1
|
Yao X, Xue T, Chen B, Zhou X, Ji Y, Gao Z, Liu B, Yang J, Shen Y, Sun H, Gu X, Dai B. Advances in biomaterial-based tissue engineering for peripheral nerve injury repair. Bioact Mater 2025; 46:150-172. [PMID: 39760068 PMCID: PMC11699443 DOI: 10.1016/j.bioactmat.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/21/2024] [Accepted: 12/02/2024] [Indexed: 01/07/2025] Open
Abstract
Peripheral nerve injury is a common clinical disease. Effective post-injury nerve repair remains a challenge in neurosurgery, and clinical outcomes are often unsatisfactory, resulting in social and economic burden. Particularly, the repair of long-distance nerve defects remains a challenge. The existing nerve transplantation strategies show limitations, including donor site morbidity and immune rejection issues. The multiple studies have revealed the potential of tissue engineering strategies based on biomaterials in the repair of peripheral nerve injuries. We review the events of regeneration after peripheral nerve injury, evaluates the efficacy of existing nerve grafting strategies, and delves into the progress in the construction and application strategies of different nerve guidance conduits. A spotlight is cast on the materials, technologies, seed cells, and microenvironment within these conduits to facilitate optimal nerve regeneration. Further discussion was conducted on the approve of nerve guidance conduits and potential future research directions. This study anticipates and proposes potential avenues for future research, aiming to refine existing strategies and uncover innovative approaches in biomaterial-based nerve repair. This study endeavors to synthesize the collective insights from the fields of neuroscience, materials science, and regenerative medicine, offering a multifaceted perspective on the role of biomaterials in advancing the frontiers of peripheral nerve injury treatment.
Collapse
Affiliation(s)
- Xinlei Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Tong Xue
- Department of Paediatrics and Clinical Medicine, Medical School of Nantong University, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Bingqian Chen
- Department of Orthopedics, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, Changshu, Jiangsu Province, 215500, PR China
| | - Xinyang Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Yanan Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Zihui Gao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Boya Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Jiawen Yang
- Department of Paediatrics and Clinical Medicine, Medical School of Nantong University, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, PR China
- Research and Development Center for E-Learning, Ministry of Education, Beijing, 100816, PR China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Bin Dai
- Department of Orthopedics, Binhai County People's Hospital, Binhai, Jiangsu Province, 224500, PR China
| |
Collapse
|
2
|
QingNing S, Mohd Ismail ZI, Ab Patar MNA, Mat Lazim N, Hadie SNH, Mohd Noor NF. The limelight of adipose-derived stem cells in the landscape of neural tissue engineering for peripheral nerve injury. Tissue Cell 2024; 91:102556. [PMID: 39293138 DOI: 10.1016/j.tice.2024.102556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/20/2024]
Abstract
BACKGROUND AND AIMS Challenges in treating peripheral nerve injury include prolonged repair time and insufficient functional recovery. Stem cell therapy coupled with neural tissue engineering has been shown to induce nerve regeneration following peripheral nerve injury. Among these stem cells, adipose-derived stem cells (ADSCs) are preferred due to their accessibility, expansion, multidirectional differentiation, and production of essential nutrient factors for nerve growth. In recent years, ADSC-laden nerve guide conduit has been utilized to enhance the therapeutic effects of tissue-engineered nerve grafts. This review explores existing research that recognizes the roles played by ADSCs in inducing peripheral nerve regeneration following injury and summarizes the different methods of application of ADSC-laden nerve conduit in neural tissue engineering.
Collapse
Affiliation(s)
- Sun QingNing
- Department of Anatomy, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kelantan 16150, Malaysia; Department of Rehabilitation, School of Special Education, Zhengzhou Normal University, Zhengzhou 450044, China.
| | - Zul Izhar Mohd Ismail
- Department of Anatomy, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kelantan 16150, Malaysia.
| | - Mohd Nor Azim Ab Patar
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kelantan 16150, Malaysia.
| | - Norhafiza Mat Lazim
- Department of Otorhinolaryngology-Head & Neck Surgery, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kelantan 16150, Malaysia.
| | - Siti Nurma Hanim Hadie
- Department of Anatomy, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kelantan 16150, Malaysia.
| | - Nor Farid Mohd Noor
- Faculty of Medicine, Universiti Sultan Zainal Abidin Medical Campus, Kuala Terengganu, Terengganu 20400, Malaysia.
| |
Collapse
|
3
|
Zhang F, Nan L, Fang J, Liu L, Xu B, Jin X, Liu S, Liu S, Song K, Weng Z, Chen F, Wang J, Liu J. Nerve guide conduits promote nerve regeneration under a combination of electrical stimulation and RSCs combined with stem cell differentiation. J Mater Chem B 2024; 12:11636-11647. [PMID: 39404058 DOI: 10.1039/d4tb01374c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Nerve guide conduits (NGCs) offer a promising alternative to traditional tools for regenerating peripheral nerves. The efficacy of nerve regeneration and functional recovery is heavily dependent on the electrical, chemical, and physical properties of NGCs. A bionic melt electrowriting (MEW) NGC loaded with placental derived mesenchymal stem cells (PDMSCs) has been developed. Our study introduces a novel approach by utilizing Schwann cells induced from placental mesenchymal stem cells (PDMSCs), showcasing their potential in enhancing nerve regeneration when integrated with conductive nerve guidance conduits. Schwann cells (SCs) are crucial for nerve regeneration, and while various stem cells, including bone marrow stromal cells (BMSCs), have been investigated as sources of SCs for NGC loading, they are often limited by ethical concerns and restricted availability. PDMSCs, however, offer the advantages of widespread sourcing and unique ability to differentiate into SCs, making them an attractive alternative for NGC applications. This NGC utilizes an electrostatic direct writing technique employing polycaprolactone (PCL) for the sheath and a crimped fiber scaffold made of polypyrrole (PPY) incorporated with PDMSCs for its internal structure. The bionic PC-NGC loaded with PDMSCs exhibits favorable characteristics including permeability, mechanical stability, and electrical conductivity. The PPY component effectively transmits physiological nerve signals, thereby promoting nerve regeneration, while the PDMSCs differentiate into Schwann cells, creating a conducive environment for nerve regeneration. This research innovatively combines PDMSCs, known for their wide availability and SC differentiation potential, with a bionic NGC to enhance the treatment of peripheral nerve injuries (PNIs). In vitro evaluations have confirmed the excellent biocompatibility of the materials used. Animal experiments using a rat model with sciatic nerve injury demonstrated that the PC-NGC significently facilitated peripheral nerve regeneration. This was evidenced by improvements in axonal myelination, increased muscle mass, enhanced sciatic nerve function index, and positive electrophysiological findings. These outcomes are comparable to those achieved through autologous transplantation. Characterized by its layered oriented fibers, the bionic PC-NGC integrates multi-scale and multifunctional biomaterials with PDMSCs to effectively address peripheral nerve injuries (PNIs). The use of this printed NGC stimulates neuronal cell growth, thereby accelerating nerve regeneration. This innovative approach in tissue engineering presents a promising clinical treatment strategy for PNIs.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Liping Nan
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Jiaqi Fang
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Lei Liu
- Department of Orthopaedics, Huantai County People's Hospital, Shandong, China
| | - Bo Xu
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Xuehan Jin
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Shuhao Liu
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Shengfu Liu
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Kaihang Song
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Zhijie Weng
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Feng Chen
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Jianguang Wang
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
- Department of Orthopaedics, The Second People's Hospital of Kashi, Xinjiang, China
| | - Junjian Liu
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
4
|
Li Z, Kovács P, Friec AL, Jensen BN, Nygaard JV, Chen M. Mechanical memory based biofabrication of hierarchical elastic cardiac tissue. Biofabrication 2024; 17:015013. [PMID: 39437832 DOI: 10.1088/1758-5090/ad89fd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/22/2024] [Indexed: 10/25/2024]
Abstract
Mimicking the multilayered, anisotropic, elastic structure of cardiac tissues for controlled guidiance of 3D cellular orientation is essential in designing bionic scaffolds for cardiac tissue biofabrication. Here, a hierarchically organized, anisotropic, wavy and conductive polycaprolactone/Au scaffold was created in a facile fashion based on mechanical memory during fabrication. The bionic 3D scaffold shows good biocompatibility, excellent biomimetic mechanical properties that guide myoblast alignment, support the hyperelastic behavior observed in native cardiac muscle tissue, and promote myotube maturation, which holds potential for cardiac muscle engineering and the establishment of anin vitroculture platform for drug screening.
Collapse
Affiliation(s)
- Zhitong Li
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150000, Heilongjiang, People's Republic of China
| | - Panna Kovács
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| | - Alice Le Friec
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| | | | - Jens Vinge Nygaard
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| | - Menglin Chen
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| |
Collapse
|
5
|
Liu Z, Jia J, Lei Q, Wei Y, Hu Y, Lian X, Zhao L, Xie X, Bai H, He X, Si L, Livermore C, Kuang R, Zhang Y, Wang J, Yu Z, Ma X, Huang D. Electrohydrodynamic Direct-Writing Micro/Nanofibrous Architectures: Principle, Materials, and Biomedical Applications. Adv Healthc Mater 2024; 13:e2400930. [PMID: 38847291 DOI: 10.1002/adhm.202400930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/21/2024] [Indexed: 07/05/2024]
Abstract
Electrohydrodynamic (EHD) direct-writing has recently gained attention as a highly promising additive manufacturing strategy for fabricating intricate micro/nanoscale architectures. This technique is particularly well-suited for mimicking the extracellular matrix (ECM) present in biological tissue, which serves a vital function in facilitating cell colonization, migration, and growth. The integration of EHD direct-writing with other techniques has been employed to enhance the biological performance of scaffolds, and significant advancements have been made in the development of tailored scaffold architectures and constituents to meet the specific requirements of various biomedical applications. Here, a comprehensive overview of EHD direct-writing is provided, including its underlying principles, demonstrated materials systems, and biomedical applications. A brief chronology of EHD direct-writing is provided, along with an examination of the observed phenomena that occur during the printing process. The impact of biomaterial selection and architectural topographic cues on biological performance is also highlighted. Finally, the major limitations associated with EHD direct-writing are discussed.
Collapse
Affiliation(s)
- Zhengjiang Liu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Jinqiao Jia
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Qi Lei
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
- Shanxi-Zheda Institute of advanced Materials and Chemical Engineering, Taiyuan, 030032, P. R. China
| | - Yan Wei
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
- Shanxi-Zheda Institute of advanced Materials and Chemical Engineering, Taiyuan, 030032, P. R. China
| | - Yinchun Hu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
- Shanxi-Zheda Institute of advanced Materials and Chemical Engineering, Taiyuan, 030032, P. R. China
| | - Xiaojie Lian
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
- Shanxi-Zheda Institute of advanced Materials and Chemical Engineering, Taiyuan, 030032, P. R. China
| | - Liqin Zhao
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
- Shanxi-Zheda Institute of advanced Materials and Chemical Engineering, Taiyuan, 030032, P. R. China
| | - Xin Xie
- Xellar Biosystems, Cambridge, MA, 02458, USA
| | - Haiqing Bai
- Xellar Biosystems, Cambridge, MA, 02458, USA
| | - Xiaomin He
- Xellar Biosystems, Cambridge, MA, 02458, USA
| | - Longlong Si
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Carol Livermore
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Rong Kuang
- Zhejiang Institute for Food and Drug Control, Hangzhou, 310000, P. R. China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China
| | - Jiucun Wang
- Human Phenome Institute, Fudan University, Shanghai, 200433, P. R. China
| | - Zhaoyan Yu
- Shandong Public Health Clinical Center, Shandong University, Jinan, 250000, P. R. China
| | - Xudong Ma
- Cytori Therapeutics LLC., Shanghai, 201802, P. R. China
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
- Shanxi-Zheda Institute of advanced Materials and Chemical Engineering, Taiyuan, 030032, P. R. China
| |
Collapse
|
6
|
Sun T, Li C, Luan J, Zhao F, Zhang Y, Liu J, Shao L. Black phosphorus for bone regeneration: Mechanisms involved and influencing factors. Mater Today Bio 2024; 28:101211. [PMID: 39280114 PMCID: PMC11402231 DOI: 10.1016/j.mtbio.2024.101211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/18/2024] Open
Abstract
BP has shown good potential for promoting bone regeneration. However, the understanding of the mechanisms of BP-enhanced bone regeneration is still limited. This review first summarizes the recent advances in applications of BP in bone regeneration. We further highlight the possibility that BP enhances bone regeneration by regulating the behavior of mesenchymal stem cells (MSCs), osteoblasts, vascular endothelial cells (VECs), and macrophages, mainly through the regulation of cytoskeletal remodeling, energy metabolism, oxidation resistance and surface adsorption properties, etc. In addition, moderating the physicochemical properties of BP (i.e., shape, size, and surface charge) can alter the effects of BP on bone regeneration. This review reveals the underlying mechanisms of BP-enhanced bone regeneration and provides strategies for further material design of BP-based materials for bone regeneration.
Collapse
Affiliation(s)
- Ting Sun
- Foshan Stomatology Hospital & School of Medicine, Foshan University, Foshan, 528000, China
- School of Dentistry, Jinan University, Guangzhou, 510630, China
| | - Chufeng Li
- School of Dentistry, Jinan University, Guangzhou, 510630, China
| | - Jiayi Luan
- Foshan Stomatology Hospital & School of Medicine, Foshan University, Foshan, 528000, China
| | - Fujian Zhao
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yanli Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Longquan Shao
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| |
Collapse
|
7
|
Wang L, Bai L, Wang S, Zhou J, Liu Y, Zhang C, Yao S, He J, Liu C, Li D. Biomimetic design and integrated biofabrication of an in-vitro three-dimensional multi-scale multilayer cortical model. Mater Today Bio 2024; 28:101176. [PMID: 39171099 PMCID: PMC11334787 DOI: 10.1016/j.mtbio.2024.101176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/01/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
The lack of accurate and reliable in vitro brain models hinders the development of brain science and research on brain diseases. Owing to the complex structure of the brain tissue and its highly nonlinear characteristics, the construction of brain-like in vitro tissue models remains one of the most challenging research fields in the construction of living tissues. This study proposes a multi-scale design of a brain-like model with a biomimetic cortical structure, which includes the macroscopic structural features of six layers of different cellular components, as well as micrometer-scale continuous fiber structures running through all layers vertically. To achieve integrated biomanufacturing of such a complex multi-scale brain-like model, a multi-material composite printing/culturing integrated bioprinting platform was developed in-house by integrating cell-laden hydrogel ink direct writing printing and electrohydrodynamic fiber 3D printing technologies. Through integrated bioprinting, multi-scale models with different cellular components and fiber structural parameters were prepared to study the effects of macroscopic and microscopic structural features on the directionality of neural cells, as well as the interaction between glial cells and neurons within the tissue model in a three-dimensional manner. The results revealed that the manufactured in vitro biomimetic cortical model achieved morphological connections between the layers of neurons, reflecting the structure and cellular morphology of the natural cortex. Micrometer-scale (10 μm) cross-layer fibers effectively guided and controlled the extension length and direction of the neurites of surrounding neural cells but had no significant effect on the migration of neurons. In contrast, glial cells significantly promoted the migration of surrounding PC12 cells towards the glial layer but did not contribute to the extension of neurites. This study provides a basis for the design and manufacture of accurate brain-like models for the functionalization of neuronal tissues.
Collapse
Affiliation(s)
- Ling Wang
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, China
- National Innovation Platform (Center) for Industry-Education Integration of Medical Technology, Xi'an Jiaotong University, China
| | - Luge Bai
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, China
- National Innovation Platform (Center) for Industry-Education Integration of Medical Technology, Xi'an Jiaotong University, China
| | - Sen Wang
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, China
- National Innovation Platform (Center) for Industry-Education Integration of Medical Technology, Xi'an Jiaotong University, China
| | - Jiajia Zhou
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, China
- National Innovation Platform (Center) for Industry-Education Integration of Medical Technology, Xi'an Jiaotong University, China
| | - Yingjie Liu
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, China
- National Innovation Platform (Center) for Industry-Education Integration of Medical Technology, Xi'an Jiaotong University, China
| | - Chenrui Zhang
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, China
- National Innovation Platform (Center) for Industry-Education Integration of Medical Technology, Xi'an Jiaotong University, China
| | - Siqi Yao
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, China
- National Innovation Platform (Center) for Industry-Education Integration of Medical Technology, Xi'an Jiaotong University, China
| | - Jiankang He
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, China
- National Innovation Platform (Center) for Industry-Education Integration of Medical Technology, Xi'an Jiaotong University, China
| | - Chaozong Liu
- Institute of Orthopaedic & Musculoskeletal, University College London, Royal National Orthopaedic Hospital, Stanmore, UK
| | - Dichen Li
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, China
- National Innovation Platform (Center) for Industry-Education Integration of Medical Technology, Xi'an Jiaotong University, China
| |
Collapse
|
8
|
Zhang T, Shan W, Le Dot M, Xiao P. Structural Functions of 3D-Printed Polymer Scaffolds in Regulating Cell Fates and Behaviors for Repairing Bone and Nerve Injuries. Macromol Rapid Commun 2024; 45:e2400293. [PMID: 38885644 DOI: 10.1002/marc.202400293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/04/2024] [Indexed: 06/20/2024]
Abstract
Tissue repair and regeneration, such as bone and nerve restoration, face significant challenges due to strict regulations within the immune microenvironment, stem cell differentiation, and key cell behaviors. The development of 3D scaffolds is identified as a promising approach to address these issues via the efficiently structural regulations on cell fates and behaviors. In particular, 3D-printed polymer scaffolds with diverse micro-/nanostructures offer a great potential for mimicking the structures of tissue. Consequently, they are foreseen as promissing pathways for regulating cell fates, including cell phenotype, differentiation of stem cells, as well as the migration and the proliferation of key cells, thereby facilitating tissue repairs and regenerations. Herein, the roles of structural functions of 3D-printed polymer scaffolds in regulating the fates and behaviors of numerous cells related to tissue repair and regeneration, along with their specific influences are highlighted. Additionally, the challenges and outlooks associated with 3D-printed polymer scaffolds with various structures for modulating cell fates are also discussed.
Collapse
Affiliation(s)
- Tongling Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Wenpeng Shan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Marie Le Dot
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Pu Xiao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| |
Collapse
|
9
|
Shao L, Jiang J, Yuan C, Zhang X, Gu L, Wang X. Omnidirectional anisotropic embedded 3D bioprinting. Mater Today Bio 2024; 27:101160. [PMID: 39155942 PMCID: PMC11326905 DOI: 10.1016/j.mtbio.2024.101160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 08/20/2024] Open
Abstract
Anisotropic microstructures resulting from a well-ordered arrangement of filamentous extracellular matrix (ECM) components or cells can be found throughout the human body, including skeletal muscle, corneal stroma, and meniscus, which play a crucial role in carrying out specialized physiological functions. At present, due to the isotropic characteristics of conventional hydrogels, the construction of freeform cell-laden anisotropic structures with high-bioactive hydrogels is still a great challenge. Here, we proposed a method for direct embedded 3D cell-printing of freeform anisotropic structure with shear-oriented bioink (GelMA/PEO). This study focuses on the establishment of an anisotropic embedded 3D bioprinting system, which effectively utilizes the shear stress generated during the extrusion process to create cells encapsulating tissues with distinct anisotropy. In conjunction with the water-solubility of PEO and the in-situ encapsulation effect provided by the carrageenan support bath, high-precise cell-laden bioprinting of intricate anisotropic and porous bionic artificial tissues can be effectively implemented in one-step. Additionally, anisotropic permeable blood vessel has been taken as a representation to validate the effectiveness of the shear-oriented bioink system in fabricating intricate structures with distinct directional characteristics. Lastly, the successful preparation of muscle patches with anisotropic properties and their guiding role for cell cytoskeleton extension have provided a significant research foundation for the application of the anisotropic embedded 3D bioprinting system in the ex-vivo production and in-vivo application of anisotropic artificial tissues.
Collapse
Affiliation(s)
- Lei Shao
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Jinhong Jiang
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Chenhui Yuan
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Xinyu Zhang
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Lin Gu
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Xueping Wang
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| |
Collapse
|
10
|
Vecchi JT, Claussen AD, Hansen MR. Decreasing the physical gap in the neural-electrode interface and related concepts to improve cochlear implant performance. Front Neurosci 2024; 18:1425226. [PMID: 39114486 PMCID: PMC11303154 DOI: 10.3389/fnins.2024.1425226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Cochlear implants (CI) represent incredible devices that restore hearing perception for those with moderate to profound sensorineural hearing loss. However, the ability of a CI to restore complex auditory function is limited by the number of perceptually independent spectral channels provided. A major contributor to this limitation is the physical gap between the CI electrodes and the target spiral ganglion neurons (SGNs). In order for CI electrodes to stimulate SGNs more precisely, and thus better approximate natural hearing, new methodologies need to be developed to decrease this gap, (i.e., transitioning CIs from a far-field to near-field device). In this review, strategies aimed at improving the neural-electrode interface are discussed in terms of the magnitude of impact they could have and the work needed to implement them. Ongoing research suggests current clinical efforts to limit the CI-related immune response holds great potential for improving device performance. This could eradicate the dense, fibrous capsule surrounding the electrode and enhance preservation of natural cochlear architecture, including SGNs. In the long term, however, optimized future devices will likely need to induce and guide the outgrowth of the peripheral process of SGNs to be in closer proximity to the CI electrode in order to better approximate natural hearing. This research is in its infancy; it remains to be seen which strategies (surface patterning, small molecule release, hydrogel coating, etc.) will be enable this approach. Additionally, these efforts aimed at optimizing CI function will likely translate to other neural prostheses, which face similar issues.
Collapse
Affiliation(s)
- Joseph T. Vecchi
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, Iowa City, IA, United States
- Department of Otolaryngology Head-Neck Surgery, Carver College of Medicine, Iowa City, IA, United States
| | - Alexander D. Claussen
- Department of Otolaryngology Head-Neck Surgery, Carver College of Medicine, Iowa City, IA, United States
| | - Marlan R. Hansen
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, Iowa City, IA, United States
- Department of Otolaryngology Head-Neck Surgery, Carver College of Medicine, Iowa City, IA, United States
| |
Collapse
|
11
|
Bartolf-Kopp M, Jungst T. The Past, Present, and Future of Tubular Melt Electrowritten Constructs to Mimic Small Diameter Blood Vessels - A Stable Process? Adv Healthc Mater 2024; 13:e2400426. [PMID: 38607966 DOI: 10.1002/adhm.202400426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/20/2024] [Indexed: 04/14/2024]
Abstract
Melt Electrowriting (MEW) is a continuously growing manufacturing platform. Its advantage is the consistent production of micro- to nanometer fibers, that stack intricately, forming complex geometrical shapes. MEW allows tuning of the mechanical properties of constructs via the geometry of deposited fibers. Due to this, MEW can create complex mechanics only seen in multi-material compounds and serve as guiding structures for cellular alignment. The advantage of MEW is also shown in combination with other biotechnological manufacturing methods to create multilayered constructs that increase mechanical approximation to native tissues, biocompatibility, and cellular response. These features make MEW constructs a perfect candidate for small-diameter vascular graft structures. Recently, studies have presented fascinating results in this regard, but is this truly the direction that tubular MEW will follow or are there also other options on the horizon? This perspective will explore the origins and developments of tubular MEW and present its growing importance in the field of artificial small-diameter vascular grafts with mechanical modulation and improved biomimicry and the impact of it in convergence with other manufacturing methods and how future technologies like AI may influence its progress.
Collapse
Affiliation(s)
- Michael Bartolf-Kopp
- Department for Functional Materials in Medicine and Dentistry, Institute of Biofabrication and Functional Materials, University of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), Würzburg, Germany
| | - Tomasz Jungst
- Department for Functional Materials in Medicine and Dentistry, Institute of Biofabrication and Functional Materials, University of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), Würzburg, Germany
- Department of Orthopedics, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
12
|
Sun R, Lang Y, Chang MW, Zhao M, Li C, Liu S, Wang B. Leveraging Oriented Lateral Walls of Nerve Guidance Conduit with Core-Shell MWCNTs Fibers for Peripheral Nerve Regeneration. Adv Healthc Mater 2024; 13:e2303867. [PMID: 38258406 DOI: 10.1002/adhm.202303867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Indexed: 01/24/2024]
Abstract
Peripheral nerve regeneration and functional recovery rely on the chemical, physical, and structural properties of nerve guidance conduits (NGCs). However, the limited support for long-distance nerve regeneration and axonal guidance has hindered the widespread use of NGCs. This study introduces a novel nerve guidance conduit with oriented lateral walls, incorporating multi-walled carbon nanotubes (MWCNTs) within core-shell fibers prepared in a single step using a modified electrohydrodynamic (EHD) printing technique to promote peripheral nerve regeneration. The structured conduit demonstrated exceptional stability, mechanical properties, and biocompatibility, significantly enhancing the functionality of NGCs. In vitro cell studies revealed that RSC96 cells adhered and proliferated effectively along the oriented fibers, demonstrating a favorable response to the distinctive architectures and properties. Subsequently, a rat sciatic nerve injury model demonstrated effective efficacy in promoting peripheral nerve regeneration and functional recovery. Tissue analysis and functional testing highlighted the significant impact of MWCNT concentration in enhancing peripheral nerve regeneration and confirming well-matured aligned axonal growth, muscle recovery, and higher densities of myelinated axons. These findings demonstrate the potential of oriented lateral architectures with coaxial MWCNT fibers as a promising approach to support long-distance regeneration and encourage directional nerve growth for peripheral nerve repair in clinical applications.
Collapse
Affiliation(s)
- Renyuan Sun
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Tianjin Key Laboratory of Bio-Electromagnetic and Neural Engineering, Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300132, China
| | - Yuna Lang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Tianjin Key Laboratory of Bio-Electromagnetic and Neural Engineering, Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300132, China
| | - Ming-Wei Chang
- Nanotechnology and Integrated Bioengineering Centre, University of Ulster, Belfast, BT15 1AP, UK
| | - Mingkang Zhao
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Tianjin Key Laboratory of Bio-Electromagnetic and Neural Engineering, Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300132, China
| | - Chao Li
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Tianjin Key Laboratory of Bio-Electromagnetic and Neural Engineering, Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300132, China
| | - Shiheng Liu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Tianjin Key Laboratory of Bio-Electromagnetic and Neural Engineering, Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300132, China
| | - Baolin Wang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Tianjin Key Laboratory of Bio-Electromagnetic and Neural Engineering, Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300132, China
| |
Collapse
|
13
|
Sharifi M, Kamalabadi-Farahani M, Salehi M, Ebrahimi-Barough S, Alizadeh M. Recent advances in enhances peripheral nerve orientation: the synergy of micro or nano patterns with therapeutic tactics. J Nanobiotechnology 2024; 22:194. [PMID: 38643117 PMCID: PMC11031871 DOI: 10.1186/s12951-024-02475-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/11/2024] [Indexed: 04/22/2024] Open
Abstract
Several studies suggest that topographical patterns influence nerve cell fate. Efforts have been made to improve nerve cell functionality through this approach, focusing on therapeutic strategies that enhance nerve cell function and support structures. However, inadequate nerve cell orientation can impede long-term efficiency, affecting nerve tissue repair. Therefore, enhancing neurites/axons directional growth and cell orientation is crucial for better therapeutic outcomes, reducing nerve coiling, and ensuring accurate nerve fiber connections. Conflicting results exist regarding the effects of micro- or nano-patterns on nerve cell migration, directional growth, immunogenic response, and angiogenesis, complicating their clinical use. Nevertheless, advances in lithography, electrospinning, casting, and molding techniques to intentionally control the fate and neuronal cells orientation are being explored to rapidly and sustainably improve nerve tissue efficiency. It appears that this can be accomplished by combining micro- and nano-patterns with nanomaterials, biological gradients, and electrical stimulation. Despite promising outcomes, the unclear mechanism of action, the presence of growth cones in various directions, and the restriction of outcomes to morphological and functional nerve cell markers have presented challenges in utilizing this method. This review seeks to clarify how micro- or nano-patterns affect nerve cell morphology and function, highlighting the potential benefits of cell orientation, especially in combined approaches.
Collapse
Affiliation(s)
- Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
| | | | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
14
|
Das S, Thimukonda Jegadeesan J, Basu B. Advancing Peripheral Nerve Regeneration: 3D Bioprinting of GelMA-Based Cell-Laden Electroactive Bioinks for Nerve Conduits. ACS Biomater Sci Eng 2024; 10:1620-1645. [PMID: 38345020 DOI: 10.1021/acsbiomaterials.3c01226] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Peripheral nerve injuries often result in substantial impairment of the neurostimulatory organs. While the autograft is still largely used as the "gold standard" clinical treatment option, nerve guidance conduits (NGCs) are currently considered a promising approach for promoting peripheral nerve regeneration. While several attempts have been made to construct NGCs using various biomaterial combinations, a comprehensive exploration of the process science associated with three-dimensional (3D) extrusion printing of NGCs with clinically relevant sizes (length: 20 mm; diameter: 2-8 mm), while focusing on tunable buildability using electroactive biomaterial inks, remains unexplored. In addressing this gap, we present here the results of the viscoelastic properties of a range of a multifunctional gelatin methacrylate (GelMA)/poly(ethylene glycol) diacrylate (PEGDA)/carbon nanofiber (CNF)/gellan gum (GG) hydrogel bioink formulations and printability assessment using experiments and quantitative models. Our results clearly established the positive impact of the gellan gum on the enhancement of the rheological properties. Interestingly, the strategic incorporation of PEGDA as a secondary cross-linker led to a remarkable enhancement in the strength and modulus by 3 and 8-fold, respectively. Moreover, conductive CNF addition resulted in a 4-fold improvement in measured electrical conductivity. The use of four-component electroactive biomaterial ink allowed us to obtain high neural cell viability in 3D bioprinted constructs. While the conventionally cast scaffolds can support the differentiation of neuro-2a cells, the most important result has been the excellent cell viability of neural cells in 3D encapsulated structures. Taken together, our findings demonstrate the potential of 3D bioprinting and multimodal biophysical cues in developing functional yet critical-sized nerve conduits for peripheral nerve tissue regeneration.
Collapse
Affiliation(s)
- Soumitra Das
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | | | - Bikramjit Basu
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
15
|
Wang Y, Yang B, Huang Z, Yang Z, Wang J, Ao Q, Yin G, Li Y. Progress and mechanism of graphene oxide-composited materials in application of peripheral nerve repair. Colloids Surf B Biointerfaces 2024; 234:113672. [PMID: 38071946 DOI: 10.1016/j.colsurfb.2023.113672] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 02/09/2024]
Abstract
Peripheral nerve injuries (PNI) are one of the most common nerve injuries, and graphene oxide (GO) has demonstrated significant potential in the treatment of PNI. GO could enhance the proliferation, adhesion, migration, and differentiation of neuronal cells by upregulating the expression of relevant proteins, and regulate the angiogenesis process and immune response. Therefore, GO is a suitable additional component for fabricating artificial nerve scaffolds (ANS), in which the slight addition of GO could improve the physicochemical performance of the matrix materials, through hydrogen bonds and electrostatic attraction. GO-composited ANS can increase the expression of nerve regeneration-associated genes and factors, promoting angiogenesis by activating the RAS/MAPK and AKT-eNOS-VEGF signaling pathway, respectively. Moreover, GO could be metabolized and excreted from the body through the pathway of peroxidase degradation in vivo. Consequently, the application of GO in PNI regeneration exhibits significant potential for transitioning from laboratory research to clinical use.
Collapse
Affiliation(s)
- Yulin Wang
- College of Biomedical Engineering, Sichuan University, China; Institute of Regulatory Science for Medical Devices, Sichuan University, China
| | - Bing Yang
- College of Biomedical Engineering, Sichuan University, China; Precision Medical Center of Southwest China Hospital, Sichuan University, China
| | - Zhongbing Huang
- College of Biomedical Engineering, Sichuan University, China.
| | - Zhaopu Yang
- Center for Drug Inspection, Guizhou Medical Products Administration, China
| | - Juan Wang
- College of Biomedical Engineering, Sichuan University, China
| | - Qiang Ao
- College of Biomedical Engineering, Sichuan University, China; Institute of Regulatory Science for Medical Devices, Sichuan University, China
| | - Guangfu Yin
- College of Biomedical Engineering, Sichuan University, China
| | - Ya Li
- College of Biomedical Engineering, Sichuan University, China; Institute of Regulatory Science for Medical Devices, Sichuan University, China
| |
Collapse
|
16
|
Falahatdoost S, Prawer YDJ, Peng D, Chambers A, Zhan H, Pope L, Stacey A, Ahnood A, Al Hashem HN, De León SE, Garrett DJ, Fox K, Clark MB, Ibbotson MR, Prawer S, Tong W. Control of Neuronal Survival and Development Using Conductive Diamond. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4361-4374. [PMID: 38232177 DOI: 10.1021/acsami.3c14680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
This study demonstrates the control of neuronal survival and development using nitrogen-doped ultrananocrystalline diamond (N-UNCD). We highlight the role of N-UNCD in regulating neuronal activity via near-infrared illumination, demonstrating the generation of stable photocurrents that enhance neuronal survival and neurite outgrowth and foster a more active, synchronized neuronal network. Whole transcriptome RNA sequencing reveals that diamond substrates improve cellular-substrate interaction by upregulating extracellular matrix and gap junction-related genes. Our findings underscore the potential of conductive diamond as a robust and biocompatible platform for noninvasive and effective neural tissue engineering.
Collapse
Affiliation(s)
- Samira Falahatdoost
- School of Physics, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yair D J Prawer
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Danli Peng
- School of Physics, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andre Chambers
- School of Physics, The University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Mechanical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Hualin Zhan
- School of Physics, The University of Melbourne, Parkville, Victoria 3010, Australia
- School of Engineering, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Leon Pope
- School of Engineering, STEM College, The RMIT University, Melbourne, Victoria 3000, Australia
| | - Alastair Stacey
- School of Science, STEM College, The RMIT University, Melbourne, Victoria 3000, Australia
| | - Arman Ahnood
- School of Engineering, The RMIT University, Melbourne, Victoria 3000, Australia
| | - Hassan N Al Hashem
- School of Engineering, The RMIT University, Melbourne, Victoria 3000, Australia
| | - Sorel E De León
- School of Engineering, The RMIT University, Melbourne, Victoria 3000, Australia
| | - David J Garrett
- School of Engineering, The RMIT University, Melbourne, Victoria 3000, Australia
| | - Kate Fox
- School of Engineering, The RMIT University, Melbourne, Victoria 3000, Australia
| | - Michael B Clark
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Michael R Ibbotson
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Steven Prawer
- School of Physics, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Wei Tong
- School of Physics, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
17
|
Dong X, Yang Y, Bao Z, Midgley AC, Li F, Dai S, Yang Z, Wang J, Liu L, Li W, Zheng Y, Liu S, Liu Y, Yu W, Liu J, Fan M, Zhu M, Shen Z, Xiaosong G, Kong D. Micro-nanofiber composite biomimetic conduits promote long-gap peripheral nerve regeneration in canine models. Bioact Mater 2023; 30:98-115. [PMID: 37560200 PMCID: PMC10406865 DOI: 10.1016/j.bioactmat.2023.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/01/2023] [Accepted: 06/19/2023] [Indexed: 08/11/2023] Open
Abstract
Peripheral nerve injuries may result in severe long-gap interruptions that are challenging to repair. Autografting is the gold standard surgical approach for repairing long-gap nerve injuries but can result in prominent donor-site complications. Instead, imitating the native neural microarchitecture using synthetic conduits is expected to offer an alternative strategy for improving nerve regeneration. Here, we designed nerve conduits composed of high-resolution anisotropic microfiber grid-cordes with randomly organized nanofiber sheaths to interrogate the positive effects of these biomimetic structures on peripheral nerve regeneration. Anisotropic microfiber-grids demonstrated the capacity to directionally guide Schwann cells and neurites. Nanofiber sheaths conveyed adequate elasticity and permeability, whilst exhibiting a barrier function against the infiltration of fibroblasts. We then used the composite nerve conduits bridge 30-mm long sciatic nerve defects in canine models. At 12 months post-implant, the morphometric and histological recovery, gait recovery, electrophysiological function, and degree of muscle atrophy were assessed. The newly regenerated nerve tissue that formed within the composite nerve conduits showed restored neurological functions that were superior compared to sheaths-only scaffolds and Neurolac nerve conduit controls. Our findings demonstrate the feasibility of using synthetic biophysical cues to effectively bridge long-gap peripheral nerve injuries and indicates the promising clinical application prospects of biomimetic composite nerve conduits.
Collapse
Affiliation(s)
- Xianhao Dong
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Yueyue Yang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Zheheng Bao
- Department of Orthopaedics, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
- Outpatient Department, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Adam C. Midgley
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Feiyi Li
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Shuxin Dai
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Zhuangzhuang Yang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Jin Wang
- Outpatient Department, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Lihua Liu
- Department of Radiology, Tianjin First Central Hospital, Tianjin Medical Imaging Institute, School of Medicine, Nankai University, Tianjin, China
| | - Wenlei Li
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Yayuan Zheng
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Siyang Liu
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Yang Liu
- Department of Radiology, Tianjin First Central Hospital, Tianjin Medical Imaging Institute, School of Medicine, Nankai University, Tianjin, China
| | - Weijian Yu
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Jun Liu
- Clinical School/College of Orthopedics, Tianjin Medical University, Tianjin, China
- Department of Joint, Tianjin Hospital, Tianjin, China
| | - Meng Fan
- Department of Orthopaedics, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Meifeng Zhu
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, Keyan West Road, Tianjin, 300192, China
| | - Zhongyang Shen
- Institute of Transplantation Medicine, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Gu Xiaosong
- Jiangsu Key Laboratory of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
- Institute of Transplantation Medicine, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, Keyan West Road, Tianjin, 300192, China
| |
Collapse
|
18
|
Zhang X, Qi T, Sun Y, Cheng X, Yang P, Dai X. Chitosan/hBMSC-ECM biomimetic nerve grafts containing orienting microchannels for peripheral nerve regeneration. BIOMATERIALS ADVANCES 2023; 155:213668. [PMID: 39492002 DOI: 10.1016/j.bioadv.2023.213668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/07/2023] [Accepted: 10/20/2023] [Indexed: 11/05/2024]
Abstract
Bone marrow mesenchymal stem cell extracellular matrix (BMSC-ECM) can promote peripheral nerve regeneration, and microphysical orientation is essential for peripheral nerve regeneration. In this study, human-derived BMSC-ECM (hBMSC-ECM) and microchannels were introduced into chitosan-based nerve grafts (OCS/ECM) to construct dual biomimetic nerve grafts of structure and composition. For comparison, the same procedure was applied to nerve grafts containing only orienting microchannels (OCS) and autogenous nerves. In vitro experiments showed that the prepared grafts had good blood compatibility and no cytotoxicity. In vivo studies demonstrated that OCS/ECM had better histocompatibility than OCS. The introduction of microchannels allowed chitosan nerve grafts to achieve similar repair effects as autologous nerve grafts in the functional recovery of rats with sciatic nerve defects. Further introduction of hBMSC-ECM may result in synergistic effects on structure and composition that could significantly promote the rate of nerve regeneration, myelination, and target muscle recovery. Dual biomimetic nerve grafts are attractive candidates for the treatment of critical nerve defects.
Collapse
Affiliation(s)
- Xu Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Tong Qi
- Department of Hand Surgery, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| | - Yu Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xiyang Cheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Pengxiang Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xiu Dai
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.
| |
Collapse
|
19
|
Gao X, Hu X, Yang D, Hu Q, Zheng J, Zhao S, Zhu C, Xiao X, Yang Y. Acoustic quasi-periodic bioassembly based diverse stem cell arrangements for differentiation guidance. LAB ON A CHIP 2023; 23:4413-4421. [PMID: 37772435 DOI: 10.1039/d3lc00448a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Arrangement patterns and geometric cues have been demonstrated to influence cell function and fate, which calls for efficient and versatile cell patterning techniques. Despite constant achievements that mainly focus on individual cells and uniform cell patterns, simultaneously constructing cellular arrangements with diverse patterns and positional relationships in a flexible and contact-free manner remains a challenge. Here, stem cell arrangements possessing multiple geometries and structures are proposed based on powerful and diverse pattern-building capabilities of quasi-periodic acoustic fields, with advantages of rich patterns and structures and flexibility in structure modulation. Eight-fold waves' interference produces regular potentials that result in higher rotational symmetry and more complex arrangement of geometric units. Moreover, through flexible modulation of the phase relations among these wave vectors, a wide variety of cellular pattern units are arranged in this potential, such as circular-, triangular- and square-shape, simultaneously. It is proved that these diverse cellular patterns conveniently build human mesenchymal stem cell (hMSC) models, for research on the effect of cellular arrangement on stem cell differentiation. This work fills the gap of acoustic cell patterning in quasi-periodic patterns and shows promising potential in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Xiaoqi Gao
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, People's Republic of China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, People's Republic of China
| | - Xuejia Hu
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Qinghao Hu
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, People's Republic of China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, People's Republic of China
| | - Jingjing Zheng
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, People's Republic of China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, People's Republic of China
| | - Shukun Zhao
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, People's Republic of China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, People's Republic of China
| | - Chengliang Zhu
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Xuan Xiao
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, People's Republic of China.
| | - Yi Yang
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, People's Republic of China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, People's Republic of China
| |
Collapse
|
20
|
Wu S, Shen W, Ge X, Ao F, Zheng Y, Wang Y, Jia X, Mao Y, Luo Y. Advances in Large Gap Peripheral Nerve Injury Repair and Regeneration with Bridging Nerve Guidance Conduits. Macromol Biosci 2023; 23:e2300078. [PMID: 37235853 DOI: 10.1002/mabi.202300078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/10/2023] [Indexed: 05/28/2023]
Abstract
Peripheral nerve injury is a common complication of accidents and diseases. The traditional autologous nerve graft approach remains the gold standard for the treatment of nerve injuries. While sources of autologous nerve grafts are very limited and difficult to obtain. Nerve guidance conduits are widely used in the treatment of peripheral nerve injuries as an alternative to nerve autografts and allografts. However, the development of nerve conduits does not meet the needs of large gap peripheral nerve injury. Functional nerve conduits can provide a good microenvironment for axon elongation and myelin regeneration. Herein, the manufacturing methods and different design types of functional bridging nerve conduits for nerve conduits combined with electrical or magnetic stimulation and loaded with Schwann cells, etc., are summarized. It summarizes the literature and finds that the technical solutions of functional nerve conduits with electrical stimulation, magnetic stimulation and nerve conduits combined with Schwann cells can be used as effective strategies for bridging large gap nerve injury and provide an effective way for the study of large gap nerve injury repair. In addition, functional nerve conduits provide a new way to construct delivery systems for drugs and growth factors in vivo.
Collapse
Affiliation(s)
- Shang Wu
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Wen Shen
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Xuemei Ge
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Fen Ao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Yan Zheng
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Yigang Wang
- Department of Pharmacy, No. 215 Hospital of Shaanxi Nuclear Industry, Xianyang, Shaanxi, 712000, P. R. China
| | - Xiaoni Jia
- Central Laboratory, Xi'an Mental Health Center, Xi'an, 710061, P. R. China
| | - Yueyang Mao
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Yali Luo
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| |
Collapse
|
21
|
Qi T, Zhang X, Gu X, Cui S. Experimental Study on Repairing Peripheral Nerve Defects with Novel Bionic Tissue Engineering. Adv Healthc Mater 2023; 12:e2203199. [PMID: 36871174 PMCID: PMC11469147 DOI: 10.1002/adhm.202203199] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/15/2023] [Indexed: 03/06/2023]
Abstract
Peripheral nerve defects are a worldwide problem, and autologous nerve transplantation is currently the gold-standard treatment for them. Tissue-engineered nerve (TEN) grafts are widely considered promising methods for the same, and have attracted much attention. To improve repair, the incorporation of bionics into TEN grafts has become a focus of research. In this study, a novel bionic TEN graft with a biomimetic structure and composition is designed. For this purpose, a chitin helical scaffold is fabricated by means of mold casting and acetylation using chitosan as the raw material, following which a fibrous membrane is electrospun on the outer layer of the chitin scaffold. The lumen of the structure is filled with human bone mesenchymal stem cell-derived extracellular matrix and fibers to provide nutrition and topographic guidance, respectively. The prepared TEN graft is then transplanted to bridge 10 mm sciatic nerve defects in rats. Morphological and functional examination shows that the repair effects of the TEN grafts and autografts are similar. The bionic TEN graft described in this study shows great potential for application and offers a new way to repair clinical peripheral nerve defects.
Collapse
Affiliation(s)
- Tong Qi
- Department of Hand SurgeryChina‐Japan Union HospitalJilin UniversityChangchun130033China
| | - Xu Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of EducationCo‐innovation Center of NeuroregenerationNMPA Key Lab for Research and Evaluation of Tissue Engineering Technology ProductsNantong UniversityNantong226000China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of EducationCo‐innovation Center of NeuroregenerationNMPA Key Lab for Research and Evaluation of Tissue Engineering Technology ProductsNantong UniversityNantong226000China
| | - Shusen Cui
- Department of Hand SurgeryChina‐Japan Union HospitalJilin UniversityChangchun130033China
| |
Collapse
|
22
|
Yao C, Qiu Z, Li X, Zhu H, Li D, He J. Electrohydrodynamic Printing of Microfibrous Architectures with Cell-Scale Spacing for Improved Cellular Migration and Neurite Outgrowth. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207331. [PMID: 36775926 DOI: 10.1002/smll.202207331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/25/2023] [Indexed: 05/11/2023]
Abstract
Electrohydrodynamic (EHD) printing provides unparalleled opportunities in fabricating microfibrous architectures to direct cellular orientation. However, it faces great challenges in depositing orderly microfibers with cell-scale spacing due to inherent fiber-fiber electrostatic interactions. Here a finite element method is established to analyze the electrostatic forces induced on the EHD-printed microfibers and the relationship between the fiber diameter and spacing for parallel deposition of EHD-printed microfibers is revealed theoretically and experimentally. It is found that uniform fiber arrangement can be achieved when the fiber spacing is five times larger than the fiber diameter. This finding enables the successful printing of parallel fibrous architectures with a fiber diameter of 4.9 ± 0.1 µm and a cell-scale fiber spacing of 25.6 ± 1.9 µm. The resultant microfibrous architectures exhibit unique capability to direct cellular alignment and enhance cellular density and migration as the fiber spacing decreases from 100 to 25 µm. The EHD-printed parallel microfibers with cell-scale spacing are found to improve the outgrowth length of neurites and accelerate the migration of Schwann cells from Dorsal Root Ganglion spheres, which facilitate the formation of densely-arranged and highly-aligned cellular constructs. The presented method is promising to produce biomimetic microfibrous architectures for functional nerve regeneration.
Collapse
Affiliation(s)
- Cong Yao
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Zhennan Qiu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xiao Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Hui Zhu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Dichen Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Jiankang He
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| |
Collapse
|
23
|
Fang Y, Wang C, Liu Z, Ko J, Chen L, Zhang T, Xiong Z, Zhang L, Sun W. 3D Printed Conductive Multiscale Nerve Guidance Conduit with Hierarchical Fibers for Peripheral Nerve Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205744. [PMID: 36808712 PMCID: PMC10131803 DOI: 10.1002/advs.202205744] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Nerve guidance conduits (NGCs) have become a promising alternative for peripheral nerve regeneration; however, the outcome of nerve regeneration and functional recovery is greatly affected by the physical, chemical, and electrical properties of NGCs. In this study, a conductive multiscale filled NGC (MF-NGC) consisting of electrospun poly(lactide-co-caprolactone) (PCL)/collagen nanofibers as the sheath, reduced graphene oxide /PCL microfibers as the backbone, and PCL microfibers as the internal structure for peripheral nerve regeneration is developed. The printed MF-NGCs presented good permeability, mechanical stability, and electrical conductivity, which further promoted the elongation and growth of Schwann cells and neurite outgrowth of PC12 neuronal cells. Animal studies using a rat sciatic nerve injury model reveal that the MF-NGCs promote neovascularization and M2 transition through the rapid recruitment of vascular cells and macrophages. Histological and functional assessments of the regenerated nerves confirm that the conductive MF-NGCs significantly enhance peripheral nerve regeneration, as indicated by improved axon myelination, muscle weight increase, and sciatic nerve function index. This study demonstrates the feasibility of using 3D-printed conductive MF-NGCs with hierarchically oriented fibers as functional conduits that can significantly enhance peripheral nerve regeneration.
Collapse
Affiliation(s)
- Yongcong Fang
- Biomanufacturing CenterDepartment of Mechanical EngineeringTsinghua UniversityBeijing100084P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of BeijingBeijing100084P. R. China
- “Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base)Beijing100084P. R. China
| | - Chengjin Wang
- Biomanufacturing CenterDepartment of Mechanical EngineeringTsinghua UniversityBeijing100084P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of BeijingBeijing100084P. R. China
- “Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base)Beijing100084P. R. China
| | - Zibo Liu
- Biomanufacturing CenterDepartment of Mechanical EngineeringTsinghua UniversityBeijing100084P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of BeijingBeijing100084P. R. China
- “Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base)Beijing100084P. R. China
| | - Jeonghoon Ko
- Biomanufacturing CenterDepartment of Mechanical EngineeringTsinghua UniversityBeijing100084P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of BeijingBeijing100084P. R. China
- “Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base)Beijing100084P. R. China
| | - Li Chen
- Biomanufacturing CenterDepartment of Mechanical EngineeringTsinghua UniversityBeijing100084P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of BeijingBeijing100084P. R. China
- “Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base)Beijing100084P. R. China
| | - Ting Zhang
- Biomanufacturing CenterDepartment of Mechanical EngineeringTsinghua UniversityBeijing100084P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of BeijingBeijing100084P. R. China
- “Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base)Beijing100084P. R. China
| | - Zhuo Xiong
- Biomanufacturing CenterDepartment of Mechanical EngineeringTsinghua UniversityBeijing100084P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of BeijingBeijing100084P. R. China
- “Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base)Beijing100084P. R. China
| | - Lei Zhang
- Biomanufacturing CenterDepartment of Mechanical EngineeringTsinghua UniversityBeijing100084P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of BeijingBeijing100084P. R. China
- “Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base)Beijing100084P. R. China
| | - Wei Sun
- Biomanufacturing CenterDepartment of Mechanical EngineeringTsinghua UniversityBeijing100084P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of BeijingBeijing100084P. R. China
- “Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base)Beijing100084P. R. China
- Department of Mechanical EngineeringDrexel UniversityPhiladelphiaPA19104USA
| |
Collapse
|
24
|
Zhou X, Yu M, Chen D, Deng C, Zhang Q, Gu X, Ding F. Chitosan Nerve Grafts Incorporated with SKP-SC-EVs Induce Peripheral Nerve Regeneration. Tissue Eng Regen Med 2023; 20:309-322. [PMID: 36877455 PMCID: PMC10070581 DOI: 10.1007/s13770-022-00517-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/20/2022] [Accepted: 12/25/2022] [Indexed: 03/07/2023] Open
Abstract
BACKGROUND Repair of long-distance peripheral nerve defects remains an important clinical problem. Nerve grafts incorporated with extracellular vesicles (EVs) from various cell types have been developed to bridge peripheral nerve defects. In our previous research, EVs obtained from skin-derived precursor Schwann cells (SKP-SC-EVs) were demonstrated to promote neurite outgrowth in cultured cells and facilitate nerve regeneration in animal studies. METHODS To further assess the functions of SKP-SC-EVs in nerve repair, we incorporated SKP-SC-EVs and Matrigel into chitosan nerve conduits (EV-NG) for repairing a 15-mm long-distance sciatic nerve defect in a rat model. Behavioral analysis, electrophysiological recording, histological investigation, molecular analysis, and morphometric assessment were carried out. RESULTS The results revealed EV-NG significantly improved motor and sensory function recovery compared with nerve conduits (NG) without EVs incorporation. The outgrowth and myelination of regenerated axons were improved, while the atrophy of target muscles induced by denervation was alleviated after EVs addition. CONCLUSION Our data indicated SKP-SC-EVs incorporation into nerve grafts represents a promising method for extended peripheral nerve damage repair.
Collapse
Affiliation(s)
- Xinyang Zhou
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Miaomei Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Daiyue Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Chunyan Deng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Qi Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
25
|
Injectable 2D flexible hydrogel sheets for optoelectrical/biochemical dual stimulation of neurons. BIOMATERIALS ADVANCES 2023; 146:213284. [PMID: 36682202 DOI: 10.1016/j.bioadv.2023.213284] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/15/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Major challenges in developing implanted neural stimulation devices are the invasiveness, complexity, and cost of the implantation procedure. Here, we report an injectable, nanofibrous 2D flexible hydrogel sheet-based neural stimulation device that can be non-invasively implanted via syringe injection for optoelectrical and biochemical dual stimulation of neuron. Specifically, methacrylated gelatin (GelMA)/alginate hydrogel nanofibers were mechanically reinforced with a poly(lactide-co-ε-caprolactone) (PLCL) core by coaxial electrospinning. The lubricant hydrogel shell enabled not only injectability, but also facile incorporation of functional nanomaterials and bioactives. The nanofibers loaded with photocatatlytic g-C3N4/GO nanoparticles were capable of stimulating neural cells via blue light, with a significant 36.3 % enhancement in neurite extension. Meanwhile, the nerve growth factor (NGF) loaded nanofibers supported a sustained release of NGF with well-maintained function to biochemically stimulate neural differentiation. We have demonstrated the capability of an injectable, hydrogel nanofibrous, neural stimulation system to support neural stimulation both optoelectrically and biochemically, which represents crucial early steps in a larger effort to create a minimally invasive system for neural stimulation.
Collapse
|
26
|
3D printing of bio-instructive materials: Toward directing the cell. Bioact Mater 2023; 19:292-327. [PMID: 35574057 PMCID: PMC9058956 DOI: 10.1016/j.bioactmat.2022.04.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/25/2022] [Accepted: 04/10/2022] [Indexed: 01/10/2023] Open
|
27
|
Amagat J, Su Y, Svejsø FH, Le Friec A, Sønderskov SM, Dong M, Fang Y, Chen M. Self-snapping hydrogel-based electroactive microchannels as nerve guidance conduits. Mater Today Bio 2022; 16:100437. [PMID: 36193343 PMCID: PMC9526217 DOI: 10.1016/j.mtbio.2022.100437] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/01/2022] Open
Abstract
Peripheral nerve regeneration with large defects needs innovative design of nerve guidance conduits (NGCs) which possess anisotropic guidance, electrical induction and right mechanical properties in one. Herein, we present, for the first time, facile fabrication and efficient neural differentiation guidance of anisotropic, conductive, self-snapping, hydrogel-based NGCs. The hydrogels were fabricated via crosslinking of graphitic carbon nitride (g-C3N4) upon exposure with blue light, incorporated with graphene oxide (GO). Incorporation of GO and in situ reduction greatly enhanced surface charges, while decayed light penetration endowed the hydrogel with an intriguing self-snapping feature by the virtue of a crosslinking gradient. The hydrogels were in the optimal mechanical stiffness range for peripheral nerve regeneration and supported normal viability and proliferation of neural cells. The PC12 cells differentiated on the electroactive g-C3N4 H/rGO3 (3 mg/mL GO loading) hydrogel presented 47% longer neurite length than that of the pristine g-C3N4 H hydrogel. Furthermore, the NGC with aligned microchannels was successfully fabricated using sacrificial melt electrowriting (MEW) moulding, the anisotropic microchannels of the 10 μm width showed optimal neurite guidance. Such anisotropic, electroactive, self-snapping NGCs may possess great potential for repairing peripheral nerve injuries.
Collapse
|
28
|
Zhu J, Li Z, Zou Y, Lu G, Ronca A, D’Amora U, Liang J, Fan Y, Zhang X, Sun Y. Advanced application of collagen-based biomaterials in tissue repair and restoration. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2022. [DOI: 10.1186/s42825-022-00102-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AbstractIn tissue engineering, bioactive materials play an important role, providing structural support, cell regulation and establishing a suitable microenvironment to promote tissue regeneration. As the main component of extracellular matrix, collagen is an important natural bioactive material and it has been widely used in scientific research and clinical applications. Collagen is available from a wide range of animal origin, it can be produced by synthesis or through recombinant protein production systems. The use of pure collagen has inherent disadvantages in terms of physico-chemical properties. For this reason, a processed collagen in different ways can better match the specific requirements as biomaterial for tissue repair. Here, collagen may be used in bone/cartilage regeneration, skin regeneration, cardiovascular repair and other fields, by following different processing methods, including cross-linked collagen, complex, structured collagen, mineralized collagen, carrier and other forms, promoting the development of tissue engineering. This review summarizes a wide range of applications of collagen-based biomaterials and their recent progress in several tissue regeneration fields. Furthermore, the application prospect of bioactive materials based on collagen was outlooked, aiming at inspiring more new progress and advancements in tissue engineering research.
Graphical Abstract
Collapse
|
29
|
Xia D, Chen J, Zhang Z, Dong M. Emerging polymeric biomaterials and manufacturing techniques in regenerative medicine. AGGREGATE 2022; 3. [DOI: 10.1002/agt2.176] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
AbstractThe current demand for patients’ organ and tissue repair and regeneration is continually increasing, where autologous or allograft is the golden standard treatment in the clinic. However, due to the shortage of donors, mismatched size and modality, functional loss of the donor region, possible immune rejection, and so forth, the application of auto‐/allo‐grafts is frequently hindered in many cases. In order to solve these problems, artificial constructs structurally and functionally imitating the extracellular matrix have been developed as substitutes to promoting cell attachment, proliferation, and differentiation, and ultimately forming functional tissues or organs for better tissue regeneration. Particularly, polymeric materials have been widely utilized in regenerative medicine because of their ease of manufacturing, flexibility, biocompatibility, as well as good mechanical, chemical, and thermal properties. This review presents a comprehensive overview of a variety of polymeric materials, their fabrication methods as well applications in regenerative medicine. Finally, we discussed the future challenges and perspectives in the development and clinical transformation of polymeric biomaterials.
Collapse
Affiliation(s)
- Dan Xia
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering Hebei University of Technology Tianjin China
| | - Jiatian Chen
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering Hebei University of Technology Tianjin China
| | - Zhongyang Zhang
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University Aarhus Denmark
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University Aarhus Denmark
| |
Collapse
|
30
|
Yang X, Huang L, Yi X, Huang S, Duan B, Yu A. Multifunctional chitin-based hollow nerve conduit for peripheral nerve regeneration and neuroma inhibition. Carbohydr Polym 2022; 289:119443. [DOI: 10.1016/j.carbpol.2022.119443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/18/2022] [Accepted: 03/30/2022] [Indexed: 01/06/2023]
|
31
|
Albayrak D, Turkoglu Sasmazel H. Surface patterning of poly(ℇ-caprolactone) scaffolds by electrospinning for monitoring cell biomass behavior. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03164-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Zeng Z, Yang Y, Deng J, Saif Ur Rahman M, Sun C, Xu S. Physical Stimulation Combined with Biomaterials Promotes Peripheral Nerve Injury Repair. Bioengineering (Basel) 2022; 9:292. [PMID: 35877343 PMCID: PMC9311987 DOI: 10.3390/bioengineering9070292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Peripheral nerve injury (PNI) is a clinical problem with high morbidity that can cause severe damage. Surgical suturing or implants are usually required due to the slow speed and numerous factors affecting repair after PNI. An autologous nerve graft is the gold standard for PNI repair among implants. However, there is a potential problem of the functional loss of the donor site. Therefore, tissue-engineered nerve biomaterials are often used to bridge the gap between nerve defects, but the therapeutic effect is insufficient. In order to enhance the repair effect of nerve biomaterials for PNI, researchers are seeking to combine various stimulation elements, such as the addition of biological factors such as nerve growth factors or physical factors such as internal microstructural modifications of catheters and their combined application with physical stimulation therapy. Physical stimulation therapy is safer, is more convenient, and has more practical features than other additive factors. Its feasibility and convenience, when combined with nerve biomaterials, provide broader application prospects for PNI repair, and has therefore become a research hot spot. This paper will review the combined application of physical stimulation and biomaterials in PNI repair in recent years to provide new therapeutic ideas for the future use of physical stimulation in PNI repair.
Collapse
Affiliation(s)
- Zhipeng Zeng
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (Z.Z.); (M.S.U.R.)
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Yajing Yang
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Shenzhen 518116, China;
| | - Junyong Deng
- Department of Rehabilitation, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China;
| | - Muhammad Saif Ur Rahman
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (Z.Z.); (M.S.U.R.)
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Chengmei Sun
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (Z.Z.); (M.S.U.R.)
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Shanshan Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (Z.Z.); (M.S.U.R.)
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
33
|
Su Y, Müller CA, Xiong X, Dong M, Chen M. Reshapable Osteogenic Biomaterials Combining Flexible Melt Electrowritten Organic Fibers with Inorganic Bioceramics. NANO LETTERS 2022; 22:3583-3590. [PMID: 35442045 DOI: 10.1021/acs.nanolett.1c04995] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ever-growing various applications, especially for tissue regeneration, cause a pressing need for novel methods to functionalize melt electrowritten (MEW) microfibrous scaffolds with unique nanomaterials. Here, two novel strategies are proposed to modify MEW polycaprolactone (PCL) grids with ZnO nanoparticles (ZP) or ZnO nanoflakes (ZF) to enhance osteogenic differentiation. The calcium mineralization levels of MC3T3 osteoblasts cultured on PCL/ZP 0.1 scaffolds are ∼3.91-fold higher than those cultured on nonmodified PCL scaffolds, respectively. Due to the nanotopography mimicking bone anatomy, the PCL/ZF scaffolds (∼2.60 times higher in ALP activity compared to PCL/ZP 1 and ∼2.17 times higher in mineralization compared to PCL/ZP 0.1) achieved superior results. Moreover, the flexible feature inherited from PCL grids makes it possible for them to act as a reshapable osteogenic bioscaffold. This study provides new strategies for synthesizing nanomaterials on microscale surfaces, opening up a new route for functionalizing MEW scaffolds to fulfill the growing demand of tissue engineering.
Collapse
Affiliation(s)
- Yingchun Su
- Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus C, Denmark
- School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Electrum 229, 16440 Kista, Sweden
| | | | - Xuya Xiong
- Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
| | - Menglin Chen
- Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus C, Denmark
- Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
34
|
Gaihre B, Potes MA, Serdiuk V, Tilton M, Liu X, Lu L. Two-dimensional nanomaterials-added dynamism in 3D printing and bioprinting of biomedical platforms: Unique opportunities and challenges. Biomaterials 2022; 284:121507. [PMID: 35421800 PMCID: PMC9933950 DOI: 10.1016/j.biomaterials.2022.121507] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/17/2022] [Accepted: 04/01/2022] [Indexed: 12/13/2022]
Abstract
The nanomaterials research spectrum has seen the continuous emergence of two-dimensional (2D) materials over the years. These highly anisotropic and ultrathin materials have found special attention in developing biomedical platforms for therapeutic applications, biosensing, drug delivery, and regenerative medicine. Three-dimensional (3D) printing and bioprinting technologies have emerged as promising tools in medical applications. The convergence of 2D nanomaterials with 3D printing has extended the application dynamics of available biomaterials to 3D printable inks and bioinks. Furthermore, the unique properties of 2D nanomaterials have imparted multifunctionalities to 3D printed constructs applicable to several biomedical applications. 2D nanomaterials such as graphene and its derivatives have long been the interest of researchers working in this area. Beyond graphene, a range of emerging 2D nanomaterials, such as layered silicates, black phosphorus, transition metal dichalcogenides, transition metal oxides, hexagonal boron nitride, and MXenes, are being explored for the multitude of biomedical applications. Better understandings on both the local and systemic toxicity of these materials have also emerged over the years. This review focuses on state-of-art 3D fabrication and biofabrication of biomedical platforms facilitated by 2D nanomaterials, with the comprehensive summary of studies focusing on the toxicity of these materials. We highlight the dynamism added by 2D nanomaterials in the printing process and the functionality of printed constructs.
Collapse
Affiliation(s)
- Bipin Gaihre
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
| | - Maria Astudillo Potes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
| | - Vitalii Serdiuk
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
| | - Maryam Tilton
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
| | - Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, United States.
| |
Collapse
|
35
|
Yan Y, Yao R, Zhao J, Chen K, Duan L, Wang T, Zhang S, Guan J, Zheng Z, Wang X, Liu Z, Li Y, Li G. Implantable nerve guidance conduits: Material combinations, multi-functional strategies and advanced engineering innovations. Bioact Mater 2022; 11:57-76. [PMID: 34938913 PMCID: PMC8665266 DOI: 10.1016/j.bioactmat.2021.09.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/17/2021] [Accepted: 09/26/2021] [Indexed: 01/15/2023] Open
Abstract
Nerve guidance conduits (NGCs) have attracted much attention due to their great necessity and applicability in clinical use for the peripheral nerve repair. Great efforts in recent years have been devoted to the development of high-performance NGCs using various materials and strategies. The present review provides a comprehensive overview of progress in the material innovation, structural design, advanced engineering technologies and multi functionalization of state-of-the-art nerve guidance conduits NGCs. Abundant advanced engineering technologies including extrusion-based system, laser-based system, and novel textile forming techniques in terms of weaving, knitting, braiding, and electrospinning techniques were also analyzed in detail. Findings arising from this review indicate that the structural mimetic NGCs combined with natural and synthetic materials using advanced manufacturing technologies can make full use of their complementary advantages, acquiring better biomechanical properties, chemical stability and biocompatibility. Finally, the existing challenges and future opportunities of NGCs were put forward aiming for further research and applications of NGCs.
Collapse
Affiliation(s)
- Yixin Yan
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
- Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Ruotong Yao
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Jingyuan Zhao
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Kaili Chen
- Department of Materials, Imperial College London, SW7 2AZ, UK
| | - Lirong Duan
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Tian Wang
- Wilson College of Textiles, North Carolina State University, Raleigh, 27695, USA
| | - Shujun Zhang
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Jinping Guan
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Zhaozhu Zheng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Xiaoqin Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Zekun Liu
- Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Yi Li
- Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Gang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| |
Collapse
|
36
|
Wu X, Liu R, Li L, Yang F, Liu D, Wang L, Yu W, Xu J, Weng Z, Dong L, Wang Z. Single-cell patterning regulation by physically modified silicon nanostructures. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1571-1578. [PMID: 35403643 DOI: 10.1039/d2ay00092j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chemically and biologically modified substrates for single-cell patterning have been studied extensively, but physically modified structures for single-cell patterning still need further study. In this paper, physically modified silicon nanostructures were introduced to study their effect on SHSY5Y cells. Double-beam double exposure laser interference lithography combined with metal-assisted etching (MACE) was used to fabricate the physically modified silicon nanostructures. It was found that the cells on the gratings stretched and grew orderly along the grating with a small cell area and almost the same cell length compared with those on the Si wafer (control group). While on the grids, the cells were round with limited spreading, grew independently and had the smallest cell area and cell length. Moreover, the localization ratio of cells adhered onto the areas of nanopillars in the grid structures with different periods has been investigated. The results suggest that the physically modified grid silicon nanostructures can regulate the single-cell localization growth and the rational design of substrate structures can maximize the single-cell localization ratio. The findings provide guidance for the design of physically modified nanostructures and regulating single cell patterning, and a better understanding of single-cell localized growth.
Collapse
Affiliation(s)
- Xiaomin Wu
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China.
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
- Zhongshan Institute, Changchun University of Science and Technology, Zhongshan 528437, China
| | - Ri Liu
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China.
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
- Zhongshan Institute, Changchun University of Science and Technology, Zhongshan 528437, China
| | - Li Li
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China.
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Fan Yang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China.
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
- Zhongshan Institute, Changchun University of Science and Technology, Zhongshan 528437, China
| | - Dongdong Liu
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China.
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
- Zhongshan Institute, Changchun University of Science and Technology, Zhongshan 528437, China
| | - Lu Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China.
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Wentao Yu
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China.
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Junyang Xu
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China.
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Zhankun Weng
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China.
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
- Zhongshan Institute, Changchun University of Science and Technology, Zhongshan 528437, China
| | - Litong Dong
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China.
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
- Zhongshan Institute, Changchun University of Science and Technology, Zhongshan 528437, China
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China.
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
- Zhongshan Institute, Changchun University of Science and Technology, Zhongshan 528437, China
- JR3CN & IRAC, University of Bedfordshire, Luton LU1 3JU, UK
| |
Collapse
|
37
|
Deng P, Chen F, Zhang H, Chen Y, Zhou J. Multifunctional Double-Layer Composite Hydrogel Conduit Based on Chitosan for Peripheral Nerve Repairing. Adv Healthc Mater 2022; 11:e2200115. [PMID: 35396930 DOI: 10.1002/adhm.202200115] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/31/2022] [Indexed: 12/21/2022]
Abstract
Peripheral nerve regeneration and functional recovery is a major challenge in clinical practice. Nerve conduit is an effective treatment for peripheral nerve repair, but the traditional hollow nerve conduit is not satisfactory in peripheral nerve repair due to the limitation of cell migration and nutrient transport. Herein, the double cross-linked hydrogels with injectable, self-healing, and conductive properties are synthesized by the Schiff base reaction between polyaniline-modified carboxymethyl chitosan and aldehyde-modified Pluronic F-127 (F127-CHO), and the hydrophobic interaction of F127-CHO. The conductive hydrogel is injected into the cavity of chitosan conduit prepared by electrodeposition. The inner conductive hydrogel and the outer chitosan conduit are formed into a whole through the Schiff base reaction to obtain a double-layer composite hydrogel nerve conduit. The double-layer composite hydrogel neural conduit loaded with 7,8-dihydroxyflavone (DHF) has excellent degradability, biocompatibility, antioxidant activity, and Schwann cell proliferation activity. In the rat sciatic nerve defect model, the double-layer composite hydrogel nerve conduit significantly promotes sciatic nerve regeneration compared with the chitosan hollow conduit. Surprisingly, the repair ability of double-layered hydrogel nerve conduit loaded with DHF is comparable to that of autologous transplantation. Therefore, this multifunctional double-layer composite hydrogel conduit has great potential for peripheral nerve repairing.
Collapse
Affiliation(s)
- Pengpeng Deng
- Hubei Engineering Center of Natural Polymers‐based Medical Materials Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry Wuhan University Wuhan 430072 China
- Department of Biomedical Engineering Hubei Province Key Laboratory of Allergy and Immune Related Diseases School of Basic Medical Science Wuhan University Wuhan 430071 China
| | - Feixiang Chen
- Glyn O. Philips Hydrocolloid Research Centre at HUT Hubei University of Technology Wuhan 430068 China
| | - Haodong Zhang
- Hubei Engineering Center of Natural Polymers‐based Medical Materials Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry Wuhan University Wuhan 430072 China
| | - Yun Chen
- Glyn O. Philips Hydrocolloid Research Centre at HUT Hubei University of Technology Wuhan 430068 China
| | - Jinping Zhou
- Hubei Engineering Center of Natural Polymers‐based Medical Materials Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry Wuhan University Wuhan 430072 China
| |
Collapse
|
38
|
Kumar R, Sarkar C, Panja S, Khatua C, Gugulothu K, Sil D. Biomimetic Nanocomposites for Biomedical Applications. ACS SYMPOSIUM SERIES 2022:163-196. [DOI: 10.1021/bk-2022-1410.ch007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Raj Kumar
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48105, United States
| | - Chandrani Sarkar
- Department of Chemistry, Mahila College, Kolhan University, Chaibasa, Jharkand 833202, India
| | - Sudipta Panja
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
| | - Chandra Khatua
- Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Kishan Gugulothu
- Department of Chemistry, Osmania University, Hyderabad, Telangana 500007, India
| | - Diptesh Sil
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
| |
Collapse
|
39
|
Wang B, Wang Z, Bai C, Yang H, Sun H, Lu G, Liang S, Liu Z. Synergistic Generation of Radicals by Formic Acid/H 2O 2/g-C 3N 4 Nanosheets for Ultra-efficient Oxidative Photodegradation of Rhodamine B. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2872-2884. [PMID: 35195422 DOI: 10.1021/acs.langmuir.1c03201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Water pollution is a global challenge endangering people's health. In this work, an ultra-efficient photodegradation system of Rhodamine B (RhB) has been established using a graphitic carbon nitride nanosheet (CNNS) as the semiconductor photocatalyst, from which energy is harvested on both the conduction band and valence band by formic acid and hydrogen peroxide, respectively. The optimized FA/H2O2/CNNS system increases the apparent photodegradation rate of RhB by 25 folds, from 0.0198 to 0.4975 min-1. Through a comprehensive investigation with reactive oxygen species scavengers, electron paramagnetic resonance, high-performance liquid chromatography-mass spectrometry, etc., an oxidative mechanism for RhB photodegradation has been proposed, which combines enhanced charge carrier migration and synergistic generation of multiple radicals. Comparable performance improvements have also been observed for similar systems with different semiconductors, suggesting that such a catalytic system could afford a general approach to enhance semiconductor-catalyzed photodegradation.
Collapse
Affiliation(s)
- Bingdi Wang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, P. R. China
| | - Zhida Wang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, P. R. China
| | - Chengkun Bai
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, P. R. China
| | - Haoqi Yang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, P. R. China
- Roll Forging Research Institute, College of Materials Science and Engineering, Jilin University, Changchun, Jilin 130022, P. R. China
| | - Hang Sun
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, P. R. China
| | - Guolong Lu
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, P. R. China
| | - Song Liang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, P. R. China
| | - Zhenning Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, P. R. China
| |
Collapse
|
40
|
King WE, Bowlin GL. Near-field electrospinning of polydioxanone small diameter vascular graft scaffolds. J Mech Behav Biomed Mater 2022; 130:105207. [DOI: 10.1016/j.jmbbm.2022.105207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/12/2022] [Accepted: 03/26/2022] [Indexed: 10/18/2022]
|
41
|
Zhang Z, Zhou J, Liu C, Zhang J, Shibata Y, Kong N, Corbo C, Harris MB, Tao W. Emerging biomimetic nanotechnology in orthopedic diseases: progress, challenges, and opportunities. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
42
|
Chen J, Akomolafe OI, Dhakal NP, Pujyam M, Skalli O, Jiang J, Peng C. Nematic Templated Complex Nanofiber Structures by Projection Display. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7230-7240. [PMID: 35084814 DOI: 10.1021/acsami.1c20305] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Oriented arrays of nanofibers are ubiquitous in nature and have been widely used in recreation of the biological functions such as bone and muscle tissue regenerations. However, it remains a challenge to produce nanofiber arrays with a complex organization by using current fabrication techniques such as electrospinning and extrusion. In this work, we propose a method to fabricate the complex organization of nanofiber structures templated by a spatially varying ordered liquid crystal host, which follows the pattern produced by a maskless projection display system. By programming the synchronization of the rotated polarizer and projected segments with different shapes, various configurations of nanofiber organization ranging from a single to two-dimensional lattice of arbitrary topological defects are created in a deterministic manner. The nanofiber arrays can effectively guide and promote neurite outgrowth. The application of nanofibers with arced profiles and topological defects on neural tissue organization is also demonstrated. This finding, combined with the versatility and programmability of nanofiber structures, suggests that they will help solve challenges in nerve repair, neural regeneration, and other related tissue engineering fields.
Collapse
Affiliation(s)
- Juan Chen
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, United States
| | - Oluwafemi Isaac Akomolafe
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, United States
| | - Netra Prasad Dhakal
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, United States
| | - Mahesh Pujyam
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, United States
| | - Omar Skalli
- Department of Biology, The University of Memphis, Memphis, Tennessee 38152, United States
| | - Jinghua Jiang
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, United States
| | - Chenhui Peng
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, United States
| |
Collapse
|
43
|
Wan X, Zhao Y, Li Z, Li L. Emerging polymeric electrospun fibers: From structural diversity to application in flexible bioelectronics and tissue engineering. EXPLORATION (BEIJING, CHINA) 2022; 2:20210029. [PMID: 37324581 PMCID: PMC10191062 DOI: 10.1002/exp.20210029] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/22/2021] [Indexed: 06/15/2023]
Abstract
Electrospinning (e-spin) technique has emerged as a versatile and feasible pathway for constructing diverse polymeric fabric structures, which show potential applications in many biological and biomedical fields. Owing to the advantages of adjustable mechanics, designable structures, versatile surface multi-functionalization, and biomimetic capability to natural tissue, remarkable progress has been made in flexible bioelectronics and tissue engineering for the sensing and therapeutic purposes. In this perspective, we review recent works on design of the hierarchically structured e-spin fibers, as well as, the fabrication strategies from one-dimensional individual fiber (1D) to three-dimensional (3D) fiber arrangements adaptive to specific applications. Then, we focus on the most cutting-edge progress of their applications in flexible bioelectronics and tissue engineering. Finally, we propose future challenges and perspectives for promoting electrospun fiber-based products toward industrialized, intelligent, multifunctional, and safe applications.
Collapse
Affiliation(s)
- Xingyi Wan
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy for SciencesBeijingP. R. China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Yunchao Zhao
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy for SciencesBeijingP. R. China
- Center on Nanoenergy ResearchSchool of Physical Science and TechnologyGuangxi UniversityNanningP. R. China
| | - Zhou Li
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy for SciencesBeijingP. R. China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijingP. R. China
- Center on Nanoenergy ResearchSchool of Physical Science and TechnologyGuangxi UniversityNanningP. R. China
| | - Linlin Li
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy for SciencesBeijingP. R. China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijingP. R. China
- Center on Nanoenergy ResearchSchool of Physical Science and TechnologyGuangxi UniversityNanningP. R. China
| |
Collapse
|
44
|
Kang S, Zhang Z, He M, Fang Z, Sun D, Zheng L, Chang X, Cui L. Harmonious K-I-O Co-modification of g-C3N4 for Improved Charge Separation and Photocatalysis. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01376a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Co-modification of graphitic carbon nitride (g-C3N4) photocatalysts can maximally optimize its intrinsic photoelectric structures, but usually involve complex multistep reactions, thus is challenging because the structural collapse and active sites...
Collapse
|
45
|
Allafchian A, Saeedi S, Jalali SAH. Biocompatibility of electrospun cell culture scaffolds made from balangu seed mucilage/PVA composites. NANOTECHNOLOGY 2021; 33:075302. [PMID: 34757957 DOI: 10.1088/1361-6528/ac3860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Synthesis of Balangu (Lallemantia royleana) seed mucilage (BSM) solutions combined with polyvinyl alcohol (PVA) was studied for the purpose of producing 3D electrospun cell culture scaffolds. Production of pure BSM nanofibers proved to be difficult, yet integration of PVA contributed to a facile and successful formation of BSM/PVA nanofibers. Different BSM/PVA ratios were fabricated to achieve the desired nanofibrous structure for cell proliferation. It is found that the optimal bead-free ratio of 50/50 with a mean fiber diameter of ≈180 nm presents the most desirable scaffold structure for cell growth. The positive effect of PVA incorporation was approved by analyzing BSM/PVA solutions through physiochemical assays such as electrical conductivity, viscosity and surface tension tests. According to the thermal analysis (TGA/DSC), incorporation of PVA enhanced thermal stability of the samples. Successful fabrication of the nanofibers is verified by FT-IR spectra, where no major chemical interaction between BSM and PVA is detected. The crystallinity of the electrospun nanofibers is investigated by XRD, revealing the nearly amorphous structure of BSM/PVA scaffolds. The MTT assay is employed to verify the biocompatibility of the scaffolds. The cell culture experiment using epithelial Vero cells shows the affinity of the cells to adhere to their nanofibrous substrate and grow to form continuous cell layers after 72 h of incubation.
Collapse
Affiliation(s)
- Alireza Allafchian
- Research Institute for Nanotechnology and Advanced Materials, Isfahan University of Technology, Isfahan 84156-83111, Iran
- Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Shiva Saeedi
- Research Institute for Nanotechnology and Advanced Materials, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Seyed Amir Hossein Jalali
- Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
- Department of Natural Resources, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
46
|
Parker BJ, Rhodes DI, O'Brien CM, Rodda AE, Cameron NR. Nerve guidance conduit development for primary treatment of peripheral nerve transection injuries: A commercial perspective. Acta Biomater 2021; 135:64-86. [PMID: 34492374 DOI: 10.1016/j.actbio.2021.08.052] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022]
Abstract
Commercial nerve guidance conduits (NGCs) for repair of peripheral nerve discontinuities are of little use in gaps larger than 30 mm, and for smaller gaps they often fail to compete with the autografts that they are designed to replace. While recent research to develop new technologies for use in NGCs has produced many advanced designs with seemingly positive functional outcomes in animal models, these advances have not been translated into viable clinical products. While there have been many detailed reviews of the technologies available for creating NGCs, none of these have focussed on the requirements of the commercialisation process which are vital to ensure the translation of a technology from bench to clinic. Consideration of the factors essential for commercial viability, including regulatory clearance, reimbursement processes, manufacturability and scale up, and quality management early in the design process is vital in giving new technologies the best chance at achieving real-world impact. Here we have attempted to summarise the major components to consider during the development of emerging NGC technologies as a guide for those looking to develop new technology in this domain. We also examine a selection of the latest academic developments from the viewpoint of clinical translation, and discuss areas where we believe further work would be most likely to bring new NGC technologies to the clinic. STATEMENT OF SIGNIFICANCE: NGCs for peripheral nerve repairs represent an adaptable foundation with potential to incorporate modifications to improve nerve regeneration outcomes. In this review we outline the regulatory processes that functionally distinct NGCs may need to address and explore new modifications and the complications that may need to be addressed during the translation process from bench to clinic.
Collapse
Affiliation(s)
- Bradyn J Parker
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Victoria 3800, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Research Way, Clayton, Victoria 3168, Australia
| | - David I Rhodes
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Victoria 3800, Australia; ReNerve Pty. Ltd., Brunswick East 3057, Australia
| | - Carmel M O'Brien
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Research Way, Clayton, Victoria 3168, Australia; Australian Regenerative Medicine Institute, Science, Technology, Research and innovation Precinct (STRIP), Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Andrew E Rodda
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Victoria 3800, Australia
| | - Neil R Cameron
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Victoria 3800, Australia; School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom.
| |
Collapse
|
47
|
Wang Y, Liang R, Lin J, Chen J, Zhang Q, Li J, Wang M, Hui X, Tan H, Fu Q. Biodegradable polyurethane nerve guide conduits with different moduli influence axon regeneration in transected peripheral nerve injury. J Mater Chem B 2021; 9:7979-7990. [PMID: 34612287 DOI: 10.1039/d1tb01236c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Nerve guide conduits (NGCs) can replace autogenous nerve grafting in the treatment of peripheral nerve system (PNS) injury. However, the modulus of polyurethane NGCs that affects the outcome of PNS repair has been rarely elucidated in vivo. In this study, we developed biodegradable waterborne polyurethane (BWPU) NGCs with an outer BWPU membrane and an inner three-dimensional scaffold structure. The mechanical properties of BWPU NGCs can be modified by adjusting the molar content of polyethylene glycol (PEG) in the soft segments within the BWPU. Two types of BWPU NGCs with different moduli were prepared, containing 17% and 25% PEG in BWPU (termed as BWPU 17 NGCs and BWPU 25 NGCs, respectively). In rat sciatic nerves with 10-mm transected injury, mechanically stronger BWPU 17 NGCs exhibited superior nerve repair, which was similar to that obtained by the current gold standard autograft implantation, whereas weaker BWPU 25 NGCs displayed an unsatisfactory effect. Histological results revealed that both BWPU NGCs had anti-inflammatory effects and altered the activation state of macrophages to M2 phenotypes to enhance PNS regeneration. The analysis of growth-associated protein 43 expression, which regulates axon growth, revealed that the mechanical properties of BWPU NGCs influence the outcome of PNS regeneration by affecting the formation and extension of axons. These findings suggest that the mechanical properties of NGCs could play a key role in regulating PNS repair and should be considered in future biomaterial NGC designs.
Collapse
Affiliation(s)
- Yanchao Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610000, China.
| | - Ruichao Liang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610000, China.
| | - Jingjing Lin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X center of materials, Sichuan University, Chengdu, Sichuan, 610065, China.
| | - Jinlin Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X center of materials, Sichuan University, Chengdu, Sichuan, 610065, China.
| | - Qiao Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610000, China.
| | - Jiehua Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X center of materials, Sichuan University, Chengdu, Sichuan, 610065, China.
| | - Minjin Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Xuhui Hui
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610000, China.
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X center of materials, Sichuan University, Chengdu, Sichuan, 610065, China.
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X center of materials, Sichuan University, Chengdu, Sichuan, 610065, China.
| |
Collapse
|
48
|
King WE, Bowlin GL. Mechanical characterization and neutrophil NETs response of a novel hybrid geometry polydioxanone near-field electrospun scaffold. Biomed Mater 2021; 16. [PMID: 34404034 DOI: 10.1088/1748-605x/ac1e43] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/17/2021] [Indexed: 11/11/2022]
Abstract
Near-field electrospinning (NFES) is a direct fiber writing sub-technique derived from traditional electrospinning (TES) by reducing the air gap distance to the magnitude of millimeters. In this paper, we demonstrate a NFES device designed from a commercial 3D printer to semi-stably write polydioxanone (PDO) microfibers. The print head was then programmed to translate in a stacking grid pattern, which resulted in a scaffold with highly aligned grid fibers that were intercalated with low density, random fibers. As the switching process can be considered random, increasing the grid size results in both a lower density of fibers in the center of each grid cell as well as a lower density of 'rebar-like' stacked fibers. These scaffolds resulted in tailorable as well as greater surface pore sizes as given by scanning electron micrographs and 3D permeability as indicated by fluorescent microsphere filtration compared to TES scaffolds of the same fiber diameter. Furthermore, ultimate tensile strength, percent elongation, yield stress, yield elongation, and Young's modulus were all tailorable compared to the static TES scaffold characterization. Lastly, the innate immune response of neutrophil extracellular traps was attenuated on NFES scaffolds compared to TES scaffolds. These results suggest that this novel NFES scaffold architecture of PDO can be highly tailored as a function of programming for a variety of biomedical and tissue engineering applications.
Collapse
Affiliation(s)
- William E King
- Department of Biomedical Engineering, University of Memphis, Memphis, TN 38152, United States of America.,Department of Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN 38163, United States of America
| | - Gary L Bowlin
- Department of Biomedical Engineering, University of Memphis, Memphis, TN 38152, United States of America
| |
Collapse
|
49
|
Drzeniek NM, Mazzocchi A, Schlickeiser S, Forsythe SD, Moll G, Geißler S, Reinke P, Gossen M, Gorantla VS, Volk HD, Soker S. Bio-instructive hydrogel expands the paracrine potency of mesenchymal stem cells. Biofabrication 2021; 13:10.1088/1758-5090/ac0a32. [PMID: 34111862 PMCID: PMC10024818 DOI: 10.1088/1758-5090/ac0a32] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/10/2021] [Indexed: 02/03/2023]
Abstract
The therapeutic efficacy of clinically applied mesenchymal stromal cells (MSCs) is limited due to their injection into harshin vivoenvironments, resulting in the significant loss of their secretory function upon transplantation. A potential strategy for preserving their full therapeutic potential is encapsulation of MSCs in a specialized protective microenvironment, for example hydrogels. However, commonly used injectable hydrogels for cell delivery fail to provide the bio-instructive cues needed to sustain and stimulate cellular therapeutic functions. Here we introduce a customizable collagen I-hyaluronic acid (COL-HA)-based hydrogel platform for the encapsulation of MSCs. Cells encapsulated within COL-HA showed a significant expansion of their secretory profile compared to MSCs cultured in standard (2D) cell culture dishes or encapsulated in other hydrogels. Functionalization of the COL-HA backbone with thiol-modified glycoproteins such as laminin led to further changes in the paracrine profile of MSCs. In depth profiling of more than 250 proteins revealed an expanded secretion profile of proangiogenic, neuroprotective and immunomodulatory paracrine factors in COL-HA-encapsulated MSCs with a predicted augmented pro-angiogenic potential. This was confirmed by increased capillary network formation of endothelial cells stimulated by conditioned media from COL-HA-encapsulated MSCs. Our findings suggest that encapsulation of therapeutic cells in a protective COL-HA hydrogel layer provides the necessary bio-instructive cues to maintain and direct their therapeutic potential. Our customizable hydrogel combines bioactivity and clinically applicable properties such as injectability, on-demand polymerization and tissue-specific elasticity, all features that will support and improve the ability to successfully deliver functional MSCs into patients.
Collapse
Affiliation(s)
- Norman M Drzeniek
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117 Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Andrea Mazzocchi
- Known Medicine Inc., 675 Arapeen Dr, Suite 103A-1, Salt Lake City, UT 84108, United States of America.,Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, United States of America
| | - Stephan Schlickeiser
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117 Berlin, Germany
| | - Steven D Forsythe
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, United States of America
| | - Guido Moll
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117 Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Sven Geißler
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117 Berlin, Germany.,Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Petra Reinke
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117 Berlin, Germany.,Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Manfred Gossen
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Campus Virchow-Klinikum, Augustenburger Platz 1, Berlin 13353, Germany.,Institute of Active Polymers, Helmholtz-Zentrum Hereon, Kantstr. 55, Teltow 14513, Germany
| | - Vijay S Gorantla
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, United States of America
| | - Hans-Dieter Volk
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117 Berlin, Germany
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, United States of America
| |
Collapse
|
50
|
Lu Q, Zhang F, Cheng W, Gao X, Ding Z, Zhang X, Lu Q, Kaplan DL. Nerve Guidance Conduits with Hierarchical Anisotropic Architecture for Peripheral Nerve Regeneration. Adv Healthc Mater 2021; 10:e2100427. [PMID: 34038626 PMCID: PMC8295195 DOI: 10.1002/adhm.202100427] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/15/2021] [Indexed: 12/24/2022]
Abstract
Nerve guidance conduits with multifunctional features could offer microenvironments for improved nerve regeneration and functional recovery. However, the challenge remains to optimize multiple cues in nerve conduit systems due to the interplay of these factors during fabrication. Here, a modular assembly for the fabrication of nerve conduits is utilized to address the goal of incorporating multifunctional guidance cues for nerve regeneration. Silk-based hollow conduits with suitable size and mechanical properties, along with silk nanofiber fillers with tunable hierarchical anisotropic architectures and microporous structures, are developed and assembled into conduits. These conduits supported improves nerve regeneration in terms of cell proliferation (Schwann and PC12 cells) and growth factor secretion (BDNF, brain-derived neurotrophic factor) in vitro, and the in vivo repair and functional recovery of rat sciatic nerve defects. Nerve regeneration using these new conduit designs is comparable to autografts, providing a path towards future clinical impact.
Collapse
Affiliation(s)
- Qingqing Lu
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Feng Zhang
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Weinan Cheng
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, Xiamen, 361000, P. R. China
| | - Xiang Gao
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Zhaozhao Ding
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Xiaoyi Zhang
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|