1
|
Wang W, Niu Y, Zhang N, Wan Y, Xiao Y, Zhao L, Zhao B, Chen W, Huang D. Cascade-Catalyzed Nanogel for Amplifying Starvation Therapy by Nitric Oxide-Mediated Hypoxia Alleviation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17313-17322. [PMID: 38534029 DOI: 10.1021/acsami.4c01866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Glucose oxidase (Gox)-mediated starvation therapy offers a prospective advantage for malignancy treatment by interrupting the glucose supply to neoplastic cells. However, the negative charge of the Gox surface hinders its enrichment in tumor tissues. Furthermore, Gox-mediated starvation therapy infiltrates large amounts of hydrogen peroxide (H2O2) to surround normal tissues and exacerbate intracellular hypoxia. In this study, a cascade-catalyzed nanogel (A-NE) was developed to boost the antitumor effects of starvation therapy by glucose consumption and cascade reactive release of nitric oxide (NO) to relieve hypoxia. First, the surface cross-linking structure of A-NE can serve as a bioimmobilization for Gox, ensuring Gox stability while improving the encapsulation efficiency. Then, Gox-mediated starvation therapy efficiently inhibited the proliferation of tumor cells while generating large amounts of H2O2. In addition, covalent l-arginine (l-Arg) in A-NE consumed H2O2 derived from glucose decomposition to generate NO, which augmented starvation therapy on metastatic tumors by alleviating tumor hypoxia. Eventually, both in vivo and in vitro studies indicated that nanogels remarkably inhibited in situ tumor growth and hindered metastatic tumor recurrence, offering an alternative possibility for clinical intervention.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yafan Niu
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Ni Zhang
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yuqing Wan
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yiqing Xiao
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Lingzhi Zhao
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Bingbing Zhao
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Wei Chen
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Dechun Huang
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
2
|
Wang S, Wang Y, Lv J, Xu C, Wei Y, Wang G, Li M. Remote Manipulation of TRPV1 Signaling by Near-Infrared Light-Triggered Nitric Oxide Nanogenerators for Specific Cancer Therapy. Adv Healthc Mater 2024; 13:e2303579. [PMID: 38155564 DOI: 10.1002/adhm.202303579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/19/2023] [Indexed: 12/30/2023]
Abstract
Specific activation of transient receptor potential vanilloid member 1 (TRPV1) channels provides a new avenue for cancer treatment by inducing excessive Ca2+ influx. However, controllable manipulation of TRPV1 signaling for clinical application has remained elusive due to the challenge in finding a mild and effective method of exerting external stimulus without adverse side effects in living systems. Herein, a TRPV1-targeting near-infrared (NIR) triggered nitric oxide (NO)-releasing nanoplatform (HCuS@PDA-TRPV1/BNN6) based on polydopamine (PDA) coated hollow copper sulfide nanoparticles (HCuS NPs) is developed for specific cancer therapy. Upon NIR irradiation, the NO donor BNN6 encapsulated in NIR-responsive nanovehicles can locally generate NO to activate TRPV1 channels and induce Ca2+ influx. This NIR controlled mode enables the nanoplatform to exert its therapeutic effects below the apoptotic threshold temperature (43°C), minimizing the photothermal damage to normal tissue. Integrating this special NO-mediated therapy with HCuS NPs mediated chemodynamic therapy, the designed nanoplatform exhibits a boosted anticancer activity with negligible systematic toxicity. Together, this study provides a promising strategy for site-specific cancer therapy by spatiotemporally controlled activation of surface ion channels, thus offering a solution to an unmet clinical need in cancer treatment.
Collapse
Affiliation(s)
- Shuangling Wang
- College of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, China
- Department of Environmental and Chemical Engineering, Hebei College of Industry and Technology, Shijiazhuang, 050091, China
| | - Yalin Wang
- The Second Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Jie Lv
- College of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, China
| | - Chunzhe Xu
- College of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yuxin Wei
- College of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, China
| | - Guiying Wang
- The Second Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Meng Li
- College of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, China
| |
Collapse
|
3
|
Xue P, Chang Z, Chen H, Xi H, Tan X, He S, Qiao H, Jiang X, Liu X, Du B. Macrophage membrane (MMs) camouflaged near-infrared (NIR) responsive bone defect area targeting nanocarrier delivery system (BTNDS) for rapid repair: promoting osteogenesis via phototherapy and modulating immunity. J Nanobiotechnology 2024; 22:87. [PMID: 38429776 PMCID: PMC10908146 DOI: 10.1186/s12951-024-02351-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/20/2024] [Indexed: 03/03/2024] Open
Abstract
Bone defects remain a significant challenge in clinical orthopedics, but no targeted medication can solve these problems. Inspired by inflammatory targeting properties of macrophages, inflammatory microenvironment of bone defects was exploited to develop a multifunctional nanocarrier capable of targeting bone defects and promoting bone regeneration. The avidin-modified black phosphorus nanosheets (BP-Avidin, BPAvi) were combined with biotin-modified Icaritin (ICT-Biotin, ICTBio) to synthesize Icaritin (ICT)-loaded black phosphorus nanosheets (BPICT). BPICT was then coated with macrophage membranes (MMs) to obtain MMs-camouflaged BPICT (M@BPICT). Herein, MMs allowed BPICT to target bone defects area, and BPICT accelerated the release of phosphate ions (PO43-) and ICT when exposed to NIR irradiation. PO43- recruited calcium ions (Ca2+) from the microenvironment to produce Ca3(PO4)2, and ICT increased the expression of osteogenesis-related proteins. Additionally, M@BPICT can decrease M1 polarization of macrophage and expression of pro-inflammatory factors to promote osteogenesis. According to the results, M@BPICT provided bone growth factor and bone repair material, modulated inflammatory microenvironment, and activated osteogenesis-related signaling pathways to promote bone regeneration. PTT could significantly enhance these effects. This strategy not only offers a solution to the challenging problem of drug-targeted delivery in bone defects but also expands the biomedical applications of MMs-camouflaged nanocarriers.
Collapse
Affiliation(s)
- Peng Xue
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Hanzhong Road 155, Nanjing, 210029, China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Zhiyong Chang
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Hanzhong Road 155, Nanjing, 210029, China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Hao Chen
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Hanzhong Road 155, Nanjing, 210029, China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Hongzhong Xi
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Hanzhong Road 155, Nanjing, 210029, China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Xiaoxue Tan
- International Chinese-Belorussian Scientific Laboratory on Vacuum-Plasma Technology, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Shuai He
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Hanzhong Road 155, Nanjing, 210029, China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Haishi Qiao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaohong Jiang
- International Chinese-Belorussian Scientific Laboratory on Vacuum-Plasma Technology, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xin Liu
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Hanzhong Road 155, Nanjing, 210029, China.
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China.
| | - Bin Du
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Hanzhong Road 155, Nanjing, 210029, China.
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China.
| |
Collapse
|
4
|
Hu Q, Zuo H, Hsu JC, Zeng C, Zhou T, Sun Z, Cai W, Tang Z, Chen W. The Emerging Landscape for Combating Resistance Associated with Energy-Based Therapies via Nanomedicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308286. [PMID: 37971203 PMCID: PMC10872442 DOI: 10.1002/adma.202308286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Cancer represents a serious disease with significant implications for public health, imposing substantial economic burden and negative societal consequences. Compared to conventional cancer treatments, such as surgery and chemotherapy, energy-based therapies (ET) based on athermal and thermal ablation provide distinct advantages, including minimally invasive procedures and rapid postoperative recovery. Nevertheless, due to the complex pathophysiology of many solid tumors, the therapeutic effectiveness of ET is often limited. Nanotechnology offers unique opportunities by enabling facile material designs, tunable physicochemical properties, and excellent biocompatibility, thereby further augmenting the outcomes of ET. Numerous nanomaterials have demonstrated the ability to overcome intrinsic therapeutic resistance associated with ET, leading to improved antitumor responses. This comprehensive review systematically summarizes the underlying mechanisms of ET-associated resistance (ETR) and highlights representative applications of nanoplatforms used to mitigate ETR. Overall, this review emphasizes the recent advances in the field and presents a detailed account of novel nanomaterial designs in combating ETR, along with efforts aimed at facilitating their clinical translation.
Collapse
Affiliation(s)
- Qitao Hu
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Huali Zuo
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Jessica C. Hsu
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Wisconsin 53705, United States
| | - Cheng Zeng
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Tian Zhou
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Zhouyi Sun
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Wisconsin 53705, United States
| | - Zhe Tang
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiyu Chen
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| |
Collapse
|
5
|
Dutta B, Shelar SB, Nirmalraj A, Gupta S, Barick KC, Gupta J, Hassan PA. Smart Magnetic Nanocarriers for Codelivery of Nitric Oxide and Doxorubicin for Enhanced Apoptosis in Cancer Cells. ACS OMEGA 2023; 8:44545-44557. [PMID: 38046289 PMCID: PMC10688159 DOI: 10.1021/acsomega.3c03734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 12/05/2023]
Abstract
Extremely short half-life therapeutic molecule nitric oxide (NO) plays significant roles in the functioning of various physiological and pathological processes in the human body, whereas doxorubicin hydrochloride (DOX) is a clinically important anticancer drug widely used in cancer chemotherapy. Thus, the intracellular delivery of these therapeutic molecules is tremendously important to achieve their full potential. Herein, we report a novel approach for the development of highly water-dispersible magnetic nanocarriers for codelivery of NO and DOX. Primarily, bifunctional magnetic nanoparticles enriched with carboxyl and thiol groups were prepared by introducing cysteine onto the surface of citrate-functionalized Fe3O4 nanoparticles. DOX was electrostatically conjugated onto the surface of bifunctional nanoparticles via carboxyl moieties, whereas the thiol group was further nitrosated to provide NO-releasing molecules. The developed magnetic nanocarrier exhibited good aqueous colloidal stability, protein resistance behavior, and high encapsulation efficacy for NO (65.5%) and DOX (85%), as well as sustained release characteristics. Moreover, they showed superior cytotoxicity toward cancer (A549 and MCF-7) cells via apoptosis induction over normal (WI26VA4) cells. Specifically, we have developed magnetic nanocarriers having the capability of dual delivery of NO and DOX, which holds great potential for combinatorial cancer treatment.
Collapse
Affiliation(s)
- Bijaideep Dutta
- Chemistry
Division, Bhabha Atomic Research Centre,
Trombay, Mumbai 400085, India
- Homi
Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Sandeep B. Shelar
- Chemistry
Division, Bhabha Atomic Research Centre,
Trombay, Mumbai 400085, India
| | - Ananya Nirmalraj
- Chemistry
Division, Bhabha Atomic Research Centre,
Trombay, Mumbai 400085, India
- Department
of Chemistry, Sunandan Divatia School of Science, SVKM’s NMIMS (Deemed-to-be University), Vile Parle (W), Mumbai 400056, India
| | - Sonali Gupta
- Chemistry
Division, Bhabha Atomic Research Centre,
Trombay, Mumbai 400085, India
- Homi
Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Kanhu C. Barick
- Chemistry
Division, Bhabha Atomic Research Centre,
Trombay, Mumbai 400085, India
- Homi
Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Jagriti Gupta
- Chemistry
Division, Bhabha Atomic Research Centre,
Trombay, Mumbai 400085, India
| | - Puthusserickal A. Hassan
- Chemistry
Division, Bhabha Atomic Research Centre,
Trombay, Mumbai 400085, India
- Homi
Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
6
|
Luo Y, Wu H, Zhou X, Wang J, Er S, Li Y, Welzen PLW, Oerlemans RAJF, Abdelmohsen LKEA, Shao J, van Hest JCM. Polymer Vesicles with Integrated Photothermal Responsiveness. J Am Chem Soc 2023; 145:20073-20080. [PMID: 37664895 PMCID: PMC10510318 DOI: 10.1021/jacs.3c07134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Indexed: 09/05/2023]
Abstract
Functionalized polymer vesicles have been proven to be highly promising in biomedical applications due to their good biocompatibility, easy processability, and multifunctional responsive capacities. However, photothermal-responsive polymer vesicles triggered by near-infrared (NIR) light have not been widely reported until now. Herein, we propose a new strategy for designing NIR light-mediated photothermal polymer vesicles. A small molecule (PTA) with NIR-triggered photothermal features was synthesized by combining a D-D'-A-D'-D configuration framework with a molecular rotor function (TPE). The feasibility of the design strategy was demonstrated through density functional theory calculations. PTA moieties were introduced in the hydrophobic segment of a poly(ethylene glycol)-poly(trimethylene carbonate) block copolymer, of which the carbonate monomers were modified in the side chain with an active ester group. The amphiphilic block copolymers (PEG44-PTA2) were then used as building blocks for the self-assembly of photothermal-responsive polymer vesicles. The new class of functionalized polymer vesicles inherited the NIR-mediated high photothermal performance of the photothermal agent (PTA). After NIR laser irradiation for 10 min, the temperature of the PTA-Ps aqueous solution was raised to 56 °C. The photothermal properties and bilayer structure of PTA-Ps after laser irradiation were still intact, which demonstrated that they could be applied as a robust platform in photothermal therapy. Besides their photothermal performance, the loading capacity of PTA-Ps was investigated as well. Hydrophobic cargo (Cy7) and hydrophilic cargo (Sulfo-Cy5) were successfully encapsulated in the PTA-Ps. These properties make this new class of functionalized polymer vesicles an interesting platform for synergistic therapy in anticancer treatment.
Collapse
Affiliation(s)
- Yingtong Luo
- Bio-Organic
Chemistry, Institute of Complex Molecular
Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Hanglong Wu
- Bio-Organic
Chemistry, Institute of Complex Molecular
Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Xuan Zhou
- DIFFER
- Dutch Institute for Fundamental Energy Research, De Zaale 20, 5612 AJ Eindhoven, The Netherlands
| | - Jianhong Wang
- Bio-Organic
Chemistry, Institute of Complex Molecular
Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Süleyman Er
- DIFFER
- Dutch Institute for Fundamental Energy Research, De Zaale 20, 5612 AJ Eindhoven, The Netherlands
| | - Yudong Li
- Bio-Organic
Chemistry, Institute of Complex Molecular
Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Pascal L. W. Welzen
- Bio-Organic
Chemistry, Institute of Complex Molecular
Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Roy A. J. F. Oerlemans
- Bio-Organic
Chemistry, Institute of Complex Molecular
Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Loai K. E. A. Abdelmohsen
- Bio-Organic
Chemistry, Institute of Complex Molecular
Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Jingxin Shao
- Bio-Organic
Chemistry, Institute of Complex Molecular
Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Jan C. M. van Hest
- Bio-Organic
Chemistry, Institute of Complex Molecular
Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
7
|
Ashique S, Garg A, Hussain A, Farid A, Kumar P, Taghizadeh‐Hesary F. Nanodelivery systems: An efficient and target-specific approach for drug-resistant cancers. Cancer Med 2023; 12:18797-18825. [PMID: 37668041 PMCID: PMC10557914 DOI: 10.1002/cam4.6502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Cancer treatment is still a global health challenge. Nowadays, chemotherapy is widely applied for treating cancer and reducing its burden. However, its application might be in accordance with various adverse effects by exposing the healthy tissues and multidrug resistance (MDR), leading to disease relapse or metastasis. In addition, due to tumor heterogeneity and the varied pharmacokinetic features of prescribed drugs, combination therapy has only shown modestly improved results in MDR malignancies. Nanotechnology has been explored as a potential tool for cancer treatment, due to the efficiency of nanoparticles to function as a vehicle for drug delivery. METHODS With this viewpoint, functionalized nanosystems have been investigated as a potential strategy to overcome drug resistance. RESULTS This approach aims to improve the efficacy of anticancer medicines while decreasing their associated side effects through a range of mechanisms, such as bypassing drug efflux, controlling drug release, and disrupting metabolism. This review discusses the MDR mechanisms contributing to therapeutic failure, the most cutting-edge approaches used in nanomedicine to create and assess nanocarriers, and designed nanomedicine to counteract MDR with emphasis on recent developments, their potential, and limitations. CONCLUSIONS Studies have shown that nanoparticle-mediated drug delivery confers distinct benefits over traditional pharmaceuticals, including improved biocompatibility, stability, permeability, retention effect, and targeting capabilities.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of PharmaceuticsPandaveswar School of PharmacyPandaveswarIndia
| | - Ashish Garg
- Guru Ramdas Khalsa Institute of Science and Technology, PharmacyJabalpurIndia
| | - Afzal Hussain
- Department of Pharmaceutics, College of PharmacyKing Saud UniversityRiyadhSaudi Arabia
| | - Arshad Farid
- Gomal Center of Biochemistry and BiotechnologyGomal UniversityDera Ismail KhanPakistan
| | - Prashant Kumar
- Teerthanker Mahaveer College of PharmacyTeerthanker Mahaveer UniversityMoradabadIndia
- Department of Pharmaceutics, Amity Institute of PharmacyAmity University Madhya Pradesh (AUMP)GwaliorIndia
| | - Farzad Taghizadeh‐Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of MedicineIran University of Medical SciencesTehranIran
- Clinical Oncology DepartmentIran University of Medical SciencesTehranIran
| |
Collapse
|
8
|
Wang Z, Jin A, Yang Z, Huang W. Advanced Nitric Oxide Generating Nanomedicine for Therapeutic Applications. ACS NANO 2023; 17:8935-8965. [PMID: 37126728 PMCID: PMC10395262 DOI: 10.1021/acsnano.3c02303] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nitric oxide (NO), a gaseous transmitter extensively present in the human body, regulates vascular relaxation, immune response, inflammation, neurotransmission, and other crucial functions. Nitrite donors have been used clinically to treat angina, heart failure, pulmonary hypertension, and erectile dysfunction. Based on NO's vast biological functions, it further can treat tumors, bacteria/biofilms and other infections, wound healing, eye diseases, and osteoporosis. However, delivering NO is challenging due to uncontrolled blood circulation release and a half-life of under five seconds. With advanced biotechnology and the development of nanomedicine, NO donors packaged with multifunctional nanocarriers by physically embedding or chemically conjugating have been reported to show improved therapeutic efficacy and reduced side effects. Herein, we review and discuss recent applications of NO nanomedicines, their therapeutic mechanisms, and the challenges of NO nanomedicines for future scientific studies and clinical applications. As NO enables the inhibition of the replication of DNA and RNA in infectious microbes, including COVID-19 coronaviruses and malaria parasites, we highlight the potential of NO nanomedicines for antipandemic efforts. This review aims to provide deep insights and practical hints into design strategies and applications of NO nanomedicines.
Collapse
Affiliation(s)
- Zhixiong Wang
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Albert Jin
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Zhen Yang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian 350117, China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian 350117, China
| | - Wei Huang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian 350117, China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian 350117, China
| |
Collapse
|
9
|
Pan Y, Luan X, Gao Y, Zeng F, Wang X, Zhou D, Li W, Wang Y, He B, Song Y. In-Tumor Biosynthetic Construction of Upconversion Nanomachines for Precise Near-Infrared Phototherapy. ACS NANO 2023; 17:4515-4525. [PMID: 36847587 DOI: 10.1021/acsnano.2c10453] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Targeted construction of therapeutic nanoplatforms in tumor cells with specific activation remains appealing but challenging. Here, we design a cancer-motivated upconversion nanomachine (UCNM) based on porous upconversion nanoparticles (p-UCNPs) for precise phototherapy. The nanosystem is equipped with a telomerase substrate (TS) primer and simultaneously encapsulates 5-aminolevulinic acid (5-ALA) and d-arginine (d-Arg). After coating with hyaluronic acid (HA), it can readily get into tumor cells, where 5-ALA induces efficient accumulation of protoporphyrin IX (PpIX) via the inherent biosynthetic pathway, and the overexpressed telomerase prolonged the TS to form G-quadruplexes (G4) for binding the resulting PpIX as a nanomachine. This nanomachine can respond to near-infrared (NIR) light and promote the active singlet oxygen (1O2) production due to the efficiency of Förster resonance energy transfer (FRET) between p-UCNPs and PpIX. Intriguingly, such oxidative stress can oxidize d-Arg into nitric oxide (NO), which relieves the tumor hypoxia and in turn improves the phototherapy effect. This in situ assembly approach significantly enhances targeting in cancer therapy and might be of considerable clinical value.
Collapse
Affiliation(s)
- Yongchun Pan
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, 210023 Nanjing, China
| | - Xiaowei Luan
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, 210023 Nanjing, China
| | - Yanfeng Gao
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, 210023 Nanjing, China
| | - Fei Zeng
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, 210023 Nanjing, China
| | - Xuyuan Wang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, 210023 Nanjing, China
| | - Dongtao Zhou
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, 210023 Nanjing, China
| | - Wanqi Li
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, 210023 Nanjing, China
| | - Yuzhen Wang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials, Nanjing Tech University, 211816 Nanjing, China
| | - Bangshun He
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China
| | - Yujun Song
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, 210023 Nanjing, China
| |
Collapse
|
10
|
Huang W, Zhang J, Luo L, Yu Y, Sun T. Nitric Oxide and Tumors: From Small-Molecule Donor to Combination Therapy. ACS Biomater Sci Eng 2023; 9:139-152. [PMID: 36576226 DOI: 10.1021/acsbiomaterials.2c01247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
As an important endogenous signaling molecule, nitric oxide (NO) is involved in various physiological and pathological activities in living organisms. It is proved that NO plays a critical role in tumor therapy, while the extremely short half-life and nonspecific distribution of NO greatly limit its further clinical applications. Thus, the past few decades have witnessed the progress made in conquering these shortcomings, including developing innovative NO donors, especially smart and multimodal nanoplatforms. These platforms can precisely control the spatiotemporal distribution of therapeutic agents in the organism, which make big differences in tumor treatment. Here current NO therapeutic mechanisms for cancer, NO donors from small molecules to smart-responsive nanodrug delivery platforms, and NO-based combination therapy are comprehensively reviewed, emphasizing outstanding breakthroughs in these fields and hoping to bring new insights into NO-based tumor treatments.
Collapse
Affiliation(s)
- Wan Huang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Jun Zhang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Li Luo
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Yao Yu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China.,State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
11
|
Chen J, Zhao B, Zou J, Yang J, Yang L, Zhang J, Chen W, Huang D, Zhong Y. Macromolecular NO-Donor Micelles for Targeted and Augmented Chemotherapy against Prostate Cancer. Adv Healthc Mater 2023; 12:e2202266. [PMID: 36415059 DOI: 10.1002/adhm.202202266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/01/2022] [Indexed: 11/24/2022]
Abstract
Mitoxantrone (MTO) is clinically utilized for treating hormone-refractory prostate cancer (PCa), however, the therapeutic outcome is far from optimal due to the lack of proper drug carrier as well as the inherent MTO detoxification mechanisms of DNA lesion repair and anti-oxidation. Herein, a bombesin-installed nanoplatform combining the chemotherapeutic MTO and the chemotherapeutic sensitizer of nitric oxide (NO) is developed based on MTO-loaded macromolecular NO-donor-containing polymeric micelles (BN-NMMTO ) for targeted NO-sensitized chemotherapy against PCa. BN-NMMTO actively target and accumulates in PCa sites and are internalized into the tumor cells. The macromolecular NO-donor of BN-NMMTO undergoes a reductive reaction to unleash NO upon intracellular glutathione (GSH), accompanying by micelle swelling and MTO release. The targeted intracellular MTO release induces DNA lesion and reactive oxygen species (ROS) generation in tumor cells without damage to the normal cells, and MTO's cytotoxicity is further augmented by NO release via the inhibition of both DNA repair and anti-oxidation pathways as compared with traditional MTO therapies.
Collapse
Affiliation(s)
- Jiaxin Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Bingbing Zhao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Junhui Zou
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Jiachen Yang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Lifen Yang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Junmei Zhang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Wei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China.,Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China.,Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Yinan Zhong
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
12
|
Mosqueira VCF, Machado MGC, de Oliveira MA. Polymeric Nanocarriers in Cancer Theranostics. Cancer Nanotechnol 2023. [DOI: 10.1007/978-3-031-17831-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
13
|
Dai W, Deng Y, Chen X, Huang Y, Hu H, Jin Q, Tang Z, Ji J. A mitochondria-targeted supramolecular nanoplatform for peroxynitrite-potentiated oxidative therapy of orthotopic hepatoma. Biomaterials 2022; 290:121854. [DOI: 10.1016/j.biomaterials.2022.121854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/23/2022] [Accepted: 10/06/2022] [Indexed: 11/28/2022]
|
14
|
Huang X, Zhong Y, Li Y, Zhou X, Yang L, Zhao B, Zhou J, Qiao H, Huang D, Qian H, Chen W. Black Phosphorus-Synergic Nitric Oxide Nanogasholder Spatiotemporally Regulates Tumor Microenvironments for Self-Amplifying Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37466-37477. [PMID: 35968831 DOI: 10.1021/acsami.2c10098] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The lack of tumor immunogenicity coupled with the presence of tumor immunosuppression severely hinders antitumor immunity, especially in the treatment of "immune cold" tumors. Here, we have developed a drug-free and NIR-enabled nitric oxide (NO)-releasing nanogasholder (NOPS@BP) composed of an outer cloak of nitrate-containing polymeric NO donor and an inner core of black phosphorus (BP) as the energy converter to spatiotemporally regulate NO-mediated tumor microenvironment remodeling and achieve multimodal therapy. Following NIR-irradiation, BP-induced photothermia and its intrinsic reducing property accelerate NO release from the outer cloak, by which the instantaneous NO burst concomitant with mild photothermia, on the one hand, induces immunogenic cell death (ICD), thereby provoking antitumor responses such as the maturation of dendritic cells (DCs) and the infiltration of cytotoxic T lymphocytes (CTLs); on the other hand, it reverses tumor immunosuppression via Treg inhibition, M2 macrophage restraint, and PD-L1 downregulation, further strengthening antitumor immunity. Therefore, this drug-free NOPS@BP by means of multimodal therapy (NO gas therapy, immune therapy, photothermal therapy) realizes extremely significant curative effects against primary and distant tumors and even metastasis in B16F10 tumor models, providing a new modality to conquer immune cold tumors by NO-potentiated ICD and immunosuppression reversal.
Collapse
Affiliation(s)
- Xin Huang
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yinan Zhong
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yanfei Li
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Xiang Zhou
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Lifen Yang
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Bingbing Zhao
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Jingjing Zhou
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Haishi Qiao
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Dechun Huang
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
- Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Hongliang Qian
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Wei Chen
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
- Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
15
|
Wang T, Qin J, Cheng J, Li C, Du J. Intelligent design of polymersomes for antibacterial and anticancer applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1822. [PMID: 35673991 DOI: 10.1002/wnan.1822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 01/25/2023]
Abstract
Polymersomes (or polymer vesicles) have attracted much attention for biomedical applications in recent years because their lumen can be used for drug delivery and their coronas and membrane can be modified with a variety of functional groups. Thus, polymersomes are very suitable for improved antibacterial and anticancer therapy. This review mainly highlighted recent advances in the synthetic protocols and design principles of intelligent antibacterial and anticancer polymersomes. Antibacterial polymersomes are divided into three categories: polymersomes as antibiotic nanocarriers, intrinsically antibacterial polymersomes, and antibacterial polymersomes with supplementary means including photothermal and photodynamic therapy. Similarly, the anticancer polymersomes are divided into two categories: polymersomes-based delivery systems and anticancer polymersomes with supplementary means. In addition, the bilateral relationship between bacteria and cancer is addressed, since more and more evidences show that bacteria may cause cancer or promote cancer progression. Finally, prospective on next-generation antibacterial and anticancer polymersomes are discussed. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Biology-Inspired Nanomaterials > Lipid-Based Structures.
Collapse
Affiliation(s)
- Tao Wang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, China
| | - Jinlong Qin
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, China.,Department of Gynecology and Obstetrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiajing Cheng
- Department of Gynecology and Obstetrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chang Li
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, China
| | - Jianzhong Du
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, China.,Department of Gynecology and Obstetrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
16
|
Li W, Hong T, Liu W, Dong S, Wang H, Tang ZR, Li W, Wang B, Hu Z, Liu Q, Qin Y, Yin C. Development of a Machine Learning-Based Predictive Model for Lung Metastasis in Patients With Ewing Sarcoma. Front Med (Lausanne) 2022; 9:807382. [PMID: 35433754 PMCID: PMC9011057 DOI: 10.3389/fmed.2022.807382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/07/2022] [Indexed: 12/11/2022] Open
Abstract
Background This study aimed to develop and validate machine learning (ML)-based prediction models for lung metastasis (LM) in patients with Ewing sarcoma (ES), and to deploy the best model as an open access web tool. Methods We retrospectively analyzed data from the Surveillance Epidemiology and End Results (SEER) Database from 2010 to 2016 and from four medical institutions to develop and validate predictive models for LM in patients with ES. Patient data from the SEER database was used as the training group (n = 929). Using demographic and clinicopathologic variables six ML-based models for predicting LM were developed, and internally validated using 10-fold cross validation. All ML-based models were subsequently externally validated using multiple data from four medical institutions (the validation group, n = 51). The predictive power of the models was evaluated by the area under receiver operating characteristic curve (AUC). The best-performing model was used to produce an online tool for use by clinicians to identify ES patients at risk from lung metastasis, to improve decision making and optimize individual treatment. Results The study cohort consisted of 929 patients from the SEER database and 51 patients from multiple medical centers, a total of 980 ES patients. Of these, 175 (18.8%) had lung metastasis. Multivariate logistic regression analysis was performed with survival time, T-stage, N-stage, surgery, and bone metastasis providing the independent predictive factors of LM. The AUC value of six predictive models ranged from 0.585 to 0.705. The Random Forest (RF) model (AUC = 0.705) using 4 variables was identified as the best predictive model of LM in ES patients and was employed to construct an online tool to assist clinicians in optimizing patient treatment. (https://share.streamlit.io/liuwencai123/es_lm/main/es_lm.py). Conclusions Machine learning were found to have utility for predicting LM in patients with Ewing sarcoma, and the RF model gave the best performance. The accessibility of the predictive model as a web-based tool offers clear opportunities for improving the personalized treatment of patients with ES.
Collapse
Affiliation(s)
- Wenle Li
- Department of Orthopedics, Xianyang Central Hospital, Xianyang, China
- Clinical Medical Research Center, Xianyang Central Hospital, Xianyang, China
| | - Tao Hong
- Department of Cardiac Surgery, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, China
| | - Wencai Liu
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shengtao Dong
- Department of Spine Surgery, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Haosheng Wang
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, China
| | - Zhi-Ri Tang
- School of Physics and Technology, Wuhan University, Wuhan, China
| | - Wanying Li
- Clinical Medical Research Center, Xianyang Central Hospital, Xianyang, China
| | - Bing Wang
- Clinical Medical Research Center, Xianyang Central Hospital, Xianyang, China
| | - Zhaohui Hu
- Department of Spinal Surgery, Liuzhou People's Hospital, Liuzhou, China
| | - Qiang Liu
- Department of Orthopedics, Xianyang Central Hospital, Xianyang, China
- Qiang Liu
| | - Yong Qin
- Department of Orthopedics Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Yong Qin
| | - Chengliang Yin
- Faculty of Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
- *Correspondence: Chengliang Yin
| |
Collapse
|
17
|
Chen E, Wang T, Zhang J, Zhou X, Niu Y, Liu F, Zhong Y, Huang D, Chen W. Mitochondrial Targeting and pH-Responsive Nanogels for Co-Delivery of Lonidamine and Paclitaxel to Conquer Drug Resistance. Front Bioeng Biotechnol 2021; 9:787320. [PMID: 34912792 PMCID: PMC8667579 DOI: 10.3389/fbioe.2021.787320] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/29/2021] [Indexed: 01/11/2023] Open
Abstract
Multidrug resistance (MDR) is one of the leading causes of the failure of cancer chemotherapy and mainly attributed to the overexpression of drug efflux transporters in cancer cells, which is dependent on adenosine triphosphate (ATP). To overcome this phenomenon, herein, a mitochondrial-directed pH-sensitive polyvinyl alcohol (PVA) nanogel incorporating the hexokinase inhibitor lonidamine (LND) and the chemotherapeutic drug paclitaxel (PTX) was developed to restore the activity of PTX and synergistically treat drug-resistant tumors. The introduction of 2-dimethylaminoethanethiol (DMA) moiety into the nanogels not only promoted the drug loading capacity but also enabled the lysosomal escape of the nanogels. The subsequent mitochondrial targeting facilitated the accumulation and acid-triggered payload release in the mitochondria. The released LND can destroy the mitochondria by exhausting the mitochondrial membrane potential (MMP), generating reactive oxygen species (ROS) and restraining the energy supply, resulting in apoptosis and susceptibility of the MCF-7/MDR cells to PTX. Hence, the nanogel-enabled combination regimen of LND and PTX showed a boosted anti-tumor efficacy in MCF-7/MDR cells. These mitochondrial-directed pH-sensitive PVA nanogels incorporating both PTX and LND represent a new nanoplatform for MDR reversal and enhanced therapeutic efficacy.
Collapse
Affiliation(s)
- Enping Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Ting Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Junmei Zhang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Xiang Zhou
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Yafan Niu
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Fu Liu
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Yinan Zhong
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, China
- Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Wei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, China
- Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, School of Engineering, China Pharmaceutical University, Nanjing, China
| |
Collapse
|