1
|
Al Fahad MA, Lee HY, Park M, Lee BT. A cardiac extracellular matrix-based bilayer vascular graft with controlled microstructures for the reconstruction of small-diameter blood vessels. Biomaterials 2025; 320:123264. [PMID: 40121829 DOI: 10.1016/j.biomaterials.2025.123264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/12/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
Despite recent progress, challenges with small-diameter vascular grafts, including mechanical strength, intimal hyperplasia, thrombosis, and poor endothelialization, remain unresolved. The present study reports a novel bilayer vascular graft designed to mimic the anatomical features of small-diameter blood vessels. The electrospun graft consists of a dense micro/nanofibrous inner layer of cardiac extracellular matrix (cECM), polycaprolactone (PCL) loaded with heparin (P-cECM-H), and a super porous and micro-fibrous PCL outer layer. Liquid chromatography-mass spectrometry (LC-MS/MS) proteome analysis of the cECM revealed that it is enriched with several bioactive proteins related to angiogenesis, wound regeneration, cell migration, etc. The porosities of the two layers are tailored according to endothelial and smooth muscle cell biology. The graft exhibited excellent mechanical properties, and the heparinized P-cECM inner layer improved hemocompatibility and anticoagulation efficacy. A significant increase in endothelial cell proliferation was noted in the P-cECM-H group after 7 days compared with the control group (p < 0.05). The bilayer graft maintained 100 % patency after 10 weeks of rat abdominal aorta implantation. Histological evaluation revealed smooth muscle cell infiltration inside the highly porous outer layer and neointima regeneration in the inner layer with a complete endothelial lining. RNA sequencing (RNA-Seq) analysis further confirmed smooth muscle formation and endothelial layer formation. The gene expression data also suggested that the hypoxia-inducible factor-1 (HIF-) and vascular endothelial growth factor (VEGF) signaling pathways are involved in endothelial layer remodeling. These promising results indicate that cECM could be a key material for vascular tissue regeneration.
Collapse
Affiliation(s)
- Md Abdullah Al Fahad
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Hyun-Yong Lee
- Department of Surgery, Soonchunhyang University Cheonan Hospital, Cheonan, 31151, Republic of Korea
| | - Myeongki Park
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea; Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, 31151, Republic of Korea.
| |
Collapse
|
2
|
Jie J, Ju J, Wang Z, Chen J, Wu LP, Sun J. Organoid-Like Neurovascular Spheroids Promote the Recovery of Hypoxic-Ischemic Skin Flaps Through the Activation of Autophagy. Adv Healthc Mater 2025; 14:e2405154. [PMID: 40237031 DOI: 10.1002/adhm.202405154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/16/2025] [Indexed: 04/17/2025]
Abstract
Crosstalk between nerves and blood vessels plays a crucial role in flap development, injury repair, and homeostasis maintenance. However, in most flap transplantation strategies, the interactions between nerves and blood vessels have been ignored, leading to unsatisfactory repair effects. In this study, highly sprouting organoid-like neurovascular spheroids (NVUs) with P34HB porous microsphere cores embedding in a supportive microenvironment of Gelatin Methacryloyl hydrogel are developed. Cell-laden porous microspheres successfully recapitulated neurovascular coupling by providing a biomimetic extracellular microenvironment for neural and vascular cells at an in vivo cell density. The results demonstrated that neurovascular spheres formed complex vascular plexuses and secreted extracellular matrix, improving in vivo regeneration of skin flap. Autophagy activation regulated by nerves is detected along with the assembly of vascular networks, suggesting its role in neovascularization. By incorporating fibroblasts, highly biomimetic organoid-like models composed of dermis, vasculature, and innervation are facilely developed to mimic dermal tissues. This stable and highly reproducible in vitro model can be utilized for organ repair and mechanistic exploration.
Collapse
Affiliation(s)
- Junjin Jie
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jingyi Ju
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhenxing Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jun Chen
- Key Laboratory of Immune Response and Immunotherapy, China-New Zealand Joint Laboratory of Biomedicine and Health, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Lin-Ping Wu
- Key Laboratory of Immune Response and Immunotherapy, China-New Zealand Joint Laboratory of Biomedicine and Health, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jiaming Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
3
|
Liu X, Hu H, Ma J, Wang B. Mineralized cellulose nanofibers reinforced bioactive hydrogel remodels the osteogenic and angiogenic microenvironment for enhancing bone regeneration. Carbohydr Polym 2025; 357:123480. [PMID: 40159001 DOI: 10.1016/j.carbpol.2025.123480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/19/2025] [Accepted: 03/06/2025] [Indexed: 04/02/2025]
Abstract
Slow osteogenesis and insufficient vascularization remain significant challenges in achieving effective bone repair and functional restoration with tissue-engineered scaffolds. Herein, a novel mineralized nanofibers reinforced bioactive hydrogel was designed to enhance bone regeneration inspired from the structural and functional properties of the bone tissue extracellular matrix (ECM). This bioactive hydrogel integrated enzymatically mineralized TEMPO-oxidized bacterial cellulose (m-TOBC) nanofibers and mesoporous silica nanoparticles (MSNs) loaded with the angiogenic drug dimethyloxalylglycine (DMOG) into gelatin methacryloyl (GelMA). The m-TOBC nanofibers achieved one stone, three birds: improving the printability of GelMA ink, mechanical properties, and osteoconduction of the hydrogel. The incorporation of MSNs loaded with DMOG fostered an angiogenic microenvironment through the release of DMOG. Results indicated that the bioactive hydrogel significantly enhanced in vitro mineralized matrix deposition and osteoblastic alkaline phosphatase expression. Additionally, the bioactive hydrogel had good ability to promote angiogenesis in terms of enhanced endothelial cell migration, tube formation, and upregulated angiogenic genes expression levels. In a critical-sized rat cranial defect model, the bioactive hydrogel significantly enhanced bone regeneration. Overall, this research offered a promising strategy to design nanofibers enhanced hydrogel to remodel osteogenic and angiogenic microenvironment for enhancing bone repair.
Collapse
Affiliation(s)
- Xiaokang Liu
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Haoran Hu
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jinghong Ma
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Baoxiu Wang
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| |
Collapse
|
4
|
Gao T, Tang Y, Zeng T, Wang J, Zhang X, Liu Q, Guan X, Tang X, Lu G, Li J, Liu M, Zhang D, Lv S, Gu J. Neuraminidase 1 Exacerbated Glycolytic Dysregulation and Cardiotoxicity by Destabilizing SIRT1 through Interactions with NRF2 and HIF1α. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2414504. [PMID: 40411250 DOI: 10.1002/advs.202414504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/20/2025] [Indexed: 05/26/2025]
Abstract
Despite significant therapeutic advances, cumulative DOX-induced cardiotoxicity (DIC) events remain unacceptably high. Recent evidence has underscored the critical role of impaired glycolytic metabolism in cardiovascular damage. Neuraminidase 1 (NEU1), a member of the neuraminidase family, catalyzes the hydrolysis of terminal sialic acids from glycoconjugates. Here, it is aimed to characterize the role of NEU1 on defective glycolysis during DIC. Mouse models with cardiac-specific genetic modifications of Neu1, Nrf2, and Sirt1 underwent functional analyses, and RNA sequencing to clarify NEU1's role in glycolytic metabolism during DIC. It is discovered that NEU1 is highly expressed after DOX exposure and positively correlated with defective glycolysis phenotypes. Cardiomyocyte-specific deficiency of Neu1 ameliorated impaired glycolytic metabolism and DIC, whereas overexpression of Neu1 in cardiomyocytes exacerbated these pathological phenotypes. Mechanistically, the upregulation of Neu1 is attributed to HIF1α's transcriptional repression, which necessitated the collaboration of NRF2. Additionally, the C-terminal region of NEU1 physically interacted with SIRT1, facilitating its lysosomal-mediated degradation and contributing to the aberrant glycolytic phenotype. The pharmacological or genetic manipulation of NRF2 and HIF1α remarkably abolished DOX-induced NEU1 upregulation, compromised glucose metabolism, and DIC progression. Collectively, NEU1 as a key regulator of cardiac glycolysis is established, offering new therapeutic avenues for DIC through maintaining metabolic flexibility.
Collapse
Affiliation(s)
- Ting Gao
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yufeng Tang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, 250014, China
| | - Tao Zeng
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jie Wang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaohui Zhang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Qingbo Liu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xun Guan
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xinyu Tang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Guangping Lu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jiahao Li
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Mingrui Liu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Dongmei Zhang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Sixuan Lv
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Junlian Gu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
5
|
Wang R, Wei X, He X, Wang L, Zhou M, Tang J, Che X, Zhou G, Liu H. ML228-loaded nanoparticles with platelet membrane coating promote endothelialization of vascular grafts by enhancing HIF-1α expression. Colloids Surf B Biointerfaces 2025; 253:114756. [PMID: 40334473 DOI: 10.1016/j.colsurfb.2025.114756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/09/2025]
Abstract
Small-diameter vascular grafts (SDVGs) often struggle to maintain long-term patency due to thrombus formation, intimal hyperplasia, and inflammation. Endothelialization emerges as a pivotal strategy for addressing these concerns. As a representative activator of the hypoxia-inducible factor (HIF) pathway, ML228 can stimulate the expression of downstream target genes like vascular endothelial growth factor (VEGF) to induce angiogenesis, yet it requires encapsulation by nanoparticles for optimal delivery and efficacy. However, the immune system often recognizes nanoparticles as foreign entities, posing a significant risk of clearance. In this study, we developed ML228-loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles and coated them with platelet membranes, thereby enhancing their biocompatibility and enabling immune escape. The ML228-loaded PLGA nanoparticles coated with platelet membranes (MPNP) were immobilized onto electrospinning SDVGs made of silk fibroin (SF) and polycaprolactone (PCL) to obtain MPNP-coated grafts (SF/PCL@MPNP) with the ability to promote endothelialization. In vitro biological activity studies demonstrated that SF/PCL@MPNP activated the HIF pathway, upregulating the downstream target gene VEGF, which facilitated endothelial cells migration and angiogenesis. In vivo implantation in a rat abdominal aorta model revealed that SF/PCL@MPNP promoted endothelialization, supported the regeneration of contractile smooth muscle cells, and modulated inflammatory responses. Overall, this study presents a strategy for constructing SDVGs using ML228-loaded nanoparticles with platelet membrane coating, highlighting the promises of using ML228 to activate the HIF pathway and membrane-coated nanoparticles to improve endothelialization in vascular graft applications.
Collapse
Affiliation(s)
- Ruichen Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Xinbo Wei
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Xi He
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Li Wang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu 210008, P. R. China
| | - Moyan Zhou
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Jiarui Tang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Xin Che
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Gang Zhou
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Haifeng Liu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China.
| |
Collapse
|
6
|
Liu X, Zhao Y, Wu X, Zhou Y, Liu Y, Wang S, Zhang Y, Yang H, Song F, Huang C. Spatiotemporally Programming Microenvironment to Recapitulate Endochondral Ossification via Greenhouse-Inspired Bionic Niche. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2504057. [PMID: 40317581 DOI: 10.1002/adma.202504057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/31/2025] [Indexed: 05/07/2025]
Abstract
Various biomaterials have been developed to address challenging critical-sized bone defects. However, most of them focus on intramembranous ossification (IMO) rather than endochondral ossification (ECO), often resulting in suboptimal therapeutic outcomes. Drawing inspiration from the functionality of the greenhouse ecosystem, herein a bionic niche is innovatively crafted to recapitulate the ECO process. This niche consists of three hierarchical components: an embedded microchannel network that facilitates cell infiltration and matter exchange, a polydopamine surface modification layer with immunomodulatory functions, and an ECO-targeted delivery system based on mesoporous silica nanoparticles. Through spatiotemporally programming of the microenvironment, the bionic niche effectively recapitulates the key stages of ECO. Notably, even in the rat calvaria, a region well-known for IMO, the bionic niche is capable of initiating ECO, evident by cartilage template formation, leading to efficient bone regeneration. Taken together, this study introduces prospective concepts for designing next-generation ECO-driven biomaterials for bone tissue engineering.
Collapse
Affiliation(s)
- Xuzheng Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yaning Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Xiaoyi Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yueli Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yingheng Liu
- Dental Materials Science, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong
| | - Shilei Wang
- Key Laboratory of Resources and Compound of Traditional Chinese Medicine, Ministry of Education, Hubei University of Traditional Chinese Medicine, Wuhan, 430065, China
| | - Yufeng Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Hongye Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Fangfang Song
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Cui Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| |
Collapse
|
7
|
Choi M, Choi W, Hwang PTJ, Oh Y, Jun T, Ryu DY, Kim NK, Jang EH, Shin YR, Youn YN, Lee SH, Jung SY, Hong J. Engineered silk fibroin bio-hybrid artificial graft with releasing biological gas for enhanced circulatory stability and surgical performance. Int J Biol Macromol 2025; 309:142760. [PMID: 40185440 DOI: 10.1016/j.ijbiomac.2025.142760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/20/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
Cardiovascular disease (CVD) compromises a range of conditions affecting the heart and blood vessels, and is the leading cause of mortality globally. Vascular grafts are essential in cardiovascular surgical interventions. In clinical treatment, low mechanical durability, thrombosis and hyperplasia are primary failure modes for vascular grafts, highlighting the challenge of developing small-diameter grafts that withstand stress and integrate. A lack of suitable autologous grafts is a main cause of surgery failures. Herein, we have engineered silk fibroin (SF)-based small-diameter artificial grafts (NOeGraft) using a biologically functional polyurethane (PU) template with cost-effectiveness and high feasibility. This template facilitates the generation of biological gases via S-nitrosylation and improves mechanical properties by modulating the secondary structure of SF. Nitric oxide (NO) is one of the most essential biological gases for the cardiovascular system. NO release from NOeGraft suppresses platelet adhesion and smooth muscle cell (SMC) proliferation while scavenging reactive oxygen species (ROS) and promoting epithelial cell growth. Additionally, the suture retention strength of the NOeGraft exceeds 3.4 N. We evaluated the circulatory performance of the NOeGraft using a blood pressure-controllable system, observing no leaks or failures over 2535 min. Cost-effective NOeGraft provides biologically functional and mechanically advantageous solutions for cardiovascular surgeries.
Collapse
Affiliation(s)
- Moonhyun Choi
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Woojin Choi
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Patrick T J Hwang
- Department of Biomedical Engineering, College of Engineering, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA
| | - Yoogyeong Oh
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Taesuk Jun
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Du Yeol Ryu
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Nam Kyun Kim
- Division of Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Eui Hwa Jang
- Division of Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Yu Rim Shin
- Division of Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Young-Nam Youn
- Division of Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Seung Hyun Lee
- Division of Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Se Yong Jung
- Division of Pediatric Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| | - Jinkee Hong
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| |
Collapse
|
8
|
Kou J, Li Y, Zhou C, Wang X, Ni J, Lin Y, Ge H, Zheng D, Chen G, Sun X, Tan Q. Electrospinning in promoting chronic wound healing: materials, process, and applications. Front Bioeng Biotechnol 2025; 13:1550553. [PMID: 40114848 PMCID: PMC11922904 DOI: 10.3389/fbioe.2025.1550553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
In the field of wound treatment, chronic wounds pose a significant burden on the medical system, affecting millions of patients annually. Current treatment methods often fall short in promoting effective wound healing, highlighting the need for innovative approaches. Electrospinning, a technique that has garnered increasing attention in recent years, shows promise in wound care due to its unique characteristics and advantages. Recent studies have explored the use of electrospun nanofibers in wound healing, demonstrating their efficacy in promoting cell growth and tissue regeneration. Researchers have investigated various materials for electrospinning, including polymers, ceramics, carbon nanotubes (CNTs), and metals. Hydrogel, as a biomaterial that has been widely studied in recent years, has the characteristics of a cell matrix. When combined with electrospinning, it can be used to develop wound dressings with multiple functions. This article is a review of the application of electrospinning technology in the field of wound treatment. It introduces the current research status in the areas of wound pathophysiology, electrospinning preparation technology, and dressing development, hoping to provide references and directions for future research.
Collapse
Affiliation(s)
- Jiaxi Kou
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Yaodong Li
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Chen Zhou
- Department of Pancreatic and Metabolic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiyu Wang
- Department of Pancreatic and Metabolic Surgery, Medical School of Southeast University, Nanjing Drum Tower Hospital, Nanjing, China
| | - Jian Ni
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Yue Lin
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Huaqiang Ge
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Dongfeng Zheng
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Guopu Chen
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Xitai Sun
- Department of Pancreatic and Metabolic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qian Tan
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Department of Pancreatic and Metabolic Surgery, Medical School of Southeast University, Nanjing Drum Tower Hospital, Nanjing, China
| |
Collapse
|
9
|
Wan X, Yao H, Wei Z, Gao D, Zheng D, Xu B, Xie M. Heterogeneous porous hypoxia-mimicking scaffolds propel urethral reconstruction by promoting angiogenesis and regulating inflammation. Biomaterials 2025; 314:122833. [PMID: 39277947 DOI: 10.1016/j.biomaterials.2024.122833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
The nasty urine microenvironment (UME) impedes neourethral regeneration by inhibiting angiogenesis and inducing an excessive inflammatory response. Cellular adaptation to hypoxia improves regeneration in numerous tissues. In this study, heterogeneous porous hypoxia-mimicking scaffolds were fabricated for urethral reconstruction via promoting angiogenesis and modulating the inflammatory response based on sustained release of dimethyloxalylglycine (DMOG) to promote HIF-1α stabilization. Such scaffolds exhibit a two-layered structure: a dense layer composed of electrospun poly (l-lactic acid) (PLLA) nanofibrous mats and a loose layer composed of a porous gelatin matrix incorporated with DMOG-loaded mesoporous silica nanoparticles (DMSNs) and coated with poly(glycerol sebacate) (PGS). The modification of PGS could significantly increase rupture elongation, making the composite scaffolds more suitable for urethral tissue regeneration. Additionally, sustained release of DMOG from the scaffold facilitates proliferation, migration, tube formation, and angiogenetic gene expression in human umbilical vein endothelial cells (HUVECs), as well as stimulates M2 macrophage polarization and its regulation of HUVECs migration and smooth muscle cell (SMCs) contractile phenotype. These effects were downstream of the stabilization of HIF-1α in HUVECs and macrophages under hypoxia-mimicking conditions. Furthermore, the scaffold achieved better urethral reconstruction in a rabbit urethral stricture model, including an unobstructed urethra with a larger urethral diameter, increased regeneration of urothelial cells, SMCs, and neovascularization. Our results indicate that heterogeneous porous hypoxia-mimicking scaffolds could promote urethral reconstruction via facilitating angiogenesis and modulating inflammatory response.
Collapse
Affiliation(s)
- Xiang Wan
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Haijun Yao
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Ziwei Wei
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Dajun Gao
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Dachao Zheng
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Bin Xu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Minkai Xie
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
10
|
Li M, Chen Q, Zhou M, Li X, Wang Z, Wang J. α-Ketoglutaric Acid Reprograms Macrophages by Altering Energy Metabolism to Promote the Regeneration of Small-Diameter Vascular Grafts. ACS Biomater Sci Eng 2025; 11:518-530. [PMID: 39604080 DOI: 10.1021/acsbiomaterials.4c01702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Small-diameter vascular grafts still cannot clinically replace autologous blood vessels due to high restenosis rates caused by long-term inflammatory infiltration. Foreign body reactions to vascular grafts induce macrophages to adopt the pro-inflammatory M1 phenotype, releasing inflammatory factors such as interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). This induces a phenotypic switch in smooth muscle cells, eventually leading to intimal hyperplasia. Herein, we constructed small-diameter artificial vascular grafts capable of modulating immune responses through the controlled release of α-ketoglutaric acid (α-KG). Our findings verify that the delivery of α-KG reprograms the macrophage phenotype from a pro-inflammatory M1 to an anti-inflammatory and pro-repair M2 phenotype by regulating the energy metabolism of the tricarboxylic acid cycle (TAC). More interestingly, the delivery of α-KG positively influences the behavior of vascular cells by enhancing the proliferation of human umbilical vein endothelial cells (HUVECs) and inhibiting the expansion of mouse aortic vascular smooth muscle cells (MOVAS), thereby reducing vascular restenosis. In vivo evaluation in rabbit carotid artery replacement confirms the optimal performance of α-KG-doped vascular grafts in terms of endothelial coverage and long-term patency. Collectively, our work presents a promising approach for creating artificial vascular grafts with inflammatory regulation to ensure rapid endothelialization and sustained patency.
Collapse
Affiliation(s)
- Mengyu Li
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qi Chen
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mengxue Zhou
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaomeng Li
- National Center for International Research of Micro-Nano Molding Technology, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zihao Wang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Department of General Surgery, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Jianglin Wang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
11
|
Wang Z, Zhou M, Li M, Li J, Zhang S, Wang J. Tailored endothelialization enabled by engineered endothelial cell vesicles accelerates remodeling of small-diameter vascular grafts. Bioact Mater 2024; 41:127-136. [PMID: 39131628 PMCID: PMC11314893 DOI: 10.1016/j.bioactmat.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/24/2024] [Accepted: 07/04/2024] [Indexed: 08/13/2024] Open
Abstract
Current gold standard for the replacement of small-diameter blood vessel (ID < 4 mm) is still to utilize the autologous vessels of patients due to the limitations of small-diameter vascular grafts (SDVG) on weak endothelialization, intimal hyperplasia and low patency. Herein, we create the SDVG with the tailored endothelialization by applying the engineered endothelial cell vesicles to camouflaging vascular grafts for the enhancement of vascular remodeling. The engineered endothelial cell vesicles were modified with azide groups (ECVs-N3) through metabolic glycoengineering to precisely link the vascular graft made of PCL-DBCO via click chemistry, and thus fabricating ECVG (ECVs-N3 modified SDVG), which assists inhibition of platelet adhesion and activation, promotion of ECs adhesion and enhancement of anti-inflammation. Furthermore, In vivo single-cell transcriptome analysis revealed that the proportion of ECs in the cell composition of ECVG surpassed that of PCL, and the tailored endothelialization enabled to convert endothelial cells (ECs) into some specific ECs clusters. One of the specific cluster, Endo_C5 cluster, was only detected in ECVG. Consequently, our study integrates the engineered membrane vesicles of ECVs-N3 from native ECs for tailored endothelialization on SDVG by circumventing the limitations of living cells, and paves a new way to construct the alternative endothelialization in vessel remodeling following injury.
Collapse
Affiliation(s)
- Zihao Wang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Mengxue Zhou
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Mengyu Li
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jinyu Li
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shengmin Zhang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jianglin Wang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
12
|
Yang Y, Zhu X, Liu X, Chen K, Hu Y, Liu P, Xu Y, Xiao X, Liu X, Song N, Feng Q. Injectable and self-healing sulfated hyaluronic acid/gelatin hydrogel as dual drug delivery system for circumferential tracheal repair. Int J Biol Macromol 2024; 279:134978. [PMID: 39182860 DOI: 10.1016/j.ijbiomac.2024.134978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Stem cell-based therapies show promise for clinically addressing circumferential tracheal defects (CTD) through tissue engineering. However, creating a tissue-engineered tracheal tube possesses a healthy cartilage matrix and intact tube structure remains a challenge. A solution lies in the use of an injectable hydrogel with shape adaptability and chondrogenic capacity, serving as a practical and dependable platform for tubular tracheal cartilage regeneration. In this study, we developed an injectable hydrogel using modified natural polymers-hydrazide-grafted gelatin (Gelatin-ADH) and aldehyde-modified hyaluronic acid with sulfated groups (HA-CHO-SO3) via Schiff Base interaction. Additionally, aldehyde-modified β-cyclodextrin (β-CD-CHO) was introduced into the network during hydrogel formation. The negative sulfated groups and hydrophobic cavities of β-cyclodextrin facilitated the efficient encapsulation and sustained release of transforming growth factor-β1 (TGF-β1) and kartogenin (KGN) within our hydrogel. This synergistically promoted the chondrogenesis of loaded bone marrow stem cells (BMSCs). Subsequently, we employed this TGF-β1, KGN, and BMSCs loaded hydrogel to form a cartilage ring. This ring was then assembled into an engineered tracheal cartilage tube using our previously reported ring-to-tube strategy. Our results demonstrated that the engineered tracheal cartilage tube effectively repaired CTD in a rabbit model. Hence, this study introduces a novel hydrogel with significant clinical application potential for tracheal tissue engineering.
Collapse
Affiliation(s)
- YaYan Yang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Xinsheng Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuezhe Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Kai Chen
- School of Resources and Chemical Engineering, Sanming University, Fuzhou, China
| | - Yunping Hu
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Pei Liu
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Yong Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiufeng Xiao
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China.
| | - Xiaogang Liu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Nan Song
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Qian Feng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.
| |
Collapse
|
13
|
Polak M, Karbowniczek JE, Stachewicz U. Strategies in Electrospun Polymer and Hybrid Scaffolds for Enhanced Cell Integration and Vascularization for Bone Tissue Engineering and Organoids. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e2022. [PMID: 39696966 DOI: 10.1002/wnan.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/05/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024]
Abstract
Addressing the demand for bone substitutes, tissue engineering responds to the high prevalence of orthopedic surgeries worldwide and the limitations of conventional tissue reconstruction techniques. Materials, cells, and growth factors constitute the core elements in bone tissue engineering, influencing cellular behavior crucial for regenerative treatments. Scaffold design, including architectural features and porosity, significantly impacts cellular penetration, proliferation, differentiation, and vascularization. This review discusses the hierarchical structure of bone and the process of neovascularization in the context of biofabrication of scaffolds. We focus on the role of electrospinning and its modifications in scaffold fabrication to improve scaffold properties to enhance further tissue regeneration, for example, by boosting oxygen and nutrient delivery. We highlight how scaffold design impacts osteogenesis and the overall success of regenerative treatments by mimicking the extracellular matrix (ECM). Additionally, we explore the emerging field of bone organoids-self-assembled, three-dimensional (3D) structures derived from stem cells that replicate native bone tissue's architecture and functionality. While bone organoids hold immense potential for modeling bone diseases and facilitating regenerative treatments, their main limitation remains insufficient vascularization. Hence, we evaluate innovative strategies for pre-vascularization and discuss the latest techniques for assessing and improving vascularization in both scaffolds and organoids presenting the most commonly used cell lines and biological models. Moreover, we analyze cutting-edge techniques for assessing vascularization, evaluating their advantages and drawbacks to propose complex solutions. Finally, by integrating these approaches, we aim to advance the development of bioactive materials that promote successful bone regeneration.
Collapse
Affiliation(s)
- Martyna Polak
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, Kraków, Poland
| | - Joanna Ewa Karbowniczek
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, Kraków, Poland
| | - Urszula Stachewicz
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, Kraków, Poland
| |
Collapse
|
14
|
Wang P, Gao E, Wang T, Feng Y, Xu Y, Su L, Gao W, Ci Z, Younis MR, Chang J, Yang C, Duan L. Copper hydrogen phosphate nanosheets functionalized hydrogel with tissue adhesive, antibacterial, and angiogenic capabilities for tracheal mucosal regeneration. J Nanobiotechnology 2024; 22:652. [PMID: 39443926 PMCID: PMC11515660 DOI: 10.1186/s12951-024-02920-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
Timely and effective interventions after tracheal mucosal injury are lack in clinical practices, which elevate the risks of airway infection, tracheal cartilage deterioration, and even asphyxiated death. Herein, we proposed a biomaterial-based strategy for the repair of injured tracheal mucosal based on a copper hydrogen phosphate nanosheets (CuHP NSs) functionalized commercial hydrogel (polyethylene glycol disuccinimidyl succinate-human serum albumin, PH). Such CuHP/PH hydrogel achieved favorable injectability, stable gelation, and excellent adhesiveness within the tracheal lumen. Moreover, CuHP NSs within the CuHP/PH hydrogel effectively stimulate the proliferation and migration of endothelial/epithelial cells, enhancing angiogenesis and demonstrating excellent tissue regenerative potential. Additionally, it exhibited significant inhibitory effects on both bacteria and bacterial biofilms. More importantly, when injected injured site of tracheal mucosa under fiberoptic bronchoscopy guidance, our results demonstrated CuHP/PH hydrogel adhered tightly to the tracheal mucosa. The therapeutic effects of the CuHP/PH hydrogel were further confirmed, which significantly improved survival rates, vascular and mucosal regeneration, reduced occurrences of intraluminal infections, tracheal stenosis, and cartilage damage complications. This research presents an initial proposition outlining a strategy employing biomaterials to mitigate tracheal mucosal injury, offering novel perspectives on the treatment of mucosal injuries and other tracheal diseases.
Collapse
Affiliation(s)
- Pengli Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Key Laboratory of Tissue Engineering, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Erji Gao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Tao Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Yanping Feng
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Yong Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Lefeng Su
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Wei Gao
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Key Laboratory of Tissue Engineering, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Zheng Ci
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Key Laboratory of Tissue Engineering, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Muhammad Rizwan Younis
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Jiang Chang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China.
| | - Chen Yang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China.
| | - Liang Duan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China.
| |
Collapse
|
15
|
Guo L, Liu X, Wang Y, Yi J, Li J, Xu Y, Cai K, Dai W, Feng Q, Tao B. Enhancing long-segmental tracheal restoration: A self-repairing hydrogel loaded with chondrocytokines for sutureless anastomosis and cartilage regeneration. Mater Today Bio 2024; 28:101208. [PMID: 39290468 PMCID: PMC11405917 DOI: 10.1016/j.mtbio.2024.101208] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 08/17/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Artificial tracheal substitutes encounter significant challenges during long-segmental tracheal defects (LSTD) reconstruction, notably early postoperative anastomotic stenosis and tracheal chondromalacia. Mitigating early anastomotic stenosis by creating a compliant sutureless substitute is pivotal. Enhancing its chondrogenic capacity is equally critical for sustained healthy tracheal cartilage regeneration. This study proposes a self-healing hydrogel for sutureless tracheal anastomosis to mitigate anastomotic stenosis, enriched with kartogenin (KGN) and transforming growth factor-β1 (TGFβ1) to bolster chondrogenic properties. Initially, two precursor solutions were prepared: 1) aldehyde-modified hyaluronic acid with sulfonation and β-cyclodextrin-CHO loaded with KGN; 2) hydrazide-grafted gelatin loaded with TGFβ1. Coextrusion of these solutions resulted in a gelated G + TGFβ1/sH-CD + KGN hydrogel, characterized by a robust covalent bonding network of acylhydrazones between hydrazide and aldehyde groups, imparting excellent self-healing properties. The G + TGFβ1/sH-CD + KGN hydrogels, showcasing favorable cytocompatibility, excellent injectability, and rapid gelation, were loaded with bone marrow stem cells. These were customized into O-shaped rings and assembled into a malleable tracheal substitute using our established ring-to-tube method. This resultant compliant substitute facilitated sutureless anastomosis of LSTD in a rabbit model, attributed to the Schiff base reaction between the hydrogel's carbonyl group and the tissue's amino group. Notably, the tracheal substitute reduced early postoperative anastomotic stenosis, maintained tracheal patency, alleviated sputum blockage, promoted reepithelization, and increased the survival rate of the experimental rabbits. The sustained release of chondrocytokines resulted in excellent tracheal cartilage regeneration. Employing chondrocytokines-loaded hydrogels with self-healing properties represents a significant advancement in sutureless tracheal anastomosis and tracheal cartilage regeneration, holding promising potential in inhibiting early postoperative anastomotic stenosis and tracheal chondromalacia when treating LSTD.
Collapse
Affiliation(s)
- Liang Guo
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuezhe Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Yao Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiaoyu Yi
- Department of Plastic Surgery, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Juanjuan Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Yong Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Wufei Dai
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Feng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Bo Tao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Wang Y, Li X, Wu X, Meng F, Li Z, Guo W, Gao Z, Zhu C, Peng Y. Functional poly(e-caprolactone)/SerMA hybrid dressings with dimethyloxalylglycine-releasing property improve cutaneous wound healing. Biomed Mater 2024; 19:065011. [PMID: 39208842 DOI: 10.1088/1748-605x/ad7563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Medical dressings with multifunctional properties, including potent regeneration capability and good biocompatibility, are increasingly needed in clinical practice. In this study, we reported a novel hybrid wound dressing (PCL/SerMA/DMOG) that combines electrospun PCL membranes with DMOG-loaded methacrylated sericin (SerMA) hydrogel. In such a design, DMOG molecules are released from the hybrid dressing in a sustained mannerin vitro. A series ofin vitroassays demonstrated that DMOG-loaded hybrid dressing has multiple biological functions, including promotion of human umbilical vein endothelial cells proliferation and migration,in vitrovascularization, and the generation of intracellular NO. When applied to the cutaneous wound, the PCL/SerMA/DMOG dressing significantly accelerated wound closure and tissue regeneration by promoting angiogenesis in the wound area, collagen deposition, and cell proliferation within the wound bed. These results highlight the potential clinical application of PCL/SerMA/DMOG hybrid dressings as promising alternatives for accelerating wound healing via improved biocompatibility and angiogenesis amelioration.
Collapse
Affiliation(s)
- Yajie Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Xinyi Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Xinyue Wu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Fei Meng
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin 300050, People's Republic of China
| | - Ziming Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin 300050, People's Republic of China
| | - Wengeng Guo
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin 300050, People's Republic of China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin 300050, People's Republic of China
| | - Changjun Zhu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Yuan Peng
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin 300050, People's Republic of China
| |
Collapse
|
17
|
Du Z, Qiao F, Tong L, Zhang W, Mou X, Zhao X, Maitz MF, Wang H, Huang N, Yang Z. Mimicking Mytilus edulis foot protein: A versatile strategy for robust biomedical coatings. Innovation (N Y) 2024; 5:100671. [PMID: 39114479 PMCID: PMC11305295 DOI: 10.1016/j.xinn.2024.100671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/28/2024] [Indexed: 08/10/2024] Open
Abstract
Universal coatings with versatile surface adhesion, good mechanochemical robustness, and the capacity for secondary modification are of great scientific interest. However, incorporating these advantages into a system is still a great challenge. Here, we report a series of catechol-decorated polyallylamines (CPAs), denoted as pseudo-Mytilus edulis foot protein 5 (pseudo-Mefp-5), that mimic not only the catechol and amine groups but also the backbone of Mefp-5. CPAs can fabricate highly adhesive, robust, multifunctional polyCPA (PCPA) coatings based on synergetic catechol-polyamine chemistry as universal building blocks. Due to the interpenetrating entangled network architectures, these coatings exhibit high chemical robustness against harsh conditions (HCl, pH 1; NaOH, pH 14; H2O2, 30%), good mechanical robustness, and wear resistance. In addition, PCPA coatings provide abundant grafting sites, enabling the fabrication of various functional surfaces through secondary modification. Furthermore, the versatility, multifaceted robustness, and scalability of PCPA coatings indicate their great potential for surface engineering, especially for withstanding harsh conditions in multipurpose biomedical applications.
Collapse
Affiliation(s)
- Zeyu Du
- School of Materials Science and Engineering, Department of Cardiology, Third People’s Hospital of Chengdu Affiliated with Southwest Jiaotong University, Southwest Jiaotong University, Chengdu 610031, China
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital of Southern Medical University, Dongguan 523059, China
| | - Feng Qiao
- School of Materials Science and Engineering, Department of Cardiology, Third People’s Hospital of Chengdu Affiliated with Southwest Jiaotong University, Southwest Jiaotong University, Chengdu 610031, China
| | - Liping Tong
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wentai Zhang
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital of Southern Medical University, Dongguan 523059, China
| | - Xiaohui Mou
- School of Materials Science and Engineering, Department of Cardiology, Third People’s Hospital of Chengdu Affiliated with Southwest Jiaotong University, Southwest Jiaotong University, Chengdu 610031, China
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital of Southern Medical University, Dongguan 523059, China
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Manfred F. Maitz
- School of Materials Science and Engineering, Department of Cardiology, Third People’s Hospital of Chengdu Affiliated with Southwest Jiaotong University, Southwest Jiaotong University, Chengdu 610031, China
- Max Bergmann Center of Biomaterials Dresden, Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany
| | - Huaiyu Wang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Nan Huang
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital of Southern Medical University, Dongguan 523059, China
- GuangZhou Nanchuang Mount Everest Company for Medical Science and Technology, Guangzhou 510670, China
| | - Zhilu Yang
- School of Materials Science and Engineering, Department of Cardiology, Third People’s Hospital of Chengdu Affiliated with Southwest Jiaotong University, Southwest Jiaotong University, Chengdu 610031, China
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital of Southern Medical University, Dongguan 523059, China
| |
Collapse
|
18
|
You J, Li Y, Wang C, Lv H, Zhai S, Liu M, Liu X, Sezhen Q, Zhang L, Zhang Y, Zhou Y. Mild Thermotherapy-Assisted GelMA/HA/MPDA@Roxadustat 3D-Printed Scaffolds with Combined Angiogenesis-Osteogenesis Functions for Bone Regeneration. Adv Healthc Mater 2024; 13:e2400545. [PMID: 38706444 DOI: 10.1002/adhm.202400545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/04/2024] [Indexed: 05/07/2024]
Abstract
Early reconstruction of the vascular network is a prerequisite to the effective treatment of substantial bone defects. Traditional 3D printed tissue engineering scaffolds designed to repair large bone defects do not effectively regenerate the vascular network, and rely only on the porous structure within the scaffold for nutrient transfer and metabolic waste removal. This leads to delayed bone restoration and hence functional recovery. Therefore, strategies for generation scaffolds with the capacity to efficiently regenerate vascularization should be developed. This study loads roxarestat (RD), which can stabilize HIF-1α expression in a normoxic environment, onto the mesopore polydopamine nanoparticles (MPDA@RD) to enhance the reconstruction of vascular network in large bone defects. Subsequently, MPDA@RD is mixed with GelMA/HA hydrogel bioink to fabricate a multifunctional hydrogel scaffold (GHM@RD) through 3D printing. In vitro results show that the GHM@RD scaffolds achieve good angiogenic-osteogenic coupling by activating the PI3K/AKT/HSP90 pathway in BMSCs and the PI3K/AKT/HIF-1α pathway in HUVECs under mild thermotherapy. In vivo experiments reveal that RD and mild hyperthermia synergistically induce early vascularization and bone regeneration of critical bone defects. In conclusion, the designed GHM@RD drug delivery scaffold with mild hyperthermia holds great therapeutic value for future treatment of large bone defects.
Collapse
Affiliation(s)
- Jiaqian You
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, 130021, China
- School of Stomatology, Jilin University, Changchun, Jilin, 130021, China
| | - Yangyang Li
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, 130021, China
- School of Stomatology, Jilin University, Changchun, Jilin, 130021, China
| | - Chong Wang
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China
| | - Huixin Lv
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, 130021, China
- School of Stomatology, Jilin University, Changchun, Jilin, 130021, China
| | - Shaobo Zhai
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, 130021, China
- School of Stomatology, Jilin University, Changchun, Jilin, 130021, China
| | - Manxuan Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, 130021, China
- School of Stomatology, Jilin University, Changchun, Jilin, 130021, China
| | - Xiuyu Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, 130021, China
- School of Stomatology, Jilin University, Changchun, Jilin, 130021, China
| | - Quni Sezhen
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, 130021, China
- School of Stomatology, Jilin University, Changchun, Jilin, 130021, China
| | - Lu Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, 130021, China
- School of Stomatology, Jilin University, Changchun, Jilin, 130021, China
| | - Yidi Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, 130021, China
| | - Yanmin Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, 130021, China
| |
Collapse
|
19
|
Wu Y, Zou J, Tang K, Xia Y, Wang X, Song L, Wang J, Wang K, Wang Z. From electricity to vitality: the emerging use of piezoelectric materials in tissue regeneration. BURNS & TRAUMA 2024; 12:tkae013. [PMID: 38957661 PMCID: PMC11218788 DOI: 10.1093/burnst/tkae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 07/04/2024]
Abstract
The unique ability of piezoelectric materials to generate electricity spontaneously has attracted widespread interest in the medical field. In addition to the ability to convert mechanical stress into electrical energy, piezoelectric materials offer the advantages of high sensitivity, stability, accuracy and low power consumption. Because of these characteristics, they are widely applied in devices such as sensors, controllers and actuators. However, piezoelectric materials also show great potential for the medical manufacturing of artificial organs and for tissue regeneration and repair applications. For example, the use of piezoelectric materials in cochlear implants, cardiac pacemakers and other equipment may help to restore body function. Moreover, recent studies have shown that electrical signals play key roles in promoting tissue regeneration. In this context, the application of electrical signals generated by piezoelectric materials in processes such as bone healing, nerve regeneration and skin repair has become a prospective strategy. By mimicking the natural bioelectrical environment, piezoelectric materials can stimulate cell proliferation, differentiation and connection, thereby accelerating the process of self-repair in the body. However, many challenges remain to be overcome before these concepts can be applied in clinical practice, including material selection, biocompatibility and equipment design. On the basis of the principle of electrical signal regulation, this article reviews the definition, mechanism of action, classification, preparation and current biomedical applications of piezoelectric materials and discusses opportunities and challenges for their future clinical translation.
Collapse
Affiliation(s)
- Yifan Wu
- College of Life Sciences, Tiangong University, Binshuixi Road, Xiqing District, Tianjin 300387, China
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Weijin Road, Nankai District, Tianjin 300071, China
| | - Junwu Zou
- College of Life Sciences, Tiangong University, Binshuixi Road, Xiqing District, Tianjin 300387, China
| | - Kai Tang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiovascular Surgery, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Fuwai Hospital, Beilishi Road, Xicheng District, Beijing 100037, China
| | - Ying Xia
- College of Life Sciences, Tiangong University, Binshuixi Road, Xiqing District, Tianjin 300387, China
| | - Xixi Wang
- College of Life Sciences, Tiangong University, Binshuixi Road, Xiqing District, Tianjin 300387, China
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Baidi Road, Nankai District, Tianjin 300192, China
| | - Lili Song
- College of Life Sciences, Tiangong University, Binshuixi Road, Xiqing District, Tianjin 300387, China
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Baidi Road, Nankai District, Tianjin 300192, China
| | - Jinhai Wang
- College of Life Sciences, Tiangong University, Binshuixi Road, Xiqing District, Tianjin 300387, China
| | - Kai Wang
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Weijin Road, Nankai District, Tianjin 300071, China
| | - Zhihong Wang
- Institute of Transplant Medicine, School of Medicine, Nankai University, Weijin Road, Nankai District, Tianjin 300071, China
| |
Collapse
|
20
|
Raslan AA, Pham TX, Lee J, Kontodimas K, Tilston-Lunel A, Schmottlach J, Hong J, Dinc T, Bujor AM, Caporarello N, Thiriot A, von Andrian UH, Huang SK, Nicosia RF, Trojanowska M, Varelas X, Ligresti G. Lung injury-induced activated endothelial cell states persist in aging-associated progressive fibrosis. Nat Commun 2024; 15:5449. [PMID: 38937456 PMCID: PMC11211333 DOI: 10.1038/s41467-024-49545-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/04/2024] [Indexed: 06/29/2024] Open
Abstract
Progressive lung fibrosis is associated with poorly understood aging-related endothelial cell dysfunction. To gain insight into endothelial cell alterations in lung fibrosis we performed single cell RNA-sequencing of bleomycin-injured lungs from young and aged mice. Analysis reveals activated cell states enriched for hypoxia, glycolysis and YAP/TAZ activity in ACKR1+ venous and TrkB+ capillary endothelial cells. Endothelial cell activation is prevalent in lungs of aged mice and can also be detected in human fibrotic lungs. Longitudinal single cell RNA-sequencing combined with lineage tracing demonstrate that endothelial activation resolves in young mouse lungs but persists in aged ones, indicating a failure of the aged vasculature to return to quiescence. Genes associated with activated lung endothelial cells states in vivo can be induced in vitro by activating YAP/TAZ. YAP/TAZ also cooperate with BDNF, a TrkB ligand that is reduced in fibrotic lungs, to promote capillary morphogenesis. These findings offer insights into aging-related lung endothelial cell dysfunction that may contribute to defective lung injury repair and persistent fibrosis.
Collapse
Affiliation(s)
- Ahmed A Raslan
- Arthritis and Autoimmune Diseases Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Pulmonary Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Department of Zoology, Faculty of Science, Assiut University, Assiut, Egypt
| | - Tho X Pham
- Arthritis and Autoimmune Diseases Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Pulmonary Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Jisu Lee
- Arthritis and Autoimmune Diseases Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Konstantinos Kontodimas
- Pulmonary Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Andrew Tilston-Lunel
- Pulmonary Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Jillian Schmottlach
- Arthritis and Autoimmune Diseases Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Jeongmin Hong
- Arthritis and Autoimmune Diseases Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Pulmonary Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Taha Dinc
- Arthritis and Autoimmune Diseases Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Andreea M Bujor
- Arthritis and Autoimmune Diseases Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | | | - Aude Thiriot
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Ulrich H von Andrian
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Steven K Huang
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Roberto F Nicosia
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Maria Trojanowska
- Arthritis and Autoimmune Diseases Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Pulmonary Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Xaralabos Varelas
- Pulmonary Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA.
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA.
| | - Giovanni Ligresti
- Arthritis and Autoimmune Diseases Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA.
- Pulmonary Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
21
|
Ge Y, Wang Q, Yao Y, Xin Q, Sun J, Chen W, Lin Y, Cai X. Framework Nucleic Acids-Based VEGF Signaling Activating System for Angiogenesis: A Dual Stimulation Strategy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308701. [PMID: 38460168 DOI: 10.1002/advs.202308701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/29/2023] [Indexed: 03/11/2024]
Abstract
Angiogenesis is crucial for tissue engineering, wound healing, and regenerative medicine. Nanomaterials constructed based on specific goals can be employed to activate endogenous growth factor-related signaling. In this study, based on the conventional single-stranded DNA self-assembly into tetrahedral framework nucleic acids (tFNAs), the Apt02 nucleic acid aptamer and dimethyloxallyl glycine (DMOG) small molecule are integrated into a complex via a template-based click chemistry reaction and toehold-mediated strand displacement reaction. Thus, being able to simulate the VEGF (vascular endothelial growth factor) function and stabilize HIF (hypoxia-inducible factor), a functional whole is constructed and applied to angiogenesis. Cellular studies demonstrate that the tFNAs-Apt02 complex (TAC) has a conspicuous affinity to human umbilical vein endothelial cells (HUVECs). Further incubation with DMOG yields the tFNAs-Apt02-DMOG complex (TACD), which promotes VEGF secretion, in vitro blood vessel formation, sprouting, and migration of HUVECs. Additionally, TACD enhances angiogenesis by upregulating the VEGF/VEGFR and HIF signaling pathways. Moreover, in a diabetic mouse skin defect repair process, TACD increases blood vessel formation and collagen deposition, therefore accelerating wound healing. The novel strategy simulating VEGF and stabilizing HIF promotes blood-vessel formation in vivo and in vitro and has the potential for broad applications in the vascularization field.
Collapse
Affiliation(s)
- Yichen Ge
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Qingxuan Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Yangxue Yao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Qin Xin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Jiafei Sun
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Wen Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan, 610041, P. R. China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan, 610041, P. R. China
| |
Collapse
|
22
|
Jiang X, Zuo X, Wang H, Zhu P, Kang YJ. Fabrication of Vascular Grafts Using Poly(ε-Caprolactone) and Collagen-Encapsuled ADSCs for Interposition Implantation of Abdominal Aorta in Rhesus Monkeys. ACS Biomater Sci Eng 2024; 10:3120-3135. [PMID: 38624019 DOI: 10.1021/acsbiomaterials.3c01209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The production of small-diameter artificial vascular grafts continues to encounter numerous challenges, with concerns regarding the degradation rate and endothelialization being particularly critical. In this study, porous PCL scaffolds were prepared, and PCL vascular grafts were fabricated by 3D bioprinting of collagen materials containing adipose-derived mesenchymal stem cells (ADSCs) on the internal wall of the porous PCL scaffold. The PCL vascular grafts were then implanted in the abdominal aorta of Rhesus monkeys for up to 640 days to analyze the degradation of the scaffolds and regeneration of the aorta. Changes in surface morphology, mechanical properties, crystallization property, and molecular weight of porous PCL revealed a similar degradation process of PCL in PBS at pH 7.4 containing Thermomyces lanuginosus lipase and in situ in the abdominal aorta of rhesus monkeys. The contrast of in vitro and in vivo degradation provided valuable reference data for predicting in vivo degradation based on in vitro enzymatic degradation of PCL for further optimization of PCL vascular graft fabrication. Histological analysis through hematoxylin and eosin (HE) staining and fluorescence immunostaining demonstrated that the PCL vascular grafts successfully induced vascular regeneration in the abdominal aorta over the 640-day period. These findings provided valuable insights into the regeneration processes of the implanted vascular grafts. Overall, this study highlights the significant potential of PCL vascular grafts for the regeneration of small-diameter blood vessels.
Collapse
Affiliation(s)
- Xia Jiang
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiao Zuo
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Tasly Stem Cell Biology Laboratory, Tianjin 300410, China
| | - Hongge Wang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ping Zhu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Y James Kang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Tasly Stem Cell Biology Laboratory, Tianjin 300410, China
| |
Collapse
|
23
|
Zhao W, Xu F, Shen Y, Ding Q, Wang Y, Liang L, Dai W, Chen Y. Temporal control in shell-core structured nanofilm for tracheal cartilage regeneration: synergistic optimization of anti-inflammation and chondrogenesis. Regen Biomater 2024; 11:rbae040. [PMID: 38769993 PMCID: PMC11105955 DOI: 10.1093/rb/rbae040] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 05/22/2024] Open
Abstract
Cartilage tissue engineering offers hope for tracheal cartilage defect repair. Establishing an anti-inflammatory microenvironment stands as a prerequisite for successful tracheal cartilage restoration, especially in immunocompetent animals. Hence, scaffolds inducing an anti-inflammatory response before chondrogenesis are crucial for effectively addressing tracheal cartilage defects. Herein, we develop a shell-core structured PLGA@ICA-GT@KGN nanofilm using poly(lactic-co-glycolic acid) (PLGA) and icariin (ICA, an anti-inflammatory drug) as the shell layer and gelatin (GT) and kartogenin (KGN, a chondrogenic factor) as the core via coaxial electrospinning technology. The resultant PLGA@ICA-GT@KGN nanofilm exhibited a characteristic fibrous structure and demonstrated high biocompatibility. Notably, it showcased sustained release characteristics, releasing ICA within the initial 0 to 15 days and gradually releasing KGN between 11 and 29 days. Subsequent in vitro analysis revealed the potent anti-inflammatory capabilities of the released ICA from the shell layer, while the KGN released from the core layer effectively induced chondrogenic differentiation of bone marrow stem cells (BMSCs). Following this, the synthesized PLGA@ICA-GT@KGN nanofilms were loaded with BMSCs and stacked layer by layer, adhering to a 'sandwich model' to form a composite sandwich construct. This construct was then utilized to repair circular tracheal defects in a rabbit model. The sequential release of ICA and KGN facilitated by the PLGA@ICA-GT@KGN nanofilm established an anti-inflammatory microenvironment before initiating chondrogenic induction, leading to effective tracheal cartilage restoration. This study underscores the significance of shell-core structured nanofilms in temporally regulating anti-inflammation and chondrogenesis. This approach offers a novel perspective for addressing tracheal cartilage defects, potentially revolutionizing their treatment methodologies.
Collapse
Affiliation(s)
- Wen Zhao
- Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Department of Thoracic Surgery, Tongren Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200050, China
| | - Fanglan Xu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Yumei Shen
- Operation Room Department, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Qifeng Ding
- Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Yifei Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Leilei Liang
- Department of Gynecologic Oncology, Zhejiang Cancer Hospital, Hangzhou, 310005, China
| | - Wufei Dai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China
| | - Yongbing Chen
- Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| |
Collapse
|
24
|
He W, Li C, Zhao S, Li Z, Wu J, Li J, Zhou H, Yang Y, Xu Y, Xia H. Integrating coaxial electrospinning and 3D printing technologies for the development of biphasic porous scaffolds enabling spatiotemporal control in tumor ablation and osteochondral regeneration. Bioact Mater 2024; 34:338-353. [PMID: 38274295 PMCID: PMC10809007 DOI: 10.1016/j.bioactmat.2023.12.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024] Open
Abstract
The osteochondral defects (OCDs) resulting from the treatment of giant cell tumors of bone (GCTB) often present two challenges for clinicians: tumor residue leading to local recurrence and non-healing of OCDs. Therefore, this study focuses on developing a double-layer PGPC-PGPH scaffold using shell-core structure nanofibers to achieve "spatiotemporal control" for treating OCDs caused by GCTB. It addresses two key challenges: eliminating tumor residue after local excision and stimulating osteochondral regeneration in non-healing OCD cases. With a shell layer of protoporphyrin IX (PpIX)/gelatin (GT) and inner cores containing chondroitin sulfate (CS)/poly(lactic-co-glycolic acid) (PLGA) or hydroxyapatite (HA)/PLGA, coaxial electrospinning technology was used to create shell-core structured PpIX/GT-CS/PLGA and PpIX/GT-HA/PLGA nanofibers. These nanofibers were shattered into nano-scaled short fibers, and then combined with polyethylene oxide and hyaluronan to formulate distinct 3D printing inks. The upper layer consists of PpIX/GT-CS/PLGA ink, and the lower layer is made from PpIX/GT-HA/PLGA ink, allowing for the creation of a double-layer PGPC-PGPH scaffold using 3D printing technique. After GCTB lesion removal, the PGPC-PGPH scaffold is surgically implanted into the OCDs. The sonosensitizer PpIX in the shell layer undergoes sonodynamic therapy to selectively damage GCTB tissue, effectively eradicating residual tumors. Subsequently, the thermal effect of sonodynamic therapy accelerates the shell degradation and release of CS and HA within the core layer, promoting stem cell differentiation into cartilage and bone tissues at the OCD site in the correct anatomical position. This innovative scaffold provides temporal control for anti-tumor treatment followed by tissue repair and spatial control for precise osteochondral regeneration.
Collapse
Affiliation(s)
- Wenbao He
- Department of Orthopedics, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chunlin Li
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shitong Zhao
- Department of Orthopedics, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhendong Li
- Department of Orthopedics, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jing Wu
- Jinan Clinical Research Centre for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Junjun Li
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haichao Zhou
- Department of Orthopedics, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yunfeng Yang
- Department of Orthopedics, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huitang Xia
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, PR China
- Jinan Clinical Research Centre for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| |
Collapse
|
25
|
Fahad MAA, Lee HY, Park S, Choi M, Shanto PC, Park M, Bae SH, Lee BT. Small-diameter vascular graft composing of core-shell structured micro-nanofibers loaded with heparin and VEGF for endothelialization and prevention of neointimal hyperplasia. Biomaterials 2024; 306:122507. [PMID: 38367300 DOI: 10.1016/j.biomaterials.2024.122507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
Despite the significant progress made in recent years, clinical issues with small-diameter vascular grafts related to low mechanical strength, thrombosis, intimal hyperplasia, and insufficient endothelialization remain unresolved. This study aims to design and fabricate a core-shell fibrous small-diameter vascular graft by co-axial electrospinning process, which will mechanically and biologically meet the benchmarks for blood vessel replacement. The presented graft (PGHV) comprised polycaprolactone/gelatin (shell) loaded with heparin-VEGF and polycaprolactone (core). This study hypothesized that the shell structure of the fibers would allow rapid degradation to release heparin-VEGF, and the core would provide mechanical strength for long-term application. Physico-mechanical evaluation, in vitro biocompatibility, and hemocompatibility assays were performed to ensure safe in vivo applications. After 25 days, the PGHV group released 79.47 ± 1.54% of heparin and 86.25 ± 1.19% of VEGF, and degradation of the shell was observed but the core remained pristine. Both the control (PG) and PGHV groups demonstrated robust mechanical properties. The PGHV group showed excellent biocompatibility and hemocompatibility compared to the PG group. After four months of rat aorta implantation, PGHV exhibited smooth muscle cell regeneration and complete endothelialization with a patency rate of 100%. The novel core-shell structured graft could be pivotal in vascular tissue regeneration application.
Collapse
Affiliation(s)
- Md Abdullah Al Fahad
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Hyun-Yong Lee
- Department of Surgery, Soonchunhyang University Cheonan Hospital, Cheonan, 31151, Republic of Korea
| | - Seongsu Park
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Minji Choi
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Prayas Chakma Shanto
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Myeongki Park
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Sang Ho Bae
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, 31151, Republic of Korea; Department of Surgery, Soonchunhyang University Cheonan Hospital, Cheonan, 31151, Republic of Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea; Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, 31151, Republic of Korea.
| |
Collapse
|
26
|
Fan Y, Pei J, Qin Y, Du H, Qu X, Li W, Huang B, Tan J, Liu Y, Li G, Ke M, Xu Y, Zhu C. Construction of tissue-engineered vascular grafts with enhanced patency by integrating heparin, cell-adhesive peptide, and carbon monoxide nanogenerators into acellular blood vessels. Bioact Mater 2024; 34:221-236. [PMID: 38235307 PMCID: PMC10792202 DOI: 10.1016/j.bioactmat.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 01/19/2024] Open
Abstract
Small-diameter tissue-engineered vascular grafts (sdTEVGs) have garnered significant attention as a potential treatment modality for vascular bypass grafting and replacement therapy. However, the intimal hyperplasia and thrombosis are two major complications that impair graft patency during transplantation. To address this issue, we fabricated the covalent-organic framework (COF)-based carbon monoxide (CO) nanogenerator-and co-immobilized with LXW-7 peptide and heparin to establish a multifunctional surface on TEVGs constructed from acellular blood vessels for preventing thrombosis and stenosis. The cell-adhesive peptide LXW-7 could capture endothelial-forming cells (EFCs) to promote endothelialization, while the antithrombotic molecule heparin prevented thrombus formation. The reactive oxygen species (ROS)-triggered CO release suppressed the adhesion and activation of macrophages, leading to the reduction of ROS and inflammatory factors. As a result, the endothelial-to-mesenchymal transition (EndMT) triggered by inflammation was restricted, facilitating the maintenance of the homeostasis of the neo-endothelium and preventing pathological remodeling in TEVGs. When transplanted in vivo, these vascular grafts exhibited negligible intimal hyperplasia and remained patent for 3 months. This achievement provided a novel approach for constructing antithrombotic and anti-hyperplastic TEVGs.
Collapse
Affiliation(s)
- Yonghong Fan
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
- Laboratory of Basic Medicine, The General Hospital of Western Theater Command, Chengdu, 610083, China
- Engineering Research Center of Tissue and Organ Regeneration and Manufacturing, Ministry of Education, Chongqing, 400038, China
| | - Juan Pei
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Yinhua Qin
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Huifang Du
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Xiaohang Qu
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Wenya Li
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Boyue Huang
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Ju Tan
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Yong Liu
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Gang Li
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Ming Ke
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
- Engineering Research Center of Tissue and Organ Regeneration and Manufacturing, Ministry of Education, Chongqing, 400038, China
| | - Youqian Xu
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
- Engineering Research Center of Tissue and Organ Regeneration and Manufacturing, Ministry of Education, Chongqing, 400038, China
| | - Chuhong Zhu
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
- Engineering Research Center of Tissue and Organ Regeneration and Manufacturing, Ministry of Education, Chongqing, 400038, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, 400038, China
- Department of Plastic and Aesthetic Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| |
Collapse
|
27
|
Dong Q, Fei X, Zhang H, Zhu X, Ruan J. Effect of Dimethyloxalylglycine on Stem Cells Osteogenic Differentiation and Bone Tissue Regeneration-A Systematic Review. Int J Mol Sci 2024; 25:3879. [PMID: 38612687 PMCID: PMC11011423 DOI: 10.3390/ijms25073879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Dimethyloxalylglycine (DMOG) has been found to stimulate osteogenesis and angiogenesis of stem cells, promoting neo-angiogenesis in bone tissue regeneration. In this review, we conducted a comprehensive search of the literature to investigate the effects of DMOG on osteogenesis and bone regeneration. We screened the studies based on specific inclusion criteria and extracted relevant information from both in vitro and in vivo experiments. The risk of bias in animal studies was evaluated using the SYRCLE tool. Out of the 174 studies retrieved, 34 studies met the inclusion criteria (34 studies were analyzed in vitro and 20 studies were analyzed in vivo). The findings of the included studies revealed that DMOG stimulated stem cells' differentiation toward osteogenic, angiogenic, and chondrogenic lineages, leading to vascularized bone and cartilage regeneration. Addtionally, DMOG demonstrated therapeutic effects on bone loss caused by bone-related diseases. However, the culture environment in vitro is notably distinct from that in vivo, and the animal models used in vivo experiments differ significantly from humans. In summary, DMOG has the ability to enhance the osteogenic and angiogenic differentiation potential of stem cells, thereby improving bone regeneration in cases of bone defects. This highlights DMOG as a potential focus for research in the field of bone tissue regeneration engineering.
Collapse
Affiliation(s)
- Qiannan Dong
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710000, China
- Center of Oral Public Health, College of Stomatology, Xi’an Jiaotong University, Xi’an 710000, China
| | - Xiuzhi Fei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710000, China
- Center of Oral Public Health, College of Stomatology, Xi’an Jiaotong University, Xi’an 710000, China
| | - Hengwei Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710000, China
- Center of Oral Public Health, College of Stomatology, Xi’an Jiaotong University, Xi’an 710000, China
| | - Ximei Zhu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710000, China
- Center of Oral Public Health, College of Stomatology, Xi’an Jiaotong University, Xi’an 710000, China
| | - Jianping Ruan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710000, China
- Center of Oral Public Health, College of Stomatology, Xi’an Jiaotong University, Xi’an 710000, China
| |
Collapse
|
28
|
Han L, Zhao C, Zhu Y, Li H. Dimethyloxallyl glycine-loaded mesoporous bioactive glass/poly(D,L-lactide) composite scaffolds with ultrasound stimulation for promoting bone repair. Front Bioeng Biotechnol 2024; 12:1339135. [PMID: 38476968 PMCID: PMC10928532 DOI: 10.3389/fbioe.2024.1339135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/08/2024] [Indexed: 03/14/2024] Open
Abstract
Introduction: Bone tissue engineering is considered the ideal approach for bone repair. Mesoporous bioactive glass (MBG) possesses the characteristics of high drug-loading capacity and bioactivity. Low-intensity pulsed ultrasound contributes to promoting fracture healing and bone defect repair, and dimethyloxalyl glycine (DMOG) is a small molecular inhibitor that can suppress prolyl hydroxylase, reducing the degradation of hypoxia-inducible factor. Methods: In this study, we proposed to prepare DMOG-loaded MBG/poly(D,L-lactide) composite scaffolds (DMOG-MBG/PDLLA) for promoting bone repair. The effects of ultrasound stimulation and DMOG release on the cell responses of rat bone marrow mesenchymal stem cells (BMSCs) and human umbilical vein endothelial cells (HUVECs) and bone repair in vivo were investigated. Results and Discussion: The results showed that both ultrasound stimulation and DMOG release could promote the proliferation, adhesion and differentiation of BMSCs and HUVECs, respectively. After the implantation of scaffolds in rat cranial bone defect model for 8 weeks, the results indicated that the combined ultrasound stimulation and DMOG release contributed to the highest ability for promoting bone repair. Hence, the DMOG-MBG/PDLLA scaffolds with ultrasound stimulation are promising for application in bone repair.
Collapse
Affiliation(s)
- Lei Han
- Department of Orthodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Chaoqian Zhao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai, China
| | - Yufang Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Huang Li
- Department of Orthodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| |
Collapse
|
29
|
Gao W, Cheng T, Tang Z, Zhang W, Xu Y, Han M, Zhou G, Tao C, Xu N, Xia H, Sun W. Enhancing cartilage regeneration and repair through bioactive and biomechanical modification of 3D acellular dermal matrix. Regen Biomater 2024; 11:rbae010. [PMID: 38414795 PMCID: PMC10898337 DOI: 10.1093/rb/rbae010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/02/2024] [Accepted: 01/21/2024] [Indexed: 02/29/2024] Open
Abstract
Acellular dermal matrix (ADM) shows promise for cartilage regeneration and repair. However, an effective decellularization technique that removes cellular components while preserving the extracellular matrix, the transformation of 2D-ADM into a suitable 3D scaffold with porosity and the enhancement of bioactive and biomechanical properties in the 3D-ADM scaffold are yet to be fully addressed. In this study, we present an innovative decellularization method involving 0.125% trypsin and 0.5% SDS and a 1% Triton X-100 solution for preparing ADM and converting 2D-ADM into 3D-ADM scaffolds. These scaffolds exhibit favorable physicochemical properties, exceptional biocompatibility and significant potential for driving cartilage regeneration in vitro and in vivo. To further enhance the cartilage regeneration potential of 3D-ADM scaffolds, we incorporated porcine-derived small intestinal submucosa (SIS) for bioactivity and calcium sulfate hemihydrate (CSH) for biomechanical reinforcement. The resulting 3D-ADM+SIS scaffolds displayed heightened biological activity, while the 3D-ADM+CSH scaffolds notably bolstered biomechanical strength. Both scaffold types showed promise for cartilage regeneration and repair in vitro and in vivo, with considerable improvements observed in repairing cartilage defects within a rabbit articular cartilage model. In summary, this research introduces a versatile 3D-ADM scaffold with customizable bioactive and biomechanical properties, poised to revolutionize the field of cartilage regeneration.
Collapse
Affiliation(s)
- Wei Gao
- Qingdao Medical College of Qingdao University, Qingdao, 266071, China
| | - Tan Cheng
- Department of Cardiothoracic Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200040, China
| | - Zhengya Tang
- Department of Plastic surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200023, China
| | - Wenqiang Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Shandong First Medical University, Jinan, 266299, China
| | - Yong Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Min Han
- Department of Orthopedic Surgery, Shanghai Eighth People's Hospital, Shanghai, 200235, China
| | - Guangdong Zhou
- Department of Plastic surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200023, China
| | - Chunsheng Tao
- Department of Orthopaedics, Ninety-seventh Hospital of the Chinese People's Liberation Army Navy, Qingdao, 266071, China
| | - Ning Xu
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Orthopedic Surgery, Shanghai Eighth People's Hospital, Shanghai, 200235, China
| | - Huitang Xia
- Department of Plastic Surgery & Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University, Jinan, 266299, China
| | - Weijie Sun
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Shushan, Hefei, 230022, China
| |
Collapse
|
30
|
Chen K, He W, Gao W, Wu Y, Zhang Z, Liu M, Hu Y, Xiao X, Li F, Feng Q. A Dual Reversible Cross-Linked Hydrogel with Enhanced Mechanical Property and Capable of Proangiogenic and Osteogenic Activities for Bone Defect Repair. Macromol Biosci 2024; 24:e2300325. [PMID: 37805941 DOI: 10.1002/mabi.202300325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/29/2023] [Indexed: 10/10/2023]
Abstract
The clinical treatment of bone defects presents ongoing challenges. One promising approach is bone tissue engineering (BTE), wherein hydrogels have garnered significant attention. However, the application of hydrogels in BTE is severely limited due to their poor mechanical properties, as well as their inferior proangiogenic and osteogenic activities. To address these limitations, our develop a dual cross-linked alendronate (ALN)-Ca2+ /Mg2+ -doped sulfated hyaluronic acid (SHA@CM) hydrogel, using a one-step mixing injection molding method known as "three-in-one" approach. This approach enabled the simultaneous formation of Schiff-Base crosslinking and electric attraction-based crosslinking within the hydrogel. The Schiff-Base crosslinking contributed to the majority of the hydrogel's mechanical strength, while the electric attraction-based crosslinking served as a release reservoir for Ca2+ /Mg2+ and ALN, promoting enhanced osteogenic activities and providing additional mechanical reinforcement to the hydrogel. These experimental data demonstrates several favorable properties of the SHA@CM hydrogel, including satisfactory injectability, rapid gelation, self-healing capacity, and excellent cytocompatibility. Moreover, the presence of sulfated groups and Mg2+ within the SHA@CM hydrogel exhibited pro-angiogenic effects, while the controlled release of nanoparticles formed by Ca2+ /Mg2+ and ALN further enhanced the osteogenesis of the hydrogel. Overall, these results indicate that the SHA@CM hydrogel holds significant potential for the clinical translation of BTE.
Collapse
Affiliation(s)
- Kai Chen
- School of Resources and Chemical Engineering, Sanming University, Sanming, 365004, China
| | - Wenbao He
- Department of Orthopedics, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Wei Gao
- Qingdao medical college of Qingdao University, Qingdao, 266073, China
| | - Yan Wu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Zhe Zhang
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Mingxiang Liu
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350117, China
| | - Yunping Hu
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350117, China
| | - Xiufeng Xiao
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350117, China
| | - Fuping Li
- Department of Spine Surgery, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200434, China
| | - Qian Feng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
31
|
Sultana T, Fahad MAA, Park M, Kwon SH, Lee BT. Physicochemical, in vitro and in vivo evaluation of VEGF loaded PCL-mPEG and PDGF loaded PCL-Chitosan dual layered vascular grafts. J Biomed Mater Res B Appl Biomater 2024; 112:e35325. [PMID: 37675952 DOI: 10.1002/jbm.b.35325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023]
Abstract
The present study has attempted to evaluate the endothelialization and smooth muscle regeneration efficiency of a novel dual-layer small-diameter vascular graft. Two types of layers (PCL-mPEG-VEGF and PCL-Chitosan-PDGF) were fabricated to find out the best layer giving endothelialization support for the lumen and unique contractile function for outer layer of blood vessels. Platelet-derived growth factor (PDGF) and chitosan were immobilized onto PCL surface by aminolysis-based surface modification technique. Besides, Poly (ethylene glycol) methyl ether (mPEG) and vascular endothelial growth factor (VEGF) were directly blended with PCL. Morphological analysis of membranes ensured consistency of average fibers diameter with native extracellular matrix. A favorable interaction of PCL-mPEG-VEGF with cow pulmonary endothelial cells (CPAEs) and PCL-Chitosan-PDGF with rat bone marrow mesenchymal stem cells (RBMSCs) was obtained during in vitro study. Controlled growth factor release patterns were found from both layers. Further, PCL-mPEG-VEGF exhibited endothelial markers expression properties from RBMSCs. Up-regulation of SMCs markers expression was significantly ensured by the PCL-Chitosan-PDGF membrane. Thus, PCL-mPEG-VEGF and PCL-Chitosan-PDGF were preferred as inner and outer layers respectively of a finally prepared tubular hybrid tissue engineered small diameter vascular graft. Finally, the dual-layer vascular graft was implanted onto a rat abdominal aorta model for 2 months. The extracted samples exhibited the presence of endothelial marker (ICAM 1) in the inner layer and smooth muscle cell marker (αSMA) in the outer layer as well as substantial amount of collagen deposition was observed in the both layers.
Collapse
Affiliation(s)
- Tamanna Sultana
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Md Abdullah Al Fahad
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Myeongki Park
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Soon Ha Kwon
- Department of Surgery, Soonchunhyang University Cheonan Hospital, Cheonan, South Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| |
Collapse
|
32
|
Zhou J. Curcumin-loaded porous scaffold: an anti-angiogenic approach to inhibit endochondral ossification. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:2255-2273. [PMID: 37382577 DOI: 10.1080/09205063.2023.2231663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 06/30/2023]
Abstract
Bone marrow stem cells (BMSCs) are recognized for their robust proliferative capabilities and multidirectional differentiation potential. Ectopic endochondral ossification of BMSC-generated cartilage in subcutaneous environments is a concern associated with vascularization. Hence, devising a reliable strategy to inhibit vascularization is crucial. In this study, an anti-angiogenic drug, curcumin (Cur), was encapsulated into gelatin to create a porous Cur/Gelatin scaffold, with the aim of inhibiting vascular invasion and preventing endochondral ossification of BMSC-regenerated cartilage. In vitro wound healing tests demonstrated that a 30 μM Cur solution could inhibit the migration and growth of human umbilical vein endothelial cells without impeding BMSCs migration and growth. Compared to the gelatin scaffold, our findings verified that the Cur/Gelatin scaffold significantly inhibited vascular invasion after being subcutaneously implanted into rabbits for 12 weeks, as evidenced by gross observation and immunofluorescence CD31 staining. Moreover, both the porous gelatin and Cur/Gelatin scaffolds were populated with BMSCs and underwent in vitro chondrogenic cultivation to produce cartilage, followed by subcutaneous implantation in rabbits for 12 weeks. Histological examinations (including HE, Safranin-O/Fast Green, toluidine blue, and immunohistochemical COL II staining) revealed that the BMSC-generated cartilage in the gelatin group exhibited prominent endochondral ossification. In contrast, the BMSC-generated cartilage in the Cur/Gelatin group maintained cartilage features, such as cartilage matrix and lacunar structure. This study suggests that Cur-loaded scaffolds offer a reliable platform to inhibit endochondral ossification of BMSC-generated cartilage.
Collapse
Affiliation(s)
- Jianwei Zhou
- Department of Orthopedics, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
33
|
Xu H, Gao Z, Wang Z, Wu W, Li H, Liu Y, Jia S, Hao D, Zhu L. Electrospun PCL Nerve Conduit Filled with GelMA Gel for CNTF and IGF-1 Delivery in Promoting Sciatic Nerve Regeneration in Rat. ACS Biomater Sci Eng 2023; 9:6309-6321. [PMID: 37919884 DOI: 10.1021/acsbiomaterials.3c01048] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Neural tissue engineering is an essential strategy to repair long-segment peripheral nerve defects. Modification of the nerve conduit is an effective way to improve the local microenvironment of the injury site and facilitate nerve regeneration. However, the concurrent release of multiple growth cues that regulate the activity of Schwann cells and neurons remains a challenge. The present study involved the fabrication of a composite hydrogel, specifically methacrylate-anhydride gelatin-ciliary neurotrophic factor/insulin-like growth factor-1 (GelMA-CNTF/IGF-1), with the aim of providing a sustained release of CNTF and IGF-1. The GelMA-CNTF/IGF-1 hydrogels exhibited a swelling rate of 10.2% following a 24 h incubation in vitro. In vitro, GelMA hydrogels demonstrated a high degree of efficiency in the sustained release of CNTF and IGF-1 proteins, with a release rate of 85.9% for CNTF and 90.9% for IGF-1 shown at day 28. In addition, the GelMA-CNTF/IGF-1 composite hydrogel promoted the proliferation of Schwann cells and the production of nerve growth factor (NGF), connective tissue growth factor (CTGF), fibronectin, and laminin and also considerably promoted the axonal growth of neurons. Furthermore, GelMA-CNTF/IGF-1 hydrogels were loaded into PCL electrospun nerve conduits to repair 15 mm sciatic nerve defects in rats. In vivo studies indicated that PCL-GelMA-CNTF/IGF-1 could efficiently accelerate the regeneration of the rat sciatic nerve, promote the formation of the myelin sheath of new axons, promote the electrophysiological function of regenerated nerves, and eventually improve the recovery of motor function in rats. Overall, the PCL-GelMA-CNTF/IGF-1 scaffold presents an attractive new approach for generating an optimal therapeutic alternative for peripheral nerve restoration.
Collapse
Affiliation(s)
- Hailiang Xu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710054, China
| | - Ziheng Gao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710054, China
| | - Zhiyuan Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710054, China
| | - Weidong Wu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710054, China
| | - Hui Li
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710054, China
| | - Youjun Liu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710054, China
| | - Shuaijun Jia
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710054, China
| | - Dingjun Hao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710054, China
| | - Lei Zhu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710054, China
| |
Collapse
|
34
|
Dokuchaeva AA, Mochalova AB, Timchenko TP, Kuznetsova EV, Podolskaya KS, Pashkovskaya OA, Filatova NA, Vaver AA, Zhuravleva IY. Remote Outcomes with Poly-ε-Caprolactone Aortic Grafts in Rats. Polymers (Basel) 2023; 15:4304. [PMID: 37959984 PMCID: PMC10649699 DOI: 10.3390/polym15214304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Poly-ε-caprolactone ((1,7)-polyoxepan-2-one; PCL) is a biodegradable polymer widely used in various fields of bioengineering, but its behavior in long-term studies appears to depend on many conditions, such as application specificity, chemical structure, in vivo test systems, and even environmental conditions in which the construction is exploited in. In this study, we offer an observation of the remote outcomes of PCL tubular grafts for abdominal aorta replacement in an in vivo experiment on a rat model. Adult Wistar rats were implanted with PCL vascular matrices and observed for 180 days. The results of ultrasound diagnostics and X-ray tomography (CBCT) show that the grafts maintained patency for the entire follow-up period without thrombosis, leakage, or interruptions, but different types of tissue reactions were found at this time point. By the day of examination, all the implants revealed a confluent endothelial monolayer covering layers of hyperplastic neointima formed on the luminal surface of the grafts. Foreign body reactions were found in several explants including those without signs of stenosis. Most of the scaffolds showed a pronounced infiltration with fibroblastic cells. All the samples revealed subintimal calcium phosphate deposits. A correlation between chondroid metaplasia in profound cells of neointima and the process of mineralization was supported by immunohistochemical (IHC) staining for S100 proteins and EDS mapping. Microscopy showed that the scaffolds with an intensive inflammatory response or formed fibrotic capsules retain their fibrillar structure even on day 180 after implantation, but matrices infiltrated with viable cells partially save the original fibrillary network. This research highlights the advantages of PCL vascular scaffolds, such as graft permeability, revitalization, and good surgical outcomes. The disadvantages are low biodegradation rates and exceptionally high risks of mineralization and intimal hyperplasia.
Collapse
Affiliation(s)
- Anna A. Dokuchaeva
- Institute of Experimental Biology and Medicine, E. Meshalkin National Medical Research Center of the RF Ministry of Health, 15 Rechkunovskaya St., Novosibirsk 630055, Russia; (A.B.M.); (T.P.T.); (E.V.K.); (K.S.P.); (O.A.P.); (N.A.F.); (A.A.V.); (I.Y.Z.)
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Shan C, Xia Y, Wu Z, Zhao J. HIF-1α and periodontitis: Novel insights linking host-environment interplay to periodontal phenotypes. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 184:50-78. [PMID: 37769974 DOI: 10.1016/j.pbiomolbio.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/27/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
Periodontitis, the sixth most prevalent epidemic disease globally, profoundly impacts oral aesthetics and masticatory functionality. Hypoxia-inducible factor-1α (HIF-1α), an oxygen-dependent transcriptional activator, has emerged as a pivotal regulator in periodontal tissue and alveolar bone metabolism, exerts critical functions in angiogenesis, erythropoiesis, energy metabolism, and cell fate determination. Numerous essential phenotypes regulated by HIF are intricately associated with bone metabolism in periodontal tissues. Extensive investigations have highlighted the central role of HIF and its downstream target genes and pathways in the coupling of angiogenesis and osteogenesis. Within this concise perspective, we comprehensively review the cellular phenotypic alterations and microenvironmental dynamics linking HIF to periodontitis. We analyze current research on the HIF pathway, elucidating its impact on bone repair and regeneration, while unraveling the involved cellular and molecular mechanisms. Furthermore, we briefly discuss the potential application of targeted interventions aimed at HIF in the field of bone tissue regeneration engineering. This review expands our biological understanding of the intricate relationship between the HIF gene and bone angiogenesis in periodontitis and offers valuable insights for the development of innovative therapies to expedite bone repair and regeneration.
Collapse
Affiliation(s)
- Chao Shan
- Department of Dentistry, Xinjiang Medical University, Ürümqi, China; The First Affiliated Hospital of Xinjiang Medical University (Affiliated Stomatology Hospital), Ürümqi, China
| | - YuNing Xia
- Department of Dentistry, Xinjiang Medical University, Ürümqi, China; The First Affiliated Hospital of Xinjiang Medical University (Affiliated Stomatology Hospital), Ürümqi, China
| | - Zeyu Wu
- Department of Dentistry, Xinjiang Medical University, Ürümqi, China; The First Affiliated Hospital of Xinjiang Medical University (Affiliated Stomatology Hospital), Ürümqi, China
| | - Jin Zhao
- Department of Dentistry, Xinjiang Medical University, Ürümqi, China; The First Affiliated Hospital of Xinjiang Medical University (Affiliated Stomatology Hospital), Ürümqi, China; Xinjiang Uygur Autonomous Region Institute of Stomatology, Ürümqi, China.
| |
Collapse
|
36
|
Wang H, Xiao Y, Fang Z, Zhang Y, Yang L, Zhao C, Meng Z, Liu Y, Li C, Han Q, Feng Z. Fabrication and performance evaluation of PLCL-hCOLIII small-diameter vascular grafts crosslinked with procyanidins. Int J Biol Macromol 2023; 251:126293. [PMID: 37591423 DOI: 10.1016/j.ijbiomac.2023.126293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023]
Abstract
Cardiovascular disease has become one of the main causes of death. It is the common goal of researchers worldwide to develop small-diameter vascular grafts to meet clinical needs. Collagen is a valuable biomaterial that has been used in the preparation of vascular grafts and has shown good results. Recombinant humanized collagen (RHC) has the advantages of clear chemical structure, batch stability, no virus hazard and low immunogenicity compared with animal-derived collagen, which can be developed as vascular materials. In this study, Poly (l-lactide- ε-caprolactone) with l-lactide/ε-caprolactone (PLCL) and type III recombinant humanized collagen (hCOLIII) were selected as raw materials to prepare vascular grafts, which were prepared by the same-nozzle electrospinning apparatus. Meanwhile, procyanidin (PC), a plant polyphenol, was used to cross-link the vascular grafts. The physicochemical properties and biocompatibility of the fabricated vascular grafts were investigated by comparing with glutaraldehyde (GA) crosslinked vascular grafts and pure PLCL grafts. Finally, the performance of PC cross-linked PLCL-hCOLIII vascular grafts were evaluated by rabbit carotid artery transplantation model. The results indicate that the artificial vascular grafts have good cell compatibility, blood compatibility, and anti-calcification performance, and can remain unobstructed after 30 days carotid artery transplantation in rabbits. The grafts also showed inhibitory effects on the proliferation of SMCs and intimal hyperplasia, demonstrating its excellent performance as small diameter vascular grafts.
Collapse
Affiliation(s)
- Han Wang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China; National Institute for Food and Drug Control, Beijing 102629, China
| | - Yonghao Xiao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhiping Fang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuanguo Zhang
- Department of Thyroid-Breast-Vascular Surgery, Shanxian Central Hospital, Heze, Shandong 274300, China
| | - Liu Yang
- National Institute for Food and Drug Control, Beijing 102629, China
| | - Chenyu Zhao
- National Institute for Food and Drug Control, Beijing 102629, China
| | - Zhu Meng
- National Institute for Food and Drug Control, Beijing 102629, China
| | - Yu Liu
- National Institute for Food and Drug Control, Beijing 102629, China; Yantai University, Yantai, Shandong 264005, China
| | - Chongchong Li
- National Institute for Food and Drug Control, Beijing 102629, China
| | - Qianqian Han
- National Institute for Food and Drug Control, Beijing 102629, China.
| | - Zengguo Feng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
37
|
Kojima T, Nakamura T, Saito J, Hidaka Y, Akimoto T, Inoue H, Chick CN, Usuki T, Kaneko M, Miyagi E, Ishikawa Y, Yokoyama U. Hydrostatic pressure under hypoxia facilitates fabrication of tissue-engineered vascular grafts derived from human vascular smooth muscle cells in vitro. Acta Biomater 2023; 171:209-222. [PMID: 37793599 DOI: 10.1016/j.actbio.2023.09.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
Biologically compatible vascular grafts are urgently required. The scaffoldless multi-layered vascular wall is considered to offer theoretical advantages, such as facilitating cells to form cell-cell and cell-matrix junctions and natural extracellular matrix networks. Simple methods are desired for fabricating physiological scaffoldless tissue-engineered vascular grafts. Here, we showed that periodic hydrostatic pressurization under hypoxia (HP/HYP) facilitated the fabrication of multi-layered tunica media entirely from human vascular smooth muscle cells. Compared with normoxic atmospheric pressure, HP/HYP increased expression of N-myc downstream-regulated 1 (NDRG1) and the collagen-cross-linking enzyme lysyl oxidase in human umbilical artery smooth muscle cells. HP/HYP increased N-cadherin-mediated cell-cell adhesion via NDRG1, cell-matrix interaction (i.e., clustering of integrin α5β1 and fibronectin), and collagen fibrils. We then fabricated vascular grafts using HP/HYP during repeated cell seeding and obtained 10-layered smooth muscle grafts with tensile rupture strength of 0.218-0.396 MPa within 5 weeks. Implanted grafts into the rat aorta were endothelialized after 1 week and patent after 5 months, at which time most implanted cells had been replaced by recipient-derived cells. These results suggest that HP/HYP enables fabrication of scaffoldless human vascular mimetics that have a spatial arrangement of cells and matrices, providing potential clinical applications for cardiovascular diseases. STATEMENT OF SIGNIFICANCE: Tissue-engineered vascular grafts (TEVGs) are theoretically more biocompatible than prosthetic materials in terms of mechanical properties and recipient cell-mediated tissue reconstruction. Although some promising results have been shown, TEVG fabrication processes are complex, and the ideal method is still desired. We focused on the environment in which the vessels develop in utero and found that mechanical loading combined with hypoxia facilitated formation of cell-cell and cell-matrix junctions and natural extracellular matrix networks in vitro, which resulted in the fabrication of multi-layered tunica media entirely from human umbilical artery smooth muscle cells. These scaffoldless TEVGs, produced using a simple process, were implantable and have potential clinical applications for cardiovascular diseases.
Collapse
Affiliation(s)
- Tomoyuki Kojima
- Department of Physiology, Tokyo Medical University, Tokyo 160-0023, Japan; Department of Obstetrics and Gynecology, Yokohama City University Graduate School of Medicine, Kanagawa 236-0004, Japan
| | - Takashi Nakamura
- Department of Physiology, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Junichi Saito
- Department of Physiology, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Yuko Hidaka
- Department of Physiology, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Taisuke Akimoto
- Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Kanagawa 236-0004, Japan
| | - Hana Inoue
- Department of Physiology, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Christian Nanga Chick
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo 102-8554, Japan
| | - Toyonobu Usuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo 102-8554, Japan
| | - Makoto Kaneko
- Graduate School of Science and Engineering, Meijo University, Aichi 468-8502, Japan
| | - Etsuko Miyagi
- Department of Obstetrics and Gynecology, Yokohama City University Graduate School of Medicine, Kanagawa 236-0004, Japan
| | - Yoshihiro Ishikawa
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Kanagawa 236-0004, Japan
| | - Utako Yokoyama
- Department of Physiology, Tokyo Medical University, Tokyo 160-0023, Japan.
| |
Collapse
|
38
|
Yan Q, Shi S, Ge Y, Wan S, Li M, Li M. UCHL1 alleviates apoptosis in chondrocytes via upregulation of HIF‑1α‑mediated mitophagy. Int J Mol Med 2023; 52:99. [PMID: 37681473 PMCID: PMC10555477 DOI: 10.3892/ijmm.2023.5302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/16/2023] [Indexed: 09/09/2023] Open
Abstract
Stem cell‑based tissue engineering has shown significant potential for rapid restoration of injured cartilage tissues. Stem cells frequently undergo apoptosis because of the prevalence of oxidative stress and inflammation in the microenvironment at the sites of injury. Our previous study demonstrated that stabilization of hypoxia‑inducible factor 1α (HIF‑1α) is key to resisting apoptosis in chondrocytes. Recently, it was reported that Ubiquitin C‑terminal hydrolase L1 (UCHL1) can stabilize HIF‑1α by abrogating the ubiquitination process. However, the effect of UCHL1 on apoptosis in chondrocytes remains unclear. Herein, adipose‑derived stem cells were differentiated into chondrocytes. Next, the CRISPR activation (CRISPRa) system, LDN‑57444 (LDM; a specific inhibitor for UCHL1), KC7F2 (a specific inhibitor for HIF‑1α), and 3‑methyladenine (a specific inhibitor for mitophagy) were used to activate or block UCHL1, HIF‑1α, and mitophagy. Mitophagy, apoptosis, and mitochondrial function in chondrocytes were detected using immunofluorescence, TUNEL staining, and flow cytometry. Moreover, the oxygen consumption rate of chondrocytes was measured using the Seahorse XF 96 Extracellular Flux Analyzer. UCHL1 expression was increased in hypoxia, which in turn regulated mitophagy and apoptosis in the chondrocytes. Further studies revealed that UCHL1 mediated hypoxia‑regulated mitophagy in the chondrocytes. The CRISPRa module was utilized to activate UCHL1 effectively for 7 days; endogenous activation of UCHL1 accelerated mitophagy, inhibited apoptosis, and maintained mitochondrial function in the chondrocytes, which was mediated by HIF‑1α. Taken together, UCHL1 could block apoptosis in chondrocytes via upregulation of HIF‑1α-mediated mitophagy and maintain mitochondrial function. These results indicate the potential of UCHL1 activation using the CRISPRa system for the regeneration of cartilage tissue.
Collapse
Affiliation(s)
- Qiqian Yan
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280
- Guangdong Academy of Stomatology, Guangzhou, Guangdong 510180, P.R. China
| | - Shanwei Shi
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280
- Guangdong Academy of Stomatology, Guangzhou, Guangdong 510180, P.R. China
| | - Yang Ge
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280
- Guangdong Academy of Stomatology, Guangzhou, Guangdong 510180, P.R. China
| | - Shuangquan Wan
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280
- Guangdong Academy of Stomatology, Guangzhou, Guangdong 510180, P.R. China
| | - Mingfei Li
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280
- Guangdong Academy of Stomatology, Guangzhou, Guangdong 510180, P.R. China
| | - Maoquan Li
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280
- Guangdong Academy of Stomatology, Guangzhou, Guangdong 510180, P.R. China
| |
Collapse
|
39
|
Zhou SY, Li L, Xie E, Li MX, Cao JH, Yang XB, Wu DY. Small-diameter PCL/PU vascular graft modified with heparin-aspirin compound for preventing the occurrence of acute thrombosis. Int J Biol Macromol 2023; 249:126058. [PMID: 37524284 DOI: 10.1016/j.ijbiomac.2023.126058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/20/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
The occurrence of acute thrombosis, directly related to platelet aggregation and coagulant system, is a considerable reason for the failure of small-diameter vascular grafts. Heparin is commonly used as a functional molecule for graft modification due to the strong anticoagulant effect. Unfortunately, heparin cannot directly resist the adhesion and aggregation of platelets. Therefore, we have prepared a heparin-aspirin compound by coupling heparin with aspirin, an antiplatelet drug, and covalently grafted it onto the surface of polycaprolactone/polyurethane composite tube. In this way, the graft not only showed a dual function of both anticoagulation and antiplatelet, but also effectively avoided the rapid drug release and excessive toxicity to other organs caused by simple blending the medicine with material matrix. The compound retained the original function of heparin, showing good hydrophilicity and biocompatibility, which could promote the adhesion and proliferation of endothelial cells (ECs) and facilitate the process of tissue regeneration. What's more, the compound showed more effective than heparin in reducing platelet activation and preventing thrombosis. The graft modified by this compound maintained completely unobstructed for one month of implantation, while severe obstruction or stenosis occurred in PCL/PU and PCL/PU-Hep lumen at the first week, verifying the effect of the compound on preventing acute thrombosis. In general, this study proposed a designing method for small-diameter vascular graft which could prevent acute thrombosis and promote intimal construction.
Collapse
Affiliation(s)
- Si-Yuan Zhou
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lei Li
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Enzehua Xie
- Department of Cardiovascular Surgery, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100037, PR China
| | - Mei-Xi Li
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jian-Hua Cao
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xiu-Bin Yang
- Department of Cardiac Surgery, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China.
| | - Da-Yong Wu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
40
|
Colombani T, Bhatt K, Epel B, Kotecha M, Bencherif SA. HIF-stabilizing biomaterials: from hypoxia-mimicking to hypoxia-inducing. MATERIALS ADVANCES 2023; 4:3084-3090. [PMID: 38013688 PMCID: PMC10388397 DOI: 10.1039/d3ma00090g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/05/2023] [Indexed: 08/22/2023]
Abstract
Recent advances in our understanding of hypoxia and hypoxia-mediated mechanisms shed light on the critical implications of the hypoxic stress on cellular behavior. However, tools emulating hypoxic conditions (i.e., low oxygen tensions) for research are limited and often suffer from major shortcomings, such as lack of reliability and off-target effects, and they usually fail to recapitulate the complexity of the tissue microenvironment. Fortunately, the field of biomaterials is constantly evolving and has a central role to play in the development of new technologies for conducting hypoxia-related research in several aspects of biomedical research, including tissue engineering, cancer modeling, and modern drug screening. In this perspective, we provide an overview of several strategies that have been investigated in the design and implementation of biomaterials for simulating or inducing hypoxic conditions-a prerequisite in the stabilization of hypoxia-inducible factor (HIF), a master regulator of the cellular responses to low oxygen. To this end, we discuss various advanced biomaterials, from those that integrate hypoxia-mimetic agents to artificially induce hypoxia-like responses, to those that deplete oxygen and consequently create either transient (<1 day) or sustained (>1 day) hypoxic conditions. We also aim to highlight the advantages and limitations of these emerging biomaterials for biomedical applications, with an emphasis on cancer research.
Collapse
Affiliation(s)
- Thibault Colombani
- Department of Chemical Engineering, Northeastern University Boston MA 02115 USA
| | - Khushbu Bhatt
- Department of Pharmaceutical Sciences, Northeastern University Boston MA 02115 USA
| | - Boris Epel
- Department of Radiation and Cellular Oncology, The University of Chicago Chicago IL 60637 USA
- Oxygen Measurement Core, O2M Technologies, LLC Chicago IL 60612 USA
| | | | - Sidi A Bencherif
- Department of Chemical Engineering, Northeastern University Boston MA 02115 USA
- Department of Bioengineering, Northeastern University Boston MA 02115 USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University Cambridge MA 02138 USA
- Biomechanics and Bioengineering (BMBI), UTC CNRS UMR 7338, University of Technology of Compiègne, Sorbonne University 60203 Compiègne France
| |
Collapse
|
41
|
Chen K, Li Y, Li Y, Tan Y, Liu Y, Pan W, Tan G. Stimuli-responsive electrospun nanofibers for drug delivery, cancer therapy, wound dressing, and tissue engineering. J Nanobiotechnology 2023; 21:237. [PMID: 37488582 PMCID: PMC10364421 DOI: 10.1186/s12951-023-01987-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/07/2023] [Indexed: 07/26/2023] Open
Abstract
The stimuli-responsive nanofibers prepared by electrospinning have become an ideal stimuli-responsive material due to their large specific surface area and porosity, which can respond extremely quickly to external environmental incitement. As an intelligent drug delivery platform, stimuli-responsive nanofibers can efficiently load drugs and then be stimulated by specific conditions (light, temperature, magnetic field, ultrasound, pH or ROS, etc.) to achieve slow, on-demand or targeted release, showing great potential in areas such as drug delivery, tumor therapy, wound dressing, and tissue engineering. Therefore, this paper reviews the recent trends of stimuli-responsive electrospun nanofibers as intelligent drug delivery platforms in the field of biomedicine.
Collapse
Affiliation(s)
- Kai Chen
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan provincial key laboratory of R&D on tropical herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, 571199, People's Republic of China.
| | - Yonghui Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan provincial key laboratory of R&D on tropical herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, 571199, People's Republic of China
| | - Youbin Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan provincial key laboratory of R&D on tropical herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, 571199, People's Republic of China
| | - Yinfeng Tan
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan provincial key laboratory of R&D on tropical herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, 571199, People's Republic of China
| | - Yingshuo Liu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan provincial key laboratory of R&D on tropical herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, 571199, People's Republic of China
| | - Weisan Pan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Guoxin Tan
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmacy, Hainan University, Haikou, 570228, People's Republic of China.
| |
Collapse
|
42
|
Rafique M, Ali O, Shafiq M, Yao M, Wang K, Ijima H, Kong D, Ikeda M. Insight on Oxygen-Supplying Biomaterials Used to Enhance Cell Survival, Retention, and Engraftment for Tissue Repair. Biomedicines 2023; 11:1592. [PMID: 37371687 DOI: 10.3390/biomedicines11061592] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/16/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Oxygen is one of the essential requirements for cell survival, retention, and proliferation. The field of regenerative medicine and tissue engineering (TE) has realized considerable achievements for the regeneration of tissues. However, tissue regeneration still lacks the full functionality of solid organ implantations; limited cell survival and retention due to oxidative stress and hypoxia in the deeper parts of tissues remains a perpetual challenge. Especially prior to neovascularization, hypoxia is a major limiting factor, since oxygen delivery becomes crucial for cell survival throughout the tissue-engineered construct. Oxygen diffusion is generally limited in the range 100-200 μm of the thickness of a scaffold, and the cells located beyond this distance face oxygen deprivation, which ultimately leads to hypoxia. Furthermore, before achieving functional anastomosis, implanted tissues will be depleted of oxygen, resulting in hypoxia (<5% dissolved oxygen) followed by anoxic (<0.5% dissolved oxygen) microenvironments. Different types of approaches have been adopted to establish a sustained oxygen supply both in vitro and in vivo. In this review, we have summarized the recent developments in oxygen-generating and/or releasing biomaterials for enhancing cell survival in vitro, as well as for promoting soft and hard tissue repair, including skin, heart, nerve, pancreas, muscle, and bone tissues in vivo. In addition, redox-scavenging biomaterials and oxygenated scaffolds have also been highlighted. The surveyed results have shown significant promise in oxygen-producing biomaterials and oxygen carriers for enhancing cell functionality for regenerative medicine and TE applications. Taken together, this review provides a detailed overview of newer approaches and technologies for oxygen production, as well as their applications for bio-related disciplines.
Collapse
Affiliation(s)
- Muhammad Rafique
- Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Onaza Ali
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Muhammad Shafiq
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, Fukuoka 819-0395, Japan
| | - Minghua Yao
- Department of Ultrasound, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201620, China
| | - Kai Wang
- Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hiroyuki Ijima
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, Fukuoka 819-0395, Japan
| | - Deling Kong
- Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Masato Ikeda
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute for Glyco-Core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
43
|
You J, Liu M, Li M, Zhai S, Quni S, Zhang L, Liu X, Jia K, Zhang Y, Zhou Y. The Role of HIF-1α in Bone Regeneration: A New Direction and Challenge in Bone Tissue Engineering. Int J Mol Sci 2023; 24:ijms24098029. [PMID: 37175732 PMCID: PMC10179302 DOI: 10.3390/ijms24098029] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
The process of repairing significant bone defects requires the recruitment of a considerable number of cells for osteogenesis-related activities, which implies the consumption of a substantial amount of oxygen and nutrients. Therefore, the limited supply of nutrients and oxygen at the defect site is a vital constraint that affects the regenerative effect, which is closely related to the degree of a well-established vascular network. Hypoxia-inducible factor (HIF-1α), which is an essential transcription factor activated in hypoxic environments, plays a vital role in vascular network construction. HIF-1α, which plays a central role in regulating cartilage and bone formation, induces vascular invasion and differentiation of osteoprogenitor cells to promote and maintain extracellular matrix production by mediating the adaptive response of cells to changes in oxygen levels. However, the application of HIF-1α in bone tissue engineering is still controversial. As such, clarifying the function of HIF-1α in regulating the bone regeneration process is one of the urgent issues that need to be addressed. This review provides insight into the mechanisms of HIF-1α action in bone regeneration and related recent advances. It also describes current strategies for applying hypoxia induction and hypoxia mimicry in bone tissue engineering, providing theoretical support for the use of HIF-1α in establishing a novel and feasible bone repair strategy in clinical settings.
Collapse
Affiliation(s)
- Jiaqian You
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China
- School of Stomatology, Jilin University, Changchun 130021, China
| | - Manxuan Liu
- School of Stomatology, Jilin University, Changchun 130021, China
| | - Minghui Li
- School of Stomatology, Jilin University, Changchun 130021, China
| | - Shaobo Zhai
- School of Stomatology, Jilin University, Changchun 130021, China
| | - Sezhen Quni
- School of Stomatology, Jilin University, Changchun 130021, China
| | - Lu Zhang
- School of Stomatology, Jilin University, Changchun 130021, China
| | - Xiuyu Liu
- School of Stomatology, Jilin University, Changchun 130021, China
| | - Kewen Jia
- School of Stomatology, Jilin University, Changchun 130021, China
| | - Yidi Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China
- School of Stomatology, Jilin University, Changchun 130021, China
| | - Yanmin Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China
- School of Stomatology, Jilin University, Changchun 130021, China
| |
Collapse
|
44
|
Zhang C, Cha R, Wang C, Chen X, Li Z, Xie Q, Jia L, Sun Y, Hu Z, Zhang L, Zhou F, Zhang Y, Jiang X. Red blood cell membrane-functionalized Nanofibrous tubes for small-diameter vascular grafts. Biomaterials 2023; 297:122124. [PMID: 37087981 DOI: 10.1016/j.biomaterials.2023.122124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 03/23/2023] [Accepted: 04/08/2023] [Indexed: 04/25/2023]
Abstract
The off-the-shelf small-diameter vascular grafts (SDVGs) have inferior clinical efficacy. Red blood cell membrane (Rm) has easy availability and multiple bioactive components (such as phospholipids, proteins, and glycoproteins), which can improve the clinic's availability and patency of SDVGs. Here we developed a facile approach to preparing an Rm-functionalized poly-ε-caprolactone/poly-d-lysine (Rm@PCL/PDL) tube by co-incubation and single-step rolling. The integrity, stability, and bioactivity of Rm on Rm@PCL/PDL were evaluated. The revascularization of Rm@PCL/PDL tubes was studied by implantation in the carotid artery of rabbits. Rm@PCL/PDL can be quickly prepared and showed excellent bioactivity with good hemocompatibility and great anti-inflammatory. Rm@PCL/PDL tubes as the substitute for the carotid artery of rabbits had good patency and quick remodeling within 21 days. Rm, as a "self" biomaterial with high biosafety, provides a new and facile approach to developing personalized or universal SDVGs for the clinic, which is of great significance in cardiovascular regenerative medicine and organ chip.
Collapse
Affiliation(s)
- Chunliang Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing, 100083, PR China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing, 100190, PR China
| | - Ruitao Cha
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing, 100190, PR China.
| | - Chunyuan Wang
- Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, PR China
| | - Xingming Chen
- PLA Strategic Support Force Characteristic Medical Center, No. 9 Anxiang Beili, Chaoyang District, Beijing, 100101, PR China
| | - Zulan Li
- PLA Strategic Support Force Characteristic Medical Center, No. 9 Anxiang Beili, Chaoyang District, Beijing, 100101, PR China
| | - Qian Xie
- Division of Nephrology, Peking University Third Hospital, No. 49 Huayuan Road North, Haidian District, Beijing, 100191, PR China
| | - Liujun Jia
- Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, PR China
| | - Yang Sun
- Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, PR China
| | - Zhan Hu
- Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, PR China
| | - Lin Zhang
- Department of Adult Cardiac Surgery, Faculty of Cardiovascular Disease, The Sixth Medical Center of the General Hospital of the People's Liberation Army of China, No. 28 Fuxing Road, Haidian District, Beijing, 100853, PR China.
| | - Fengshan Zhou
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing, 100083, PR China.
| | - Yan Zhang
- Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, PR China.
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong, 518055, PR China.
| |
Collapse
|
45
|
Feng Z, Jin M, Liang J, Kang J, Yang H, Guo S, Sun X. Insight into the effect of biomaterials on osteogenic differentiation of mesenchymal stem cells: A review from a mitochondrial perspective. Acta Biomater 2023; 164:1-14. [PMID: 36972808 DOI: 10.1016/j.actbio.2023.03.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/02/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
Bone damage may be triggered by a variety of factors, and the damaged area often requires a bone graft. Bone tissue engineering can serve as an alternative strategy for repairing large bone defects. Mesenchymal stem cells (MSCs), the progenitor cells of connective tissue, have become an important tool for tissue engineering due to their ability to differentiate into a variety of cell types. The precise regulation of the growth and differentiation of the stem cells used for bone regeneration significantly affects the efficiency of this type of tissue engineering. During the process of osteogenic induction, the dynamics and function of localized mitochondria are altered. These changes may also alter the microenvironment of the therapeutic stem cells and result in mitochondria transfer. Mitochondrial regulation not only affects the induction/rate of differentiation, but also influences its direction, determining the final identity of the differentiated cell. To date, bone tissue engineering research has mainly focused on the influence of biomaterials on phenotype and nuclear genotype, with few studies investigating the role of mitochondria. In this review, we provide a comprehensive summary of researches into the role of mitochondria in MSCs differentiation and critical analysis regarding smart biomaterials that are able to "programme" mitochondria modulation was proposed. STATEMENT OF SIGNIFICANCE: : • This review proposed the precise regulation of the growth and differentiation of the stem cells used to seed bone regeneration. • This review addressed the dynamics and function of localized mitochondria during the process of osteogenic induction and the effect of mitochondria on the microenvironment of stem cells. • This review summarized biomaterials which affect the induction/rate of differentiation, but also influences its direction, determining the final identity of the differentiated cell through the regulation of mitochondria.
Collapse
Affiliation(s)
- Ziyi Feng
- Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110002 Liaoning Province, China
| | - Meiqi Jin
- School of Intelligent Medicine, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning Province, China
| | - Junzhi Liang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping, Shenyang, 110004 Liaoning Province, China
| | - Junning Kang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping, Shenyang, 110004 Liaoning Province, China
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning Province, China.
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110002 Liaoning Province, China.
| | - Xiaoting Sun
- School of Forensic Medicine, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning Province, China.
| |
Collapse
|
46
|
Shafiq M, Yuan Z, Rafique M, Aishima S, Jing H, Yuqing L, Ijima H, Jiang S, Mo X. Combined effect of SDF-1 peptide and angiogenic cues in co-axial PLGA/gelatin fibers for cutaneous wound healing in diabetic rats. Colloids Surf B Biointerfaces 2023; 223:113140. [PMID: 36669437 DOI: 10.1016/j.colsurfb.2023.113140] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/03/2023] [Accepted: 01/08/2023] [Indexed: 01/12/2023]
Abstract
Skin regeneration is hindered by poor vascularization, prolonged inflammation, and excessive scar tissue formation, which necessitate newer strategies to simultaneously induce blood vessel regeneration, resolve inflammation, and induce host cell recruitment. Concurrent deployment of multiple biological cues to realize synergistic reparative effects may be an enticing avenue for wound healing. Herein, we simultaneously deployed SDF (stromal cell-derived factor)- 1α, VEGF (vascular endothelial growth factor)-binding peptide (BP), and GLP (glucagon like peptide)- 1 analog, liraglutide (LG) in core/shell poly(L-lactide-co-glycolide)/gelatin fibers to harness their synergistic effects for skin repair in healthy as well as diabetic wound models in rats. Microscopic techniques, such as SEM and TEM revealed fibrous and core/shell type morphology of membranes. Boyden chamber assay and scratch-wound assay displayed significant migration of HUVECs (human umbilical vein endothelial cells) in SDF-1α containing fibers. Subcutaneous implantation of membranes revealed higher cellular infiltration in SDF-1α loaded fibers, especially, those which were co-loaded with LG or BP. Implantation of membranes in an excisional wound model in healthy rats further showed significant and rapid wound closure in dual cues loaded groups as compared to control or single cue loaded groups. Similarly, the implantation of dressings in type 2 diabetes rat model revealed fast healing, skin appendages regeneration, and blood vessel regeneration in dual cues loaded fibers (SDF-1α/LG, SDF-1α/BP). Taken together, core/shell type fibers containing bioactive peptides significantly promoted wound repair in healthy as well as diabetic wound models in rats.
Collapse
Affiliation(s)
- Muhammad Shafiq
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China; Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Zhengchao Yuan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Muhammad Rafique
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Shinichi Aishima
- Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Nabeshima 5-1-1, Saga 849-8501, Japan
| | - Hou Jing
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Liang Yuqing
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Hiroyuki Ijima
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shichao Jiang
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China.
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| |
Collapse
|
47
|
Wang T, Liu K, Wang J, Xiang G, Hu X, Bai H, Lei W, Tao TH, Feng Y. Spatiotemporal Regulation of Injectable Heterogeneous Silk Gel Scaffolds for Accelerating Guided Vertebral Repair. Adv Healthc Mater 2023; 12:e2202210. [PMID: 36465008 DOI: 10.1002/adhm.202202210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/27/2022] [Indexed: 12/12/2022]
Abstract
Osteoporotic vertebral fracture is jeopardizing the health of the aged population around the world, while the hypoxia microenvironment and oxidative damage of bone defect make it difficult to perform effective tissue regeneration. The balance of oxidative stress and the coupling of vessel and bone ingrowth are critical for bone regeneration. In this study, an injectable heterogeneous silk gel scaffold which can spatiotemporally and sustainedly release bone mesenchymal stem cell-derived small extracellular vesicles, HIF-1α pathway activator, and inhibitor is developed for bone repair and vertebral reinforcement. The initial enhancement of HIF-1α upregulates the expression of VEGF to promote angiogenesis, and the balance of reactive oxygen species level is regulated to effectively eliminate oxidative damage and abnormal microenvironment. The subsequent inhibition of HIF-1α avoids the overexpression of VEGF and vascular overgrowth. Meanwhile, complex macroporous structures and suitable mechanical support can be obtained within the silk gel scaffolds, which will promote in situ bone regeneration. These findings provide a new clinical translation strategy for osteoporotic vertebral augmentation on basis of hypoxia microenvironment improvement.
Collapse
Affiliation(s)
- Tianji Wang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Keyin Liu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Jing Wang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Geng Xiang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaofan Hu
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Hao Bai
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Wei Lei
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Tiger H Tao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai, 200031, China.,Institute of Brain-Intelligence Technology, Zhangjiang Laboratory, Shanghai, 200031, China.,Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, 200031, China
| | - Yafei Feng
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
48
|
Guo J, Huang J, Lei S, Wan D, Liang B, Yan H, Liu Y, Feng Y, Yang S, He J, Kong D, Shi J, Wang S. Construction of Rapid Extracellular Matrix-Deposited Small-Diameter Vascular Grafts Induced by Hypoxia in a Bioreactor. ACS Biomater Sci Eng 2023; 9:844-855. [PMID: 36723920 DOI: 10.1021/acsbiomaterials.2c00809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cardiovascular disease has become one of the most globally prevalent diseases, and autologous or vascular graft transplantation has been the main treatment for the end stage of the disease. However, there are no commercialized small-diameter vascular graft (SDVG) products available. The design of SDVGs is promising in the future, and SDVG preparation using an in vitro bioreactor is a favorable method, but it faces the problem of long-term culture of >8 weeks. Herein, we used different oxygen (O2) concentrations and mechanical stimulation to induce greater secretion of extracellular matrix (ECM) from cells in vitro to rapidly prepare SDVGs. Culturing with 2% O2 significantly increased the production of the ECM components and growth factors of human dermal fibroblasts (hDFs). To accelerate the formation of ECM, hDFs were seeded on a polycaprolactone (PCL) scaffold and cultured in a flow culture bioreactor with 2% O2 for only 3 weeks. After orthotopic transplantation in rat abdominal aorta, the cultured SDVGs (PCL-decellularized ECM) showed excellent endothelialization and smooth muscle regeneration. The vascular grafts cultured with hypoxia and mechanical stimulation could accelerate the reconstruction speed and obtain an improved therapeutic effect and thereby provide a new research direction for improving the production and supply of SDVGs.
Collapse
Affiliation(s)
- Jingyue Guo
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Jiaxing Huang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Shaojin Lei
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Dongdong Wan
- Department of Orthopedic Surgery, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
| | - Boyuan Liang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Hongyu Yan
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Yufei Liu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Yuming Feng
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Sen Yang
- Department of Vascular Surgery, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
| | - Ju He
- Department of Vascular Surgery, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
| | - Deling Kong
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Jie Shi
- Institute of Disaster and Emergency Medicine, Tianjin University, Weijin Road 92, Tianjin 300072, China.,Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
| | - Shufang Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, China
| |
Collapse
|
49
|
Qin K, Gui Y, Li Y, Li X, Meng F, Han D, Du L, Li S, Wang Y, Zhou H, Yan H, Peng Y, Gao Z. Biodegradable Microneedle Array-Mediated Transdermal Delivery of Dimethyloxalylglycine-Functionalized Zeolitic Imidazolate Framework-8 Nanoparticles for Bacteria-Infected Wound Treatment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6338-6353. [PMID: 36701257 DOI: 10.1021/acsami.2c17328] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Bacteria-infected skin wounds caused by external injuries remain a serious challenge to the whole society. Wound healing dressings, with excellent antibacterial activities and potent regeneration capability, are increasingly needed clinically. Here, we reported a novel functional microneedle (MN) array comprising methacrylated hyaluronic acid (MeHA) embedded with pH-responsive functionalized zeolitic imidazolate framework-8 (ZIF-8) nanoparticles to treat bacteria-infected cutaneous wounds. Antibacterial activity was introduced into Zn-ZIF-8 to achieve sterilization through releasing Zn ions, as well as increased angiogenesis by dimethyloxalylglycine (DMOG) molecules that were distributed within its framework. Furthermore, biodegradable MeHA was chosen as a substrate material carrier to fabricate DMOG@ZIF-8 MN arrays. By such design, DMOG@ZIF-8 MN arrays would not only exhibit excellent antibacterial activity against pathogenic bacteria but also enhance angiogenesis within wound bed by upregulating the expression of HIF-1α, leading to a significant therapeutic efficiency on bacteria-infected cutaneous wound healing. Based on these results, we conclude that this new treatment strategy can provide a promising alternative for accelerating infected wound healing via effective antibacterial activity and ameliorative angiogenesis.
Collapse
Affiliation(s)
- Kang Qin
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yuan Gui
- Key Laboratory of Public Health Safety of Hebei Province, College of Public Health, Hebei University, Baoding 071002, China
| | - Yanchun Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Xinyi Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Fei Meng
- Key Laboratory of Public Health Safety of Hebei Province, College of Public Health, Hebei University, Baoding 071002, China
| | - Dianpeng Han
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Lianqun Du
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Shuang Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yu Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Huanying Zhou
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Hongyuan Yan
- Key Laboratory of Public Health Safety of Hebei Province, College of Public Health, Hebei University, Baoding 071002, China
| | - Yuan Peng
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Tianjin 300050, China
| |
Collapse
|
50
|
Raslan AA, Pham TX, Lee J, Hong J, Schmottlach J, Nicolas K, Dinc T, Bujor AM, Caporarello N, Thiriot A, von Andrian UH, Huang SK, Nicosia RF, Trojanowska M, Varelas X, Ligresti G. Single Cell Transcriptomics of Fibrotic Lungs Unveils Aging-associated Alterations in Endothelial and Epithelial Cell Regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.17.523179. [PMID: 36712020 PMCID: PMC9882122 DOI: 10.1101/2023.01.17.523179] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Lung regeneration deteriorates with aging leading to increased susceptibility to pathologic conditions, including fibrosis. Here, we investigated bleomycin-induced lung injury responses in young and aged mice at single-cell resolution to gain insights into the cellular and molecular contributions of aging to fibrosis. Analysis of 52,542 cells in young (8 weeks) and aged (72 weeks) mice identified 15 cellular clusters, many of which exhibited distinct injury responses that associated with age. We identified Pdgfra + alveolar fibroblasts as a major source of collagen expression following bleomycin challenge, with those from aged lungs exhibiting a more persistent activation compared to young ones. We also observed age-associated transcriptional abnormalities affecting lung progenitor cells, including ATII pneumocytes and general capillary (gCap) endothelial cells (ECs). Transcriptional analysis combined with lineage tracing identified a sub-population of gCap ECs marked by the expression of Tropomyosin Receptor Kinase B (TrkB) that appeared in bleomycin-injured lungs and accumulated with aging. This newly emerged TrkB + EC population expressed common gCap EC markers but also exhibited a distinct gene expression signature associated with aberrant YAP/TAZ signaling, mitochondrial dysfunction, and hypoxia. Finally, we defined ACKR1 + venous ECs that exclusively emerged in injured lungs of aged animals and were closely associated with areas of collagen deposition and inflammation. Immunostaining and FACS analysis of human IPF lungs demonstrated that ACKR1 + venous ECs were dominant cells within the fibrotic regions and accumulated in areas of myofibroblast aggregation. Together, these data provide high-resolution insights into the impact of aging on lung cell adaptability to injury responses.
Collapse
|