nanoplatforms Enable Chemo-Photothermal Therapy to Inhibit the Growth of Breast Cancer. Mol Pharm 2023; 20:5800-5810. [PMID: 37822062 DOI: 10.1021/acs.molpharmaceut.3c00669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Nanoscale structures have been developed to serve various functions in cancer therapy, encompassing areas such as diagnosis, biomedical visualization, tissue regeneration, and drug delivery. Based on biocompatible chitosan oligosaccharides (COS) and gold nanorods (GNRs), we designed the drug delivery systems (GNR@polyacrylic acid-Mn@COS Janus nanoparticles (JNPs)), which achieved paclitaxel (PTX) loaded on the side of GNRs, and the PAA-Mn domain served as magnetic resonance imaging contrast agents. This system was found to be effectively delivered to tumor sites through the enhanced permeability and retention (EPR) effect and the active target of the COS. The uniform JNPs selectively targeted cancer cells instead of normal cells through interacting with the COS on the surface of tumor cells, and the pH/NIR-responsive drug release behavior further enhanced their therapeutic effects. The in vivo effects of JNPs against tumors were evaluated using subcutaneous and orthotopic lung metastasis models, yielding promising outcomes for both tumor diagnosis and cancer treatment. In conclusion, the obtained JNPs hold great promise as a theranostic nanoplatform with synergistic chemotherapeutic and photothermal effects.
Collapse
Affiliation(s)
- Xiangjun Chen
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P. R. China
| | - Mingyi Hou
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P. R. China
| | - Xinzhong Zhang
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P. R. China
| | - Haixin Liu
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P. R. China
| | - Wenting Li
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P. R. China
| | - Wei Hong
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P. R. China
| |
Collapse
|
9
|
Fluksman A, Lafuente A, Braunstein R, Steinberg E, Friedman N, Yekhin Z, Roca AG, Nogues J, Hazan R, Sepulveda B, Benny O. Modular Drug-Loaded Nanocapsules with Metal Dome Layers as a Platform for Obtaining Synergistic Therapeutic Biological Activities. ACS APPLIED MATERIALS & INTERFACES 2023; 15:50330-50343. [PMID: 37861446 PMCID: PMC10623511 DOI: 10.1021/acsami.3c07188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023]
Abstract
Multifunctional drug-loaded polymer-metal nanocapsules have attracted increasing attention in drug delivery due to their multifunctional potential endowed by drug activity and response to physicochemical stimuli. Current chemical synthesis methods of polymer/metal capsules require specific optimization of the different components to produce particles with precise properties, being particularly complex for Janus structures combining polymers and ferromagnetic and highly reactive metals. With the aim to generate tunable synergistic nanotherapeutic actuation with enhanced drug effects, here we demonstrate a versatile hybrid chemical/physical fabrication strategy to incorporate different functional metals with tailored magnetic, optical, or chemical properties on solid drug-loaded polymer nanoparticles. As archetypical examples, we present poly(lactic-co-glycolic acid) (PLGA) nanoparticles (diameters 100-150 nm) loaded with paclitaxel, indocyanine green, or erythromycin that are half-capped by either Fe, Au, or Cu layers, respectively, with application in three biomedical models. The Fe coating on paclitaxel-loaded nanocapsules permitted efficient magnetic enhancement of the cancer spheroid assembly, with 40% reduction of the cross-section area after 24 h, as well as a higher paclitaxel effect. In addition, the Fe-PLGA nanocapsules enabled external contactless manipulation of multicellular cancer spheroids with a speed of 150 μm/s. The Au-coated and indocyanine green-loaded nanocapsules demonstrated theranostic potential and enhanced anticancer activity in vitro and in vivo due to noninvasive fluorescence imaging with long penetration near-infrared (NIR) light and simultaneous photothermal-photodynamic actuation, showing a 3.5-fold reduction in the tumor volume growth with only 5 min of NIR illumination. Finally, the Cu-coated erythromycin-loaded nanocapsules exhibited enhanced antibacterial activity with a 2.5-fold reduction in the MIC50 concentration with respect to the free or encapsulated drug. Altogether, this technology can extend a nearly unlimited combination of metals, polymers, and drugs, thus enabling the integration of magnetic, optical, and electrochemical properties in drug-loaded nanoparticles to externally control and improve a wide range of biomedical applications.
Collapse
Affiliation(s)
- Arnon Fluksman
- Institute
for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Aritz Lafuente
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193 Bellaterra, Barcelona, Spain
- Universitat
Autònoma de Barcelona, Campus UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Ron Braunstein
- Institute
of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, The Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Eliana Steinberg
- Institute
for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Nethanel Friedman
- Institute
for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Zhanna Yekhin
- Department
of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah
Medical Center, The Faculty of Medicine, The Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Alejandro G. Roca
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Josep Nogues
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193 Bellaterra, Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Ronen Hazan
- Institute
of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, The Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Borja Sepulveda
- Instituto
de Microelectronica de Barcelona (IMB-CNM, CSIC), Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Ofra Benny
- Institute
for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| |
Collapse
|
10
|
Han Q, Du L, Zhu L, Yu D. Review of the Application of Dual Drug Delivery Nanotheranostic Agents in the Diagnosis and Treatment of Liver Cancer. Molecules 2023; 28:7004. [PMID: 37894483 PMCID: PMC10608862 DOI: 10.3390/molecules28207004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/16/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Liver cancer has high incidence and mortality rates and its treatment generally requires the use of a combination treatment strategy. Therefore, the early detection and diagnosis of liver cancer is crucial to achieving the best treatment effect. In addition, it is imperative to explore multimodal combination therapy for liver cancer treatment and the synergistic effect of two liver cancer treatment drugs while preventing drug resistance and drug side effects to maximize the achievable therapeutic effect. Gold nanoparticles are used widely in applications related to optical imaging, CT imaging, MRI imaging, biomarkers, targeted drug therapy, etc., and serve as an advanced platform for integrated application in the nano-diagnosis and treatment of diseases. Dual-drug-delivery nano-diagnostic and therapeutic agents have drawn great interest in current times. Therefore, the present report aims to review the effectiveness of dual-drug-delivery nano-diagnostic and therapeutic agents in the field of anti-tumor therapy from the particular perspective of liver cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Qinghe Han
- Radiology Department, The Second Affiliated Hospital of Jilin University, Changchun 130062, China; (Q.H.); (L.D.); (L.Z.)
| | - Lianze Du
- Radiology Department, The Second Affiliated Hospital of Jilin University, Changchun 130062, China; (Q.H.); (L.D.); (L.Z.)
| | - Lili Zhu
- Radiology Department, The Second Affiliated Hospital of Jilin University, Changchun 130062, China; (Q.H.); (L.D.); (L.Z.)
| | - Duo Yu
- Department of Radiotherapy, The Second Affiliated Hospital of Jilin University, Changchun 130062, China
| |
Collapse
|
11
|
Li J, Cao Y, Zhang X, An M, Liu Y. The Application of Nano-drug Delivery System With Sequential Drug Release Strategies in Cancer Therapy. Am J Clin Oncol 2023; 46:459-473. [PMID: 37533151 DOI: 10.1097/coc.0000000000001030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Currently, multidrug combinations are often used clinically to improve the efficacy of oncology chemotherapy, but multidrug combinations often lead to multidrug resistance and decreased performance, resulting in more severe side effects than monotherapy. Therefore, sequential drug release strategies in time and space as well as nano-carriers that respond to the tumor microenvironment have been developed. First, the advantage of the sequential release strategy is that they can load multiple drugs simultaneously to meet their spatiotemporal requirements and stability, thus exerting synergistic effects of two or more drugs. Second, in some cases, sequential drug delivery of different molecular targets can improve the sensitivity of cancer cells to drugs. Control the metabolism of cancer cells, and remodel tumor vasculature. Finally, some drug combinations with built-in release control are used for sequential administration. This paper focuses on the use of nanotechnology and built-in control device to construct drug delivery carriers with different stimulation responses, thus achieving the sequential release of drugs. Therefore, the nano-sequential delivery carrier provides a new idea and platform for the therapeutic effect of various drugs and the synergistic effect among drugs.
Collapse
Affiliation(s)
- Juan Li
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | | | | | | | | |
Collapse
|
12
|
Lin X, Li F, Guan J, Wang X, Yao C, Zeng Y, Liu X. Janus Silica Nanoparticle-Based Tumor Microenvironment Modulator for Restoring Tumor Sensitivity to Programmed Cell Death Ligand 1 Immune Checkpoint Blockade Therapy. ACS NANO 2023; 17:14494-14507. [PMID: 37485850 DOI: 10.1021/acsnano.3c01019] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
An immunosuppressive tumor microenvironment (TME) with inadequate and exhausted tumor-infiltrating cytotoxic lymphocytes and abundant cellular immunosuppressors is the major obstacle responsible for the poor efficacy of PD-1/PD-L1 (programmed cell death 1 and its ligand 1) immune checkpoint blockade (ICB) therapy. Herein, a Janus silica nanoparticle (JSNP)-based immunomodulator is explored to reshape the TME for boosting the therapeutic outcomes of αPD-L1 therapy. The designed JSNP has two distinct domains, namely, an ultra pH-responsive side (UPS), which could encapsulate PI3Kγ inhibitor IPI549 in the pore structure, and a polycation-grafted intra-glutathione (GSH)-sensitive side (IGS), which could absorb CXCL9 cDNA on the surface. The final IPI549@UPS-IGS-PDMAEMA@CXCL9 cDNA (IUIPC) could release IPI549 in weak acid TME to target myeloid-derived suppressor cells (MDSCs) to reverse negative immunoregulation and then release CXCL9 cDNA in tumor cells with abundant GSH for sustained CXCL9 chemokine expression and secretion to improve cytotoxic lymphocyte recruitment signals, thereby jointly restoring tumor sensitivity to PD-1/PD-L1 ICB therapy. As expected, the IUIPC-mediated TME remodeling during αPD-L1 therapy significantly ameliorated TME immunosuppression, as well as induced potent systemic antitumor immune responses, which ultimately achieved a robustly boosted antitumor efficacy proven by remarkable suppression of primary tumor growth, obvious prevention of tumor recurrence, and significant regression of abscopal tumors. Hence, the IUIPC-mediated TME-regulating strategy provides an enormous perspective for the improvement of PD-1/PD-L1 ICB therapy.
Collapse
Affiliation(s)
- Xinyi Lin
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Fujian Provincial Clinical Research Center for Hepatobiliary and Pancreatic Tumors, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Feida Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Jianhua Guan
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Xiaoyan Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Cuiping Yao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Fujian Provincial Clinical Research Center for Hepatobiliary and Pancreatic Tumors, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Fujian Provincial Clinical Research Center for Hepatobiliary and Pancreatic Tumors, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| |
Collapse
|
13
|
Hueppe N, Wurm FR, Landfester K. Nanocarriers with Multiple Cargo Load-A Comprehensive Preparation Guideline Using Orthogonal Strategies. Macromol Rapid Commun 2023; 44:e2200611. [PMID: 36098551 DOI: 10.1002/marc.202200611] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/11/2022] [Indexed: 11/06/2022]
Abstract
Multifunctional nanocarriers enhance the treatment efficacy for modern therapeutics and have gained increasing importance in biomedical research. Codelivery of multiple bioactive molecules enables synergistic therapies. Coencapsulation of cargo molecules into one nanocarrier system is challenging due to different physicochemical properties of the cargo molecules. Additionally, coencapsulation of multiple molecules simultaneously shall proceed with high control and efficiency. Orthogonal approaches for the preparation of nanocarriers are essential to encapsulate sensitive bioactive molecules while preserving their bioactivity. Preparation of nanocarriers by physical processes (i.e., self-assembly or coacervation) and chemical reactions (i.e., click reactions, polymerizations, etc.) are considered as orthogonal methods to most cargo molecules. This review shall act as a guideline to allow the reader to select a suitable preparation protocol for a desired nanocarrier system. This article helps to select for combinations of cargo molecules (hydrophilic-hydrophobic, small-macro, organic-inorganic) with nanocarrier material and synthesis protocols. The focus of this article lies on the coencapsulation of multiple cargo molecules into biocompatible and biodegradable nanocarriers prepared by orthogonal strategies. With this toolbox, the selection of a preparation method for a known set of cargo molecules to prepare the desired biodegradable and loaded nanocarrier shall be provided.
Collapse
Affiliation(s)
- Natkritta Hueppe
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Frederik R Wurm
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Sustainable Polymer Chemistry, Department of Molecules and Materials, Faculty of Science and Technology, MESA+ Institute for Nanotechnology, University of Twente, Drienerlolaan 5, Enschede, 7522 NB, The Netherlands
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
14
|
Baruah M, Jana A, Pareek N, Singh S, Samanta A. A Ratiometric Fluorescent Probe for Hypochlorite and Lipid Droplets to Monitor Oxidative Stress. BIOSENSORS 2023; 13:662. [PMID: 37367027 DOI: 10.3390/bios13060662] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023]
Abstract
Mitochondria are valuable subcellular organelles and play crucial roles in redox signaling in living cells. Substantial evidence proved that mitochondria are one of the critical sources of reactive oxygen species (ROS), and overproduction of ROS accompanies redox imbalance and cell immunity. Among ROS, hydrogen peroxide (H2O2) is the foremost redox regulator, which reacts with chloride ions in the presence of myeloperoxidase (MPO) to generate another biogenic redox molecule, hypochlorous acid (HOCl). These highly reactive ROS are the primary cause of damage to DNA (deoxyribonucleic acid), RNA (ribonucleic acid), and proteins, leading to various neuronal diseases and cell death. Cellular damage, related cell death, and oxidative stress are also associated with lysosomes which act as recycling units in the cytoplasm. Hence, simultaneous monitoring of multiple organelles using simple molecular probes is an exciting area of research that is yet to be explored. Significant evidence also suggests that oxidative stress induces the accumulation of lipid droplets in cells. Hence, monitoring redox biomolecules in mitochondria and lipid droplets in cells may give a new insight into cell damage, leading to cell death and related disease progressions. Herein, we developed simple hemicyanine-based small molecular probes with a boronic acid trigger. A fluorescent probe AB that could efficiently detect mitochondrial ROS, especially HOCl, and viscosity simultaneously. When the AB probe released phenylboronic acid after reacting with ROS, the product AB-OH exhibited ratiometric emissions depending on excitation. This AB-OH nicely translocates to lysosomes and efficiently monitors the lysosomal lipid droplets. Photoluminescence and confocal fluorescence imaging analysis suggest that AB and corresponding AB-OH molecules are potential chemical probes for studying oxidative stress.
Collapse
Affiliation(s)
- Mousumi Baruah
- Molecular Sensors and Therapeutics Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar (Institute of Eminence Deemed to be) University, Delhi 201314, NCR, India
| | - Anal Jana
- Molecular Sensors and Therapeutics Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar (Institute of Eminence Deemed to be) University, Delhi 201314, NCR, India
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Niharika Pareek
- Molecular Sensors and Therapeutics Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar (Institute of Eminence Deemed to be) University, Delhi 201314, NCR, India
| | - Shikha Singh
- Molecular Sensors and Therapeutics Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar (Institute of Eminence Deemed to be) University, Delhi 201314, NCR, India
| | - Animesh Samanta
- Molecular Sensors and Therapeutics Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar (Institute of Eminence Deemed to be) University, Delhi 201314, NCR, India
| |
Collapse
|
15
|
Azizi M, Jahanban-Esfahlan R, Samadian H, Hamidi M, Seidi K, Dolatshahi-Pirouz A, Yazdi AA, Shavandi A, Laurent S, Be Omide Hagh M, Kasaiyan N, Santos HA, Shahbazi MA. Multifunctional nanostructures: Intelligent design to overcome biological barriers. Mater Today Bio 2023; 20:100672. [PMID: 37273793 PMCID: PMC10232915 DOI: 10.1016/j.mtbio.2023.100672] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/24/2023] [Accepted: 05/18/2023] [Indexed: 06/06/2023] Open
Abstract
Over the past three decades, nanoscience has offered a unique solution for reducing the systemic toxicity of chemotherapy drugs and for increasing drug therapeutic efficiency. However, the poor accumulation and pharmacokinetics of nanoparticles are some of the key reasons for their slow translation into the clinic. The is intimately linked to the non-biological nature of nanoparticles and the aberrant features of solid cancer, which together significantly compromise nanoparticle delivery. New findings on the unique properties of tumors and their interactions with nanoparticles and the human body suggest that, contrary to what was long-believed, tumor features may be more mirage than miracle, as the enhanced permeability and retention based efficacy is estimated to be as low as 1%. In this review, we highlight the current barriers and available solutions to pave the way for approved nanoformulations. Furthermore, we aim to discuss the main solutions to solve inefficient drug delivery with the use of nanobioengineering of nanocarriers and the tumor environment. Finally, we will discuss the suggested strategies to overcome two or more biological barriers with one nanocarrier. The variety of design formats, applications and implications of each of these methods will also be evaluated.
Collapse
Affiliation(s)
- Mehdi Azizi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Dental Implants Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Samadian
- Dental Implants Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoud Hamidi
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles-BioMatter Unit, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Khaled Seidi
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Amirhossein Ahmadieh Yazdi
- Department of Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amin Shavandi
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles-BioMatter Unit, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Sophie Laurent
- General, Organic and Biomedical Chemistry Unit, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons – UMONS, Mons, Belgium
| | - Mahsa Be Omide Hagh
- Immunology Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nahid Kasaiyan
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3508 GA, Utrecht, Netherlands
| | - Hélder A. Santos
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands
| |
Collapse
|
16
|
Liu Y, Chen L, Chen Z, Liu M, Li X, Kou Y, Hou M, Wang H, Li X, Tian B, Dong J. Multifunctional Janus Nanoplatform for Efficiently Synergistic Theranostics of Rheumatoid Arthritis. ACS NANO 2023; 17:8167-8182. [PMID: 37083341 DOI: 10.1021/acsnano.2c11777] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Progress has been made in the application of nanomedicine in rheumatoid arthritis (RA) treatment. However, the whole process of monitoring and treatment of RA remains a formidable challenge due to the complexity of the chronic autoimmune disease. In this study, we develop a Janus nanoplatform (denoted as Janus-CPS) composed of CeO2-Pt nanozyme subunit on one side and periodic mesoporous organosilica (PMO) subunit on another side for simultaneous early diagnosis and synergistic therapy of RA. The Janus nanostructure, which enables more active sites to be exposed, enhances the reactive oxygen species scavenging capability of CeO2-Pt nanozyme subunit as compared to their core-shell counterpart. Furthermore, micheliolide (MCL), an extracted compound from natural plants with anti-osteoclastogenesis effects, is loaded into the mesopores of PMO subunit to synergize with the anti-inflammation effect of nanozymes for efficient RA treatment, which has been demonstrated by in vitro cellular experiments and in vivo collagen-induced arthritis (CIA) model. In addition, by taking advantage of the second near-infrared window (NIR-II) fluorescent imaging, indocyanine green (ICG)-loaded Janus-CPS exhibits desirable effectiveness in detecting RA lesions at a very early stage. It is anticipated that such a Janus nanoplatform may offer an alternative strategy of functional integration for versatile theranostics.
Collapse
Affiliation(s)
- Yuyi Liu
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
| | - Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Zhiyang Chen
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
| | - Minchao Liu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Xilei Li
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
| | - Yufang Kou
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - MengMeng Hou
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Huiren Wang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
| | - Xiaomin Li
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Bo Tian
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
| | - Jian Dong
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
- Department of Orthopaedic Surgery, Shanghai Baoshan District Wusong Center Hospital, Zhongshan Hospital Wusong Branch, Fudan University, Shanghai 200940, P. R. China
| |
Collapse
|
17
|
Kargari Aghmiouni D, Khoee S. Dual-Drug Delivery by Anisotropic and Uniform Hybrid Nanostructures: A Comparative Study of the Function and Substrate-Drug Interaction Properties. Pharmaceutics 2023; 15:1214. [PMID: 37111700 PMCID: PMC10142803 DOI: 10.3390/pharmaceutics15041214] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/23/2023] [Accepted: 04/02/2023] [Indexed: 04/29/2023] Open
Abstract
By utilizing nanoparticles to upload and interact with several pharmaceuticals in varying methods, the primary obstacles associated with loading two or more medications or cargos with different characteristics may be addressed. Therefore, it is feasible to evaluate the benefits provided by co-delivery systems utilizing nanoparticles by investigating the properties and functions of the commonly used structures, such as multi- or simultaneous-stage controlled release, synergic effect, enhanced targetability, and internalization. However, due to the unique surface or core features of each hybrid design, the eventual drug-carrier interactions, release, and penetration processes may vary. Our review article focused on the drug's loading, binding interactions, release, physiochemical, and surface functionalization features, as well as the varying internalization and cytotoxicity of each structure that may aid in the selection of an appropriate design. This was achieved by comparing the actions of uniform-surfaced hybrid particles (such as core-shell particles) to those of anisotropic, asymmetrical hybrid particles (such as Janus, multicompartment, or patchy particles). Information is provided on the use of homogeneous or heterogeneous particles with specified characteristics for the simultaneous delivery of various cargos, possibly enhancing the efficacy of treatment techniques for illnesses such as cancer.
Collapse
Affiliation(s)
| | - Sepideh Khoee
- Polymer Laboratory, School of Chemistry, College of Science, University of Tehran, Tehran 14155-6455, Iran
| |
Collapse
|
18
|
Remmers RCPA, Neumann K. Reaching new lights: a review on photo-controlled nanomedicines and their in vivo evaluation. Biomater Sci 2023; 11:1607-1624. [PMID: 36727448 DOI: 10.1039/d2bm01621d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The selective and efficient delivery of bioactive molecules to sites of interest remains a formidable challenge in medicine. In recent years, it has been shown that stimuli-responsive drug delivery systems display several advantages over traditional drug administration such as an improved pharmacokinetic profile and the desirable ability to gain control over release. Light emerged as one of the most powerful stimuli due to its high biocompatibility, spatio-temporal control, and non-invasiveness. On the road to clinical translation, various chemical systems of high complexity have been reported with the aim to improve efficacy, safety, and versatility of drug delivery under complex biological conditions. For future research on the chemical design of such photo-controlled nanomedicines, it is essential to gain an understanding of their in vivo translation and efficiency. Here, we discuss photo-controlled nanomedicines that have been evaluated in vivo and provide an overview of the state-of-the-art that should guide future research design.
Collapse
Affiliation(s)
- Rik C P A Remmers
- Institute for Molecules and Materials, Radboud University, Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands.
| | - Kevin Neumann
- Institute for Molecules and Materials, Radboud University, Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands.
| |
Collapse
|
19
|
Xie Q, Gao S, Tian R, Wang G, Qin Z, Chen M, Zhang W, Wen Q, Ma Q, Zhu L. Enzyme and Reactive Oxygen Species-Responsive Dual-Drug Delivery Nanocomplex for Tumor Chemo-Photodynamic Therapy. Int J Nanomedicine 2023; 18:1-16. [PMID: 36632237 PMCID: PMC9828661 DOI: 10.2147/ijn.s393862] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/20/2022] [Indexed: 01/05/2023] Open
Abstract
Introduction Combination therapy is a promising approach to promote the efficacy and reduce the systemic toxicity of cancer therapy. Herein, we examined the potency of a combined chemo-phototherapy approach by constructing a hyaluronidase- and reactive oxygen species-responsive hyaluronic acid nanoparticle carrying a chemotherapy drug and a photosensitizer in a tumor-bearing mouse model. We hypothesized that following decomposition, the drugs inside the nanocomplex will be released in the tumors to provide effective tumor treatment. We aimed to design a smart drug delivery system that can improve traditional chemotherapy drug delivery and enhance the therapeutic efficacy in combination with photodynamic therapy. Methods Hydrophilic hyaluronic acid (HA) was covalently modified with a hydrophobic 5β-cholanic acid (CA) via an ROS-cleavable thioketal (tk) linker for a targeted co-deliver of 10-Hydroxy camptothecin (HCPT) and Chlorin e6 (Ce6) into tumors to improve the efficiency of combined chemo-photodynamic therapy. Results The obtained HA-tk-CA nanoparticle carrying HCPT and Ce6, named HTCC, accumulated in the tumor through the enhanced permeable response (EPR) effect and HA-mediated CD44 targeting after intravenous administration. Upon laser irradiation and hyaluronidase degradation, HTCC was disrupted to release HCPT and Ce6 into the tumors. Compared to the monotherapy approach, HTCC demonstrated enhanced tumor growth inhibition and minimized systemic toxicity in a tumor-bearing mouse model. Conclusion Our results suggested that controlled dual-drug release not only improved tumor drug delivery efficacy, but also reduced systemic side effects. In addition to HCPT and Ce6 delivery, the HA-tk-CA nanocomplex can be used to deliver other drugs in synergistic cancer therapy. Since most current combined therapy uses free drugs with distinct spatiotemporal distributions, the simultaneous co-delivery of dual drugs with a remote on-demand drug delivery nanosystem provides an alternative strategy for drug delivery design.
Collapse
Affiliation(s)
- Qian Xie
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, 130033, People’s Republic of China
| | - Shi Gao
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, 130033, People’s Republic of China
| | - Rui Tian
- Department of Ophthalmology Second Hospital, Jilin University, Changchun, 130033, People’s Republic of China
| | - Guohao Wang
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, SAR, 999078, People’s Republic of China,Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, SAR, 999078, People’s Republic of China
| | - Zainen Qin
- Department of Oral Radiology, Guangxi Medical University College of Stomatology, Nanning, 530021, People’s Republic of China
| | - Minglong Chen
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, 130033, People’s Republic of China
| | - Wenhui Zhang
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, 130033, People’s Republic of China
| | - Qiang Wen
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, 130033, People’s Republic of China
| | - Qingjie Ma
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, 130033, People’s Republic of China,Correspondence: Qingjie Ma; Lei Zhu, Email ;
| | - Lei Zhu
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, 130033, People’s Republic of China
| |
Collapse
|
20
|
Image-guided drug delivery in nanosystem-based cancer therapies. Adv Drug Deliv Rev 2023; 192:114621. [PMID: 36402247 DOI: 10.1016/j.addr.2022.114621] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/18/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
The past decades have shown significant advancements in the development of solid tumor treatment. For instance, implementation of nanosystems for drug delivery has led to a reduction in side effects and improved delivery to the tumor region. However, clinical translation has faced challenges, as tumor drug levels are still considered to be inadequate. Interdisciplinary research has resulted in the development of more advanced drug delivery systems. These are coined "smart" due to the ability to be followed and actively manipulated in order to have better control over local drug release. Therefore, image-guided drug delivery can be a powerful strategy to improve drug activity at the target site. Being able to visualize the inflow of the administered smart nanosystem within the tumor gives the potential to determine the right moment to apply the facilitator to initiate drug release. Here we provide an overview of available nanosystems, imaging moieties, and imaging techniques. We discuss preclinical application of these smart drug delivery systems, the strength of image-guided drug delivery, and the future of personalized treatment.
Collapse
|
21
|
Iqubal MK, Kaur H, Md S, Alhakamy NA, Iqubal A, Ali J, Baboota S. A technical note on emerging combination approach involved in the onconanotherapeutics. Drug Deliv 2022; 29:3197-3212. [PMID: 36226570 PMCID: PMC9578464 DOI: 10.1080/10717544.2022.2132018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cancer is the second cause of mortality worldwide, and the currently available conventional treatment approach is associated with serious side effects and poor clinical outcomes. Based on the outcome of the exploratory preclinical and clinical studies, it was found that therapeutic response increases multiple folds when anticancer drugs are used in combination. However, the conventional combination of anticancer drugs was associated with various limitations such as increased cost of treatment, systemic toxicity, drug resistance, and reduced pharmacokinetic attributes. Hence, attempts were made to formulate nanocarrier fabricated combinatorial drugs (NFCDs) to effectively manage and treat cancer. This approach offers several advantages, such as improved stability, lower drug exposure, targeted drug delivery, low side effects, and improved clinical outcome. Hence, in this review, first time, we have discussed the recent advancement and various types of nano carrier-based combinatorial drug delivery systems in a different type of cancer and highlighted the personalized combinatorial theranostic medicine as a futuristic anticancer treatment approach.
Collapse
Affiliation(s)
- Mohammad Kashif Iqubal
- Product Development Department, Sentiss Research Centre, Sentiss Pharma Pvt Ltd, Gurugram, India.,Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Harsimran Kaur
- Department of Pharmaceutics, Delhi Pharmaceutical Science and Research University, New Delhi, India
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
22
|
Biodegradable disulfide crosslinked chitosan/stearic acid nanoparticles for dual drug delivery for colorectal cancer. Carbohydr Polym 2022; 294:119833. [PMID: 35868778 DOI: 10.1016/j.carbpol.2022.119833] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 01/12/2023]
Abstract
Herein, redox responsive chitosan/stearic acid nanoparticles (CSSA NPs) (≈200 nm) are developed for dual drug delivery. These degradable nanoparticles are prepared based on disulfide (SS) crosslinking chemistry avoiding the use of any external crosslinking agent. CSSA NPs are further loaded with both DOX (hydrophilic) and curcumin (hydrophobic) drugs with ≈86 % and ≈82 % encapsulation efficiency respectively. This approach of combining anticancer therapeutics having different mode of anticancer action allows to develop systems for cancer therapy with enhanced efficacy. In vitro drug release experiments clearly exhibit the low leakage of drug under physiological conditions while ≈98 % DOX and ≈96 % curcumin is released after 136 h under GSH reducing conditions. The cytotoxicity experiments against HCT116 cells demonstrate higher cytotoxicity of dual drug loaded CSSA NPs. In vivo biodistribution experiments with c57bl/6j mice confirms the retention of CSSA NPs in the colon area up to 24 h exhibiting their potential for colorectal cancer therapy.
Collapse
|
23
|
Xu M, Yang L, Lin Y, Lu Y, Bi X, Jiang T, Deng W, Zhang L, Yi W, Xie Y, Li M. Emerging nanobiotechnology for precise theranostics of hepatocellular carcinoma. J Nanobiotechnology 2022; 20:427. [PMID: 36175957 PMCID: PMC9524074 DOI: 10.1186/s12951-022-01615-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/31/2022] [Indexed: 11/18/2022] Open
Abstract
Primary liver cancer has become the second most fatal cancer in the world, and its five-year survival rate is only 10%. Most patients are in the middle and advanced stages at the time of diagnosis, losing the opportunity for radical treatment. Liver cancer is not sensitive to chemotherapy or radiotherapy. At present, conventional molecularly targeted drugs for liver cancer show some problems, such as short residence time, poor drug enrichment, and drug resistance. Therefore, developing new diagnosis and treatment methods to effectively improve the diagnosis, treatment, and long-term prognosis of liver cancer is urgent. As an emerging discipline, nanobiotechnology, based on safe, stable, and efficient nanomaterials, constructs highly targeted nanocarriers according to the unique characteristics of tumors and further derives a variety of efficient diagnosis and treatment methods based on this transport system, providing a new method for the accurate diagnosis and treatment of liver cancer. This paper aims to summarize the latest progress in this field according to existing research and the latest clinical diagnosis and treatment guidelines in hepatocellular carcinoma (HCC), as well as clarify the role, application limitations, and prospects of research on nanomaterials and the development and application of nanotechnology in the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Mengjiao Xu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Liu Yang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Yanjie Lin
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Yao Lu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Xiaoyue Bi
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Tingting Jiang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Wen Deng
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Lu Zhang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Wei Yi
- Department of Gynecology and Obstetrics, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China.
| | - Yao Xie
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China. .,Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China.
| | - Minghui Li
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China. .,Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China.
| |
Collapse
|
24
|
Li Z, Gao Z, Wang C, Zou D, Zhou H, Yi Y, Wang J, Wang L. Recent progress on bioimaging strategies based on Janus nanoparticles. NANOSCALE 2022; 14:12560-12568. [PMID: 36000475 DOI: 10.1039/d2nr03186h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Janus nanoparticles refer to a kind of asymmetric-structured nanoparticles composed of two or more distinct sides with differences in chemical nature and/or polarity on each side and thus can integrate two or more properties in one single particle. Due to their unique structure and surface properties, Janus nanoparticles have shown broad application potentials in optics, nuclear magnetic resonance, multi-mode imaging, and other fields. Unlike traditional contrast agents used in biological imaging, Janus nanoparticles are asymmetrically and directionally oriented to ensure stable partitioning of individual nanoparticles while integrating more functions. Much advancement have been carried out in the past few years, with some studies partially covering bioimaging applications. However, to our best knowledge, there are still no review papers specifically dedicated to the bioimaging applications with Janus nanoparticles. Bearing this in mind and taking the current challenges in this field into consideration, herein, we discuss representative approaches orchestrated for bioimaging applications, with the focus on the improvement of imaging quality brought by Janus nanoparticles and the development of multifunctional nanoplatforms in biological imaging fields, such as theranostics and therapies. Finally, based on the research experience of our group in this field, prospects for future research trends are put forward to provide new ideas for designing new Janus nanoparticles for clinical bioimaging.
Collapse
Affiliation(s)
- Zheyi Li
- School of Electronic and Information Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Zhiqiang Gao
- School of Aeronautics, Harbin Institute of Technology, Harbin 150001, China.
| | - Cong Wang
- School of Electronic and Information Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Danqing Zou
- School of Electronic and Information Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Huan Zhou
- School of Electronic and Information Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Yang Yi
- School of Electronic and Information Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Jun Wang
- School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Lei Wang
- School of Aeronautics, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
25
|
Li T, Liu Z, Fu X, Chen Y, Zhu S, Zhang J. Co-delivery of Interleukin-12 and Doxorubicin Loaded Nano-delivery System for Enhanced Immunotherapy with Polarization toward M1-type Macrophages. Eur J Pharm Biopharm 2022; 177:175-183. [PMID: 35811038 DOI: 10.1016/j.ejpb.2022.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/21/2022] [Accepted: 07/04/2022] [Indexed: 01/07/2023]
Abstract
Chemo-immunotherapy has gained increasing attention as one of the most promising combination therapy strategies to battle cancer. In this study, the therapeutic nanoparticles (TNPs) co-delivering doxorubicin (DOX) and IL-12 (IL-12) were developed for chemo-immunotherapy combination therapy on liver cancer. TNPs were synthesized based on the ionic interactions between cationic chitosan (Ch) and anionic poly-(glutamic acid) (PGA). DOX and IL-12 loaded in TNPs presented prolonged circulation in blood, efficient accumulation in tumors, and internalization in tumor cells. After that, DOX and IL-12 were co-released in the tumor microenvironment. The locally responsive property of TNPs could subsequently re-educate macrophages. More significantly, TNPs with no obvious side effects can remarkably inhibit the H22 tumor growth in vivo. A low dosage of loaded IL-12 in TNPs can effectively polarize macrophages toward the M1 phenotype to reduce tumor burden, further enhancing the antitumor efficacy. Our results suggest that the self-stabilized TNPs could be a secure and effective drug carrier for intravenous administration when deprived of protective agents.
Collapse
Affiliation(s)
- Tushuai Li
- Wuxi School of Medicine, Jiangnan University, Wuxi 214013, China; Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214013, China; School of Food Science and Technology, Jiangnan University, Wuxi 214013, China
| | - Zhihong Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, Medical School, School of Life Sciences, Nanjing University, Nanjing 210033, China
| | - Xiao Fu
- Department of General Surgery, Institute of Translational Medicine, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yongquan Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi 214013, China; Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214013, China; School of Food Science and Technology, Jiangnan University, Wuxi 214013, China
| | - Shenglong Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214013, China; Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214013, China.
| | - Jie Zhang
- School of Biology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, PR China.
| |
Collapse
|
26
|
Ding X, Wang T, Bai S, Wan Y, Zhu S, Li T, Peng N, Qiu T, Liu Y. Multifunction in One Nanoparticle for Anticancer Therapy: Bowl-Shaped Au@PDA Yolk-Shell NPs. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27733-27742. [PMID: 35675694 DOI: 10.1021/acsami.2c07671] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Multifunctional nanoparticles (NPs) with simultaneous multimodal therapeutic and imaging capabilities are very necessary for biomedical applications. We successfully prepared bowl-shaped gold@polydopamine yolk-shell NPs (bowl-shaped Au@PDA YNPs) by a novel and facile method. The unique bowl-like structure enables a drug loading rate of 92% (920 μg mg-1). The bowl-shaped Au@PDA YNPs are biocompatible, have good photothermal conversion and strong near-infrared (NIR) absorption, and can control drug release under pH/NIR dual response. Bowl-shaped Au@PDA YNPs can also be employed as contrast agents for computed tomography/photoacoustic imaging for dual-modal imaging-guided chemotherapy and photothermal therapy due to the presence of Au NPs.
Collapse
Affiliation(s)
- Xin Ding
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province & Institute of Advanced Technology and Nanomaterials, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Tianyu Wang
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| | - Shiwei Bai
- Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Yunfeng Wan
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province & Institute of Advanced Technology and Nanomaterials, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Shuai Zhu
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province & Institute of Advanced Technology and Nanomaterials, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Tao Li
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province & Institute of Advanced Technology and Nanomaterials, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Na Peng
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province & Institute of Advanced Technology and Nanomaterials, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Tao Qiu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| | - Yi Liu
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province & Institute of Advanced Technology and Nanomaterials, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry, Tiangong University, Tianjin 300387, P. R. China
| |
Collapse
|
27
|
Li C, Zhao T, Li L, Hu X, Li C, Chen W, Hu Y. Stimuli-Responsive Gold Nanocages for Cancer Diagnosis and Treatment. Pharmaceutics 2022; 14:1321. [PMID: 35890217 PMCID: PMC9318695 DOI: 10.3390/pharmaceutics14071321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 02/01/2023] Open
Abstract
With advances in nanotechnology, various new drug delivery systems (DDSs) have emerged and played a key role in the diagnosis and treatment of cancers. Over the last two decades, gold nanocages (AuNCs) have been attracting considerable attention because of their outstanding properties. This review summarizes current advancements in endogenous, exogenous, and dual/multi-stimuli responsive AuNCs in drug delivery. This review focuses on the properties, clinical translation potential, and limitations of stimuli-responsive AuNCs for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Chunming Li
- Department of Pharmacy, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Chongqing 400030, China; (C.L.); (L.L.); (X.H.); (C.L.)
| | - Tengyue Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou 450001, China;
| | - Lixian Li
- Department of Pharmacy, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Chongqing 400030, China; (C.L.); (L.L.); (X.H.); (C.L.)
| | - Xiaogang Hu
- Department of Pharmacy, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Chongqing 400030, China; (C.L.); (L.L.); (X.H.); (C.L.)
| | - Chao Li
- Department of Pharmacy, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Chongqing 400030, China; (C.L.); (L.L.); (X.H.); (C.L.)
| | - Wanyi Chen
- Department of Pharmacy, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Chongqing 400030, China; (C.L.); (L.L.); (X.H.); (C.L.)
| | - Yurong Hu
- School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou 450001, China;
| |
Collapse
|
28
|
Yang J, Li X, Tong Y, Yang Y, Zhao L, Zhou Q, Xu J, Dong L, Jiang Y. Targeting co-delivery of doxorubicin and gefitinib by biotinylated Au NCs for overcoming multidrug resistance in imaging-guided anticancer therapy. Colloids Surf B Biointerfaces 2022; 217:112608. [PMID: 35679735 DOI: 10.1016/j.colsurfb.2022.112608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 11/30/2022]
Abstract
Drug resistance and potential cardiotoxicity severely limit the DOX-mediated chemotherapy in clinical. Multi-drug combination is conducive to the realization of multi-modal synergy at the molecular level, which is crucial in drug dose optimization and improvement of therapeutic effect. In this work, fluorescent biotinylated Au Nanoclusters as an active targeting carrier was developed to realize real-time biological imaging and dual-drug delivery simultaneously. DNA toxin doxorubicin (DOX) and tyrosinase inhibitor gefitinib (GEF) were selected as dual-drug models for the treatment of human non-small cell lung cancer. The in vitro and in vivo results showed that dual-drug combination suppressed cancer cell growth more efficiently than any single formula at the same concentrations. GEF can block signaling in target cancer cells with mutated and overactive EGFR, thereby inhibiting tumor growth and metastasis and promoting tumor cell apoptosis. Combined with DOX chemotherapy, it will effectively overcome the problem of DOX resistance. In addition, the dual-drug delivery system produced excellent synergistic therapeutic effects without extra adverse toxicities. It provides a reference for the design and clinical application of the dual-drug delivery system.
Collapse
Affiliation(s)
- Jingjing Yang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, Shandong, China; Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
| | - Xiaofeng Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, Shandong, China
| | - Yao Tong
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yufei Yang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, Shandong, China
| | - Li Zhao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, Shandong, China
| | - Qian Zhou
- Key Laboratory of Birth Regulation and Control Technology of National Health and Family Planning Commission of China, Maternal Child Health Hospital of Shandong Province, Jinan, China
| | - Jiawen Xu
- Department of Pathology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.
| | - Lun Dong
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China.
| | - Yanyan Jiang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, Shandong, China; Shenzhen Research Institute of Shandong University, Shenzhen 518057, China.
| |
Collapse
|
29
|
Near-infrared laser-controlled nitric oxide-releasing gold nanostar/hollow polydopamine Janus nanoparticles for synergistic elimination of methicillin-resistant Staphylococcus aureus and wound healing. Acta Biomater 2022; 143:428-444. [PMID: 35227899 DOI: 10.1016/j.actbio.2022.02.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/18/2022] [Accepted: 02/18/2022] [Indexed: 12/14/2022]
Abstract
Recently, nitric oxide (NO) has received increasing interest in combat against bacteria-induced infections because of its ability to sensitize and enhance the antibacterial effectiveness of many therapeutic approaches such as antibiotics. However, high-efficient loading and controlled release of NO remain a big challenge. In the present work, a type of gold nanostar/hollow polydopamine Janus nanostructure (GNS/HPDA JNPs) with precise near infrared (NIR)-controlled NO release property was fabricated using a facile seed-mediated method. Upon NIR laser irradiation, the NO-releasing GNS/HPDA JNPs (GNS/HPDA-BNN6) exhibited a synergistic photothermal and NO antibacterial effect by significantly inhibiting the growth and biofilm formation of both Gram-negative and Gram-positive bacterial strains, including methicillin-resistant Staphylococcus aureus (MRSA). An in-depth mechanism study revealed that two pathways were mainly involved in the synergistic photothermal and NO antibacterial effect. In one pathway, the synergistic effect severely destroyed the bacterial membrane by causing leakage of intracellular components such as DNA. In another pathway, the synergistic effect largely disturbed bacterial metabolism by regulating relative metabolic genes, followed by enhancing ROS generation to cause intracellular GSH depletion and DNA damage. More importantly, the synergistic effect significantly diminished the drug resistance of MRSA by downregulating the expression of the drug-resistant gene mecA and some relative multidrug efflux pumps (e.g., SepA and Tet38). An in vivo evaluation using a rat model with MRSA-infected wounds indicated that the synergistic photothermal and NO effect of GNS/HPDA-BNN6 can effectively eliminate MRSA from wounds, thereby alleviating inflammation and promoting wound healing. STATEMENT OF SIGNIFICANCE: Multidrug-resistant (MDR) bacteria have become a big threat to mankind, and therefore, the development of innovative antibacterial agents with high antibacterial efficiency is urgently required. Nanomaterial-mediated nitric oxide (NO) therapy is a promising strategy to effectively combat MDR bacteria through a synergistic antibacterial effect. Here, a gold nanostar/hollow polydopamine Janus nanostructure with precise near infrared (NIR) light-controlled NO release property (GNS/HPDA-BNN6) was developed. Both in vitro and in vivo evaluations demonstrated that GNS/HPDA-BNN6 could effectively eliminate methicillin-resistant Staphylococcus aureus (MRSA) from infected wounds and promote wound healing through a synergistic photothermal and NO therapeutic effect. Remarkably, the synergistic effect significantly diminished the drug resistance of MRSA by downregulating the expression of some drug-resistant genes and multidrug efflux pumps.
Collapse
|
30
|
Sherstneva AA, Demina TS, Monteiro APF, Akopova TA, Grandfils C, Ilangala AB. Biodegradable Microparticles for Regenerative Medicine: A State of the Art and Trends to Clinical Application. Polymers (Basel) 2022; 14:1314. [PMID: 35406187 PMCID: PMC9003224 DOI: 10.3390/polym14071314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 12/22/2022] Open
Abstract
Tissue engineering and cell therapy are very attractive in terms of potential applications but remain quite challenging regarding the clinical aspects. Amongst the different strategies proposed to facilitate their implementation in clinical practices, biodegradable microparticles have shown promising outcomes with several advantages and potentialities. This critical review aims to establish a survey of the most relevant materials and processing techniques to prepare these micro vehicles. Special attention will be paid to their main potential applications, considering the regulatory constraints and the relative easiness to implement their production at an industrial level to better evaluate their application in clinical practices.
Collapse
Affiliation(s)
- Anastasia A. Sherstneva
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsouznaya Str., 117393 Moscow, Russia; (A.A.S.); (T.A.A.)
| | - Tatiana S. Demina
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsouznaya Str., 117393 Moscow, Russia; (A.A.S.); (T.A.A.)
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 8-2 Trubetskaya Str., 119991 Moscow, Russia
| | - Ana P. F. Monteiro
- Interfaculty Research Centre on Biomaterials (CEIB), Chemistry Institute, University of Liège, B6C, 11 Allée du 6 Août, B-4000 Liege, Belgium; (A.P.F.M.); (C.G.); (A.B.I.)
| | - Tatiana A. Akopova
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsouznaya Str., 117393 Moscow, Russia; (A.A.S.); (T.A.A.)
| | - Christian Grandfils
- Interfaculty Research Centre on Biomaterials (CEIB), Chemistry Institute, University of Liège, B6C, 11 Allée du 6 Août, B-4000 Liege, Belgium; (A.P.F.M.); (C.G.); (A.B.I.)
| | - Ange B. Ilangala
- Interfaculty Research Centre on Biomaterials (CEIB), Chemistry Institute, University of Liège, B6C, 11 Allée du 6 Août, B-4000 Liege, Belgium; (A.P.F.M.); (C.G.); (A.B.I.)
| |
Collapse
|
31
|
Lang G, Grill C, Scheibel T. Site-Specific Functionalization of Recombinant Spider Silk Janus Fibers. Angew Chem Int Ed Engl 2022; 61:e202115232. [PMID: 34986278 PMCID: PMC9303884 DOI: 10.1002/anie.202115232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Indexed: 12/19/2022]
Abstract
Biotechnological production is a powerful tool to design materials with customized properties. The aim of this work was to apply designed spider silk proteins to produce Janus fibers with two different functional sides. First, functionalization was established through a cysteine-modified silk protein, ntagCys eADF4(κ16). After fiber spinning, gold nanoparticles (AuNPs) were coupled via thiol-ene click chemistry. Significantly reduced electrical resistivity indicated sufficient loading density of AuNPs on such fiber surfaces. Then, Janus fibers were electrospun in a side-by-side arrangement, with "non-functional" eADF4(C16) on the one and "functional" ntagCys eADF4(κ16) on the other side. Post-treatment was established to render silk fibers insoluble in water. Subsequent AuNP binding was highly selective on the ntagCys eADF4(κ16) side demonstrating the potential of such silk-based systems to realize complex bifunctional structures with spatial resolutions in the nano scale.
Collapse
Affiliation(s)
- Gregor Lang
- Biopolymer Processing GroupUniversity of BayreuthLudwig-Thoma-Straße 36A95447BayreuthGermany
| | - Carolin Grill
- Chair of BiomaterialsUniversity of BayreuthTAO Gebäude, Prof.-Rüdiger-Bormann-Str. 195447BayreuthGermany
| | - Thomas Scheibel
- Chair of BiomaterialsUniversity of BayreuthTAO Gebäude, Prof.-Rüdiger-Bormann-Str. 195447BayreuthGermany
| |
Collapse
|
32
|
Li X, Chen L, Cui D, Jiang W, Han L, Niu N. Preparation and application of Janus nanoparticles: Recent development and prospects. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214318] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Jia Q, Zhang R, Wang Y, Yan H, Li Z, Feng Y, Ji Y, Yang Z, Yang Y, Pu K, Wang Z. A metabolic acidity-activatable calcium phosphate probe with fluorescence signal amplification capabilities for non-invasive imaging of tumor malignancy. Sci Bull (Beijing) 2022; 67:288-298. [PMID: 36546078 DOI: 10.1016/j.scib.2021.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/24/2021] [Accepted: 10/09/2021] [Indexed: 02/07/2023]
Abstract
Dysregulated energy metabolism has recently been recognized as an emerging hallmark of cancer. Tumor cells, which are characterized by abnormal glycolysis, exhibit a lower extracellular pH (6.5-7.0) than normal tissues (7.2-7.4), providing a promising target for tumor-specific imaging and therapy. However, most pH-sensitive materials are unable to distinguish such a subtle pH difference owing to their wide and continuous pH-responsive range. In this study, we developed an efficient strategy for the fabrication of a tumor metabolic acidity-activatable calcium phosphate (CaP) fluorescent probe (termed MACaP9). Unlike traditional CaP-based biomedical nanomaterials, which only work within more acidic organelles, such as endosomes and lysosomes (pH 4.0-6.0), MACaP9 could not only specifically respond to the tumor extra-cellular pH but also rapidly convert pH variations into a distinct fluorescence signal to visually distinguish tumor from normal tissues. The superior sensitivity and specificity of MACaP9 enabled high-contrast visualization of a broad range of tumors, as well as small tumor lesions.
Collapse
Affiliation(s)
- Qian Jia
- Laboratory of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710126, China
| | - Ruili Zhang
- Laboratory of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710126, China
| | - Yongdong Wang
- Laboratory of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710126, China
| | - Haohao Yan
- Laboratory of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710126, China
| | - Zheng Li
- Laboratory of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710126, China
| | - Yanbin Feng
- Laboratory of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710126, China
| | - Yu Ji
- Laboratory of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710126, China
| | - Zuo Yang
- Laboratory of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710126, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; School of Materials Science and Engineering, Tongji University, Shanghai 201804, China.
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore
| | - Zhongliang Wang
- Laboratory of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710126, China; Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an 710071, China.
| |
Collapse
|
34
|
Preparation of functionalized redox response type TiO2&mSiO2 nanomaterials and research on anti-tumor performance. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Li H, Chen L, Li X, Sun D, Zhang H. Recent Progress on Asymmetric Carbon- and Silica-Based Nanomaterials: From Synthetic Strategies to Their Applications. NANO-MICRO LETTERS 2022; 14:45. [PMID: 35038075 PMCID: PMC8764017 DOI: 10.1007/s40820-021-00789-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/09/2021] [Indexed: 05/15/2023]
Abstract
HIGHLIGHTS The synthetic strategies and fundamental mechanisms of various asymmetric carbon- and silica-based nanomaterials were systematically summarized. The advantages of asymmetric structure on their related applications were clarified by some representative applications of asymmetric carbon- and silica-based nanomaterials. The future development prospects and challenges of asymmetric carbon- and silica-based nanomaterials were proposed. ABSTRACT Carbon- and silica-based nanomaterials possess a set of merits including large surface area, good structural stability, diversified morphology, adjustable structure, and biocompatibility. These outstanding features make them widely applied in different fields. However, limited by the surface free energy effect, the current studies mainly focus on the symmetric structures, such as nanospheres, nanoflowers, nanowires, nanosheets, and core–shell structured composites. By comparison, the asymmetric structure with ingenious adjustability not only exhibits a larger effective surface area accompanied with more active sites, but also enables each component to work independently or corporately to harness their own merits, thus showing the unusual performances in some specific applications. The current review mainly focuses on the recent progress of design principles and synthesis methods of asymmetric carbon- and silica-based nanomaterials, and their applications in energy storage, catalysis, and biomedicine. Particularly, we provide some deep insights into their unique advantages in related fields from the perspective of materials’ structure–performance relationship. Furthermore, the challenges and development prospects on the synthesis and applications of asymmetric carbon- and silica-based nanomaterials are also presented and highlighted. [Image: see text]
Collapse
Affiliation(s)
- Haitao Li
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Liang Chen
- Department of Chemistry, Laboratory of Advanced Nanomaterials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Nanomaterials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Nanomaterials (2011-iChEM), Fudan University, Shanghai, 200433, People's Republic of China
| | - Xiaomin Li
- Department of Chemistry, Laboratory of Advanced Nanomaterials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Nanomaterials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Nanomaterials (2011-iChEM), Fudan University, Shanghai, 200433, People's Republic of China
| | - Daoguang Sun
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Haijiao Zhang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, People's Republic of China.
| |
Collapse
|
36
|
Lang G, Grill C, Scheibel T. Site‐specific functionalization of recombinant spider silk Janus fibers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Gregor Lang
- Universität Bayreuth: Universitat Bayreuth Biopolymerprocessing GERMANY
| | - Carolin Grill
- Universität Bayreuth: Universitat Bayreuth Biomaterials GERMANY
| | - Thomas Scheibel
- University of Bayreuth Biomaterials Prof. Rüdiger Bormann Str. 1 95447 Bayreuth GERMANY
| |
Collapse
|
37
|
Lin X, Lin X. Designing amphiphilic Janus nanoparticles with tunable lipid raft affinity via molecular dynamics simulation. Biomater Sci 2021; 9:8249-8258. [PMID: 34757373 DOI: 10.1039/d1bm01364e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to the differential interactions among lipids and proteins, the plasma membrane can segregate into a series of functional nanoscale membrane domains ("lipid rafts"), which are essential in multiple biological processes such as signaling transduction, protein trafficking and endocytosis. On the other hand, Janus nanoparticles (NPs) have shown great promise in various biomedical applications due to their asymmetric characteristics and can integrate different surface properties and thus synergetic functions. Hence, in this work, we aim to design an amphiphilic Janus NP to target and regulate lipid rafts via tuning its surface ligand amphiphilicity using coarse-grained molecular dynamics (MD) simulations. Our μs-scale free coarse-grained MD simulations as well as umbrella sampling free energy calculations indicated that the hydrophobicity of the hydrophobic surface ligands not only determined the lateral membrane partitioning thermodynamics of Janus NPs in phase-separated lipid membranes, but also the difficulty in their insertion into different membrane domains of the lipid membrane. These two factors jointly regulated the lipid raft affinity of Janus NPs. Meanwhile, the hydrophilicity of the hydrophilic surface ligands could affect the insertion ability of Janus NPs. Besides, the ultra-small size could ensure the membrane-bound behavior of Janus NPs without disrupting the overall structure and phase separation kinetics of the lipid membrane. These results may provide valuable insights into the design of functional NPs targeting and controllably regulating lipid rafts.
Collapse
Affiliation(s)
- Xiaoqian Lin
- Institute of Single Cell Engineering, Key Laboratory of Ministry of Education for Biomechanics and Mechanobiology, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China. .,Shen Yuan Honors College, Beihang University, Beijing 100191, China
| | - Xubo Lin
- Institute of Single Cell Engineering, Key Laboratory of Ministry of Education for Biomechanics and Mechanobiology, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.
| |
Collapse
|
38
|
Constructing multifunctional Janus carbon-mesoporous silica particles as Pickering emulsifier for biphasic reaction. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
Peng X, Lin G, Zeng Y, Lei Z, Liu G. Mesoporous Silica Nanoparticle-Based Imaging Agents for Hepatocellular Carcinoma Detection. Front Bioeng Biotechnol 2021; 9:749381. [PMID: 34869261 PMCID: PMC8635232 DOI: 10.3389/fbioe.2021.749381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is characterized by poor prognosis and high mortality. The treatment of HCC is closely related to the stage, and the early-stage of HCC patients usually accompanies a more long-term survival rate after clinical treatment. Hence, there are critical needs to develop effective imaging agents with superior diagnostic precision for HCC detection at an early stage. Recently, mesoporous silica nanoparticles (MSNs) based imaging agents have gained extensive attentions in HCC detection, which can serve as a multifunctional nanoplatform with controllable size and facile surface functionalization. This perspective summarizes recent advances in MSNs based imaging agents for HCC detection by the incorporation of several clinical imaging modalities. Multi-modal imaging system has been developed for higher spatial resolution and sensitivity. Even though some limitations and challenges need to be overcome, we envision the development of novel MSNs based imaging agents will offer great potential applications in clinical HCC detection.
Collapse
Affiliation(s)
| | | | | | - Zhao Lei
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
40
|
Du Y, Liu D, Du Y. Recent advances in hepatocellular carcinoma therapeutic strategies and imaging-guided treatment. J Drug Target 2021; 30:287-301. [PMID: 34727794 DOI: 10.1080/1061186x.2021.1999963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant cancer in the world, which greatly threatens human health. However, the routine treatment strategies for HCC have failed to specifically eradicate the tumorigenic cells, leading to the occurrence of metastasis and recurrence. To improve treatment efficacies, the development of novel effective technologies is urgently required. Recently, nanotechnologies have gained the extensive attention in cancer targeted therapy, which could provide a promising way for HCC clinical practice. However, a successful cancer management depends on accurate diagnosis of the tumour along with precise therapeutic protocol, thereby predicting the tumour response to existing therapies. The synergistic effect of targeted therapeutic systems and imaging approaches (also called 'imaging-guided cancer treatment') may establish a more effective platform for individual cancer care. This review outlines the recent advanced nano-targeted and -traceable therapeutic strategies for HCC management. The multifunctional nano agents that have both diagnosis and therapy abilities are highlighted. Finally, we conclude with our perspectives on the future development and challenges of HCC nanotheranostics.
Collapse
Affiliation(s)
- Yan Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Di Liu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
41
|
Ye Y, Tong F, Wang S, Jiang J, Gao J, Liu L, Liu K, Wang F, Wang Z, Ou J, Chen B, Wilson DA, Tu Y, Peng F. Apoptotic Tumor DNA Activated Nanomotor Chemotaxis. NANO LETTERS 2021; 21:8086-8094. [PMID: 34559543 DOI: 10.1021/acs.nanolett.1c02441] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Inspired by the tactic organisms in Nature that can self-direct their movement following environmental stimulus gradient, we proposed a DNase functionalized Janus nanoparticle (JNP) nanomotor system for the first time, which can be powered by ultralow nM to μM levels of DNA. The system exhibited interesting chemotactic behavior toward a DNA richer area, which is physiologically related with many diseases including tumors. In the presence of the subtle DNA gradient generated by apoptotic tumor cells, the cargo loaded nanomotors were able to sense the DNA signal released by the cells and demonstrate directional motion toward tumor cells. For our system, the subtle DNA gradient by a small amount (10 μL) of tumor cells is sufficient to induce the chemotaxis behavior of self-navigating and self-targeting ability of our nanomotor system, which promises to shed new light for tumor diagnosis and therapy.
Collapse
Affiliation(s)
- Yicheng Ye
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Fei Tong
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Shuanghu Wang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Jiamiao Jiang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Junbin Gao
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Lu Liu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Kun Liu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Fei Wang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Zhen Wang
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Juanfeng Ou
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Bin Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Daniela A Wilson
- Institute for Molecules and Materials, Radboud University, Nijmegen, 6525 AJ, The Netherlands
| | - Yingfeng Tu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Fei Peng
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
42
|
Mintz KJ, Leblanc RM. The use of nanotechnology to combat liver cancer: Progress and perspectives. Biochim Biophys Acta Rev Cancer 2021; 1876:188621. [PMID: 34454983 DOI: 10.1016/j.bbcan.2021.188621] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 01/04/2023]
Abstract
Liver cancer is one of the most common cancers worldwide and is also one of the most difficult cancers to treat, resulting in almost one million deaths per year, and the danger of this cancer is compounded when the tumor is nonresectable. Hepatocellular carcinoma (HCC) is the most common type of liver cancer and has the third highest mortality rate worldwide. Considering the morbid statistics surrounding this cancer it is a popular research topic to target for better therapy practices. This review summarizes the role of nanotechnology in these endeavors. Nanoparticles (NPs) are a very broad class of material and many different kinds have been used to potentially combat liver cancer. Gold, silver, platinum, metal oxide, calcium, and selenium NPs as well as less common materials are all inorganic NPs that have been used as a therapeutic, carrier, or imaging agent in drug delivery systems (DDS) and these efforts are described. Carbon-based NPs, including polymeric, polysaccharide, and lipid NPs as well as carbon dots, have also been widely studied for this purpose and the role they play in DDS for the treatment of liver cancer is illustrated in this review. The multifunctional nature of many NPs described herein, allows these systems to display high anticancer activity in vitro and in vivo and highlights the advantage of and need for combinatorial therapy in treating this difficult cancer. These works are summarized, and future directions are presented for this promising field.
Collapse
Affiliation(s)
- Keenan J Mintz
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA; Department of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| |
Collapse
|
43
|
Zhao D, Yang N, Xu L, Du J, Yang Y, Wang D. Hollow structures as drug carriers: Recognition, response, and release. NANO RESEARCH 2021; 15:739-757. [PMID: 34254012 PMCID: PMC8262765 DOI: 10.1007/s12274-021-3595-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 05/19/2023]
Abstract
Hollow structures have demonstrated great potential in drug delivery owing to their privileged structure, such as high surface-to-volume ratio, low density, large cavities, and hierarchical pores. In this review, we provide a comprehensive overview of hollow structured materials applied in targeting recognition, smart response, and drug release, and we have addressed the possible chemical factors and reactions in these three processes. The advantages of hollow nanostructures are summarized as follows: hollow cavity contributes to large loading capacity; a tailored structure helps controllable drug release; variable compounds adapt to flexible application; surface modification facilitates smart responsive release. Especially, because the multiple physical barriers and chemical interactions can be induced by multishells, hollow multishelled structure is considered as a promising material with unique loading and releasing properties. Finally, we conclude this review with some perspectives on the future research and development of the hollow structures as drug carriers.
Collapse
Affiliation(s)
- Decai Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Nailiang Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Lekai Xu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China
- Green Catalysis Center, and College of Chemistry, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001 China
| | - Jiang Du
- Green Catalysis Center, and College of Chemistry, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001 China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433 China
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804 China
| | - Dan Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
44
|
Spiteri C, Caprettini V, Chiappini C. Biomaterials-based approaches to model embryogenesis. Biomater Sci 2021; 8:6992-7013. [PMID: 33136109 DOI: 10.1039/d0bm01485k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Understanding, reproducing, and regulating the cellular and molecular processes underlying human embryogenesis is critical to improve our ability to recapitulate tissues with proper architecture and function, and to address the dysregulation of embryonic programs that underlies birth defects and cancer. The rapid emergence of stem cell technologies is enabling enormous progress in understanding embryogenesis using simple, powerful, and accessible in vitro models. Biomaterials are playing a central role in providing the spatiotemporal organisation of biophysical and biochemical signalling necessary to mimic, regulate and dissect the evolving embryonic niche in vitro. This contribution is rapidly improving our understanding of the mechanisms underlying embryonic patterning, in turn enabling the development of more effective clinical interventions for regenerative medicine and oncology. Here we highlight how key biomaterial approaches contribute to organise signalling in human embryogenesis models, and we summarise the biological insights gained from these contributions. Importantly, we highlight how nanotechnology approaches have remained largely untapped in this space, and we identify their key potential contributions.
Collapse
Affiliation(s)
- Chantelle Spiteri
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK.
| | | | | |
Collapse
|
45
|
Tarkistani MAM, Komalla V, Kayser V. Recent Advances in the Use of Iron-Gold Hybrid Nanoparticles for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1227. [PMID: 34066549 PMCID: PMC8148580 DOI: 10.3390/nano11051227] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/26/2022]
Abstract
Recently, there has been an increased interest in iron-gold-based hybrid nanostructures, due to their combined outstanding optical and magnetic properties resulting from the usage of two separate metals. The synthesis of these nanoparticles involves thermal decomposition and modification of their surfaces using a variety of different methods, which are discussed in this review. In addition, different forms such as core-shell, dumbbell, flower, octahedral, star, rod, and Janus-shaped hybrids are discussed, and their unique properties are highlighted. Studies on combining optical response in the near-infrared window and magnetic properties of iron-gold-based hybrid nanoparticles as multifunctional nanoprobes for drug delivery, magnetic-photothermal heating as well as contrast agents during magnetic and optical imaging and magnetically-assisted optical biosensing to detect traces of targeted analytes inside the body has been reviewed.
Collapse
Affiliation(s)
| | | | - Veysel Kayser
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; (M.A.M.T.); (V.K.)
| |
Collapse
|
46
|
Zhang X, Fu Q, Duan H, Song J, Yang H. Janus Nanoparticles: From Fabrication to (Bio)Applications. ACS NANO 2021; 15:6147-6191. [PMID: 33739822 DOI: 10.1021/acsnano.1c01146] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Janus nanoparticles (JNPs) refer to the integration of two or more chemically discrepant composites into one structure system. Studies into JNPs have been of significant interest due to their interesting characteristics stemming from their asymmetric structures, which can integrate different functional properties and perform more synergetic functions simultaneously. Herein, we present recent progress of Janus particles, comprehensively detailing fabrication strategies and applications. First, the classification of JNPs is divided into three blocks, consisting of polymeric composites, inorganic composites, and hybrid polymeric/inorganic JNPs composites. Then, the fabrication strategies are alternately summarized, examining self-assembly strategy, phase separation strategy, seed-mediated polymerization, microfluidic preparation strategy, nucleation growth methods, and masking methods. Finally, various intriguing applications of JNPs are presented, including solid surfactants agents, micro/nanomotors, and biomedical applications such as biosensing, controlled drug delivery, bioimaging, cancer therapy, and combined theranostics. Furthermore, challenges and future works in this field are provided.
Collapse
Affiliation(s)
- Xuan Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P.R. China
| | - Qinrui Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P.R. China
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P.R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P.R. China
| |
Collapse
|
47
|
Xue Y, Gao Y, Meng F, Luo L. Recent progress of nanotechnology-based theranostic systems in cancer treatments. Cancer Biol Med 2021; 18:j.issn.2095-3941.2020.0510. [PMID: 33861527 PMCID: PMC8185860 DOI: 10.20892/j.issn.2095-3941.2020.0510] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/30/2020] [Indexed: 12/19/2022] Open
Abstract
Theranostics that integrates therapy and diagnosis in one system to achieve accurate cancer diagnosis and treatment has attracted tremendous interest, and has been recognized as a potential breakthrough in overcoming the challenges of conventional oncotherapy. Nanoparticles are ideal candidates as carriers for theranostic agents, which is attributed to their extraordinary physicochemical properties, including nanoscale sizes, functional properties, prolonged blood circulation, active or passive tumor targeting, specific cellular uptake, and in some cases, excellent optical properties that ideally meet the needs of phototherapy and imaging at the same time. Overall, with the development of nanotechnology, theranostics has become a reality, and is now in the transition stage of "bench to bedside." In this review, we summarize recent progress on nanotechnology-based theranostics, i.e., nanotheranostics, that has greatly assisted traditional therapies, and has provided therapeutic strategies emerging in recent decades, as well as "cocktail" theranostics mixing various treatment modalities.
Collapse
Affiliation(s)
- Ying Xue
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuting Gao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fanling Meng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen 518057, China
| |
Collapse
|
48
|
Longo R, Gorrasi G, Guadagno L. Electromagnetically Stimuli-Responsive Nanoparticles-Based Systems for Biomedical Applications: Recent Advances and Future Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:848. [PMID: 33810343 PMCID: PMC8065448 DOI: 10.3390/nano11040848] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/18/2022]
Abstract
Nanoparticles (NPs) in the biomedical field are known for many decades as carriers for drugs that are used to overcome biological barriers and reduce drug doses to be administrated. Some types of NPs can interact with external stimuli, such as electromagnetic radiations, promoting interesting effects (e.g., hyperthermia) or even modifying the interactions between electromagnetic field and the biological system (e.g., electroporation). For these reasons, at present these nanomaterial applications are intensively studied, especially for drugs that manifest relevant side effects, for which it is necessary to find alternatives in order to reduce the effective dose. In this review, the main electromagnetic-induced effects are deeply analyzed, with a particular focus on the activation of hyperthermia and electroporation phenomena, showing the enhanced biological performance resulting from an engineered/tailored design of the nanoparticle characteristics. Moreover, the possibility of integrating these nanofillers in polymeric matrices (e.g., electrospun membranes) is described and discussed in light of promising applications resulting from new transdermal drug delivery systems with controllable morphology and release kinetics controlled by a suitable stimulation of the interacting systems (nanofiller and interacting cells).
Collapse
Affiliation(s)
- Raffaele Longo
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Salerno, Italy;
| | | | - Liberata Guadagno
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Salerno, Italy;
| |
Collapse
|
49
|
Fu Q, Li Z, Fu F, Chen X, Song J, Yang H. Stimuli-Responsive Plasmonic Assemblies and Their Biomedical Applications. NANO TODAY 2021; 36:101014. [PMID: 33250931 PMCID: PMC7687854 DOI: 10.1016/j.nantod.2020.101014] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Among the diverse development of stimuli-responsive assemblies, plasmonic nanoparticle (NP) assemblies functionalized with responsive molecules are of a major interest. In this review, we outline a comprehensive and up-to-date overview of recently reported studies on in vitro and in vivo assembly/disassembly and biomedical applications of plasmonic NPs, wherein stimuli such as enzymes, light, pH, redox potential, temperature, metal ions, magnetic or electric field, and/or multi-stimuli were involved. Stimuli-responsive assemblies have been applied in various biomedical fields including biosensors, surfaced-enhanced Raman scattering (SERS), photoacoustic (PA) imaging, multimodal imaging, photo-activated therapy, enhanced X-ray therapy, drug release, stimuli-responsive aggregation-induced cancer therapy, and so on. The perspectives on the use of stimuli-responsive plasmonic assemblies are discussed by addressing future scientific challenges involving assembly/disassembly strategies and applications.
Collapse
Affiliation(s)
- Qinrui Fu
- MOE key laboratory for analytical science of food safety and biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zhi Li
- MOE key laboratory for analytical science of food safety and biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Fengfu Fu
- MOE key laboratory for analytical science of food safety and biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Jibin Song
- MOE key laboratory for analytical science of food safety and biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Huanghao Yang
- MOE key laboratory for analytical science of food safety and biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
50
|
Duan Y, Zhao X, Sun M, Hao H. Research Advances in the Synthesis, Application, Assembly, and Calculation of Janus Materials. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c04304] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Xia Zhao
- School of Chemical Engineering, Northwest University, Xi’an 710069, Shan xi, China
| | - Miaomiao Sun
- School of Chemical Engineering, Northwest University, Xi’an 710069, Shan xi, China
| | - Hong Hao
- School of Chemical Engineering, Northwest University, Xi’an 710069, Shan xi, China
| |
Collapse
|