1
|
Yan S, Lu Y, An C, Hu W, Chen Y, Li Z, Wei W, Chen Z, Zeng X, Xu W, Lv Z, Pan F, Gao W, Wu Y. Biomechanical research using advanced micro-nano devices: In-Vitro cell Characterization focus. J Adv Res 2024:S2090-1232(24)00602-7. [PMID: 39701378 DOI: 10.1016/j.jare.2024.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Cells in the body reside in a dynamic microenvironment subjected to various physical stimuli, where mechanical stimulation plays a crucial role in regulating cellular physiological behaviors and functions. AIM OF REVIEW Investigating the mechanisms and interactions of mechanical transmission is essential for understanding the physiological and functional interplay between cells and physical stimuli. Therefore, establishing an in vitro biomechanical stimulation cell culture system holds significant importance for research related to cellular biomechanics. KEY SCIENTIFIC CONCEPTS OF REVIEW In this review, we primarily focused on various biomechanically relevant cell culture systems and highlighted the advancements and prospects in their preparation processes. Firstly, we discussed the types and characteristics of biomechanics present in the microenvironment within the human body. Subsequently, we introduced the research progress, working principles, preparation processes, potential advantages, applications, and challenges of various biomechanically relevant in vitro cell culture systems. Additionally, we summarized and categorized currently commercialized biomechanically relevant cell culture systems, offering a comprehensive reference for researchers in related fields.
Collapse
Affiliation(s)
- Shiqiang Yan
- Shenzhen Institute of Otolaryngology & Key Laboratory of Otolaryngology, Longgang Otolaryngology Hospital, Shenzhen 518172, Guangdong, China; Center of Cancer Immunology, Shenzhen Institute of Advanced Technology Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Yan Lu
- Department of Otolaryngology Head & Neck Surgery, The First Hospital, Jinzhou Medical University, Jinzhou 121001, Liaoning, China; Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Changming An
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wanglai Hu
- Translational Research Institute, People's Hospital of Zhengzhou University, Academy of Medical Science, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Zhengzhou University, Zhengzhou 450003, Henan, China
| | - Yaofeng Chen
- Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen 518055, Guangdong, China
| | - Ziwen Li
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wenbo Wei
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, Guangdong, China
| | - Zongzheng Chen
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, Guangdong, China
| | - Xianhai Zeng
- Shenzhen Institute of Otolaryngology & Key Laboratory of Otolaryngology, Longgang Otolaryngology Hospital, Shenzhen 518172, Guangdong, China
| | - Wei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan 250022, Shandong, China
| | - Zhenghua Lv
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan 250022, Shandong, China.
| | - Fan Pan
- Center of Cancer Immunology, Shenzhen Institute of Advanced Technology Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China.
| | - Wei Gao
- Shenzhen Institute of Otolaryngology & Key Laboratory of Otolaryngology, Longgang Otolaryngology Hospital, Shenzhen 518172, Guangdong, China.
| | - Yongyan Wu
- Shenzhen Institute of Otolaryngology & Key Laboratory of Otolaryngology, Longgang Otolaryngology Hospital, Shenzhen 518172, Guangdong, China; Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen 518055, Guangdong, China.
| |
Collapse
|
2
|
Fois MG, Tahmasebi Birgani ZN, López-Iglesias C, Knoops K, van Blitterswijk C, Giselbrecht S, Habibović P, Truckenmüller RK. In vitro vascularization of 3D cell aggregates in microwells with integrated vascular beds. Mater Today Bio 2024; 29:101260. [PMID: 39391792 PMCID: PMC11466645 DOI: 10.1016/j.mtbio.2024.101260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/20/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
Most human tissues possess vascular networks supplying oxygen and nutrients. Engineering of functional tissue and organ models or equivalents often require the integration of artificial vascular networks. Several approaches, such as organs on chips and three-dimensional (3D) bioprinting, have been pursued to obtain vasculature and vascularized tissues in vitro. This technical feasibility study proposes a new approach for the in vitro vascularization of 3D microtissues. For this, we thermoform arrays of round-bottom microwells into thin non-porous and porous polymer films/membranes and culture vascular beds on them from which endothelial sprouting occurs in a Matrigel-based 3D extra cellular matrix. We present two possible culture configurations for the microwell-integrated vascular beds. In the first configuration, human umbilical vein endothelial cells (HUVECs) grow on and sprout from the inner wall of the non-porous microwells. In the second one, HUVECs grow on the outer surface of the porous microwells and sprout through the pores toward the inside. These approaches are extended to lymphatic endothelial cells. As a proof of concept, we demonstrate the in vitro vascularization of spheroids from human mesenchymal stem cells and MG-63 human osteosarcoma cells. Our results show the potential of this approach to provide the spheroids with an abundant outer vascular network and the indication of an inner vasculature.
Collapse
Affiliation(s)
- Maria G. Fois
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Zeinab N. Tahmasebi Birgani
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Carmen López-Iglesias
- Microscopy CORE Lab, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
| | - Kèvin Knoops
- Microscopy CORE Lab, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
| | - Clemens van Blitterswijk
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Stefan Giselbrecht
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Pamela Habibović
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Roman K. Truckenmüller
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| |
Collapse
|
3
|
Giacomini F, Rho HS, Eischen‐Loges M, Tahmasebi Birgani Z, van Blitterswijk C, van Griensven M, Giselbrecht S, Habibović P, Truckenmüller R. Enthesitis on Chip - A Model for Studying Acute and Chronic Inflammation of the Enthesis and its Pharmacological Treatment. Adv Healthc Mater 2024; 13:e2401815. [PMID: 39188199 PMCID: PMC11650547 DOI: 10.1002/adhm.202401815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/14/2024] [Indexed: 08/28/2024]
Abstract
Enthesitis, the inflammation of the enthesis, which is the point of attachment of tendons and ligaments to bones, is a common musculoskeletal disease. The inflammation often originates from the fibrocartilage region of the enthesis as a consequence of mechanical overuse or -load and consequently tissue damage. During enthesitis, waves of inflammatory cytokines propagate in(to) the fibrocartilage, resulting in detrimental, heterotopic bone formation. Understanding of human enthesitis and its treatment options is limited, also because of lacking in vitro model systems that can closely mimic the pathophysiology of the enthesis and can be used to develop therapies. In this study, an enthes(it)is-on-chip model is developed. On opposite sides of a porous culture membrane separating the chip's two microfluidic compartments, human mesenchymal stromal cells are selectively differentiated into tenocytes and fibrochondrocytes. By introducing an inflammatory cytokine cocktail into the fibrochondrocyte compartment, key aspects of acute and chronic enthesitis, measured as increased expression of inflammatory markers, can be recapitulated. Upon inducing chronic inflammatory conditions, hydroxyapatite deposition, enhanced osteogenic marker expression and reduced secretion of tissue-related extracellular matrix components are observed. Adding the anti-inflammatory drug celecoxib to the fibrochondrocyte compartment mitigates the inflammatory state, demonstrating the potential of the enthesitis-on-chip model for drug testing.
Collapse
Affiliation(s)
- Francesca Giacomini
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| | - Hoon Suk Rho
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| | - Maria Eischen‐Loges
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
- Department of Cell Biology‐Inspired Tissue EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| | - Zeinab Tahmasebi Birgani
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| | - Clemens van Blitterswijk
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
- Department of Cell Biology‐Inspired Tissue EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| | - Martijn van Griensven
- Department of Cell Biology‐Inspired Tissue EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| | - Stefan Giselbrecht
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| | - Pamela Habibović
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| | - Roman Truckenmüller
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| |
Collapse
|
4
|
Wei K, Roy A, Ejike S, Eiken MK, Plaster EM, Shi A, Shtein M, Loebel C. Magnetoactive, Kirigami-Inspired Hammocks to Probe Lung Epithelial Cell Function. Cell Mol Bioeng 2024; 17:317-327. [PMID: 39513001 PMCID: PMC11538102 DOI: 10.1007/s12195-024-00808-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/15/2024] [Indexed: 11/15/2024] Open
Abstract
Introduction Mechanical forces provide critical biological signals to cells. Within the distal lung, tensile forces act across the basement membrane and epithelial cells atop. Stretching devices have supported studies of mechanical forces in distal lung epithelium to gain mechanistic insights into pulmonary diseases. However, the integration of curvature into devices applying mechanical forces onto lung epithelial cell monolayers has remained challenging. To address this, we developed a hammock-shaped platform that offers desired curvature and mechanical forces to lung epithelial monolayers. Methods We developed hammocks using polyethylene terephthalate (PET)-based membranes and magnetic-particle modified silicone elastomer films within a 48-well plate that mimic the alveolar curvature and tensile forces during breathing. These hammocks were engineered and characterized for mechanical and cell-adhesive properties to facilitate cell culture. Using human small airway epithelial cells (SAECs), we measured monolayer formation and mechanosensing using F-Actin staining and immunofluorescence for cytokeratin to visualize intermediate filaments. Results We demonstrate a multi-functional design that facilitates a range of curvatures along with the incorporation of magnetic elements for dynamic actuation to induce mechanical forces. Using this system, we then showed that SAECs remain viable, proliferate, and form an epithelial cell monolayer across the entire hammock. By further applying mechanical stimulation via magnetic actuation, we observed an increase in proliferation and strengthening of the cytoskeleton, suggesting an increase in mechanosensing. Conclusion This hammock strategy provides an easily accessible and tunable cell culture platform for mimicking distal lung mechanical forces in vitro. We anticipate the promise of this culture platform for mechanistic studies, multi-modal stimulation, and drug or small molecule testing, extendable to other cell types and organ systems. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-024-00808-z.
Collapse
Affiliation(s)
- Katherine Wei
- Materials Science & Engineering, College of Engineering, University of Michigan, Ann Arbor, USA
- School of Dentistry, University of Michigan, Ann Arbor, USA
| | - Avinava Roy
- Materials Science & Engineering, College of Engineering, University of Michigan, Ann Arbor, USA
| | - Sonia Ejike
- School of Dentistry, University of Michigan, Ann Arbor, USA
| | - Madeline K. Eiken
- Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, USA
| | - Eleanor M. Plaster
- Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, USA
| | - Alan Shi
- Materials Science & Engineering, College of Engineering, University of Michigan, Ann Arbor, USA
| | - Max Shtein
- Materials Science & Engineering, College of Engineering, University of Michigan, Ann Arbor, USA
| | - Claudia Loebel
- Materials Science & Engineering, College of Engineering, University of Michigan, Ann Arbor, USA
- School of Dentistry, University of Michigan, Ann Arbor, USA
- Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, USA
| |
Collapse
|
5
|
Miklosic G, Ferguson SJ, D'Este M. Engineering complex tissue-like microenvironments with biomaterials and biofabrication. Trends Biotechnol 2024; 42:1241-1257. [PMID: 38658198 DOI: 10.1016/j.tibtech.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/26/2024]
Abstract
Advances in tissue engineering for both system modeling and organ regeneration depend on embracing and recapitulating the target tissue's functional and structural complexity. Microenvironmental features such as anisotropy, heterogeneity, and other biochemical and mechanical spatiotemporal cues are essential in regulating tissue development and function. Novel biofabrication strategies and innovative biomaterial design have emerged as promising tools to better reproduce such features. These facilitate a transition towards high-fidelity biomimetic structures, offering opportunities for a deeper understanding of tissue function and the development of superior therapies. In this review, we explore some of the key structural and compositional aspects of tissues, lay out how to achieve similar outcomes with current fabrication strategies, and identify the main challenges and promising avenues for future research.
Collapse
Affiliation(s)
- Gregor Miklosic
- AO Research Institute Davos, Davos, Switzerland; Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
6
|
Calzuola ST, Newman G, Feaugas T, Perrault CM, Blondé JB, Roy E, Porrini C, Stojanovic GM, Vidic J. Membrane-based microfluidic systems for medical and biological applications. LAB ON A CHIP 2024; 24:3579-3603. [PMID: 38954466 DOI: 10.1039/d4lc00251b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Microfluidic devices with integrated membranes that enable control of mass transport in constrained environments have shown considerable growth over the last decade. Membranes are a key component in several industrial processes such as chemical, pharmaceutical, biotechnological, food, and metallurgy separation processes as well as waste management applications, allowing for modular and compact systems. Moreover, the miniaturization of a process through microfluidic devices leads to process intensification together with reagents, waste and cost reduction, and energy and space savings. The combination of membrane technology and microfluidic devices allows therefore magnification of their respective advantages, providing more valuable solutions not only for industrial processes but also for reproducing biological processes. This review focuses on membrane-based microfluidic devices for biomedical science with an emphasis on microfluidic artificial organs and organs-on-chip. We provide the basic concepts of membrane technology and the laws governing mass transport. The role of the membrane in biomedical microfluidic devices, along with the required properties, available materials, and current challenges are summarized. We believe that the present review may be a starting point and a resource for researchers who aim to replicate a biological phenomenon on-chip by applying membrane technology, for moving forward the biomedical applications.
Collapse
Affiliation(s)
- Silvia Tea Calzuola
- UMR7646 Laboratoire d'hydrodynamique (LadHyX), Ecole Polytechnique, Palaiseau, France.
- Eden Tech, Paris, France
| | - Gwenyth Newman
- Eden Tech, Paris, France
- Department of Medicine and Surgery, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Thomas Feaugas
- Eden Tech, Paris, France
- Department of Medicine and Surgery, Università degli Studi di Milano-Bicocca, Milan, Italy
| | | | | | | | | | - Goran M Stojanovic
- Faculty of Technical Sciences, University of Novi Sad, T. D. Obradovića 6, 21000 Novi Sad, Serbia
| | - Jasmina Vidic
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
7
|
Jiang W, Yao X, Zhong J, Ouyang Z, Shen J, Qiu Y, Zeng Y. Spatial confinement modulates endothelial cell behavior and traction force in 3D hydrogel microgrooves. Mater Today Bio 2024; 26:101074. [PMID: 38736613 PMCID: PMC11081801 DOI: 10.1016/j.mtbio.2024.101074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/12/2024] [Accepted: 04/25/2024] [Indexed: 05/14/2024] Open
Abstract
The mechanical environment of vascular endothelial cells (ECs) encompasses a wide range of curvatures due to variations in blood vessel diameters. Integrins, key mediators of cell-matrix interactions, establish connections between the extracellular matrix and the actin cytoskeleton, influencing diverse cellular behaviors. In this study, we explored the impact of spatial confinement on human umbilical vein ECs (HUVECs) cultured within three-dimensional hydrogel microgrooves of varying curvatures and the underlying role of integrins in mediating cellular responses. Employing maskless lithography, we successfully fabricated precise and wall curvatures-controlled hydrogel microgrooves, conferring spatial constraints on the cells. Our investigations revealed substantial alterations in HUVEC behavior within the hydrogel microgrooves with varying sidewall curvatures, marked by reduced cell size, enhanced orientation, and increased apoptosis. Interestingly, microgroove curvature emerged as a crucial factor influencing cell orientation and apoptosis, with rectangular microgrooves eliciting distinct changes in cell orientation, while ring-form microgrooves exhibited higher apoptosis rates. The side-wall effect in the 20 μm region near the microgroove wall had the greatest influence on cell orientation and apoptosis. HUVECs within the microgrooves exhibited elevated integrin expression, and inhibition of αV-integrin by cilengitide significantly curtailed cell apoptosis without affecting proliferation. Additionally, integrin-mediated cell traction force closely correlated with the spatial confinement effect. Cilengitide not only reduced integrin and focal adhesion expression but also attenuated cell traction force and cytoskeletal actin filament alignment. Overall, our findings elucidate the spatial confinement of ECs in hydrogel microgrooves and underscores the pivotal role of integrins, particularly αV-integrin, in mediating cell traction force and apoptosis within this microenvironment.
Collapse
Affiliation(s)
- Wenli Jiang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Xinghong Yao
- Department of Radiotherapy, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, PR China
| | - Jian Zhong
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Zhi Ouyang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Junyi Shen
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Yan Qiu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Ye Zeng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, PR China
| |
Collapse
|
8
|
Sousa de Almeida M, Lee A, Itel F, Maniura-Weber K, Petri-Fink A, Rothen-Rutishauser B. The Effect of Substrate Properties on Cellular Behavior and Nanoparticle Uptake in Human Fibroblasts and Epithelial Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:342. [PMID: 38392715 PMCID: PMC10892529 DOI: 10.3390/nano14040342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
The delivery of nanomedicines into cells holds enormous therapeutic potential; however little is known regarding how the extracellular matrix (ECM) can influence cell-nanoparticle (NP) interactions. Changes in ECM organization and composition occur in several pathophysiological states, including fibrosis and tumorigenesis, and may contribute to disease progression. We show that the physical characteristics of cellular substrates, that more closely resemble the ECM in vivo, can influence cell behavior and the subsequent uptake of NPs. Electrospinning was used to create two different substrates made of soft polyurethane (PU) with aligned and non-aligned nanofibers to recapitulate the ECM in two different states. To investigate the impact of cell-substrate interaction, A549 lung epithelial cells and MRC-5 lung fibroblasts were cultured on soft PU membranes with different alignments and compared against stiff tissue culture plastic (TCP)/glass. Both cell types could attach and grow on both PU membranes with no signs of cytotoxicity but with increased cytokine release compared with cells on the TCP. The uptake of silica NPs increased more than three-fold in fibroblasts but not in epithelial cells cultured on both membranes. This study demonstrates that cell-matrix interaction is substrate and cell-type dependent and highlights the importance of considering the ECM and tissue mechanical properties when designing NPs for effective cell targeting and treatment.
Collapse
Affiliation(s)
- Mauro Sousa de Almeida
- Adolphe Merkle Institute and National Center of Competence in Research Bio-Inspired Materials, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland; (M.S.d.A.); (A.L.); (A.P.-F.)
| | - Aaron Lee
- Adolphe Merkle Institute and National Center of Competence in Research Bio-Inspired Materials, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland; (M.S.d.A.); (A.L.); (A.P.-F.)
- Department of Bioengineering, Imperial College London, South Kensington, London SW7 2BP, UK
| | - Fabian Itel
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland;
| | - Katharina Maniura-Weber
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biointerfaces, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland;
| | - Alke Petri-Fink
- Adolphe Merkle Institute and National Center of Competence in Research Bio-Inspired Materials, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland; (M.S.d.A.); (A.L.); (A.P.-F.)
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| | - Barbara Rothen-Rutishauser
- Adolphe Merkle Institute and National Center of Competence in Research Bio-Inspired Materials, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland; (M.S.d.A.); (A.L.); (A.P.-F.)
| |
Collapse
|
9
|
She W, Shen C, Ying Y, Meng Q. Fabrication of sac-like hydrogel membranes for replicating curved tissue barriers on chips. LAB ON A CHIP 2023; 24:85-96. [PMID: 38018218 DOI: 10.1039/d3lc00807j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Current organ-on-a-chip (OOC) systems cannot mimic in vivo tissue barriers that feature curved geometries and rhythmic movement. This is due to the lack of a relevant membrane that can reproduce the natural biochemical and physical properties of a basement membrane, especially the characteristic sac-like structure possessed by multiple tissue barriers. To address this challenge, a sac-like hydrogel membrane is fabricated here using a one-step simple methodology inspired by soap bubble formation. Di-acrylated Pluronic® F127 (F127-DA) is a hydrogel that exhibits excellent mechanical properties, stably withstanding rhythmic mechanical stretching and fluid flow for at least 24 h. Using this hydrogel to make a membrane, a complex lung-on-a-chip device is successfully constructed, effectively replicating the alveolar-capillary barrier and demonstrating cellular function under physiological respiratory conditions. This membrane offers a crucial platform for replicating sac-like tissue barriers.
Collapse
Affiliation(s)
- Wenqi She
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang 310027, China.
| | - Chong Shen
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang 310027, China.
| | - Yinghua Ying
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Qin Meng
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang 310027, China.
| |
Collapse
|
10
|
Ahmed DW, Eiken MK, DePalma SJ, Helms AS, Zemans RL, Spence JR, Baker BM, Loebel C. Integrating mechanical cues with engineered platforms to explore cardiopulmonary development and disease. iScience 2023; 26:108472. [PMID: 38077130 PMCID: PMC10698280 DOI: 10.1016/j.isci.2023.108472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024] Open
Abstract
Mechanical forces provide critical biological signals to cells during healthy and aberrant organ development as well as during disease processes in adults. Within the cardiopulmonary system, mechanical forces, such as shear, compressive, and tensile forces, act across various length scales, and dysregulated forces are often a leading cause of disease initiation and progression such as in bronchopulmonary dysplasia and cardiomyopathies. Engineered in vitro models have supported studies of mechanical forces in a number of tissue and disease-specific contexts, thus enabling new mechanistic insights into cardiopulmonary development and disease. This review first provides fundamental examples where mechanical forces operate at multiple length scales to ensure precise lung and heart function. Next, we survey recent engineering platforms and tools that have provided new means to probe and modulate mechanical forces across in vitro and in vivo settings. Finally, the potential for interdisciplinary collaborations to inform novel therapeutic approaches for a number of cardiopulmonary diseases are discussed.
Collapse
Affiliation(s)
- Donia W. Ahmed
- Department of Biomedical Engineering, University of Michigan, Lurie Biomedical Engineering Building, 1101 Beal Avenue, Ann Arbor, MI 48109, USA
| | - Madeline K. Eiken
- Department of Biomedical Engineering, University of Michigan, Lurie Biomedical Engineering Building, 1101 Beal Avenue, Ann Arbor, MI 48109, USA
| | - Samuel J. DePalma
- Department of Biomedical Engineering, University of Michigan, Lurie Biomedical Engineering Building, 1101 Beal Avenue, Ann Arbor, MI 48109, USA
| | - Adam S. Helms
- Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rachel L. Zemans
- Department of Internal Medicine, Division of Pulmonary Sciences and Critical Care Medicine – Gastroenterology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Jason R. Spence
- Department of Internal Medicine – Gastroenterology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Brendon M. Baker
- Department of Biomedical Engineering, University of Michigan, Lurie Biomedical Engineering Building, 1101 Beal Avenue, Ann Arbor, MI 48109, USA
| | - Claudia Loebel
- Department of Biomedical Engineering, University of Michigan, Lurie Biomedical Engineering Building, 1101 Beal Avenue, Ann Arbor, MI 48109, USA
- Department of Materials Science & Engineering, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| |
Collapse
|
11
|
Jain P, Rauer SB, Felder D, Linkhorst J, Möller M, Wessling M, Singh S. Peptide-Functionalized Electrospun Meshes for the Physiological Cultivation of Pulmonary Alveolar Capillary Barrier Models in a 3D-Printed Micro-Bioreactor. ACS Biomater Sci Eng 2023; 9:4878-4892. [PMID: 37402206 PMCID: PMC10428094 DOI: 10.1021/acsbiomaterials.3c00047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/22/2023] [Indexed: 07/06/2023]
Abstract
In vitro environments that realize biomimetic scaffolds, cellular composition, physiological shear, and strain are integral to developing tissue models of organ-specific functions. In this study, an in vitro pulmonary alveolar capillary barrier model is developed that closely mimics physiological functions by combining a synthetic biofunctionalized nanofibrous membrane system with a novel three-dimensional (3D)-printed bioreactor. The fiber meshes are fabricated from a mixture of polycaprolactone (PCL), 6-armed star-shaped isocyanate-terminated poly(ethylene glycol) (sPEG-NCO), and Arg-Gly-Asp (RGD) peptides by a one-step electrospinning process that offers full control over the fiber surface chemistry. The tunable meshes are mounted within the bioreactor where they support the co-cultivation of pulmonary epithelial (NCI-H441) and endothelial (HPMEC) cell monolayers at air-liquid interface under controlled stimulation by fluid shear stress and cyclic distention. This stimulation, which closely mimics blood circulation and breathing motion, is observed to impact alveolar endothelial cytoskeleton arrangement and improve epithelial tight junction formation as well as surfactant protein B production compared to static models. The results highlight the potential of PCL-sPEG-NCO:RGD nanofibrous scaffolds in combination with a 3D-printed bioreactor system as a platform to reconstruct and enhance in vitro models to bear a close resemblance to in vivo tissues.
Collapse
Affiliation(s)
- Puja Jain
- DWI—Leibniz
Institute for Interactive Materials, RWTH
Aachen University, 52074 Aachen, Germany
| | - Sebastian B. Rauer
- Institute
for Chemical Process Engineering, RWTH Aachen
University, 52074 Aachen, Germany
| | - Daniel Felder
- DWI—Leibniz
Institute for Interactive Materials, RWTH
Aachen University, 52074 Aachen, Germany
| | - John Linkhorst
- Institute
for Chemical Process Engineering, RWTH Aachen
University, 52074 Aachen, Germany
| | - Martin Möller
- DWI—Leibniz
Institute for Interactive Materials, RWTH
Aachen University, 52074 Aachen, Germany
| | - Matthias Wessling
- DWI—Leibniz
Institute for Interactive Materials, RWTH
Aachen University, 52074 Aachen, Germany
- Institute
for Chemical Process Engineering, RWTH Aachen
University, 52074 Aachen, Germany
| | - Smriti Singh
- Max
Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
| |
Collapse
|
12
|
Trombino S, Sole R, Curcio F, Cassano R. Polymeric Based Hydrogel Membranes for Biomedical Applications. MEMBRANES 2023; 13:576. [PMID: 37367780 DOI: 10.3390/membranes13060576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/02/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023]
Abstract
The development of biomedical applications is a transdisciplinary field that in recent years has involved researchers from chemistry, pharmacy, medicine, biology, biophysics, and biomechanical engineering. The fabrication of biomedical devices requires the use of biocompatible materials that do not damage living tissues and have some biomechanical characteristics. The use of polymeric membranes, as materials meeting the above-mentioned requirements, has become increasingly popular in recent years, with outstanding results in tissue engineering, for regeneration and replenishment of tissues constituting internal organs, in wound healing dressings, and in the realization of systems for diagnosis and therapy, through the controlled release of active substances. The biomedical application of hydrogel membranes has had little uptake in the past due to the toxicity of cross-linking agents and to the existing limitations regarding gelation under physiological conditions, but now it is proving to be a very promising field This review presents the important technological innovations that the use of membrane hydrogels has promoted, enabling the resolution of recurrent clinical problems, such as post-transplant rejection crises, haemorrhagic crises due to the adhesion of proteins, bacteria, and platelets on biomedical devices in contact with blood, and poor compliance of patients undergoing long-term drug therapies.
Collapse
Affiliation(s)
- Sonia Trombino
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Arcavacata, 87036 Rende, Italy
| | - Roberta Sole
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Arcavacata, 87036 Rende, Italy
| | - Federica Curcio
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Arcavacata, 87036 Rende, Italy
| | - Roberta Cassano
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Arcavacata, 87036 Rende, Italy
| |
Collapse
|
13
|
Kim R. Advanced Organotypic In Vitro Model Systems for Host-Microbial Coculture. BIOCHIP JOURNAL 2023; 17:1-27. [PMID: 37363268 PMCID: PMC10201494 DOI: 10.1007/s13206-023-00103-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 06/28/2023]
Abstract
In vitro model systems have been advanced to recapitulate important physiological features of the target organ in vivo more closely than the conventional cell line cultures on a petri dish. The advanced organotypic model systems can be used as a complementary or alternative tool for various testing and screening. Numerous data from germ-free animal studies and genome sequencings of clinical samples indicate that human microbiota is an essential part of the human body, but current in vitro model systems rarely include them, which can be one of the reasons for the discrepancy in the tissue phenotypes and outcome of therapeutic intervention between in vivo and in vitro tissues. A coculture model system with appropriate microbes and host cells may have great potential to bridge the gap between the in vitro model and the in vivo counterpart. However, successfully integrating two species in one system introduces new variables to consider and poses new challenges to overcome. This review aims to provide perspectives on the important factors that should be considered for developing organotypic bacterial coculture models. Recent advances in various organotypic bacterial coculture models are highlighted. Finally, challenges and opportunities in developing organotypic microbial coculture models are also discussed.
Collapse
Affiliation(s)
- Raehyun Kim
- Department of Biological and Chemical Engineering, Hongik University, Sejong, Republic of Korea
| |
Collapse
|
14
|
Polymer film-based microwell array platform for long-term culture and research of human bronchial organoids. Mater Today Bio 2023; 19:100603. [PMID: 37009070 PMCID: PMC10060184 DOI: 10.1016/j.mtbio.2023.100603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/13/2023] [Accepted: 03/06/2023] [Indexed: 03/15/2023] Open
Abstract
The culture of lung organoids relies on drops of basement membrane matrices. This comes with limitations, for example, concerning the microscopic monitoring and imaging of the organoids in the drops. Also, the culture technique is not easily compatible with micromanipulations of the organoids. In this study, we investigated the feasibility of the culture of human bronchial organoids in defined x-, y- and z-positions in a polymer film-based microwell array platform. The circular microwells have thin round/U-bottoms. For this, single cells are first precultured in drops of basement membrane extract (BME). After they form cell clusters or premature organoids, the preformed structures are then transferred into the microwells in a solution of 50% BME in medium. There, the structures can be cultured toward differentiated and mature organoids for several weeks. The organoids were characterized by bright-field microscopy for size growth and luminal fusion over time, by scanning electron microscopy for overall morphology, by transmission electron microscopy for the existence of microvilli and cilia, by video microscopy for beating cilia and swirling fluid, by live-cell imaging, by fluorescence microscopy for the expression of cell-specific markers and for proliferating and apoptotic cells, and by ATP measurement for extended cell viability. Finally, we demonstrated the eased micromanipulation of the organoids in the microwells by the example of their microinjection.
Collapse
|
15
|
Radu ER, Voicu SI, Thakur VK. Polymeric Membranes for Biomedical Applications. Polymers (Basel) 2023; 15:polym15030619. [PMID: 36771921 PMCID: PMC9919920 DOI: 10.3390/polym15030619] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
Polymeric membranes are selective materials used in a wide range of applications that require separation processes, from water filtration and purification to industrial separations. Because of these materials' remarkable properties, namely, selectivity, membranes are also used in a wide range of biomedical applications that require separations. Considering the fact that most organs (apart from the heart and brain) have separation processes associated with the physiological function (kidneys, lungs, intestines, stomach, etc.), technological solutions have been developed to replace the function of these organs with the help of polymer membranes. This review presents the main biomedical applications of polymer membranes, such as hemodialysis (for chronic kidney disease), membrane-based artificial oxygenators (for artificial lung), artificial liver, artificial pancreas, and membranes for osseointegration and drug delivery systems based on membranes.
Collapse
Affiliation(s)
- Elena Ruxandra Radu
- Department of Analytical Chemistry and Environmental Engineering, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Advanced Polymers Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Stefan Ioan Voicu
- Department of Analytical Chemistry and Environmental Engineering, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Advanced Polymers Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Correspondence: (S.I.V.); (V.K.T.)
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, UK
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
- Centre for Research & Development, Chandigarh University, Mohali 140413, Punjab, India
- Correspondence: (S.I.V.); (V.K.T.)
| |
Collapse
|
16
|
De Bartolo L, Piscioneri A, Stamatialis D, Lin FH. Editorial: Bioengineering systems for therapeutic and in vitro platforms. Front Bioeng Biotechnol 2022; 10:1090317. [DOI: 10.3389/fbioe.2022.1090317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 11/11/2022] [Indexed: 11/23/2022] Open
|
17
|
Maibohm C, Saldana-Lopez A, Silvestre OF, Nieder JB. 3D Polymer Architectures for the Identification of Optimal Dimensions for Cellular Growth of 3D Cellular Models. Polymers (Basel) 2022; 14:4168. [PMID: 36236117 PMCID: PMC9572445 DOI: 10.3390/polym14194168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 11/06/2022] Open
Abstract
Organ-on-chips and scaffolds for tissue engineering are vital assay tools for pre-clinical testing and prediction of human response to drugs and toxins, while providing an ethical sound replacement for animal testing. A success criterion for these models is the ability to have structural parameters for optimized performance. Here we show that two-photon polymerization fabrication can create 3D test platforms, where scaffold parameters can be directly analyzed by their effects on cell growth and movement. We design and fabricate a 3D grid structure, consisting of wall structures with niches of various dimensions for probing cell attachment and movement, while providing easy access for fluorescence imaging. The 3D structures are fabricated from bio-compatible polymer SZ2080 and subsequently seeded with A549 lung epithelia cells. The seeded structures are imaged with confocal microscopy, where spectral imaging with linear unmixing is used to separate auto-fluorescence scaffold contribution from the cell fluorescence. The volume of cellular material present in different sections of the structures is analyzed, to study the influence of structural parameters on cell distribution. Furthermore, time-lapse studies are performed to map the relation between scaffold parameters and cell movement. In the future, this kind of differentiated 3D growth platform, could be applied for optimized culture growth, cell differentiation, and advanced cell therapies.
Collapse
Affiliation(s)
- Christian Maibohm
- INL—International Iberian Nanotechnology Laboratory, Ultrafast Bio- and Nanophotonics Group, Headquarters at Av. Mestre Jose Veiga, 4715-330 Braga, Portugal
| | | | | | - Jana B. Nieder
- INL—International Iberian Nanotechnology Laboratory, Ultrafast Bio- and Nanophotonics Group, Headquarters at Av. Mestre Jose Veiga, 4715-330 Braga, Portugal
| |
Collapse
|
18
|
Baptista D, Moreira Teixeira L, Barata D, Tahmasebi Birgani Z, King J, van Riet S, Pasman T, Poot AA, Stamatialis D, Rottier RJ, Hiemstra PS, Carlier A, van Blitterswijk C, Habibović P, Giselbrecht S, Truckenmüller R. 3D Lung-on-Chip Model Based on Biomimetically Microcurved Culture Membranes. ACS Biomater Sci Eng 2022; 8:2684-2699. [PMID: 35502997 PMCID: PMC9198974 DOI: 10.1021/acsbiomaterials.1c01463] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
A comparatively straightforward
approach to accomplish more physiological
realism in organ-on-a-chip (OoC) models is through substrate geometry.
There is increasing evidence that the strongly, microscale curved
surfaces that epithelial or endothelial cells experience when lining
small body lumens, such as the alveoli or blood vessels, impact their
behavior. However, the most commonly used cell culture substrates
for modeling of these human tissue barriers in OoCs, ion track-etched
porous membranes, provide only
flat surfaces. Here, we propose a more realistic culture environment
for alveolar cells based on biomimetically microcurved track-etched
membranes. They recreate the mainly spherical geometry of the cells’
native microenvironment. In this feasibility study, the membranes
were given the shape of hexagonally arrayed hemispherical microwells
by an innovative combination of three-dimensional (3D) microfilm (thermo)forming
and ion track technology. Integrated in microfluidic chips, they separated
a top from a bottom cell culture chamber. The microcurved membranes
were seeded by infusion with primary human alveolar epithelial cells.
Despite the pronounced topology, the cells fully lined the alveoli-like
microwell structures on the membranes’ top side. The confluent
curved epithelial cell monolayers could be cultured successfully at
the air−liquid interface for 14 days. Similarly, the top and
bottom sides of the microcurved membranes were seeded with cells from
the Calu-3 lung epithelial cell line and human lung microvascular
endothelial cells, respectively. Thereby, the latter lined the interalveolar
septum-like interspace between the microwells in a network-type fashion,
as in the natural counterpart. The coculture was maintained for 11
days. The presented 3D lung-on-a-chip model might set the stage for
other (micro)anatomically inspired membrane-based OoCs in the future.
Collapse
Affiliation(s)
- Danielle Baptista
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Liliana Moreira Teixeira
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands.,Department of Developmental BioEngineering, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - David Barata
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands.,Instituto de Medicina Molecular, Faculty of Medicine, University of Lisbon, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
| | - Zeinab Tahmasebi Birgani
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Jasia King
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Sander van Riet
- Department of Pulmonology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Thijs Pasman
- Department of Biomaterials Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - André A Poot
- Department of Biomaterials Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Dimitrios Stamatialis
- Department of Biomaterials Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Robbert J Rottier
- Department of Pediatric Surgery/Cell Biology, Erasmus (University) Medical Center Rotterdam - Sophia Children's Hospital, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Aurélie Carlier
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Clemens van Blitterswijk
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Pamela Habibović
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Stefan Giselbrecht
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Roman Truckenmüller
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
19
|
Liu T, Zhou C, Shao Y, Xiong Z, Weng D, Pang Y, Sun W. Construction and Application of in vitro Alveolar Models Based on 3D Printing Technology. CHINESE JOURNAL OF MECHANICAL ENGINEERING: ADDITIVE MANUFACTURING FRONTIERS 2022. [PMCID: PMC9213023 DOI: 10.1016/j.cjmeam.2022.100025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Increasing lung diseases, mutating coronaviruses, and the development of new compounds urgently require biomimetic in vitro lung models for lung pathology, toxicology, and pharmacology. The current construction strategies for lung models mainly include animal models, 2D cell culture, lung-on-a-chip, and lung organoids. However, current models face difficulties in reproducing in vivo-like alveolar size and vesicle-like structures, and are unable to contain multiple cell types. In this study, a strategy for constructing alveolar models based on degradable hydrogel microspheres is proposed. Hydrogel microspheres, 200–250 µm in diameter, were prepared using a self-developed printing technique driven by alternating viscous and inertial forces. Microcapsules were further constructed using a coacervation-based layer-by-layer technique and core liquefaction. Three types of cells were inoculated and co-cultured on hydrogel capsules based on optimized microcapsule surface treatment strategies. Finally, an in vitro three-dimensional endothelial alveolar model with a multicellular composition and vesicle-like structure with a diameter of approximately 230 µm was successfully constructed. Cells in the constructed alveolar model maintained a high survival rate. The LD50 values of glutaraldehyde based on the constructed models were in good agreement with the reference values, validating the potential of the model for future toxicant and drug detection.
Collapse
|
20
|
Dong J, Yang Y, Zhu Y. Recent advances in the understanding of alveolar flow. BIOMICROFLUIDICS 2022; 16:021502. [PMID: 35464135 PMCID: PMC9010052 DOI: 10.1063/5.0084415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Understanding the dynamics of airflow in alveoli and its effect on the behavior of particle transport and deposition is important for understanding lung functions and the cause of many lung diseases. The studies on these areas have drawn substantial attention over the last few decades. This Review discusses the recent progress in the investigation of behavior of airflow in alveoli. The information obtained from studies on the structure of the lung airway tree and alveolar topology is provided first. The current research progress on the modeling of alveoli is then reviewed. The alveolar cell parameters at different generation of branches, issues to model real alveolar flow, and the current numerical and experimental approaches are discussed. The findings on flow behavior, in particular, flow patterns and the mechanism of chaotic flow generation in the alveoli are reviewed next. The different flow patterns under different geometrical and flow conditions are discussed. Finally, developments on microfluidic devices such as lung-on-a-chip devices are reviewed. The issues of current devices are discussed.
Collapse
Affiliation(s)
| | | | - Yonggang Zhu
- Author to whom correspondence should be addressed:
| |
Collapse
|
21
|
Youn J, Hong H, Shin W, Kim D, Kim HJ, Kim DS. Thin and stretchable extracellular matrix (ECM) membrane reinforced by nanofiber scaffolds for developing in vitro barrier models. Biofabrication 2022; 14. [DOI: 10.1088/1758-5090/ac4dd7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/21/2022] [Indexed: 11/11/2022]
Abstract
Abstract
An extracellular matrix (ECM) membrane made up of ECM hydrogels has great potentials to develop a physiologically relevant organ-on-a-chip because of its biochemical and biophysical similarity to in vivo basement membranes (BMs). However, the limited mechanical stability of the ECM hydrogels makes it difficult to utilize the ECM membrane in long-term and dynamic cell/tissue cultures. This study proposes an ultra-thin but robust and transparent ECM membrane reinforced with silk fibroin (SF)/polycaprolactone (PCL) nanofibers, which is achieved by in situ self-assembly throughout a freestanding SF/PCL nanofiber scaffold. The SF/PCL nanofiber-reinforced ECM (NaRE) membrane shows biophysical characteristics reminiscent of native BMs, including small thickness (< 5 μm), high permeability (< 9 × 10−5 cm s-1), and nanofibrillar architecture (~10 to 100 nm). With the BM-like characteristics, the nanofiber reinforcement ensured that the NaRE membrane stably supported the construction of various types of in vitro barrier models, from epithelial or endothelial barrier models to complex co-culture models, even over two weeks of cell culture periods. Furthermore, the stretchability of the NaRE membrane allowed emulating the native organ-like cyclic stretching motions (10 to 15%) and was demonstrated to manipulate the cell and tissue-level functions of the in vitro barrier model.
Collapse
|
22
|
Metz JK, Hittinger M, Lehr CM. In vitro tools for orally inhaled drug products-state of the art for their application in pharmaceutical research and industry and regulatory challenges. IN VITRO MODELS 2021; 1:29-40. [PMID: 38624975 PMCID: PMC8688684 DOI: 10.1007/s44164-021-00003-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/02/2021] [Accepted: 09/26/2021] [Indexed: 11/25/2022]
Abstract
The drug development process is a lengthy and expensive challenge for all involved players. Experience with the COVID-19 pandemic underlines the need for a rapid and effective approval for treatment options. As essential prerequisites for successful drug approval, a combination of high-quality studies and reliable research must be included. To this day, mainly in vivo data are requested and collected for assessing safety and efficacy and are therefore decisive for the pre-clinical evaluation of the respective drug. This review aims to summarize the current state of the art for safety and efficacy studies in pharmaceutical research and industry to address the relevant regulatory challenges and to provide an outlook on implementing more in vitro methods as alternative to animal testing. While the public demand for alternative methods is becoming louder, first examples have meanwhile found acceptance in relevant guidelines, e.g. the OECD guidelines for skin sensitizer. Besides ethically driven developments, also the rather low throughput and relatively high costs of animal experiments are forcing the industry towards the implementation of alternative methods. In this context, the development of orally inhaled drug products is particularly challenging due to the complexity of the lung as biological barrier and route of administration. The replacement of animal experiments with focus on the lungs requires special designed tools to achieve predictive data. New in vitro test systems of increasing complexity are presented in this review. Limits and advantages are discussed to provide some perspective for a future in vitro testing strategy for orally inhaled drug products. Graphical abstract
Collapse
Affiliation(s)
- Julia Katharina Metz
- Department of Drug Delivery, PharmBioTec Research & Development GmbH, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), 66123 Saarbrücken, Germany
| | - Marius Hittinger
- Department of Drug Delivery, PharmBioTec Research & Development GmbH, 66123 Saarbrücken, Germany
| | - Claus-Michael Lehr
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), 66123 Saarbrücken, Germany
| |
Collapse
|
23
|
Logan Howard R, Wang Y, Allbritton NL. Use of liquid lithography to form in vitro intestinal crypts with varying microcurvature surrounding the stem cell niche. JOURNAL OF MICROMECHANICS AND MICROENGINEERING : STRUCTURES, DEVICES, AND SYSTEMS 2021; 31:125006. [PMID: 35241878 PMCID: PMC8887876 DOI: 10.1088/1361-6439/ac2d9c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
BACKGROUND AND AIMS The role of the crypt microarchitecture and surrounding tissue curvature on intestinal stem/proliferative cell physiology is unknown. The utility of liquid lithography in creating polydimethylsiloxane (PDMS) micropillar stamps with controlled tip curvature was assessed. Using these stamps, the impact of microcurvature at the crypt base on intestinal cell and cytoskeletal behavior was studied. METHODS An SU-8 master mold as a support, polyols of varying surface energies as sacrificial liquids, and liquid PDMS as the solidifiable material were combined using liquid lithography to form PDMS micropillar arrays. Vapor phase deposition of organosilane onto the master mold was used to modify the surface energy of the master mold to shape the micropillar tips. Collagen was molded using the micropillar arrays forming a scaffold for culture of human primary colonic epithelial cells. Cell proliferation and cytoskeletal properties were assessed using fluorescent stains. RESULTS Liquid lithography using low surface energy polyols (<55 dynes/cm) generated convex-tipped PDMS micropillars, while polyols with higher surface energies (>55 dynes/cm) yielded concave-tipped PDMS micropillars. Gradients of octyltrichlorosilane deposition across a master mold with an array of microwells yielded a PDMS micropillar array with a range of tip curvatures. Human primary colonic epithelial cells cultured on micropillar-molded collagen scaffolds demonstrated a stem/proliferative cell compartment at the crypt base. Crypts with a convex base demonstrated significantly lower cell proliferation at the crypt base than that of cells in crypts with either flat or concave bases. Crypts with a convex base also displayed higher levels of G-actin activity compared to that of crypts with flat or concave bases. CONCLUSIONS Liquid lithography enabled creation of arrays of in vitro colonic crypts with programmable curvature. Primary cells at the crypt base sensed and responded to surface curvature by altering their proliferation and cytoskeletal properties.
Collapse
Affiliation(s)
- R Logan Howard
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Cystic Fibrosis and Pulmonary Diseases Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Yuli Wang
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Nancy L Allbritton
- Department of Bioengineering, University of Washington, Seattle, Washington
| |
Collapse
|
24
|
Nof E, Artzy‐Schnirman A, Bhardwaj S, Sabatan H, Waisman D, Hochwald O, Gruber M, Borenstein‐Levin L, Sznitman J. Ventilation‐induced epithelial injury drives biological onset of lung trauma in vitro and is mitigated with prophylactic anti‐inflammatory therapeutics. Bioeng Transl Med 2021; 7:e10271. [PMID: 35600654 PMCID: PMC9115701 DOI: 10.1002/btm2.10271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/27/2021] [Accepted: 11/08/2021] [Indexed: 01/25/2023] Open
Abstract
Mortality rates among patients suffering from acute respiratory failure remain perplexingly high despite the maintenance of blood oxygen homeostasis during ventilatory support. The biotrauma hypothesis advocates that mechanical forces from invasive ventilation trigger immunological mediators that spread systemically. Yet, how these forces elicit an immune response remains unclear. Here, a biomimetic in vitro three‐dimensional (3D) upper airways model allows to recapitulate lung injury and immune responses induced during invasive mechanical ventilation in neonates. Under such ventilatory support, flow‐induced stresses injure the bronchial epithelium of the intubated airways model and directly modulate epithelial cell inflammatory cytokine secretion associated with pulmonary injury. Fluorescence microscopy and biochemical analyses reveal site‐specific susceptibility to epithelial erosion in airways from jet‐flow impaction and are linked to increases in cell apoptosis and modulated secretions of cytokines IL‐6, ‐8, and ‐10. In an effort to mitigate the onset of biotrauma, prophylactic pharmacological treatment with Montelukast, a leukotriene receptor antagonist, reduces apoptosis and pro‐inflammatory signaling during invasive ventilation of the in vitro model. This 3D airway platform points to a previously overlooked origin of lung injury and showcases translational opportunities in preclinical pulmonary research toward protective therapies and improved protocols for patient care.
Collapse
Affiliation(s)
- Eliram Nof
- Faculty of Biomedical Engineering Technion ‐ Israel Institute of Technology Haifa Israel
| | - Arbel Artzy‐Schnirman
- Faculty of Biomedical Engineering Technion ‐ Israel Institute of Technology Haifa Israel
| | - Saurabh Bhardwaj
- Faculty of Biomedical Engineering Technion ‐ Israel Institute of Technology Haifa Israel
| | - Hadas Sabatan
- Faculty of Biomedical Engineering Technion ‐ Israel Institute of Technology Haifa Israel
| | - Dan Waisman
- Faculty of Medicine Technion ‐ Israel Institute of Technology Haifa Israel
- Department of Neonatology Carmel Medical Center Haifa Israel
| | - Ori Hochwald
- Faculty of Medicine Technion ‐ Israel Institute of Technology Haifa Israel
- Department of Neonatology Ruth Rappaport Children's Hospital, Rambam Healthcare Haifa Israel
| | - Maayan Gruber
- Azrieli Faculty of Medicine Bar‐Ilan University Safed Israel
- Department of Otolaryngology‐Head and Neck Surgery Galilee Medical Center Nahariya Israel
| | - Liron Borenstein‐Levin
- Faculty of Medicine Technion ‐ Israel Institute of Technology Haifa Israel
- Department of Neonatology Ruth Rappaport Children's Hospital, Rambam Healthcare Haifa Israel
| | - Josué Sznitman
- Faculty of Biomedical Engineering Technion ‐ Israel Institute of Technology Haifa Israel
| |
Collapse
|
25
|
Selo MA, Sake JA, Kim KJ, Ehrhardt C. In vitro and ex vivo models in inhalation biopharmaceutical research - advances, challenges and future perspectives. Adv Drug Deliv Rev 2021; 177:113862. [PMID: 34256080 DOI: 10.1016/j.addr.2021.113862] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 12/11/2022]
Abstract
Oral inhalation results in pulmonary drug targeting and thereby reduces systemic side effects, making it the preferred means of drug delivery for the treatment of respiratory disorders such as asthma, chronic obstructive pulmonary disease or cystic fibrosis. In addition, the high alveolar surface area, relatively low enzymatic activity and rich blood supply of the distal airspaces offer a promising pathway to the systemic circulation. This is particularly advantageous when a rapid onset of pharmacological action is desired or when the drug is suffering from stability issues or poor biopharmaceutical performance following oral administration. Several cell and tissue-based in vitro and ex vivo models have been developed over the years, with the intention to realistically mimic pulmonary biological barriers. It is the aim of this review to critically discuss the available models regarding their advantages and limitations and to elaborate further which biopharmaceutical questions can and cannot be answered using the existing models.
Collapse
|
26
|
Artzy-Schnirman A, Arber Raviv S, Doppelt Flikshtain O, Shklover J, Korin N, Gross A, Mizrahi B, Schroeder A, Sznitman J. Advanced human-relevant in vitro pulmonary platforms for respiratory therapeutics. Adv Drug Deliv Rev 2021; 176:113901. [PMID: 34331989 PMCID: PMC7611797 DOI: 10.1016/j.addr.2021.113901] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/20/2021] [Accepted: 07/24/2021] [Indexed: 02/08/2023]
Abstract
Over the past years, advanced in vitro pulmonary platforms have witnessed exciting developments that are pushing beyond traditional preclinical cell culture methods. Here, we discuss ongoing efforts in bridging the gap between in vivo and in vitro interfaces and identify some of the bioengineering challenges that lie ahead in delivering new generations of human-relevant in vitro pulmonary platforms. Notably, in vitro strategies using foremost lung-on-chips and biocompatible "soft" membranes have focused on platforms that emphasize phenotypical endpoints recapitulating key physiological and cellular functions. We review some of the most recent in vitro studies underlining seminal therapeutic screens and translational applications and open our discussion to promising avenues of pulmonary therapeutic exploration focusing on liposomes. Undeniably, there still remains a recognized trade-off between the physiological and biological complexity of these in vitro lung models and their ability to deliver assays with throughput capabilities. The upcoming years are thus anticipated to see further developments in broadening the applicability of such in vitro systems and accelerating therapeutic exploration for drug discovery and translational medicine in treating respiratory disorders.
Collapse
Affiliation(s)
- Arbel Artzy-Schnirman
- Department of Biomedical, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Sivan Arber Raviv
- Department of Chemical, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | | | - Jeny Shklover
- Department of Chemical, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Netanel Korin
- Department of Biomedical, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Adi Gross
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Boaz Mizrahi
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Avi Schroeder
- Department of Chemical, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Josué Sznitman
- Department of Biomedical, Technion - Israel Institute of Technology, 32000 Haifa, Israel.
| |
Collapse
|
27
|
Khedoe PPPSJ, Wu X, Gosens R, Hiemstra PS. Repairing damaged lungs using regenerative therapy. Curr Opin Pharmacol 2021; 59:85-94. [PMID: 34161852 PMCID: PMC9188766 DOI: 10.1016/j.coph.2021.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/14/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022]
Abstract
There is an urgent need for better treatment of lung diseases that are a major cause of morbidity and mortality worldwide. This urgency is illustrated by the current COVID-19 health crisis. Moderate-to-extensive lung injury characterizes several lung diseases, and not only therapies that reduce such lung injury are needed but also those that regenerate lung tissue and repair existing lung injury. At present, such therapies are not available, but as a result of a rapid increase in our understanding of lung development and repair, lung regenerative therapies are on the horizon. Here, we discuss existing targets for treatment, as well as novel strategies for development of pharmacological and cell therapy-based regenerative treatment for a variety of lung diseases and clinical studies. We discuss how both patient-relevant in vitro disease models using innovative culture techniques and other advanced new technologies aid in the development of pulmonary regenerative medicine.
Collapse
Affiliation(s)
| | - Xinhui Wu
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
28
|
A Robust Protocol for Decellularized Human Lung Bioink Generation Amenable to 2D and 3D Lung Cell Culture. Cells 2021; 10:cells10061538. [PMID: 34207111 PMCID: PMC8234522 DOI: 10.3390/cells10061538] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022] Open
Abstract
Decellularization efforts must balance the preservation of the extracellular matrix (ECM) components while eliminating the nucleic acid and cellular components. Following effective removal of nucleic acid and cell components, decellularized ECM (dECM) can be solubilized in an acidic environment with the assistance of various enzymes to develop biological scaffolds in different forms, such as sheets, tubular constructs, or three-dimensional (3D) hydrogels. Each organ or tissue that undergoes decellularization requires a distinct and optimized protocol to ensure that nucleic acids are removed, and the ECM components are preserved. The objective of this study was to optimize the decellularization process for dECM isolation from human lung tissues for downstream 2D and 3D cell culture systems. Following protocol optimization and dECM isolation, we performed experiments with a wide range of dECM concentrations to form human lung dECM hydrogels that were physically stable and biologically responsive. The dECM based-hydrogels supported the growth and proliferation of primary human lung fibroblast cells in 3D cultures. The dECM is also amenable to the coating of polyester membranes in Transwell™ Inserts to improve the cell adhesion, proliferation, and barrier function of primary human bronchial epithelial cells in 2D. In conclusion, we present a robust protocol for human lung decellularization, generation of dECM substrate material, and creation of hydrogels that support primary lung cell viability in 2D and 3D culture systems
Collapse
|
29
|
Pasman T, Baptista D, van Riet S, Truckenmüller RK, Hiemstra PS, Rottier RJ, Hamelmann NM, Paulusse JMJ, Stamatialis D, Poot AA. Development of an In Vitro Airway Epithelial-Endothelial Cell Culture Model on a Flexible Porous Poly(Trimethylene Carbonate) Membrane Based on Calu-3 Airway Epithelial Cells and Lung Microvascular Endothelial Cells. MEMBRANES 2021; 11:membranes11030197. [PMID: 33799867 PMCID: PMC8001677 DOI: 10.3390/membranes11030197] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 02/06/2023]
Abstract
Due to the continuing high impact of lung diseases on society and the emergence of new respiratory viruses, such as SARS-CoV-2, there is a great need for in vitro lung models that more accurately recapitulate the in vivo situation than current models based on lung epithelial cell cultures on stiff membranes. Therefore, we developed an in vitro airway epithelial–endothelial cell culture model based on Calu-3 human lung epithelial cells and human lung microvascular endothelial cells (LMVECs), cultured on opposite sides of flexible porous poly(trimethylene carbonate) (PTMC) membranes. Calu-3 cells, cultured for two weeks at an air–liquid interface (ALI), showed good expression of the tight junction (TJ) protein Zonula Occludens 1 (ZO-1). LMVECs cultured submerged for three weeks were CD31-positive, but the expression was diffuse and not localized at the cell membrane. Barrier functions of the Calu-3 cell cultures and the co-cultures with LMVECs were good, as determined by electrical resistance measurements and fluorescein isothiocyanate-dextran (FITC-dextran) permeability assays. Importantly, the Calu-3/LMVEC co-cultures showed better cell viability and barrier function than mono-cultures. Moreover, there was no evidence for epithelial- and endothelial-to-mesenchymal transition (EMT and EndoMT, respectively) based on staining for the mesenchymal markers vimentin and α-SMA, respectively. These results indicate the potential of this new airway epithelial–endothelial model for lung research. In addition, since the PTMC membrane is flexible, the model can be expanded by introducing cyclic stretch for enabling mechanical stimulation of the cells. Furthermore, the model can form the basis for biomimetic airway epithelial–endothelial and alveolar–endothelial models with primary lung epithelial cells.
Collapse
Affiliation(s)
- Thijs Pasman
- Technical Medical (TechMed) Centre, Department of Biomaterials Science and Technology, Faculty of Science and Technology, University of Twente, 7522 NB Enschede, The Netherlands; (T.P.); (D.S.)
| | - Danielle Baptista
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands; (D.B.); (R.K.T.)
| | - Sander van Riet
- Leiden University Medical Centre, Department of Pulmonology, Leiden University, 2300 RC Leiden, The Netherlands; (S.v.R.); (P.S.H.)
| | - Roman K. Truckenmüller
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands; (D.B.); (R.K.T.)
| | - Pieter S. Hiemstra
- Leiden University Medical Centre, Department of Pulmonology, Leiden University, 2300 RC Leiden, The Netherlands; (S.v.R.); (P.S.H.)
| | - Robbert J. Rottier
- Erasmus MC-Sophia Children’s Hospital, Departments of Pediatric Surgery and Cell Biology, 3000 CB Rotterdam, The Netherlands;
| | - Naomi M. Hamelmann
- Department of Biomolecular NanoTechnology, Faculty of Science and Technology, University of Twente, 7522 NB Enschede, The Netherlands; (N.M.H.); (J.M.J.P.)
| | - Jos M. J. Paulusse
- Department of Biomolecular NanoTechnology, Faculty of Science and Technology, University of Twente, 7522 NB Enschede, The Netherlands; (N.M.H.); (J.M.J.P.)
| | - Dimitrios Stamatialis
- Technical Medical (TechMed) Centre, Department of Biomaterials Science and Technology, Faculty of Science and Technology, University of Twente, 7522 NB Enschede, The Netherlands; (T.P.); (D.S.)
| | - André A. Poot
- Technical Medical (TechMed) Centre, Department of Biomaterials Science and Technology, Faculty of Science and Technology, University of Twente, 7522 NB Enschede, The Netherlands; (T.P.); (D.S.)
- Correspondence:
| |
Collapse
|