1
|
Chi A, Yang C, Liu J, Zhai Z, Shi X. Reconstructing the Stem Leydig Cell Niche via the Testicular Extracellular Matrix for the Treatment of Testicular Leydig Cell Dysfunction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410808. [PMID: 39555675 PMCID: PMC11727238 DOI: 10.1002/advs.202410808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/24/2024] [Indexed: 11/19/2024]
Abstract
Therapies involving the use of stem Leydig cells (SLCs), as testicular mesenchymal stromal cells, have shown great promise in the treatment of Leydig cell (LC) dysfunction in aging males. However, the outcomes of these therapies are not satisfactory. In this study, it is demonstrated that the aging microenvironment of the testicular interstitium impairs the function of SLCs, leading to poor regeneration of LCs and, consequently, inefficient functional restoration. The study develops a decellularized testicular extracellular matrix (dTECM) hydrogel from young pigs and evaluates its safety and feasibility as a supportive niche for the expansion and differentiation of SLCs. dTECM hydrogel facilitates the steroidogenic differentiation of SLCs into LCs, the primary producers of testosterone. The combination of SLCs with a dTECM hydrogel leads to a significant and sustained increase in testosterone levels, which promotes the restoration of spermatogenesis and fertility in an LC-deficient and aged mouse model. Mechanistically, collagen 1 within the dTECM is identified as a key factor contributing to these effects. Notably, symptoms associated with testosterone deficiency syndrome are significantly alleviated in aged mice. These findings may aid the design of therapeutic interventions for patients with testosterone deficiency in the clinic.
Collapse
Affiliation(s)
- Ani Chi
- National Engineering Research Centre for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceSouth China University of TechnologyGuangzhou510640P. R. China
| | - Chao Yang
- National Engineering Research Centre for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceSouth China University of TechnologyGuangzhou510640P. R. China
| | - Jie Liu
- National Engineering Research Centre for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceSouth China University of TechnologyGuangzhou510640P. R. China
| | - Zhichen Zhai
- National Engineering Research Centre for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceSouth China University of TechnologyGuangzhou510640P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong ProvinceSouth China University of TechnologyGuangzhou510006P. R. China
- School of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510640P. R. China
| | - Xuetao Shi
- National Engineering Research Centre for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceSouth China University of TechnologyGuangzhou510640P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong ProvinceSouth China University of TechnologyGuangzhou510006P. R. China
- School of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510640P. R. China
| |
Collapse
|
2
|
Ronan G, Yang J, Zorlutuna P. Small Extracellular Vesicles Isolated from Cardiac Tissue Matrix or Plasma Display Distinct Aging-Related Changes in Cargo Contributing to Chronic Cardiovascular Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.627231. [PMID: 39713371 PMCID: PMC11661072 DOI: 10.1101/2024.12.06.627231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Aging is a major risk factor for cardiovascular disease, the leading cause of death worldwide, and numerous other diseases, but the mechanisms of these aging-related effects remain elusive. Chronic changes in the microenvironment and paracrine signaling behaviors have been implicated, but remain understudied. Here, for the first time, we directly compare extracellular vesicles obtained from young and aged patients to identify therapeutic or disease-associated agents, and directly compare vesicles isolated from heart tissue matrix (TEVs) or plasma (PEVs). While young EVs showed notable overlap of miRNA cargo, aged EVs differed substantially, indicating differential age-related changes between TEVs and PEVs. TEVs overall were uniquely enriched in miRNAs which directly or indirectly demonstrate cardioprotective effects, with 45 potential therapeutic agents implicated in our analysis. Both populations also showed increased predisposition to disease with aging, though through different mechanisms. PEVs were largely correlated with chronic systemic inflammation, while TEVs were more related to cardiac homeostasis and local inflammation. From this, 17 protein targets unique to TEVs were implicated as aging-related changes which likely contribute to the development of cardiovascular disease.
Collapse
Affiliation(s)
- George Ronan
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Jun Yang
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Pinar Zorlutuna
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, 46556, USA
| |
Collapse
|
3
|
Ronan G, Bahcecioglu G, Yang J, Zorlutuna P. Cardiac tissue-resident vesicles differentially modulate anti-fibrotic phenotype by age and sex through synergistic miRNA effects. Biomaterials 2024; 311:122671. [PMID: 38941684 PMCID: PMC11344275 DOI: 10.1016/j.biomaterials.2024.122671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/30/2024]
Abstract
Aging is a risk factor for cardiovascular disease, the leading cause of death worldwide. Cardiac fibrosis is a harmful result of repeated myocardial infarction that increases risk of morbidity and future injury. Interestingly, both rates and outcomes of cardiac fibrosis differ between young and aged individuals, as well as men and women. Here, for the first time, we identify and isolate matrix-bound extracellular vesicles from the left ventricles (LVs) of young or aged males and females in both human and murine models. These LV vesicles (LVVs) show differences in morphology and content between these four cohorts in both humans and mice. LVV effects on fibrosis were also investigated in vitro, and aged male LVVs were pro-fibrotic while other LVVs were anti-fibrotic. From these LVVs, we could identify therapeutic miRNAs to promote anti-fibrotic effects. Four miRNAs were identified and together, but not individually, demonstrated significant cardioprotective effects when transfected. This suggests that miRNA synergy can regulate cell response, not just individual miRNAs, and also indicates that biological agent-associated therapeutic effects may be recapitulated using non-immunologically active agents. Furthermore, that chronic changes in LVV miRNA content may be a major factor in sex- and age-dependent differences in clinical outcomes of cardiac fibrosis.
Collapse
Affiliation(s)
- George Ronan
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA; Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Gokhan Bahcecioglu
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, 46556, USA
| | - Jun Yang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Pinar Zorlutuna
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA; Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, 46556, USA; Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
4
|
Venkataraman A, Kordic I, Li J, Zhang N, Bharadwaj NS, Fang Z, Das S, Coskun AF. Decoding senescence of aging single cells at the nexus of biomaterials, microfluidics, and spatial omics. NPJ AGING 2024; 10:57. [PMID: 39592596 PMCID: PMC11599402 DOI: 10.1038/s41514-024-00178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024]
Abstract
Aging has profound effects on the body, most notably an increase in the prevalence of several diseases. An important aging hallmark is the presence of senescent cells that no longer multiply nor die off properly. Another characteristic is an altered immune system that fails to properly self-surveil. In this multi-player aging process, cellular senescence induces a change in the secretory phenotype, known as senescence-associated secretory phenotype (SASP), of many cells with the intention of recruiting immune cells to accelerate the clearance of these damaged senescent cells. However, the SASP phenotype results in inducing secondary senescence of nearby cells, resulting in those cells becoming senescent, and improper immune activation resulting in a state of chronic inflammation, called inflammaging, in many diseases. Senescence in immune cells, termed immunosenescence, results in further dysregulation of the immune system. An interdisciplinary approach is needed to physiologically assess aging changes of the immune system at the cellular and tissue level. Thus, the intersection of biomaterials, microfluidics, and spatial omics has great potential to collectively model aging and immunosenescence. Each of these approaches mimics unique aspects of the body undergoes as a part of aging. This perspective highlights the key aspects of how biomaterials provide non-cellular cues to cell aging, microfluidics recapitulate flow-induced and multi-cellular dynamics, and spatial omics analyses dissect the coordination of several biomarkers of senescence as a function of cell interactions in distinct tissue environments. An overview of how senescence and immune dysregulation play a role in organ aging, cancer, wound healing, Alzheimer's, and osteoporosis is included. To illuminate the societal impact of aging, an increasing trend in anti-senescence and anti-aging interventions, including pharmacological interventions, medical procedures, and lifestyle changes is discussed, including further context of senescence.
Collapse
Affiliation(s)
- Abhijeet Venkataraman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA, 30332, USA
| | - Ivan Kordic
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - JiaXun Li
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Nicholas Zhang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA
| | - Nivik Sanjay Bharadwaj
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Zhou Fang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Machine Learning Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sandip Das
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Ahmet F Coskun
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA, 30332, USA.
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
5
|
Long M, Cheng M. Small extracellular vesicles associated miRNA in myocardial fibrosis. Biochem Biophys Res Commun 2024; 727:150336. [PMID: 38959731 DOI: 10.1016/j.bbrc.2024.150336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/20/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Myocardial fibrosis involves the loss of cardiomyocytes, myocardial fibroblast proliferation, and a reduction in angiogenesis, ultimately leading to heart failure, Given its significant implications, it is crucial to explore novel therapies for myocardial fibrosis. Recently one emerging avenue has been the use of small extracellular vesicles (sEV)-carried miRNA. In this review, we summarize the regulatory role of sEV-carried miRNA in myocardial fibrosis. We explored not only the potential diagnostic value of circulating miRNA as biomarkers for heart disease but also the therapeutic implications of sEV-carried miRNA derived from various cellular sources and applications of modified sEV. This exploration is paramount for researchers striving to develop innovative, cell-free therapies as potential drug candidates for the management of myocardial fibrosis.
Collapse
Affiliation(s)
- Minwen Long
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
6
|
Chen TA, Zhao BB, Balbin RA, Sharma S, Ha D, Kamp TJ, Zhou Y, Zhao F. Engineering a robust and anisotropic cardiac-specific extracellular matrix scaffold for cardiac patch tissue engineering. Matrix Biol Plus 2024; 23:100151. [PMID: 38882397 PMCID: PMC11176808 DOI: 10.1016/j.mbplus.2024.100151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/22/2024] [Accepted: 05/18/2024] [Indexed: 06/18/2024] Open
Abstract
Extracellular matrix (ECM) fabricated using human induced pluripotent stem cells (hiPSCs)-derived cardiac fibroblasts (hiPSC-CFs) could serve as a completely biological scaffold for an engineered cardiac patch, leveraging the unlimited source and outstanding reproducibility of hiPSC-CFs. Additionally, hiPSC-CF-derived ECM (hiPSC-CF-ECM) holds the potential to enhance maturation of exogenous cardiomyocytes, such as hiPSC-derived cardiomyocytes (hiPSC-CMs), by providing a microenvironment rich in cardiac-specific biochemical and signaling cues. However, achieving sufficient robustness of hiPSC-CF-ECM is challenging. This study aims to achieve appropriate ECM deposition, scaffold thickness, and mechanical strength of an aligned hiPSC-CF-ECM by optimizing the culture period, ranging from 2 to 10 weeks, of hiPSC-CFs grown on micro-grated substrates, which can direct the alignment of both hiPSC-CFs and their secreted ECM. The hiPSC-CFs demonstrated a production rate of 13.5 µg ECM per day per 20,000 cells seeded. An anisotropic nanofibrous hiPSC-CF-ECM scaffold with a thickness of 20.0 ± 2.1 µm was achieved after 6 weeks of culture, followed by decellularization. Compositional analysis through liquid chromatography-mass spectrometry (LC-MS) revealed the presence of cardiac-specific fibrillar collagens, non-fibrillar collagens, and matricellular proteins. Uniaxial tensile stretching of the hiPSC-CF-ECM scaffold indicated robust tensile resilience. Finally, hiPSCs-CMs cultured on the hiPSC-CF-ECM exhibited alignment following the guidance of ECM nanofibers and demonstrated mature organization of key structural proteins. The culture duration of the anisotropic hiPSC-CF-ECM was successfully refined to achieve a robust scaffold containing structural proteins that resembles cardiac microenvironment. This completely biological, anisotropic, and cardiac-specific ECM holds great potential for cardiac patch engineering.
Collapse
Affiliation(s)
- Te-An Chen
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Brandon B. Zhao
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Richard A. Balbin
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Sameeksha Sharma
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Donggi Ha
- Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Timothy J. Kamp
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
- Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Yuxiao Zhou
- Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Feng Zhao
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
7
|
Sun Y, Yu Y, Ma S, Liao C, Yang J, Lyu Y, Zhang X, Zhang J, Tian W, Liao L. Nanotube topography rejuvenates the senescence of mesenchymal stem cells by activating YAP signalling. J Mater Chem B 2024; 12:6917-6926. [PMID: 38904147 DOI: 10.1039/d3tb02828c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Improving the regenerative ability of senescent stem cells is a critical issue in combating aging. The destiny and function of senescent stem cells are controlled by the niche, including the physical architecture of the surface of the extracellular matrix (ECM). In this study, we explored the functions of TiO2 nanotube topography on mesenchymal stem cells (MSCs) under senescence, as well as its mechanical effects on senescence. First, we created different nanotube topographies on the titanium samples. Next, we cultured senescent mesenchymal stem cells (S-MSCs) on samples with various nanotube topographies to determine suitable parameters. We found nanotube with a diameter of 10 nm significantly alleviated the cellular senescence of S-MSCs and improved the osteogenic differentiation of S-MSCs in vitro. Using an ectopic periodontium regeneration model, we confirmed that specific nanotube topography could promote tissue regeneration of S-MSCs in vivo. Moreover, we demonstrated that nanotube topography activated YAP in S-MSCs and reformed nuclear-cytoskeletal morphology to inhibit senescence. Taken together, our study establishes a bridge linking between nano-topography, mechanics, and senescence, suggesting a potential strategy to improve tissue regeneration in aged individuals by providing optimized surface topography on biomaterials.
Collapse
Affiliation(s)
- Yanping Sun
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yejia Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Shixing Ma
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Chengcheng Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Jian Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yun Lyu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Xuanhao Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Jingyi Zhang
- Chengdu Shiliankangjian Biotechnology Co., Ltd., China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Li Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Jothi D, Kulka LAM. Strategies for modeling aging and age-related diseases. NPJ AGING 2024; 10:32. [PMID: 38987252 PMCID: PMC11237002 DOI: 10.1038/s41514-024-00161-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/18/2024] [Indexed: 07/12/2024]
Abstract
The ability to reprogram patient-derived-somatic cells to IPSCs (Induced Pluripotent Stem Cells) has led to a better understanding of aging and age-related diseases like Parkinson's, and Alzheimer's. The established patient-derived disease models mimic disease pathology and can be used to design drugs for aging and age-related diseases. However, the age and genetic mutations of the donor cells, the employed reprogramming, and the differentiation protocol might often pose challenges in establishing an appropriate disease model. In this review, we will focus on the various strategies for the successful reprogramming and differentiation of patient-derived cells to disease models for aging and age-related diseases, emphasizing the accuracy in the recapitulation of disease pathology and ways to overcome the limitations of its potential application in cell replacement therapy and drug development.
Collapse
Affiliation(s)
- D Jothi
- Department of Biochemistry II, Friedrich Schiller University, Jena, Germany.
| | | |
Collapse
|
9
|
Basara G, Celebi LE, Ronan G, Discua Santos V, Zorlutuna P. 3D bioprinted aged human post-infarct myocardium tissue model. Health Sci Rep 2024; 7:e1945. [PMID: 38655426 PMCID: PMC11035382 DOI: 10.1002/hsr2.1945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/24/2023] [Accepted: 02/07/2024] [Indexed: 04/26/2024] Open
Abstract
Background and Aims Fibrotic tissue formed after myocardial infarction (MI) can be as detrimental as MI itself. However, current in vitro cardiac fibrosis models fail to recapitulate the complexities of post-MI tissue. Moreover, although MI and subsequent fibrosis is most prominent in the aged population, the field suffers from inadequate aged tissue models. Herein, an aged human post-MI tissue model, representing the native microenvironment weeks after initial infarction, is engineered using three-dimensional bioprinting via creation of individual bioinks to specifically mimic three distinct regions: remote, border, and scar. Methods The aged post-MI tissue model is engineered through combination of gelatin methacryloyl, methacrylated hyaluronic acid, aged type I collagen, and photoinitiator at variable concentrations with different cell types, including aged human induced pluripotent stem cell-derived cardiomyocytes, endothelial cells, cardiac fibroblasts, and cardiac myofibroblasts, by introducing a methodology which utilizes three printheads of the bioprinter to model aged myocardium. Then, using cell-specific proteins, the cell types that comprised each region are confirmed using immunofluorescence. Next, the beating characteristics are analyzed. Finally, the engineered aged post-MI tissue model is used as a benchtop platform to assess the therapeutic effects of stem cell-derived extracellular vesicles on the scar region. Results As a result, high viability (>74%) was observed in each region of the printed model. Constructs demonstrated functional behavior, exhibiting a beating velocity of 6.7 μm/s and a frequency of 0.3 Hz. Finally, the effectiveness of hiPSC-EV and MSC-EV treatment was assessed. While hiPSC-EV treatment showed no significant changes, MSC-EV treatment notably increased cardiomyocyte beating velocity, frequency, and confluency, suggesting a regenerative potential. Conclusion In conclusion, we envision that our approach of modeling post-MI aged myocardium utilizing three printheads of the bioprinter may be utilized for various applications in aged cardiac microenvironment modeling and testing novel therapeutics.
Collapse
Affiliation(s)
- Gozde Basara
- Department of Aerospace and Mechanical EngineeringUniversity of Notre DameNotre DameIndianaUSA
| | - Lara Ece Celebi
- Department of Aerospace and Mechanical EngineeringUniversity of Notre DameNotre DameIndianaUSA
- Bioengineering Graduate ProgramUniversity of Notre DameNotre DameIndianaUSA
| | - George Ronan
- Department of Aerospace and Mechanical EngineeringUniversity of Notre DameNotre DameIndianaUSA
- Bioengineering Graduate ProgramUniversity of Notre DameNotre DameIndianaUSA
| | | | - Pinar Zorlutuna
- Department of Aerospace and Mechanical EngineeringUniversity of Notre DameNotre DameIndianaUSA
- Bioengineering Graduate ProgramUniversity of Notre DameNotre DameIndianaUSA
- Department of Chemical and Biomolecular EngineeringUniversity of Notre DameNotre DameIndianaUSA
- Harper Cancer Research InstituteUniversity of Notre DameNotre DameIndianaUSA
| |
Collapse
|
10
|
Sun AR, Hengst RM, Young JL. All the small things: Nanoscale matrix alterations in aging tissues. Curr Opin Cell Biol 2024; 87:102322. [PMID: 38277866 DOI: 10.1016/j.ceb.2024.102322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/28/2024]
Abstract
Cellular aging stems from multifaceted intra- and extracellular molecular changes that lead to the gradual deterioration of biological function. Altered extracellular matrix (ECM) properties that include biochemical, structural, and mechanical perturbations direct cellular- and tissue-level dysfunction. With recent advancements in high-resolution imaging modalities and nanomaterial strategies, the importance of nanoscale ECM features has come into focus. Here, we provide an updated window into micro- to nano-scale ECM properties that are altered with age and in age-related disease, and the impact these altered small-scale ECM properties have on cellular function. We anticipate future impactful research will incorporate nanoscale ECM features in the design of new biomaterials and call on the tissue biology field to work collaboratively with the nanomaterials community.
Collapse
Affiliation(s)
- Avery Rui Sun
- Mechanobiology Institute (MBI), National University of Singapore, 5A Engineering Drive 1, 117411, Singapore; Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 4 Engineering Drive 3, 117583, Singapore
| | - Ranmadusha M Hengst
- Mechanobiology Institute (MBI), National University of Singapore, 5A Engineering Drive 1, 117411, Singapore
| | - Jennifer L Young
- Mechanobiology Institute (MBI), National University of Singapore, 5A Engineering Drive 1, 117411, Singapore; Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 4 Engineering Drive 3, 117583, Singapore.
| |
Collapse
|
11
|
Smandri A, Al-Masawa ME, Hwei NM, Fauzi MB. ECM-derived biomaterials for regulating tissue multicellularity and maturation. iScience 2024; 27:109141. [PMID: 38405613 PMCID: PMC10884934 DOI: 10.1016/j.isci.2024.109141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Recent breakthroughs in developing human-relevant organotypic models led to the building of highly resemblant tissue constructs that hold immense potential for transplantation, drug screening, and disease modeling. Despite the progress in fine-tuning stem cell multilineage differentiation in highly controlled spatiotemporal conditions and hosting microenvironments, 3D models still experience naive and incomplete morphogenesis. In particular, existing systems and induction protocols fail to maintain stem cell long-term potency, induce high tissue-level multicellularity, or drive the maturity of stem cell-derived 3D models to levels seen in their in vivo counterparts. In this review, we highlight the use of extracellular matrix (ECM)-derived biomaterials in providing stem cell niche-mimicking microenvironment capable of preserving stem cell long-term potency and inducing spatial and region-specific differentiation. We also examine the maturation of different 3D models, including organoids, encapsulated in ECM biomaterials and provide looking-forward perspectives on employing ECM biomaterials in building more innovative, transplantable, and functional organs.
Collapse
Affiliation(s)
- Ali Smandri
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Maimonah Eissa Al-Masawa
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Ng Min Hwei
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
12
|
Pitrez PR, Monteiro LM, Borgogno O, Nissan X, Mertens J, Ferreira L. Cellular reprogramming as a tool to model human aging in a dish. Nat Commun 2024; 15:1816. [PMID: 38418829 PMCID: PMC10902382 DOI: 10.1038/s41467-024-46004-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
The design of human model systems is highly relevant to unveil the underlying mechanisms of aging and to provide insights on potential interventions to extend human health and life span. In this perspective, we explore the potential of 2D or 3D culture models comprising human induced pluripotent stem cells and transdifferentiated cells obtained from aged or age-related disorder-affected donors to enhance our understanding of human aging and to catalyze the discovery of anti-aging interventions.
Collapse
Affiliation(s)
- Patricia R Pitrez
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Luis M Monteiro
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
- IIIUC-institute of Interdisciplinary Research, University of Coimbra, Casa Costa Alemão, Coimbra, 3030-789, Portugal
| | - Oliver Borgogno
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Xavier Nissan
- CECS, I-STEM, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic diseases, Evry cedex, France
| | - Jerome Mertens
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA.
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| | - Lino Ferreira
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal.
| |
Collapse
|
13
|
Santinha D, Vilaça A, Estronca L, Schüler SC, Bartoli C, De Sandre-Giovannoli A, Figueiredo A, Quaas M, Pompe T, Ori A, Ferreira L. Remodeling of the Cardiac Extracellular Matrix Proteome During Chronological and Pathological Aging. Mol Cell Proteomics 2024; 23:100706. [PMID: 38141925 PMCID: PMC10828820 DOI: 10.1016/j.mcpro.2023.100706] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 12/25/2023] Open
Abstract
Impaired extracellular matrix (ECM) remodeling is a hallmark of many chronic inflammatory disorders that can lead to cellular dysfunction, aging, and disease progression. The ECM of the aged heart and its effects on cardiac cells during chronological and pathological aging are poorly understood across species. For this purpose, we first used mass spectrometry-based proteomics to quantitatively characterize age-related remodeling of the left ventricle (LV) of mice and humans during chronological and pathological (Hutchinson-Gilford progeria syndrome (HGPS)) aging. Of the approximately 300 ECM and ECM-associated proteins quantified (named as Matrisome), we identified 13 proteins that were increased during aging, including lactadherin (MFGE8), collagen VI α6 (COL6A6), vitronectin (VTN) and immunoglobulin heavy constant mu (IGHM), whereas fibulin-5 (FBLN5) was decreased in most of the data sets analyzed. We show that lactadherin accumulates with age in large cardiac blood vessels and when immobilized, triggers phosphorylation of several phosphosites of GSK3B, MAPK isoforms 1, 3, and 14, and MTOR kinases in aortic endothelial cells (ECs). In addition, immobilized lactadherin increased the expression of pro-inflammatory markers associated with an aging phenotype. These results extend our knowledge of the LV proteome remodeling induced by chronological and pathological aging in different species (mouse and human). The lactadherin-triggered changes in the proteome and phosphoproteome of ECs suggest a straight link between ECM component remodeling and the aging process of ECs, which may provide an additional layer to prevent cardiac aging.
Collapse
Affiliation(s)
- Deolinda Santinha
- Faculty of Medicine, University of Coimbra, Celas, Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Rua Larga, Coimbra, Portugal
| | - Andreia Vilaça
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Rua Larga, Coimbra, Portugal; CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Luís Estronca
- Faculty of Medicine, University of Coimbra, Celas, Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Rua Larga, Coimbra, Portugal
| | - Svenja C Schüler
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | | | - Annachiara De Sandre-Giovannoli
- Aix Marseille Univ, INSERM, MMG, U1251, Marseille, France; Molecular genetics laboratory, La Timone children's hospital, Marseille, France
| | - Arnaldo Figueiredo
- Serviço de Urologia e Transplantação Renal, Centro Hospitalar Universitário Coimbra EPE, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Maximillian Quaas
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | - Tilo Pompe
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | - Alessandro Ori
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany.
| | - Lino Ferreira
- Faculty of Medicine, University of Coimbra, Celas, Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Rua Larga, Coimbra, Portugal.
| |
Collapse
|
14
|
Dai G, Li M, Xu H, Quan N. Status of Research on Sestrin2 and Prospects for its Application in Therapeutic Strategies Targeting Myocardial Aging. Curr Probl Cardiol 2023; 48:101910. [PMID: 37422038 DOI: 10.1016/j.cpcardiol.2023.101910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/10/2023]
Abstract
Cardiac aging is accompanied by changes in the heart at the cellular and molecular levels, leading to alterations in cardiac structure and function. Given today's increasingly aging population, the decline in cardiac function caused by cardiac aging has a significant impact on quality of life. Antiaging therapies to slow the aging process and attenuate changes in cardiac structure and function have become an important research topic. Treatment with drugs, including metformin, spermidine, rapamycin, resveratrol, astaxanthin, Huolisu oral liquid, and sulforaphane, has been demonstrated be effective in delaying cardiac aging by stimulating autophagy, delaying ventricular remodeling, and reducing oxidative stress and the inflammatory response. Furthermore, caloric restriction has been shown to play an important role in delaying aging of the heart. Many studies in cardiac aging and cardiac aging-related models have demonstrated that Sestrin2 has antioxidant and anti-inflammatory effects, stimulates autophagy, delays aging, regulates mitochondrial function, and inhibits myocardial remodeling by regulation of relevant signaling pathways. Therefore, Sestrin2 is likely to become an important target for antimyocardial aging therapy.
Collapse
Affiliation(s)
- Gaoying Dai
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
| | - Meina Li
- Department of Infection Control, The First Hospital of Jilin University, Changchun, China
| | - He Xu
- Department of Integrative Medicine, Lequn Branch, The First Hospital of Jilin University, Changchun, China
| | - Nanhu Quan
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
15
|
Ozcebe SG, Zorlutuna P. In need of age-appropriate cardiac models: Impact of cell age on extracellular matrix therapy outcomes. Aging Cell 2023; 22:e13966. [PMID: 37803909 PMCID: PMC10652343 DOI: 10.1111/acel.13966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 10/08/2023] Open
Abstract
Aging is the main risk factor for cardiovascular disease (CVD). As the world's population ages rapidly and CVD rates rise, there is a growing need for physiologically relevant models of aging hearts to better understand cardiac aging. Translational research relies heavily on young animal models; however, these models correspond to early ages in human life, therefore cannot fully capture the pathophysiology of age-related CVD. Here, we first investigated the transcriptomic and proteomic changes that occur with human cardiac aging. We then chronologically aged human induced pluripotent stem cell-derived cardiomyocytes (iCMs) and showed that 14-month-old iCMs exhibited a similar aging profile to the human CMs and recapitulated age-related disease hallmarks. Using aged iCMs, we studied the effect of cell age on the young extracellular matrix (ECM) therapy, an emerging approach for myocardial infarction (MI) treatment and prevention. Young ECM decreased oxidative stress, improved survival, and post-MI beating in aged iCMs. In the absence of stress, young ECM improved beating and reversed aging-associated expressions in 3-month-old iCMs while causing the opposite effect on 14-month-old iCMs. The same young ECM treatment surprisingly increased SASP and impaired beating in advanced aged iCMs. Overall, we showed that young ECM therapy had a positive effect on post-MI recovery; however, cell age was determinant in the treatment outcomes without any stress conditions. Therefore, "one-size-fits-all" approaches to ECM treatments fail, and cardiac tissue engineered models with age-matched human iCMs are valuable in translational basic research for determining the appropriate treatment, particularly for the elderly.
Collapse
Affiliation(s)
- S. Gulberk Ozcebe
- Bioengineering Graduate ProgramUniversity of Notre DameNotre DameIndianaUSA
| | - Pinar Zorlutuna
- Bioengineering Graduate ProgramUniversity of Notre DameNotre DameIndianaUSA
- Department of Aerospace and Mechanical EngineeringUniversity of Notre DameNotre DameIndianaUSA
- Harper Cancer Research InstituteUniversity of Notre DameNotre DameIndianaUSA
| |
Collapse
|
16
|
Mavrogonatou E, Papadopoulou A, Pratsinis H, Kletsas D. Senescence-associated alterations in the extracellular matrix: deciphering their role in the regulation of cellular function. Am J Physiol Cell Physiol 2023; 325:C633-C647. [PMID: 37486063 DOI: 10.1152/ajpcell.00178.2023] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
The extracellular matrix (ECM) is a dynamic structural network that provides a physical scaffolding, as well as biochemical factors that maintain normal tissue homeostasis and thus its disruption is implicated in many pathological conditions. On the other hand, senescent cells express a particular secretory phenotype, affecting the composition and organization of the surrounding ECM and modulating their microenvironment. As accumulation of senescent cells may be linked to the manifestation of several age-related conditions, senescence-associated ECM alterations may serve as targets for novel anti-aging treatment modalities. Here, we will review characteristic changes in the ECM elicited by cellular senescence and we will discuss the complex interplay between ECM and senescent cells, in relation to normal aging and selected age-associated pathologies.
Collapse
Affiliation(s)
- Eleni Mavrogonatou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos," Athens, Greece
| | - Adamantia Papadopoulou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos," Athens, Greece
| | - Harris Pratsinis
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos," Athens, Greece
| | - Dimitris Kletsas
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos," Athens, Greece
| |
Collapse
|
17
|
Esteves F, Brito D, Rajado AT, Silva N, Apolónio J, Roberto VP, Araújo I, Nóbrega C, Castelo-Branco P, Bragança J. Reprogramming iPSCs to study age-related diseases: Models, therapeutics, and clinical trials. Mech Ageing Dev 2023; 214:111854. [PMID: 37579530 DOI: 10.1016/j.mad.2023.111854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/19/2023] [Accepted: 07/30/2023] [Indexed: 08/16/2023]
Abstract
The unprecedented rise in life expectancy observed in the last decades is leading to a global increase in the ageing population, and age-associated diseases became an increasing societal, economic, and medical burden. This has boosted major efforts in the scientific and medical research communities to develop and improve therapies to delay ageing and age-associated functional decline and diseases, and to expand health span. The establishment of induced pluripotent stem cells (iPSCs) by reprogramming human somatic cells has revolutionised the modelling and understanding of human diseases. iPSCs have a major advantage relative to other human pluripotent stem cells as their obtention does not require the destruction of embryos like embryonic stem cells do, and do not have a limited proliferation or differentiation potential as adult stem cells. Besides, iPSCs can be generated from somatic cells from healthy individuals or patients, which makes iPSC technology a promising approach to model and decipher the mechanisms underlying the ageing process and age-associated diseases, study drug effects, and develop new therapeutic approaches. This review discusses the advances made in the last decade using iPSC technology to study the most common age-associated diseases, including age-related macular degeneration (AMD), neurodegenerative and cardiovascular diseases, brain stroke, cancer, diabetes, and osteoarthritis.
Collapse
Affiliation(s)
- Filipa Esteves
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal
| | - David Brito
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal
| | - Ana Teresa Rajado
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal
| | - Nádia Silva
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal
| | - Joana Apolónio
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal
| | - Vânia Palma Roberto
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), 8100-735 Loulé, Portugal
| | - Inês Araújo
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), 8100-735 Loulé, Portugal; Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Champalimaud Research Program, Champalimaud Centre for the Unknown, Avenida Brasília, 1400-038 Lisbon, Portugal
| | - Clévio Nóbrega
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), 8100-735 Loulé, Portugal; Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Champalimaud Research Program, Champalimaud Centre for the Unknown, Avenida Brasília, 1400-038 Lisbon, Portugal
| | - Pedro Castelo-Branco
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), 8100-735 Loulé, Portugal; Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Champalimaud Research Program, Champalimaud Centre for the Unknown, Avenida Brasília, 1400-038 Lisbon, Portugal
| | - José Bragança
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), 8100-735 Loulé, Portugal; Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Champalimaud Research Program, Champalimaud Centre for the Unknown, Avenida Brasília, 1400-038 Lisbon, Portugal.
| |
Collapse
|
18
|
Tani H, Kobayashi E, Yagi S, Tanaka K, Kameda-Haga K, Shibata S, Moritoki N, Takatsuna K, Moriwaki T, Sekine O, Umei TC, Morita Y, Soma Y, Kishino Y, Kanazawa H, Fujita J, Hattori S, Fukuda K, Tohyama S. Heart-derived collagen promotes maturation of engineered heart tissue. Biomaterials 2023; 299:122174. [PMID: 37285642 DOI: 10.1016/j.biomaterials.2023.122174] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/09/2023]
Abstract
Although the extracellular matrix (ECM) plays essential roles in heart tissue engineering, the optimal ECM components for heart tissue organization have not previously been elucidated. Here, we focused on the main ECM component, fibrillar collagen, and analyzed the effects of collagens on heart tissue engineering, by comparing the use of porcine heart-derived collagen and other organ-derived collagens in generating engineered heart tissue (EHT). We demonstrate that heart-derived collagen induces better contraction and relaxation of human induced pluripotent stem cell-derived EHT (hiPSC-EHT) and that hiPSC-EHT with heart-derived collagen exhibit more mature profiles than those with collagens from other organs. Further, we found that collagen fibril formation and gel stiffness influence the contraction, relaxation, and maturation of hiPSC-EHT, suggesting the importance of collagen types III and type V, which are relatively abundant in the heart. Thus, we demonstrate the effectiveness of organ-specific collagens in tissue engineering and drug discovery.
Collapse
Affiliation(s)
- Hidenori Tani
- Department of Cardiology, Japan; Joint Research Laboratory for Medical Innovation in Heart Disease, Japan
| | - Eiji Kobayashi
- Department of Organ Fabrication, Japan; Department of Kidney Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan.
| | - Shinomi Yagi
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, Japan
| | - Keisuke Tanaka
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, Japan
| | | | - Shinsuke Shibata
- Electron Microscope Laboratory, Keio University School of Medicine, Shinjuku, Tokyo, Japan; Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Nobuko Moritoki
- Electron Microscope Laboratory, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | | | | | | | | | - Yuika Morita
- Department of Cardiology, Japan; Kanagawa Institute of Industrial Science and Technology (KISTEC), Kawasaki, Kanagawa, Japan
| | | | | | | | - Jun Fujita
- Department of Cardiology, Japan; Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Shunji Hattori
- Department of Kidney Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | | | | |
Collapse
|
19
|
Giroud J, Bouriez I, Paulus H, Pourtier A, Debacq-Chainiaux F, Pluquet O. Exploring the Communication of the SASP: Dynamic, Interactive, and Adaptive Effects on the Microenvironment. Int J Mol Sci 2023; 24:10788. [PMID: 37445973 DOI: 10.3390/ijms241310788] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Cellular senescence is a complex cell state that can occur during physiological ageing or after exposure to stress signals, regardless of age. It is a dynamic process that continuously evolves in a context-dependent manner. Senescent cells interact with their microenvironment by producing a heterogenous and plastic secretome referred to as the senescence-associated secretory phenotype (SASP). Hence, understanding the cross-talk between SASP and the microenvironment can be challenging due to the complexity of signal exchanges. In this review, we first aim to update the definition of senescence and its associated biomarkers from its discovery to the present day. We detail the regulatory mechanisms involved in the expression of SASP at multiple levels and develop how SASP can orchestrate microenvironment modifications, by focusing on extracellular matrix modifications, neighboring cells' fate, and intercellular communications. We present hypotheses on how these microenvironmental events may affect dynamic changes in SASP composition in return. Finally, we discuss the various existing approaches to targeting SASP and clarify what is currently known about the biological effects of these modified SASPs on the cellular environment.
Collapse
Affiliation(s)
- Joëlle Giroud
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, 5000 Namur, Belgium
- University of Lille, CNRS, Inserm, Pasteur Institute of Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000 Lille, France
| | - Inès Bouriez
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, 5000 Namur, Belgium
| | - Hugo Paulus
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, 5000 Namur, Belgium
| | - Albin Pourtier
- University of Lille, CNRS, Inserm, Pasteur Institute of Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000 Lille, France
| | - Florence Debacq-Chainiaux
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, 5000 Namur, Belgium
| | - Olivier Pluquet
- University of Lille, CNRS, Inserm, Pasteur Institute of Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000 Lille, France
| |
Collapse
|
20
|
Brauer E, Lange T, Keller D, Görlitz S, Cho S, Keye J, Gossen M, Petersen A, Kornak U. Dissecting the influence of cellular senescence on cell mechanics and extracellular matrix formation in vitro. Aging Cell 2023; 22:e13744. [PMID: 36514868 PMCID: PMC10014055 DOI: 10.1111/acel.13744] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 12/15/2022] Open
Abstract
Tissue formation and healing both require cell proliferation and migration, but also extracellular matrix production and tensioning. In addition to restricting proliferation of damaged cells, increasing evidence suggests that cellular senescence also has distinct modulatory effects during wound healing and fibrosis. Yet, a direct role of senescent cells during tissue formation beyond paracrine signaling remains unknown. We here report how individual modules of the senescence program differentially influence cell mechanics and ECM expression with relevance for tissue formation. We compared DNA damage-mediated and DNA damage-independent senescence which was achieved through over-expression of either p16Ink4a or p21Cip1 cyclin-dependent kinase inhibitors in primary human skin fibroblasts. Cellular senescence modulated focal adhesion size and composition. All senescent cells exhibited increased single cell forces which led to an increase in tissue stiffness and contraction in an in vitro 3D tissue formation model selectively for p16 and p21-overexpressing cells. The mechanical component was complemented by an altered expression profile of ECM-related genes including collagens, lysyl oxidases, and MMPs. We found that particularly the lack of collagen and lysyl oxidase expression in the case of DNA damage-mediated senescence foiled their intrinsic mechanical potential. These observations highlight the active mechanical role of cellular senescence during tissue formation as well as the need to synthesize a functional ECM network capable of transferring and storing cellular forces.
Collapse
Affiliation(s)
- Erik Brauer
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Tobias Lange
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Daniela Keller
- Institute for Medical Genetics and Human Genetics, Charité - Universtitätsmedizin Berlin, Berlin, Germany
| | - Sophie Görlitz
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Simone Cho
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jacqueline Keye
- Flow & Mass Cytometry Core Facility, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Manfred Gossen
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institute of Active Polymers, Helmholtz-Zentrum Hereon, Teltow, Germany
| | - Ansgar Petersen
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Uwe Kornak
- Institute for Medical Genetics and Human Genetics, Charité - Universtitätsmedizin Berlin, Berlin, Germany.,BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
21
|
Ringström N, Edling C, Nalesso G, Jeevaratnam K. Framing Heartaches: The Cardiac ECM and the Effects of Age. Int J Mol Sci 2023; 24:4713. [PMID: 36902143 PMCID: PMC10003270 DOI: 10.3390/ijms24054713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 03/05/2023] Open
Abstract
The cardiac extracellular matrix (ECM) is involved in several pathological conditions, and age itself is also associated with certain changes in the heart: it gets larger and stiffer, and it develops an increased risk of abnormal intrinsic rhythm. This, therefore, makes conditions such as atrial arrythmia more common. Many of these changes are directly related to the ECM, yet the proteomic composition of the ECM and how it changes with age is not fully resolved. The limited research progress in this field is mainly due to the intrinsic challenges in unravelling tightly bound cardiac proteomic components and also the time-consuming and costly dependency on animal models. This review aims to give an overview of the composition of the cardiac ECM, how different components aid the function of the healthy heart, how the ECM is remodelled and how it is affected by ageing.
Collapse
Affiliation(s)
| | | | | | - Kamalan Jeevaratnam
- Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7AL, UK
| |
Collapse
|
22
|
Afzal Z, Huguet EL. Bioengineering liver tissue by repopulation of decellularised scaffolds. World J Hepatol 2023; 15:151-179. [PMID: 36926238 PMCID: PMC10011915 DOI: 10.4254/wjh.v15.i2.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/22/2022] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Liver transplantation is the only curative therapy for end stage liver disease, but is limited by the organ shortage, and is associated with the adverse consequences of immunosuppression. Repopulation of decellularised whole organ scaffolds with appropriate cells of recipient origin offers a theoretically attractive solution, allowing reliable and timely organ sourcing without the need for immunosuppression. Decellularisation methodologies vary widely but seek to address the conflicting objectives of removing the cellular component of tissues whilst keeping the 3D structure of the extra-cellular matrix intact, as well as retaining the instructive cell fate determining biochemicals contained therein. Liver scaffold recellularisation has progressed from small rodent in vitro studies to large animal in vivo perfusion models, using a wide range of cell types including primary cells, cell lines, foetal stem cells, and induced pluripotent stem cells. Within these models, a limited but measurable degree of physiologically significant hepatocyte function has been reported with demonstrable ammonia metabolism in vivo. Biliary repopulation and function have been restricted by challenges relating to the culture and propagations of cholangiocytes, though advances in organoid culture may help address this. Hepatic vasculature repopulation has enabled sustainable blood perfusion in vivo, but with cell types that would limit clinical applications, and which have not been shown to have the specific functions of liver sinusoidal endothelial cells. Minority cell groups such as Kupffer cells and stellate cells have not been repopulated. Bioengineering by repopulation of decellularised scaffolds has significantly progressed, but there remain significant experimental challenges to be addressed before therapeutic applications may be envisaged.
Collapse
Affiliation(s)
- Zeeshan Afzal
- Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Centre; Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Emmanuel Laurent Huguet
- Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Centre; Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
23
|
Extracellular Matrix-Based Approaches in Cardiac Regeneration: Challenges and Opportunities. Int J Mol Sci 2022; 23:ijms232415783. [PMID: 36555424 PMCID: PMC9779713 DOI: 10.3390/ijms232415783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Cardiac development is characterized by the active proliferation of different cardiac cell types, in particular cardiomyocytes and endothelial cells, that eventually build the beating heart. In mammals, these cells lose their regenerative potential early after birth, representing a major obstacle to our current capacity to restore the myocardial structure and function after an injury. Increasing evidence indicates that the cardiac extracellular matrix (ECM) actively regulates and orchestrates the proliferation, differentiation, and migration of cardiac cells within the heart, and that any change in either the composition of the ECM or its mechanical properties ultimately affect the behavior of these cells throughout one's life. Thus, understanding the role of ECMs' proteins and related signaling pathways on cardiac cell proliferation is essential to develop effective strategies fostering the regeneration of a damaged heart. This review provides an overview of the components of the ECM and its mechanical properties, whose function in cardiac regeneration has been elucidated, with a major focus on the strengths and weaknesses of the experimental models so far exploited to demonstrate the actual pro-regenerative capacity of the components of the ECM and to translate this knowledge into new therapies.
Collapse
|
24
|
Basara G, Bahcecioglu G, Ozcebe SG, Ellis BW, Ronan G, Zorlutuna P. Myocardial infarction from a tissue engineering and regenerative medicine point of view: A comprehensive review on models and treatments. BIOPHYSICS REVIEWS 2022; 3:031305. [PMID: 36091931 PMCID: PMC9447372 DOI: 10.1063/5.0093399] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/08/2022] [Indexed: 05/12/2023]
Abstract
In the modern world, myocardial infarction is one of the most common cardiovascular diseases, which are responsible for around 18 million deaths every year or almost 32% of all deaths. Due to the detrimental effects of COVID-19 on the cardiovascular system, this rate is expected to increase in the coming years. Although there has been some progress in myocardial infarction treatment, translating pre-clinical findings to the clinic remains a major challenge. One reason for this is the lack of reliable and human representative healthy and fibrotic cardiac tissue models that can be used to understand the fundamentals of ischemic/reperfusion injury caused by myocardial infarction and to test new drugs and therapeutic strategies. In this review, we first present an overview of the anatomy of the heart and the pathophysiology of myocardial infarction, and then discuss the recent developments on pre-clinical infarct models, focusing mainly on the engineered three-dimensional cardiac ischemic/reperfusion injury and fibrosis models developed using different engineering methods such as organoids, microfluidic devices, and bioprinted constructs. We also present the benefits and limitations of emerging and promising regenerative therapy treatments for myocardial infarction such as cell therapies, extracellular vesicles, and cardiac patches. This review aims to overview recent advances in three-dimensional engineered infarct models and current regenerative therapeutic options, which can be used as a guide for developing new models and treatment strategies.
Collapse
Affiliation(s)
- Gozde Basara
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Gokhan Bahcecioglu
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - S. Gulberk Ozcebe
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Bradley W Ellis
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - George Ronan
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Pinar Zorlutuna
- Present address: 143 Multidisciplinary Research Building, University of Notre Dame, Notre Dame, IN 46556. Author to whom correspondence should be addressed:. Tel.: +1 574 631 8543. Fax: +1 574 631 8341
| |
Collapse
|
25
|
Ellis BW, Ronan G, Ren X, Bahcecioglu G, Senapati S, Anderson D, Handberg E, March KL, Chang HC, Zorlutuna P. Human Heart Anoxia and Reperfusion Tissue (HEART) Model for the Rapid Study of Exosome Bound miRNA Expression As Biomarkers for Myocardial Infarction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201330. [PMID: 35670145 PMCID: PMC9283287 DOI: 10.1002/smll.202201330] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/27/2022] [Indexed: 05/12/2023]
Abstract
Current biomarkers for myocardial infarction (MI) diagnosis are typically late markers released upon cell death, incapable of distinguishing between ischemic and reperfusion injury and can be symptoms of other pathologies. Circulating microRNAs (miRNAs) have recently been proposed as alternative biomarkers for MI diagnosis; however, detecting the changes in the human cardiac miRNA profile during MI is extremely difficult. Here, to study the changes in miRNA levels during acute MI, a heart-on-chip model with a cardiac channel, containing human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes in human heart decellularized matrix and collagen, and a vascular channel, containing hiPSC-derived endothelial cells, is developed. This model is exposed to anoxia followed by normoxia to mimic ischemia and reperfusion, respectively. Using a highly sensitive miRNA biosensor that the authors developed, the exact same increase in miR-1, miR-208b, and miR-499 levels in the MI-on-chip and the time-matched human blood plasma samples collected before and after ischemia and reperfusion, is shown. That the surface marker profile of exosomes in the engineered model changes in response to ischemic and reperfusion injury, which can be used as biomarkers to detect MI, is also shown. Hence, the MI-on-chip model developed here can be used in biomarker discovery.
Collapse
Affiliation(s)
- Bradley W Ellis
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - George Ronan
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Xiang Ren
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Gokhan Bahcecioglu
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Satyajyoti Senapati
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - David Anderson
- Division of Cardiology, Department of Medicine in the College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Eileen Handberg
- Division of Cardiology, Department of Medicine in the College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Keith L March
- Division of Cardiology, Department of Medicine in the College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Hsueh-Chia Chang
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Pinar Zorlutuna
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| |
Collapse
|
26
|
Khomtchouk BB, Lee YS, Khan ML, Sun P, Mero D, Davidson MH. Targeting the cytoskeleton and extracellular matrix in cardiovascular disease drug discovery. Expert Opin Drug Discov 2022; 17:443-460. [PMID: 35258387 PMCID: PMC9050939 DOI: 10.1080/17460441.2022.2047645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/24/2022] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Currently, cardiovascular disease (CVD) drug discovery has focused primarily on addressing the inflammation and immunopathology aspects inherent to various CVD phenotypes such as cardiac fibrosis and coronary artery disease. However, recent findings suggest new biological pathways for cytoskeletal and extracellular matrix (ECM) regulation across diverse CVDs, such as the roles of matricellular proteins (e.g. tenascin-C) in regulating the cellular microenvironment. The success of anti-inflammatory drugs like colchicine, which targets microtubule polymerization, further suggests that the cardiac cytoskeleton and ECM provide prospective therapeutic opportunities. AREAS COVERED Potential therapeutic targets include proteins such as gelsolin and calponin 2, which play pivotal roles in plaque development. This review focuses on the dynamic role that the cytoskeleton and ECM play in CVD pathophysiology, highlighting how novel target discovery in cytoskeletal and ECM-related genes may enable therapeutics development to alter the regulation of cellular architecture in plaque formation and rupture, cardiac contractility, and other molecular mechanisms. EXPERT OPINION Further research into the cardiac cytoskeleton and its associated ECM proteins is an area ripe for novel target discovery. Furthermore, the structural connection between the cytoskeleton and the ECM provides an opportunity to evaluate both entities as sources of potential therapeutic targets for CVDs.
Collapse
Affiliation(s)
- Bohdan B. Khomtchouk
- University of Chicago, Department of Medicine, Section of Computational Biomedicine and Biomedical Data Science, Institute for Genomics and Systems Biology, Chicago, IL USA
| | - Yoon Seo Lee
- The College of the University of Chicago, Chicago, IL USA
| | - Maha L. Khan
- The College of the University of Chicago, Chicago, IL USA
| | - Patrick Sun
- The College of the University of Chicago, Chicago, IL USA
| | | | - Michael H. Davidson
- University of Chicago, Department of Medicine, Section of Cardiology, Chicago, IL USA
| |
Collapse
|
27
|
Lee Y, Singh J, Scott SR, Ellis B, Zorlutuna P, Wang M. A Recombinant Dimethylarginine Dimethylaminohydrolase-1-Based Biotherapeutics to Pharmacologically Lower Asymmetric Dimethyl Arginine, thus Improving Postischemic Cardiac Function and Cardiomyocyte Mitochondrial Activity. Mol Pharmacol 2022; 101:226-235. [PMID: 35042831 PMCID: PMC11033929 DOI: 10.1124/molpharm.121.000394] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/16/2022] [Indexed: 11/22/2022] Open
Abstract
High serum levels of asymmetric dimethyl arginine (ADMA) are associated with cardiovascular disease and mortality. Pharmacological agents to specifically lower ADMA and their potential impact on cardiovascular complications are not known. In this study, we aimed to investigate the effect of specific lowering of ADMA on myocardial response to ischemia-reperfusion injury (I/R) and direct effects on cardiomyocyte function. Effects of recombinant dimethylarginine dimethylaminohydrolase (rDDAH)-1 on I/R injury were determined using isolated mouse heart preparation. Respiration capacity and mitochondrial reactive oxygen species (ROS) generation were determined on mouse cardiomyocytes. Our results show that lowering ADMA by rDDAH-1 treatment resulted in improved recovery of cardiac function and reduction in myocardial infarct size in mouse heart response to I/R injury (control 22.24 ±4.60% versus rDDAH-1 15.90 ±4.23%, P < 0.01). In mouse cardiomyocytes, rDDAH-1 treatment improved ADMA-induced dysregulation of respiration capacity and decreased mitochondrial ROS. Furthermore, in human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes with impaired contractility under hypoxia and high ADMA, rDDAH-1 treatment improved recovery and beating frequency (P < 0.05). rDDAH-1 treatment selectively modified I/R-induced myocardial cytokine expression, resulting in reduction in proinflammatory cytokine IL-17A (P < 0.001) and increased expression of anti-inflammatory cytokines IL-10 and IL-13 (P < 0.01). Further in vitro studies showed that IL-17A was the predominant and common cytokine modulated by ADMA-DDAH pathway in heart, cardiomyocytes, and endothelial cells. These studies show that lowering ADMA by pharmacological treatment with rDDAH-1 reduced I/R injury, improved cardiac function, and ameliorated cardiomyocyte bioenergetics and beating activity. These effects may be attributable to ADMA lowering in cardiomyocytes and preservation of cardiomyocyte mitochondrial function. SIGNIFICANCE STATEMENT: The pathological role of asymmetric dimethyl arginine (ADMA) has been demonstrated by its association with cardiovascular disease and mortality. Currently, pharmacological drugs to specifically lower ADMA are not available. The present study provides the first evidence that lowering of ADMA by recombinant recombinant dimethylarginine dimethylaminohydrolase (rDDAH)-1 improved postischemic cardiac function and cardiomyocyte bioenergetics and beating activity. Our studies suggest that lowering of ADMA by pharmacologic treatment offers opportunity to develop new therapies for the treatment of cardiovascular and renal disease.
Collapse
Affiliation(s)
- Young Lee
- Indiana Center for Biomedical Innovation, Indianapolis, Indiana (Y.L., J.S.); Indiana University School of Medicine, Indianapolis, Indiana (J.S.); Department of Surgery, Indiana University, School of Medicine, Indianapolis, Indiana (S.R.S., M.W.); Bioengineering Graduate Program (B.E., P.Z.) and Aerospace and Mechanical Engineering Department (P.Z.), University of Notre Dame, Notre Dame, Indiana; and Vasculonics LLC, Indianapolis, Indiana (J.S.)
| | - Jaipal Singh
- Indiana Center for Biomedical Innovation, Indianapolis, Indiana (Y.L., J.S.); Indiana University School of Medicine, Indianapolis, Indiana (J.S.); Department of Surgery, Indiana University, School of Medicine, Indianapolis, Indiana (S.R.S., M.W.); Bioengineering Graduate Program (B.E., P.Z.) and Aerospace and Mechanical Engineering Department (P.Z.), University of Notre Dame, Notre Dame, Indiana; and Vasculonics LLC, Indianapolis, Indiana (J.S.)
| | - Susan R Scott
- Indiana Center for Biomedical Innovation, Indianapolis, Indiana (Y.L., J.S.); Indiana University School of Medicine, Indianapolis, Indiana (J.S.); Department of Surgery, Indiana University, School of Medicine, Indianapolis, Indiana (S.R.S., M.W.); Bioengineering Graduate Program (B.E., P.Z.) and Aerospace and Mechanical Engineering Department (P.Z.), University of Notre Dame, Notre Dame, Indiana; and Vasculonics LLC, Indianapolis, Indiana (J.S.)
| | - Bradley Ellis
- Indiana Center for Biomedical Innovation, Indianapolis, Indiana (Y.L., J.S.); Indiana University School of Medicine, Indianapolis, Indiana (J.S.); Department of Surgery, Indiana University, School of Medicine, Indianapolis, Indiana (S.R.S., M.W.); Bioengineering Graduate Program (B.E., P.Z.) and Aerospace and Mechanical Engineering Department (P.Z.), University of Notre Dame, Notre Dame, Indiana; and Vasculonics LLC, Indianapolis, Indiana (J.S.)
| | - Pinar Zorlutuna
- Indiana Center for Biomedical Innovation, Indianapolis, Indiana (Y.L., J.S.); Indiana University School of Medicine, Indianapolis, Indiana (J.S.); Department of Surgery, Indiana University, School of Medicine, Indianapolis, Indiana (S.R.S., M.W.); Bioengineering Graduate Program (B.E., P.Z.) and Aerospace and Mechanical Engineering Department (P.Z.), University of Notre Dame, Notre Dame, Indiana; and Vasculonics LLC, Indianapolis, Indiana (J.S.)
| | - Meijing Wang
- Indiana Center for Biomedical Innovation, Indianapolis, Indiana (Y.L., J.S.); Indiana University School of Medicine, Indianapolis, Indiana (J.S.); Department of Surgery, Indiana University, School of Medicine, Indianapolis, Indiana (S.R.S., M.W.); Bioengineering Graduate Program (B.E., P.Z.) and Aerospace and Mechanical Engineering Department (P.Z.), University of Notre Dame, Notre Dame, Indiana; and Vasculonics LLC, Indianapolis, Indiana (J.S.)
| |
Collapse
|
28
|
Sohn JY, Kwak HJ, Rhim JH, Yeo EJ. AMP-activated protein kinase-dependent nuclear localization of glyceraldehyde 3-phosphate dehydrogenase in senescent human diploid fibroblasts. Aging (Albany NY) 2022; 14:4-27. [PMID: 35020602 PMCID: PMC8791203 DOI: 10.18632/aging.203825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a key glycolytic enzyme that participates in various cellular events, such as DNA repair and apoptosis. The functional diversity of GAPDH depends on its intracellular localization. Because AMP-activated protein kinase (AMPK) regulates the nuclear translocation of GAPDH in young cells and AMPK activity significantly increases during aging, we investigated whether altered AMPK activity is involved in the nuclear localization of GAPDH in senescent cells. Age-dependent nuclear translocation of GAPDH was confirmed by confocal laser scanning microscopy in human diploid fibroblasts (HDFs) and by immunohistochemical analysis in aged rat skin cells. Senescence-induced nuclear localization was reversed by lysophosphatidic acid but not by platelet-derived growth factor. The extracellular matrix from young cells also induced the nuclear export of GAPDH in senescent HDFs. An activator of AMPK, 5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR), increased the level of nuclear GAPDH, whereas an inhibitor of AMPK, Compound C, decreased the level of nuclear GAPDH in senescent HDFs. Transfection with AMPKα siRNA prevented nuclear translocation of GAPDH in senescent HDFs. The stimulatory effect of AICAR and serum depletion on GAPDH nuclear translocation was reduced in AMPKα1/α2-knockout mouse embryonic fibroblasts. Overall, increased AMPK activity may play a role in the senescence-associated nuclear translocation of GAPDH.
Collapse
Affiliation(s)
- Jee Young Sohn
- Department of Medicine, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Hyeok-Jin Kwak
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
| | - Ji Heon Rhim
- Bio-New Material Development, NineBioPharm Co., Ltd., Cheongju 28161, Republic of Korea
| | - Eui-Ju Yeo
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
29
|
Stem Cell Studies in Cardiovascular Biology and Medicine: A Possible Key Role of Macrophages. BIOLOGY 2022; 11:biology11010122. [PMID: 35053119 PMCID: PMC8773242 DOI: 10.3390/biology11010122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/26/2021] [Accepted: 01/06/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Stem cells are used in cardiovascular biology and biomedicine and this field of research is expanding. Two types of stem cells have been used in research: induced pluripotent and somatic stem cells. Induced pluripotent stem cells (iPSCs) are similar to embryonic stem cells (ESCs) in that they can differentiate into somatic cells. Bone marrow stem/stromal cells (BMSCs), adipose-derived stem cells (ASCs), and cardiac stem cells (CSCs) are somatic stem cells that have been used for cardiac regeneration. Recent studies have indicated that exosomes and vesicles from BMSCs and ASCs can be used in regenerative medicine and diagnostics. Chemokines and exosomes can contribute to the communication between inflammatory cells and stem cells to differentiate stem cells into the cell types required for tissue regeneration or repair. In this review, we address these issues based on our research and previous publications. Abstract Stem cells are used in cardiovascular biology and biomedicine, and research in this field is expanding. Two types of stem cells have been used in research: induced pluripotent and somatic stem cells. Stem cell research in cardiovascular medicine has developed rapidly following the discovery of different types of stem cells. Induced pluripotent stem cells (iPSCs) possess potent differentiation ability, unlike somatic stem cells, and have been postulated for a long time. However, differentiating into adult-type mature and functional cardiac myocytes (CMs) remains difficult. Bone marrow stem/stromal cells (BMSCs), adipose-derived stem cells (ASCs), and cardiac stem cells (CSCs) are somatic stem cells used for cardiac regeneration. Among somatic stem cells, bone marrow stem/stromal cells (BMSCs) were the first to be discovered and are relatively well-characterized. BMSCs were once thought to have differentiation ability in infarcted areas of the heart, but it has been identified that paracrine cytokines and micro-RNAs derived from BMSCs contributed to that effect. Moreover, vesicles and exosomes from these cells have similar effects and are effective in cardiac repair. The molecular signature of exosomes can also be used for diagnostics because exosomes have the characteristics of their origin cells. Cardiac stem cells (CSCs) differentiate into cardiomyocytes, smooth muscle cells, and endothelial cells, and supply cardiomyocytes during myocardial infarction by differentiating into newly formed cardiomyocytes. Stem cell niches and inflammatory cells play important roles in stem cell regulation and the recovery of damaged tissues. In particular, chemokines can contribute to the communication between inflammatory cells and stem cells. In this review, we present the current status of this exciting and promising research field.
Collapse
|
30
|
Bourque K, Hawey C, Jiang A, Mazarura GR, Hébert TE. Biosensor-based profiling to track cellular signalling in patient-derived models of dilated cardiomyopathy. Cell Signal 2022; 91:110239. [PMID: 34990783 DOI: 10.1016/j.cellsig.2021.110239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/06/2021] [Accepted: 12/29/2021] [Indexed: 12/18/2022]
Abstract
Dilated cardiomyopathies (DCM) represent a diverse group of cardiovascular diseases impacting the structure and function of the myocardium. To better treat these diseases, we need to understand the impact of such cardiomyopathies on critical signalling pathways that drive disease progression downstream of receptors we often target therapeutically. Our understanding of cellular signalling events has progressed substantially in the last few years, in large part due to the design, validation and use of biosensor-based approaches to studying such events in cells, tissues and in some cases, living animals. Another transformative development has been the use of human induced pluripotent stem cells (hiPSCs) to generate disease-relevant models from individual patients. We highlight the importance of going beyond monocellular cultures to incorporate the influence of paracrine signalling mediators. Finally, we discuss the recent coalition of these approaches in the context of DCM. We discuss recent work in generating patient-derived models of cardiomyopathies and the utility of using signalling biosensors to track disease progression and test potential therapeutic strategies that can be later used to inform treatment options in patients.
Collapse
Affiliation(s)
- Kyla Bourque
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Cara Hawey
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Alyson Jiang
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Grace R Mazarura
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada.
| |
Collapse
|
31
|
Moffat D, Ye K, Jin S. Decellularization for the retention of tissue niches. J Tissue Eng 2022; 13:20417314221101151. [PMID: 35620656 PMCID: PMC9128068 DOI: 10.1177/20417314221101151] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/01/2022] [Indexed: 12/25/2022] Open
Abstract
Decellularization of natural tissues to produce extracellular matrix is a promising method for three-dimensional scaffolding and for understanding microenvironment of the tissue of interest. Due to the lack of a universal standard protocol for tissue decellularization, recent investigations seek to develop novel methods for whole or partial organ decellularization capable of supporting cell differentiation and implantation towards appropriate tissue regeneration. This review provides a comprehensive and updated perspective on the most recent advances in decellularization strategies for a variety of organs and tissues, highlighting techniques of chemical, physical, biological, enzymatic, or combinative-based methods to remove cellular contents from tissues. In addition, the review presents modernized approaches for improving standard decellularization protocols for numerous organ types.
Collapse
Affiliation(s)
- Deana Moffat
- Department of Biomedical Engineering, Binghamton University, State University of New York (SUNY), Binghamton, NY, USA
| | - Kaiming Ye
- Department of Biomedical Engineering, Binghamton University, State University of New York (SUNY), Binghamton, NY, USA
- Center of Biomanufacturing for Regenerative Medicine, Binghamton University, State University of New York (SUNY), Binghamton, NY, USA
| | - Sha Jin
- Department of Biomedical Engineering, Binghamton University, State University of New York (SUNY), Binghamton, NY, USA
- Center of Biomanufacturing for Regenerative Medicine, Binghamton University, State University of New York (SUNY), Binghamton, NY, USA
| |
Collapse
|
32
|
The Key Genes Underlying Pathophysiology Association between Plaque Instability and Progression of Myocardial Infarction. DISEASE MARKERS 2021; 2021:4300406. [PMID: 34925642 PMCID: PMC8678557 DOI: 10.1155/2021/4300406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/02/2021] [Indexed: 11/17/2022]
Abstract
Young patients with type 2 diabetes and myocardial infarction (MI) have higher long-term all-cause and cardiovascular mortality. In addition, the observed increased, mildly abnormal baseline lipid levels, but not lipid variability, are associated with an increased risk of atherosclerotic cardiovascular disease events, particularly MI. This study investigated differentially expressed genes (DEGs), which might be potential targets for young patients with MI and a high-fat diet (HFD). GSE114695 and GSE69187 were downloaded and processed using the limma package. A Venn diagram was applied to identify the same DEGs, and further pathway analysis was performed using Metascape. Protein-protein interaction (PPI) network analysis was then applied, and the hub genes were screened out. Pivotal miRNAs were predicted and validated using the miRNA dataset in GSE114695. To investigate the cardiac function of the screened genes, an MI mouse model, echocardiogram, and ELISA of hub genes were applied, and a correlation analysis was also performed. From aged mice fed HFD, 138 DEGs were extracted. From aged mice fed with chow, 227 DEGs were extracted. Pathway enrichment analysis revealed that DEGs in aging mice fed HFD were enriched in lipid transport and lipid biosynthetic process 1 d after MI and in the MAPK signaling pathway at 1 w after MI, suggesting that HFD has less effect on aging with MI. A total of 148 DEGs were extracted from the intersection between plaques fed with HFD and chow in young mice and MI_1d, respectively, which demonstrated increased inflammatory and adaptive immune responses, in addition to myeloid leukocyte activation. A total of 183 DEGs were screened out between plaques fed with HFD vs. chow in young mice and MI_1w, respectively, which were mainly enriched in inflammatory response, cytokine production, and myeloid leukocyte activation. After validation, PAK3, CD44, CD5, SOCS3, VAV1, and PIK3CD were demonstrated to be negatively correlated with LVEF; however, P2RY1 was demonstrated to be positively correlated. This study demonstrated that the screened hub genes may be therapeutic targets for treating STEMI patients and preventing MI recurrence, especially in young MI patients with HFD or diabetes.
Collapse
|
33
|
Singh JP, Young JL. The cardiac nanoenvironment: form and function at the nanoscale. Biophys Rev 2021; 13:625-636. [PMID: 34765045 PMCID: PMC8555021 DOI: 10.1007/s12551-021-00834-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/18/2021] [Indexed: 12/17/2022] Open
Abstract
Mechanical forces in the cardiovascular system occur over a wide range of length scales. At the whole organ level, large scale forces drive the beating heart as a synergistic unit. On the microscale, individual cells and their surrounding extracellular matrix (ECM) exhibit dynamic reciprocity, with mechanical feedback moving bidirectionally. Finally, in the nanometer regime, molecular features of cells and the ECM show remarkable sensitivity to mechanical cues. While small, these nanoscale properties are in many cases directly responsible for the mechanosensitive signaling processes that elicit cellular outcomes. Given the inherent challenges in observing, quantifying, and reconstituting this nanoscale environment, it is not surprising that this landscape has been understudied compared to larger length scales. Here, we aim to shine light upon the cardiac nanoenvironment, which plays a crucial role in maintaining physiological homeostasis while also underlying pathological processes. Thus, we will highlight strategies aimed at (1) elucidating the nanoscale components of the cardiac matrix, and (2) designing new materials and biosystems capable of mimicking these features in vitro.
Collapse
Affiliation(s)
- Jashan P Singh
- Mechanobiology Institute, National University of Singapore, 117411 Singapore, Singapore
| | - Jennifer L Young
- Mechanobiology Institute, National University of Singapore, 117411 Singapore, Singapore.,Department of Biomedical Engineering, National University of Singapore, 117575 Singapore, Singapore
| |
Collapse
|
34
|
Proteomic and Bioinformatic Analysis of Decellularized Pancreatic Extracellular Matrices. Molecules 2021; 26:molecules26216740. [PMID: 34771149 PMCID: PMC8588251 DOI: 10.3390/molecules26216740] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 01/15/2023] Open
Abstract
Tissue microenvironments are rich in signaling molecules. However, factors in the tissue matrix that can serve as tissue-specific cues for engineering pancreatic tissues have not been thoroughly identified. In this study, we performed a comprehensive proteomic analysis of porcine decellularized pancreatic extracellular matrix (dpECM). By profiling dpECM collected from subjects of different ages and genders, we showed that the detergent-free decellularization method developed in this study permits the preservation of approximately 62.4% more proteins than a detergent-based method. In addition, we demonstrated that dpECM prepared from young pigs contained approximately 68.5% more extracellular matrix proteins than those prepared from adult pigs. Furthermore, we categorized dpECM proteins by biological process, molecular function, and cellular component through gene ontology analysis. Our study results also suggested that the protein composition of dpECM is significantly different between male and female animals while a KEGG enrichment pathway analysis revealed that dpECM protein profiling varies significantly depending on age. This study provides the proteome of pancreatic decellularized ECM in different animal ages and genders, which will help identify the bioactive molecules that are pivotal in creating tissue-specific cues for engineering tissues in vitro.
Collapse
|
35
|
Li S, Ma W, Cai B. Targeting cardiomyocyte proliferation as a key approach of promoting heart repair after injury. MOLECULAR BIOMEDICINE 2021; 2:34. [PMID: 35006441 PMCID: PMC8607366 DOI: 10.1186/s43556-021-00047-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/21/2021] [Indexed: 11/17/2022] Open
Abstract
Cardiovascular diseases such as myocardial infarction (MI) is a major contributor to human mortality and morbidity. The mammalian adult heart almost loses its plasticity to appreciably regenerate new cardiomyocytes after injuries, such as MI and heart failure. The neonatal heart exhibits robust proliferative capacity when exposed to varying forms of myocardial damage. The ability of the neonatal heart to repair the injury and prevent pathological left ventricular remodeling leads to preserved or improved cardiac function. Therefore, promoting cardiomyocyte proliferation after injuries to reinitiate the process of cardiomyocyte regeneration, and suppress heart failure and other serious cardiovascular problems have become the primary goal of many researchers. Here, we review recent studies in this field and summarize the factors that act upon the proliferation of cardiomyocytes and cardiac repair after injury and discuss the new possibilities for potential clinical treatment strategies for cardiovascular diseases.
Collapse
Affiliation(s)
- Shuainan Li
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China
| | - Wenya Ma
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China
| | - Benzhi Cai
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China. .,Institute of Clinical Pharmacy, the Heilongjiang Key Laboratory of Drug Research, Harbin Medical University, Harbin, 150086, China. .,Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, Harbin, 150086, China.
| |
Collapse
|
36
|
Bahcecioglu G, Yue X, Howe E, Guldner I, Stack MS, Nakshatri H, Zhang S, Zorlutuna P. Aged Breast Extracellular Matrix Drives Mammary Epithelial Cells to an Invasive and Cancer-Like Phenotype. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100128. [PMID: 34617419 PMCID: PMC8596116 DOI: 10.1002/advs.202100128] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/26/2021] [Indexed: 05/04/2023]
Abstract
Age is a major risk factor for cancer. While the importance of age related genetic alterations in cells on cancer progression is well documented, the effect of aging extracellular matrix (ECM) has been overlooked. This study shows that the aging breast ECM alone is sufficient to drive normal human mammary epithelial cells (KTB21) to a more invasive and cancer-like phenotype, while promoting motility and invasiveness in MDA-MB-231 cells. Decellularized breast matrix from aged mice leads to loss of E-cadherin membrane localization in KTB21 cells, increased cell motility and invasion, and increased production of inflammatory cytokines and cancer-related proteins. The aged matrix upregulates cancer-related genes in KTB21 cells and enriches a cell subpopulation highly expressing epithelial-mesenchymal transition-related genes. Lysyl oxidase knockdown reverts the aged matrix-induced changes to the young levels; it relocalizes E-cadherin to cell membrane, and reduces cell motility, invasion, and cytokine production. These results show for the first time that the aging ECM harbors key biochemical, physical, and mechanical cues contributing to invasive and cancer-like behavior in healthy and cancer mammary cells. Differential response of cells to young and aged ECMs can lead to identification of new targets for cancer treatment and prevention.
Collapse
Affiliation(s)
- Gokhan Bahcecioglu
- Department of Aerospace and Mechanical EngineeringUniversity of Notre DameNotre DameIN46556USA
| | - Xiaoshan Yue
- Department of Aerospace and Mechanical EngineeringUniversity of Notre DameNotre DameIN46556USA
| | - Erin Howe
- Harper Cancer Research InstituteUniversity of Notre DameNotre DameIN46556USA
- Department of Biological SciencesUniversity of Notre DameNotre DameIN46556USA
| | - Ian Guldner
- Harper Cancer Research InstituteUniversity of Notre DameNotre DameIN46556USA
- Department of Biological SciencesUniversity of Notre DameNotre DameIN46556USA
| | - M. Sharon Stack
- Harper Cancer Research InstituteUniversity of Notre DameNotre DameIN46556USA
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIN46556USA
| | - Harikrishna Nakshatri
- Department of SurgerySchool of MedicineIndiana UniversityIndianapolisIN46202USA
- Department of Biochemistry and Molecular BiologySchool of MedicineIndiana UniversityIndianapolisIN46202USA
| | - Siyuan Zhang
- Harper Cancer Research InstituteUniversity of Notre DameNotre DameIN46556USA
- Department of Biological SciencesUniversity of Notre DameNotre DameIN46556USA
| | - Pinar Zorlutuna
- Department of Aerospace and Mechanical EngineeringUniversity of Notre DameNotre DameIN46556USA
- Harper Cancer Research InstituteUniversity of Notre DameNotre DameIN46556USA
- Bioengineering Graduate ProgramUniversity of Notre DameNotre DameIN46556USA
| |
Collapse
|
37
|
Tenreiro MF, Almeida HV, Calmeiro T, Fortunato E, Ferreira L, Alves PM, Serra M. Interindividual heterogeneity affects the outcome of human cardiac tissue decellularization. Sci Rep 2021; 11:20834. [PMID: 34675273 PMCID: PMC8531368 DOI: 10.1038/s41598-021-00226-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/24/2021] [Indexed: 12/17/2022] Open
Abstract
The extracellular matrix (ECM) of engineered human cardiac tissues corresponds to simplistic biomaterials that allow tissue assembly, or animal derived off-the-shelf non-cardiac specific matrices. Decellularized ECM from human cardiac tissue could provide a means to improve the mimicry of engineered human cardiac tissues. Decellularization of cardiac tissue samples using immersion-based methods can produce acceptable cardiac ECM scaffolds; however, these protocols are mostly described for animal tissue preparations. We have tested four methods to decellularize human cardiac tissue and evaluated their efficiency in terms of cell removal and preservation of key ECM components, such as collagens and sulfated glycosaminoglycans. Extended exposure to decellularization agents, namely sodium dodecyl sulfate and Triton-X-100, was needed to significantly remove DNA content by approximately 93% in all human donors. However, the biochemical composition of decellularized tissue is affected, and the preservation of ECM architecture is donor dependent. Our results indicate that standardization of decellularization protocols for human tissue is likely unfeasible, and a compromise between cell removal and ECM preservation must be established in accordance with the scaffold's intended application. Notwithstanding, decellularized human cardiac ECM supported human induced pluripotent-derived cardiomyocyte (hiPSC-CM) attachment and retention for up to 2 weeks of culture, and promoted cell alignment and contraction, providing evidence it could be a valuable tool for cardiac tissue engineering.
Collapse
Affiliation(s)
- Miguel F Tenreiro
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal
| | - Henrique V Almeida
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal
| | - Tomás Calmeiro
- CENIMAT|i3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516, Caparica, Portugal
| | - Elvira Fortunato
- CENIMAT|i3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516, Caparica, Portugal
| | - Lino Ferreira
- CNC, Centro de Neurociências e Biologia Celular, Universidade de Coimbra, 3004-517, Coimbra, Portugal
- Faculdade de Medicina, Universidade de Coimbra, Rua Larga, 3004-504, Coimbra, Portugal
| | - Paula M Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal
| | - Margarida Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
| |
Collapse
|
38
|
Park HJ, De Jesus Morales KJ, Bheri S, Kassouf BP, Davis ME. Bidirectional relationship between cardiac extracellular matrix and cardiac cells in ischemic heart disease. Stem Cells 2021; 39:1650-1659. [PMID: 34480804 DOI: 10.1002/stem.3445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/10/2021] [Indexed: 11/07/2022]
Abstract
Ischemic heart diseases (IHDs), including myocardial infarction and cardiomyopathies, are a leading cause of mortality and morbidity worldwide. Cardiac-derived stem and progenitor cells have shown promise as a therapeutic for IHD but are limited by poor cell survival, limited retention, and rapid washout. One mechanism to address this is to encapsulate the cells in a matrix or three-dimensional construct, so as to provide structural support and better mimic the cells' physiological microenvironment during administration. More specifically, the extracellular matrix (ECM), the native cellular support network, has been a strong candidate for this purpose. Moreover, there is a strong consensus that the ECM and its residing cells, including cardiac stem cells, have a constant interplay in response to tissue development, aging, disease progression, and repair. When externally stimulated, the cells and ECM work together to mutually maintain the local homeostasis by initially altering the ECM composition and stiffness, which in turn alters the cellular response and behavior. Given this constant interplay, understanding the mechanism of bidirectional cell-ECM interaction is essential to develop better cell implantation matrices to enhance cell engraftment and cardiac tissue repair. This review summarizes current understanding in the field, elucidating the signaling mechanisms between cardiac ECM and residing cells in response to IHD onset. Furthermore, this review highlights recent advances in native ECM-mimicking cardiac matrices as a platform for modulating cardiac cell behavior and inducing cardiac repair.
Collapse
Affiliation(s)
- Hyun-Ji Park
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine & Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Kenneth J De Jesus Morales
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine & Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Sruti Bheri
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine & Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Brandon P Kassouf
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine & Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Michael E Davis
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine & Georgia Institute of Technology, Atlanta, Georgia, USA.,Children's Heart Research and Outcomes (HeRO) Center, Children's Healthcare of Atlanta & Emory University, Atlanta, Georgia, USA
| |
Collapse
|
39
|
Employing Extracellular Matrix-Based Tissue Engineering Strategies for Age-Dependent Tissue Degenerations. Int J Mol Sci 2021; 22:ijms22179367. [PMID: 34502277 PMCID: PMC8431718 DOI: 10.3390/ijms22179367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 01/10/2023] Open
Abstract
Tissues and organs are not composed of solely cellular components; instead, they converge with an extracellular matrix (ECM). The composition and function of the ECM differ depending on tissue types. The ECM provides a microenvironment that is essential for cellular functionality and regulation. However, during aging, the ECM undergoes significant changes along with the cellular components. The ECM constituents are over- or down-expressed, degraded, and deformed in senescence cells. ECM aging contributes to tissue dysfunction and failure of stem cell maintenance. Aging is the primary risk factor for prevalent diseases, and ECM aging is directly or indirectly correlated to it. Hence, rejuvenation strategies are necessitated to treat various age-associated symptoms. Recent rejuvenation strategies focus on the ECM as the basic biomaterial for regenerative therapies, such as tissue engineering. Modified and decellularized ECMs can be used to substitute aged ECMs and cell niches for culturing engineered tissues. Various tissue engineering approaches, including three-dimensional bioprinting, enable cell delivery and the fabrication of transplantable engineered tissues by employing ECM-based biomaterials.
Collapse
|
40
|
Basara G, Ozcebe SG, Ellis BW, Zorlutuna P. Tunable Human Myocardium Derived Decellularized Extracellular Matrix for 3D Bioprinting and Cardiac Tissue Engineering. Gels 2021; 7:70. [PMID: 34208210 PMCID: PMC8293197 DOI: 10.3390/gels7020070] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/26/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022] Open
Abstract
The generation of 3D tissue constructs with multiple cell types and matching mechanical properties remains a challenge in cardiac tissue engineering. Recently, 3D bioprinting has become a powerful tool to achieve these goals. Decellularized extracellular matrix (dECM) is a common scaffold material due to providing a native biochemical environment. Unfortunately, dECM's low mechanical stability prevents usage for bioprinting applications alone. In this study, we developed bioinks composed of decellularized human heart ECM (dhECM) with either gelatin methacryloyl (GelMA) or GelMA-methacrylated hyaluronic acid (MeHA) hydrogels dual crosslinked with UV light and microbial transglutaminase (mTGase). We characterized the bioinks' mechanical, rheological, swelling, printability, and biocompatibility properties. Composite GelMA-MeHA-dhECM (GME) hydrogels demonstrated improved mechanical properties by an order of magnitude compared to the GelMA-dhECM (GE) hydrogels. All hydrogels were extrudable and compatible with human induced pluripotent stem cell derived cardiomyocytes (iCMs) and human cardiac fibroblasts (hCFs). Tissue-like beating of the printed constructs with striated sarcomeric alpha-actinin and connexin 43 expression was observed. The order of magnitude difference between the elastic modulus of these hydrogel composites offers applications in in vitro modeling of the myocardial infarct boundary. Here, as a proof of concept, we created an infarct boundary region with control over the mechanical properties along with the cellular and macromolecular content through printing iCMs with GE bioink and hCFs with GME bioink.
Collapse
Affiliation(s)
- Gozde Basara
- Aerospace and Mechanical Engineering Department, University of Notre Dame, Notre Dame, IN 46556, USA;
| | - S. Gulberk Ozcebe
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA; (S.G.O.); (B.W.E.)
| | - Bradley W. Ellis
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA; (S.G.O.); (B.W.E.)
| | - Pinar Zorlutuna
- Aerospace and Mechanical Engineering Department, University of Notre Dame, Notre Dame, IN 46556, USA;
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA; (S.G.O.); (B.W.E.)
| |
Collapse
|
41
|
Garbern JC, Lee RT. Mitochondria and metabolic transitions in cardiomyocytes: lessons from development for stem cell-derived cardiomyocytes. Stem Cell Res Ther 2021; 12:177. [PMID: 33712058 PMCID: PMC7953594 DOI: 10.1186/s13287-021-02252-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/28/2021] [Indexed: 12/13/2022] Open
Abstract
Current methods to differentiate cardiomyocytes from human pluripotent stem cells (PSCs) inadequately recapitulate complete development and result in PSC-derived cardiomyocytes (PSC-CMs) with an immature or fetal-like phenotype. Embryonic and fetal development are highly dynamic periods during which the developing embryo or fetus is exposed to changing nutrient, oxygen, and hormone levels until birth. It is becoming increasingly apparent that these metabolic changes initiate developmental processes to mature cardiomyocytes. Mitochondria are central to these changes, responding to these metabolic changes and transitioning from small, fragmented mitochondria to large organelles capable of producing enough ATP to support the contractile function of the heart. These changes in mitochondria may not simply be a response to cardiomyocyte maturation; the metabolic signals that occur throughout development may actually be central to the maturation process in cardiomyocytes. Here, we review methods to enhance maturation of PSC-CMs and highlight evidence from development indicating the key roles that mitochondria play during cardiomyocyte maturation. We evaluate metabolic transitions that occur during development and how these affect molecular nutrient sensors, discuss how regulation of nutrient sensing pathways affect mitochondrial dynamics and function, and explore how changes in mitochondrial function can affect metabolite production, the cell cycle, and epigenetics to influence maturation of cardiomyocytes.
Collapse
Affiliation(s)
- Jessica C Garbern
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, 7 Divinity Ave, Cambridge, MA, 02138, USA
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Richard T Lee
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, 7 Divinity Ave, Cambridge, MA, 02138, USA.
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA, 02115, USA.
| |
Collapse
|
42
|
Acun A, Oganesyan R, Uygun K, Yeh H, Yarmush ML, Uygun BE. Liver donor age affects hepatocyte function through age-dependent changes in decellularized liver matrix. Biomaterials 2021; 270:120689. [PMID: 33524812 DOI: 10.1016/j.biomaterials.2021.120689] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/19/2020] [Accepted: 01/18/2021] [Indexed: 02/08/2023]
Abstract
The only treatment available for end stage liver diseases is orthotopic liver transplantation. Although there is a big donor scarcity, many donor livers are discarded as they do not qualify for transplantation. Alternatively, decellularization of discarded livers can potentially render them transplantable upon recellularization and functional testing. The success of this approach will heavily depend on the quality of decellularized scaffolds which might show variability due to factors including age. Here we assessed the age-dependent differences in liver extracellular matrix (ECM) using rat and human livers. We show that the liver matrix has higher collagen and glycosaminoglycan content and a lower growth factor content with age. Importantly, these changes lead to deterioration in primary hepatocyte function potentially due to ECM stiffening and integrin-dependent signal transduction. Overall, we show that ECM changes with age and these changes significantly affect cell function thus donor age should be considered as an important factor for bioengineering liver substitutes.
Collapse
Affiliation(s)
- Aylin Acun
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA, USA; Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Ruben Oganesyan
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA, USA; Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Korkut Uygun
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA, USA; Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Heidi Yeh
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Martin L Yarmush
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA, USA; Department of Surgery, Massachusetts General Hospital, Boston, MA, USA; Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Basak E Uygun
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA, USA; Department of Surgery, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|