1
|
Xue Y, Zhang L, Chen J, Ma D, Zhang Y, Han Y. An "all-in-one" therapeutic platform for programmed antibiosis, immunoregulation and neuroangiogenesis to accelerate diabetic wound healing. Biomaterials 2025; 321:123293. [PMID: 40179815 DOI: 10.1016/j.biomaterials.2025.123293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/01/2025] [Accepted: 03/26/2025] [Indexed: 04/05/2025]
Abstract
Pathological microenvironment of diabetes induces a high risk of bacterial invasion, aggressive inflammatory response, and hindered neuroangiogenesis, leading to retarded ulcer healing. To address this, an "all-in-one" therapeutic platform, named MZZ, was constructed by loading maltodextrin onto a MOF-on-MOF structure (with ZIF-67 as the core and ZIF-8 as the shell) through a hybrid process of solvent treatment and electrostatic adsorption. Maltodextrin acts as a target to bind surrounding bacteria, and ZIF-8 as well as ZIF-67 responsively release Zn and Co ions, which not only kill most bacteria, but also improve the phagocytosis and xenophagy of M1 macrophages by up-regulating the expression levels of ATG5, Bcl1 and FLT4, helping the residual bacterial clearance. In inflammatory stage, MZZ scavenges extracellular and intracellular ROS by valence transition between Co2+ and Co3+, and promote M1 macrophages to transform into M2 phenotype. In tissue reconstruction stage, the synergistic effect of Zn and Co ions as well as cytokines secreted by macrophages up-regulates cell vitality and biofunctions of endotheliocytes, neurocytes and fibroblasts. The programmed effects of MZZ on antibiosis, anti-inflammatory and neuroangiogenesis to accelerate wound repair are further confirmed in an infected diabetic model, and this "all-in-one" platform shows great clinical application potential.
Collapse
Affiliation(s)
- Yang Xue
- State-key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China; Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Lan Zhang
- State-key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Jun Chen
- Department of Osteology, Xi'an People's Hospital (Xi'an No. 4 Hospital), Xi'an, 710100, China
| | - Dayan Ma
- State-key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yingang Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yong Han
- State-key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China; Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
2
|
Chu L, Shen JM, Xu Z, Huang J, Ning L, Feng Z, Jiang Y, Wu P, Gao C, Wang W, Li Z, Ning S, Ying X, Chen S, Wang P, Zhou X, Xu Q, Fang A, Zhang Q, Wang Y, Chen H, Zhou R, Li X, Zuo Y, Zhang Y, Wang ZG. Stimuli-responsive hydrogel with spatiotemporal co-delivery of FGF21 and H₂S for synergistic diabetic wound repair. J Control Release 2025; 382:113749. [PMID: 40252979 DOI: 10.1016/j.jconrel.2025.113749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
Chronic diabetic wounds pose significant clinical challenges due to persistent inflammation, impaired angiogenesis, and disrupted cellular homeostasis. To address these multifactorial barriers, we engineered an injectable, biodegradable, and biocompatible methylated silk fibroin (SilMA) hydrogel system co-loaded with cobalt sulfide (CoS) and fibroblast growth factor 21 (FGF21), designed for on-demand therapeutic release. In the acidic microenvironment characteristic of the inflammatory phase of diabetic wounds, the hydrogel rapidly releases hydrogen sulfide (H₂S) and Co2+ ions, mitigating inflammation and exerting antibacterial effects. Subsequently, during the proliferative and remodeling phases, sustained release of FGF21 promotes cellular proliferation, angiogenesis, and enzymatic homeostasis, thereby accelerating wound healing. Mechanistic studies reveal that the hydrogel facilitates M2 macrophage polarization and activates the JAK/STAT signaling pathway, leading to upregulation of vascular endothelial growth factor (VEGF). Additionally, it enhances antioxidant enzyme activities (superoxide dismutase, catalase, glutathione) while suppressing pro-oxidant enzymes (NADPH oxidase, lipoxygenase, cyclooxygenase). In vivo studies using a diabetic mouse model demonstrate that this dual-functional hydrogel significantly improves wound closure rates and tissue regeneration. These findings suggest that the SilMA-FGF21/CoS hydrogel represents a promising therapeutic strategy for the management of diabetic wounds.
Collapse
Affiliation(s)
- Liuxi Chu
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang 315300, China; The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jia-Men Shen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zeping Xu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Junqing Huang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Luying Ning
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646099, China
| | - Zunyong Feng
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yi Jiang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ping Wu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chen Gao
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Wenjia Wang
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Ziyi Li
- Cixi Biomedical Research Institute of Wenzhou Medical University, Ningbo, Zhejiang 315300, China
| | - Shaoxia Ning
- Cixi Biomedical Research Institute of Wenzhou Medical University, Ningbo, Zhejiang 315300, China
| | - Xinwang Ying
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shiyao Chen
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Piao Wang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Xujie Zhou
- The 1st School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qian Xu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ao Fang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Quan Zhang
- Integrative Muscle Biology Lab, Department of Kinesiology & Sports Management, Texas A&M University, College Station, TX 77843, USA
| | - Yuetong Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Haoman Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Rui Zhou
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaokun Li
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China..
| | - Yanming Zuo
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China..
| | - Yalin Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.; State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China.
| | - Zhou-Guang Wang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China..
| |
Collapse
|
3
|
Zhang X, Zhang P, Zhu Y, Lou J, Wu P, Wang Y, Wang Z, Liu Q, Lu B, Li Q, Mei J, Zhu C, Zhu W, Zhang X. Myogenic nano-adjuvant for orthopedic-related sarcopenia via mitochondrial homeostasis modulation in macrophage-myosatellite metabolic crosstalk. J Nanobiotechnology 2025; 23:390. [PMID: 40437492 PMCID: PMC12117855 DOI: 10.1186/s12951-025-03480-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 02/24/2025] [Indexed: 06/01/2025] Open
Abstract
The decline in skeletal muscle mass and muscle strength linked to aging, also known as sarcopenia, is strongly associated with disability, traumatic injury, and metabolic disease in patients. Meanwhile, sarcopenia increases the risk of adverse orthopedic perioperative complications including implant dislocation, infection, loosening, and poor wound healing. Mitochondrial dyshomeostasis in the immune-myosatellite metabolic crosstalk is one of the major pathological factors in sarcopenia. To reduce the incidence of orthopedic perioperative complications in patients, we designed and developed a nano-adjuvant based on two-dimensional layer double hydroxide (LDH) for sustained improvement of systemic and orthopedic-related sarcopenia. Construction of MgAlCo-LDH@UA (MACL@UA) nano-adjuvant was performed by introducing cobalt in magnesium-aluminum LDH and further loading urolithin A (UA). The release of magnesium ions and UA promoted myocyte proliferation, angiogenesis and improved mitochondrial homeostasis. Al acted as an immunomodulatory adjuvant to enhance the metabolic crosstalk between macrophages and myosatellite cells, and prompted macrophage-derived glutamine nourishment. Animal experiments confirmed that vaccination with MACL@UA in systemic sarcopenia and intensive orthopedic perioperative vaccination with MACL@UA significantly enhanced quadriceps muscle mass in rats. This nano-adjuvant offers a solution for long-term improvement of sarcopenia and short-term significant reduction of orthopedic perioperative complications in patients, with promising prospects for clinical application and commercial translation.
Collapse
Affiliation(s)
- Xudong Zhang
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Department of Orthopedics, The Affiliated Provincial Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, 230001, P. R. China
| | - Peng Zhang
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Department of Orthopedics, The Affiliated Provincial Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, 230001, P. R. China
| | - Yunliang Zhu
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Jiaqing Lou
- Yichun University School of Medicine, No. 576 Yuanzhou District, Yichun, Jiangxi Province, 336000, China
| | - Peng Wu
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yanchang Middle Road, Jing'an District, Shanghai, 200072, China
| | - Yingjie Wang
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Zhengxi Wang
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Quan Liu
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Baoliang Lu
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Qianming Li
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Jiawei Mei
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Chen Zhu
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Wanbo Zhu
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China.
| | - Xianzuo Zhang
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| |
Collapse
|
4
|
Sun Y, Li Y, Ding X, Xu P, Jing X, Cong H, Hu H, Yu B, Xu FJ. An NIR-responsive hydrogel loaded with polydeoxyribonucleotide nano-vectors for enhanced chronic wound healing. Biomaterials 2025; 314:122789. [PMID: 39260030 DOI: 10.1016/j.biomaterials.2024.122789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/13/2024]
Abstract
Chronic diabetic wounds are difficult to treat due to imbalanced inflammatory responses, high blood glucose levels, and bacterial infections. Novel therapeutic approaches based on nucleic acid analogues have been proposed, with unique advantages in improving angiogenesis, increasing collagen synthesis, and exerting anti-inflammatory effects. However, the inherent electronegativity of nucleic acids makes them less susceptible to cellular uptake. In this paper, a kind of near infrared (NIR)-responsive nanocomposite hydrogel loaded with nucleic acid vectors was proposed for promoting wound healing. The redox system composed of molybdenum disulphide nanosheets (MoS2 NSs) initiated the copolymerization of quaternized chitosan containing double bonds and N-isopropylacrylamide (NIPAAm) to form the matrix. In addition, MoS2 NSs with photothermal conversion performance endow the nanocomposite hydrogel to have NIR-response property and act as physical crosslinking points in the matrix. Polydeoxyribonucleotides (PDRN), which have the effect of promoting wound healing, were made into nucleic acid vectors, and loaded into the NIR-responsive hydrogel. MoS2 NSs can convert NIR irradiation into heat, causing phase transitions of temperature-sensitive segments that trigger volume contraction of the hydrogel to extrude the nucleic acid vector. Promoting angiogenesis, slowing inflammation, and guiding tissue regeneration were demonstrated in the diabetic wound model treated with the NIR-responsive nanocomposite hydrogel.
Collapse
Affiliation(s)
- Yanzhen Sun
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Yao Li
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Xiaokang Ding
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Pan Xu
- Department of Respiration, Binzhou Medical University Hospital, Binzhou, 256500, China
| | - Xiaodong Jing
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Hao Hu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China.
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China.
| | - Fu-Jian Xu
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
5
|
Yan N, Zhou H, Jin P, Li T, Liu Q, Ning H, Ma Z, Feng L, Jin T, Deng Y, Wu Z. A Multifunctional Cobalt-Containing Implant for Treating Biofilm Infections and Promoting Osteointegration in Infected Bone Defects Through Macrophage-Mediated Immunomodulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409200. [PMID: 39587976 PMCID: PMC11744729 DOI: 10.1002/advs.202409200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/26/2024] [Indexed: 11/27/2024]
Abstract
Treating bone infections and ensuring bone recovery is one of the major global problems facing modern orthopedics. Prolonged antibiotic use may increase the risk of antimicrobial resistance, and inflammation caused by biofilms can obstruct tissue healing, making bone infection treatment even more challenging. The optimal treatment strategy combines immune response modification to promote osteogenesis with effective bacterial infection removal that does not require long-term antibiotic use. A one-step plasma immersion ion implantation approach is used to create titanium alloy implants incorporating cobalt. According to experimental findings, cobalt-containing titanium implants exhibit improved antibacterial activity by efficiently disrupting biofilm formations and reducing Methicillin-resistant Staphylococcus aureus adherence by over 80%. Additionally, the implants exhibit superior anti-inflammatory and osseointegration properties. RNA sequencing analysis reveals the potential mechanism of Co2+ in regulating the polarization of macrophages toward the anti-inflammatory M2 phenotype, which is crucial for creating an immune environment conducive to bone healing. Concurrently, these implants promote osteogenic differentiation while suppressing osteoclast activity, further supporting bone repair. Overall, without exogenous recombinant proteins or antibiotics, the implants effectively eradicate infections and expedite bone repair, offering a novel therapeutic strategy for complex skeletal diseases with clinical promise.
Collapse
Affiliation(s)
- Nongyang Yan
- Institute of Advanced TechnologyUniversity of Science and Technology of ChinaNo. 5089 Wangjiang West RoadHefeiAnhui230031China
| | - Hao Zhou
- Department of Spine SurgeryThe Third Xiangya HospitalCentral South UniversityNo. 138 Tongzi RoadChangshaHunan410013China
| | - Penghe Jin
- Department of Spine SurgeryThe Third Xiangya HospitalCentral South UniversityNo. 138 Tongzi RoadChangshaHunan410013China
| | - Tengfei Li
- Institute of Advanced TechnologyUniversity of Science and Technology of ChinaNo. 5089 Wangjiang West RoadHefeiAnhui230031China
| | - Qi Liu
- School of Nuclear Science and TechnologyUniversity of Science and Technology of ChinaNo. 96 Jinzhai RoadHefeiAnhui230026China
| | - Hao Ning
- Department of Spine SurgeryThe Third Xiangya HospitalCentral South UniversityNo. 138 Tongzi RoadChangshaHunan410013China
| | - Zhixin Ma
- Comprehensive supervision officeAnhui provincial Health Commission435 Tunbrook RoadHefei230032China
| | - Linfei Feng
- School of Nuclear Science and TechnologyUniversity of Science and Technology of ChinaNo. 96 Jinzhai RoadHefeiAnhui230026China
- Department of Oral and Maxillofacial SurgeryThe First Affiliated Hospital of Anhui Medical UniversityNo. 218 Jixi AvenueHeifeiAnhui230032China
| | - Tao Jin
- School of Nuclear Science and TechnologyUniversity of Science and Technology of ChinaNo. 96 Jinzhai RoadHefeiAnhui230026China
| | - Youwen Deng
- Department of Spine SurgeryThe Third Xiangya HospitalCentral South UniversityNo. 138 Tongzi RoadChangshaHunan410013China
| | - Zhengwei Wu
- Institute of Advanced TechnologyUniversity of Science and Technology of ChinaNo. 5089 Wangjiang West RoadHefeiAnhui230031China
- School of Nuclear Science and TechnologyUniversity of Science and Technology of ChinaNo. 96 Jinzhai RoadHefeiAnhui230026China
| |
Collapse
|
6
|
Yang Y, Zhu X, Liu X, Chen K, Hu Y, Liu P, Xu Y, Xiao X, Liu X, Song N, Feng Q. Injectable and self-healing sulfated hyaluronic acid/gelatin hydrogel as dual drug delivery system for circumferential tracheal repair. Int J Biol Macromol 2024; 279:134978. [PMID: 39182860 DOI: 10.1016/j.ijbiomac.2024.134978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Stem cell-based therapies show promise for clinically addressing circumferential tracheal defects (CTD) through tissue engineering. However, creating a tissue-engineered tracheal tube possesses a healthy cartilage matrix and intact tube structure remains a challenge. A solution lies in the use of an injectable hydrogel with shape adaptability and chondrogenic capacity, serving as a practical and dependable platform for tubular tracheal cartilage regeneration. In this study, we developed an injectable hydrogel using modified natural polymers-hydrazide-grafted gelatin (Gelatin-ADH) and aldehyde-modified hyaluronic acid with sulfated groups (HA-CHO-SO3) via Schiff Base interaction. Additionally, aldehyde-modified β-cyclodextrin (β-CD-CHO) was introduced into the network during hydrogel formation. The negative sulfated groups and hydrophobic cavities of β-cyclodextrin facilitated the efficient encapsulation and sustained release of transforming growth factor-β1 (TGF-β1) and kartogenin (KGN) within our hydrogel. This synergistically promoted the chondrogenesis of loaded bone marrow stem cells (BMSCs). Subsequently, we employed this TGF-β1, KGN, and BMSCs loaded hydrogel to form a cartilage ring. This ring was then assembled into an engineered tracheal cartilage tube using our previously reported ring-to-tube strategy. Our results demonstrated that the engineered tracheal cartilage tube effectively repaired CTD in a rabbit model. Hence, this study introduces a novel hydrogel with significant clinical application potential for tracheal tissue engineering.
Collapse
Affiliation(s)
- YaYan Yang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Xinsheng Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuezhe Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Kai Chen
- School of Resources and Chemical Engineering, Sanming University, Fuzhou, China
| | - Yunping Hu
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Pei Liu
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Yong Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiufeng Xiao
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China.
| | - Xiaogang Liu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Nan Song
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Qian Feng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.
| |
Collapse
|
7
|
Wang P, Gao E, Wang T, Feng Y, Xu Y, Su L, Gao W, Ci Z, Younis MR, Chang J, Yang C, Duan L. Copper hydrogen phosphate nanosheets functionalized hydrogel with tissue adhesive, antibacterial, and angiogenic capabilities for tracheal mucosal regeneration. J Nanobiotechnology 2024; 22:652. [PMID: 39443926 PMCID: PMC11515660 DOI: 10.1186/s12951-024-02920-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
Timely and effective interventions after tracheal mucosal injury are lack in clinical practices, which elevate the risks of airway infection, tracheal cartilage deterioration, and even asphyxiated death. Herein, we proposed a biomaterial-based strategy for the repair of injured tracheal mucosal based on a copper hydrogen phosphate nanosheets (CuHP NSs) functionalized commercial hydrogel (polyethylene glycol disuccinimidyl succinate-human serum albumin, PH). Such CuHP/PH hydrogel achieved favorable injectability, stable gelation, and excellent adhesiveness within the tracheal lumen. Moreover, CuHP NSs within the CuHP/PH hydrogel effectively stimulate the proliferation and migration of endothelial/epithelial cells, enhancing angiogenesis and demonstrating excellent tissue regenerative potential. Additionally, it exhibited significant inhibitory effects on both bacteria and bacterial biofilms. More importantly, when injected injured site of tracheal mucosa under fiberoptic bronchoscopy guidance, our results demonstrated CuHP/PH hydrogel adhered tightly to the tracheal mucosa. The therapeutic effects of the CuHP/PH hydrogel were further confirmed, which significantly improved survival rates, vascular and mucosal regeneration, reduced occurrences of intraluminal infections, tracheal stenosis, and cartilage damage complications. This research presents an initial proposition outlining a strategy employing biomaterials to mitigate tracheal mucosal injury, offering novel perspectives on the treatment of mucosal injuries and other tracheal diseases.
Collapse
Affiliation(s)
- Pengli Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Key Laboratory of Tissue Engineering, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Erji Gao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Tao Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Yanping Feng
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Yong Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Lefeng Su
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Wei Gao
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Key Laboratory of Tissue Engineering, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Zheng Ci
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Key Laboratory of Tissue Engineering, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Muhammad Rizwan Younis
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Jiang Chang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China.
| | - Chen Yang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China.
| | - Liang Duan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China.
| |
Collapse
|
8
|
Guo L, Liu X, Wang Y, Yi J, Li J, Xu Y, Cai K, Dai W, Feng Q, Tao B. Enhancing long-segmental tracheal restoration: A self-repairing hydrogel loaded with chondrocytokines for sutureless anastomosis and cartilage regeneration. Mater Today Bio 2024; 28:101208. [PMID: 39290468 PMCID: PMC11405917 DOI: 10.1016/j.mtbio.2024.101208] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 08/17/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Artificial tracheal substitutes encounter significant challenges during long-segmental tracheal defects (LSTD) reconstruction, notably early postoperative anastomotic stenosis and tracheal chondromalacia. Mitigating early anastomotic stenosis by creating a compliant sutureless substitute is pivotal. Enhancing its chondrogenic capacity is equally critical for sustained healthy tracheal cartilage regeneration. This study proposes a self-healing hydrogel for sutureless tracheal anastomosis to mitigate anastomotic stenosis, enriched with kartogenin (KGN) and transforming growth factor-β1 (TGFβ1) to bolster chondrogenic properties. Initially, two precursor solutions were prepared: 1) aldehyde-modified hyaluronic acid with sulfonation and β-cyclodextrin-CHO loaded with KGN; 2) hydrazide-grafted gelatin loaded with TGFβ1. Coextrusion of these solutions resulted in a gelated G + TGFβ1/sH-CD + KGN hydrogel, characterized by a robust covalent bonding network of acylhydrazones between hydrazide and aldehyde groups, imparting excellent self-healing properties. The G + TGFβ1/sH-CD + KGN hydrogels, showcasing favorable cytocompatibility, excellent injectability, and rapid gelation, were loaded with bone marrow stem cells. These were customized into O-shaped rings and assembled into a malleable tracheal substitute using our established ring-to-tube method. This resultant compliant substitute facilitated sutureless anastomosis of LSTD in a rabbit model, attributed to the Schiff base reaction between the hydrogel's carbonyl group and the tissue's amino group. Notably, the tracheal substitute reduced early postoperative anastomotic stenosis, maintained tracheal patency, alleviated sputum blockage, promoted reepithelization, and increased the survival rate of the experimental rabbits. The sustained release of chondrocytokines resulted in excellent tracheal cartilage regeneration. Employing chondrocytokines-loaded hydrogels with self-healing properties represents a significant advancement in sutureless tracheal anastomosis and tracheal cartilage regeneration, holding promising potential in inhibiting early postoperative anastomotic stenosis and tracheal chondromalacia when treating LSTD.
Collapse
Affiliation(s)
- Liang Guo
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuezhe Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Yao Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiaoyu Yi
- Department of Plastic Surgery, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Juanjuan Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Yong Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Wufei Dai
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Feng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Bo Tao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Du Z, Qiao F, Tong L, Zhang W, Mou X, Zhao X, Maitz MF, Wang H, Huang N, Yang Z. Mimicking Mytilus edulis foot protein: A versatile strategy for robust biomedical coatings. Innovation (N Y) 2024; 5:100671. [PMID: 39114479 PMCID: PMC11305295 DOI: 10.1016/j.xinn.2024.100671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/28/2024] [Indexed: 08/10/2024] Open
Abstract
Universal coatings with versatile surface adhesion, good mechanochemical robustness, and the capacity for secondary modification are of great scientific interest. However, incorporating these advantages into a system is still a great challenge. Here, we report a series of catechol-decorated polyallylamines (CPAs), denoted as pseudo-Mytilus edulis foot protein 5 (pseudo-Mefp-5), that mimic not only the catechol and amine groups but also the backbone of Mefp-5. CPAs can fabricate highly adhesive, robust, multifunctional polyCPA (PCPA) coatings based on synergetic catechol-polyamine chemistry as universal building blocks. Due to the interpenetrating entangled network architectures, these coatings exhibit high chemical robustness against harsh conditions (HCl, pH 1; NaOH, pH 14; H2O2, 30%), good mechanical robustness, and wear resistance. In addition, PCPA coatings provide abundant grafting sites, enabling the fabrication of various functional surfaces through secondary modification. Furthermore, the versatility, multifaceted robustness, and scalability of PCPA coatings indicate their great potential for surface engineering, especially for withstanding harsh conditions in multipurpose biomedical applications.
Collapse
Affiliation(s)
- Zeyu Du
- School of Materials Science and Engineering, Department of Cardiology, Third People’s Hospital of Chengdu Affiliated with Southwest Jiaotong University, Southwest Jiaotong University, Chengdu 610031, China
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital of Southern Medical University, Dongguan 523059, China
| | - Feng Qiao
- School of Materials Science and Engineering, Department of Cardiology, Third People’s Hospital of Chengdu Affiliated with Southwest Jiaotong University, Southwest Jiaotong University, Chengdu 610031, China
| | - Liping Tong
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wentai Zhang
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital of Southern Medical University, Dongguan 523059, China
| | - Xiaohui Mou
- School of Materials Science and Engineering, Department of Cardiology, Third People’s Hospital of Chengdu Affiliated with Southwest Jiaotong University, Southwest Jiaotong University, Chengdu 610031, China
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital of Southern Medical University, Dongguan 523059, China
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Manfred F. Maitz
- School of Materials Science and Engineering, Department of Cardiology, Third People’s Hospital of Chengdu Affiliated with Southwest Jiaotong University, Southwest Jiaotong University, Chengdu 610031, China
- Max Bergmann Center of Biomaterials Dresden, Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany
| | - Huaiyu Wang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Nan Huang
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital of Southern Medical University, Dongguan 523059, China
- GuangZhou Nanchuang Mount Everest Company for Medical Science and Technology, Guangzhou 510670, China
| | - Zhilu Yang
- School of Materials Science and Engineering, Department of Cardiology, Third People’s Hospital of Chengdu Affiliated with Southwest Jiaotong University, Southwest Jiaotong University, Chengdu 610031, China
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital of Southern Medical University, Dongguan 523059, China
| |
Collapse
|
10
|
Yu D, Chen L, Yan T, Zhang Y, Sun X, Lv G, Zhang S, Xu Y, Li C. Enhancing Infected Diabetic Wound Healing through Multifunctional Nanocomposite-Loaded Microneedle Patch: Inducing Multiple Regenerative Sites. Adv Healthc Mater 2024; 13:e2301985. [PMID: 38776526 DOI: 10.1002/adhm.202301985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Infected diabetic wound (DW) presents a prolonged and challenging healing process within the field of regenerative medicine. The effectiveness of conventional drug therapies is hindered by their limited ability to reach deep tissues and promote adequate wound healing rates. Therefore, there is an imperative to develop drug delivery systems that can penetrate deep tissues while exhibiting multifunctional properties to expedite wound healing. In this study, w e devised a soluble microneedle (MN) patch made of γ-PGA, featuring multiple arrays, which w as loaded with core-shell structured nanoparticles (NPs) known as Ag@MSN@CeO2, to enhance the healing of infected DWs. The NP comprises a cerium dioxide (CeO2) core with anti-inflammatory and antioxidant properties, a mesoporous silica NP (MSN) shell with angiogenic characteristics, and an outermost layer doped with Ag to combat bacterial infections. W e demonstrated that the MN platform loaded with Ag@MSN@CeO2 successfully penetrated deep tissues for effective drug delivery. These MN tips induced the formation of multiple regenerative sites at various points, leading to antibacterial, reactive oxygen species-lowering, macrophage ecological niche-regulating, vascular regeneration-promoting, and collagen deposition-promoting effects, thus significantly expediting the healing process of infected DWs. Considering these findings, the multifunctional MN@Ag@MSN@CeO2 patch exhibits substantial potential for clinical applications in the treatment of infected DW.
Collapse
Affiliation(s)
- Daojiang Yu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
- Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, China
| | - Lei Chen
- Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, China
| | - Tao Yan
- Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, China
| | - Yuanyuan Zhang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Xiaodong Sun
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Guozhong Lv
- The Affiliated Hospital of Jiangnan University, Jiangsu, 214000, China
| | - Shuyu Zhang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
- Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, China
| | - Yong Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Changlong Li
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
11
|
Zhou W, Liu Y, Dong J, Hu X, Su Z, Zhang X, Zhu C, Xiong L, Huang W, Bai J. Mussel-Derived and Bioclickable Peptide Mimic for Enhanced Interfacial Osseointegration via Synergistic Immunomodulation and Vascularized Bone Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401833. [PMID: 38922775 PMCID: PMC11348244 DOI: 10.1002/advs.202401833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/25/2024] [Indexed: 06/28/2024]
Abstract
Inadequate osseointegration at the interface is a key factor in orthopedic implant failure. Mechanistically, traditional orthopedic implant interfaces fail to precisely match natural bone regeneration processes in vivo. In this study, a novel biomimetic coating on titanium substrates (DPA-Co/GFO) through a mussel adhesion-mediated ion coordination and molecular clicking strategy is engineered. In vivo and in vitro results confirm that the coating exhibits excellent biocompatibility and effectively promotes angiogenesis and osteogenesis. Crucially, the biomimetic coating targets the integrin α2β1 receptor to promote M2 macrophage polarization and achieves a synergistic effect between immunomodulation and vascularized bone regeneration, thereby maximizing osseointegration at the interface. Mechanical push-out tests reveal that the pull-out strength in the DPA-Co/GFO group is markedly greater than that in the control group (79.04 ± 3.20 N vs 31.47 ± 1.87 N, P < 0.01) and even surpasses that in the sham group (79.04 ± 3.20 N vs 63.09 ± 8.52 N, P < 0.01). In summary, the novel biomimetic coating developed in this study precisely matches the natural process of bone regeneration in vivo, enhancing interface-related osseointegration and showing considerable potential for clinical translation and applications.
Collapse
Affiliation(s)
- Wei Zhou
- Department of OrthopaedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of OrthopaedicsThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230022China
| | - Yang Liu
- Department of OrthopaedicsThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230022China
| | - Jiale Dong
- Department of OrthopaedicsThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230022China
| | - Xianli Hu
- Department of OrthopaedicsThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230022China
| | - Zheng Su
- Department of OrthopaedicsThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230022China
| | - Xianzuo Zhang
- Department of OrthopaedicsThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230022China
| | - Chen Zhu
- Department of OrthopaedicsThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230022China
| | - Liming Xiong
- Department of OrthopaedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Wei Huang
- Department of OrthopaedicsThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230022China
| | - Jiaxiang Bai
- Department of OrthopaedicsThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230022China
| |
Collapse
|
12
|
Wu Y, Zou J, Tang K, Xia Y, Wang X, Song L, Wang J, Wang K, Wang Z. From electricity to vitality: the emerging use of piezoelectric materials in tissue regeneration. BURNS & TRAUMA 2024; 12:tkae013. [PMID: 38957661 PMCID: PMC11218788 DOI: 10.1093/burnst/tkae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 07/04/2024]
Abstract
The unique ability of piezoelectric materials to generate electricity spontaneously has attracted widespread interest in the medical field. In addition to the ability to convert mechanical stress into electrical energy, piezoelectric materials offer the advantages of high sensitivity, stability, accuracy and low power consumption. Because of these characteristics, they are widely applied in devices such as sensors, controllers and actuators. However, piezoelectric materials also show great potential for the medical manufacturing of artificial organs and for tissue regeneration and repair applications. For example, the use of piezoelectric materials in cochlear implants, cardiac pacemakers and other equipment may help to restore body function. Moreover, recent studies have shown that electrical signals play key roles in promoting tissue regeneration. In this context, the application of electrical signals generated by piezoelectric materials in processes such as bone healing, nerve regeneration and skin repair has become a prospective strategy. By mimicking the natural bioelectrical environment, piezoelectric materials can stimulate cell proliferation, differentiation and connection, thereby accelerating the process of self-repair in the body. However, many challenges remain to be overcome before these concepts can be applied in clinical practice, including material selection, biocompatibility and equipment design. On the basis of the principle of electrical signal regulation, this article reviews the definition, mechanism of action, classification, preparation and current biomedical applications of piezoelectric materials and discusses opportunities and challenges for their future clinical translation.
Collapse
Affiliation(s)
- Yifan Wu
- College of Life Sciences, Tiangong University, Binshuixi Road, Xiqing District, Tianjin 300387, China
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Weijin Road, Nankai District, Tianjin 300071, China
| | - Junwu Zou
- College of Life Sciences, Tiangong University, Binshuixi Road, Xiqing District, Tianjin 300387, China
| | - Kai Tang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiovascular Surgery, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Fuwai Hospital, Beilishi Road, Xicheng District, Beijing 100037, China
| | - Ying Xia
- College of Life Sciences, Tiangong University, Binshuixi Road, Xiqing District, Tianjin 300387, China
| | - Xixi Wang
- College of Life Sciences, Tiangong University, Binshuixi Road, Xiqing District, Tianjin 300387, China
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Baidi Road, Nankai District, Tianjin 300192, China
| | - Lili Song
- College of Life Sciences, Tiangong University, Binshuixi Road, Xiqing District, Tianjin 300387, China
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Baidi Road, Nankai District, Tianjin 300192, China
| | - Jinhai Wang
- College of Life Sciences, Tiangong University, Binshuixi Road, Xiqing District, Tianjin 300387, China
| | - Kai Wang
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Weijin Road, Nankai District, Tianjin 300071, China
| | - Zhihong Wang
- Institute of Transplant Medicine, School of Medicine, Nankai University, Weijin Road, Nankai District, Tianjin 300071, China
| |
Collapse
|
13
|
Bakhshi A, Naghib SM, Rabiee N. Antibacterial and Antiviral Nanofibrous Membranes. ACS SYMPOSIUM SERIES 2024:47-88. [DOI: 10.1021/bk-2024-1472.ch002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Ali Bakhshi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Narmak, Tehran,16846-13114, Iran
- School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Narmak, Tehran,16846-13114, Iran
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Western Australia 6150, Australia
| |
Collapse
|
14
|
Zhang J, Ma T, Liu X, Zhang X, Meng W, Wu J. Multifunctional surface of the nano-morphic PEEK implant with enhanced angiogenic, osteogenic and antibacterial properties. Regen Biomater 2024; 11:rbae067. [PMID: 38974666 PMCID: PMC11226884 DOI: 10.1093/rb/rbae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/26/2024] [Accepted: 06/02/2024] [Indexed: 07/09/2024] Open
Abstract
Polyetheretherketone (PEEK) is a high-performance polymer suitable for use in biomedical coatings. The implants based on PEEK have been extensively studied in dental and orthopedic fields. However, their inherent inert surfaces and poor osteogenic properties limit their broader clinical applications. Thus, there is a pressing need to produce a multifunctional PEEK implant to address this issue. In response, we developed sulfonated PEEK (sPEEK)-Cobalt-parathyroid hormone (PTH) materials featuring multifunctional nanostructures. This involved loading cobalt (Co) ions and PTH (1-34) protein onto the PEEK implant to tackle this challenge. The findings revealed that the controlled release of Co2+ notably enhanced the vascular formation and the expression of angiogenic-related genes, and offered antimicrobial capabilities for sPEEK-Co-PTH materials. Additionally, the sPEEK-Co-PTH group exhibited improved cell compatibility and bone regeneration capacity in terms of cell activity, alkaline phosphatase (ALP) staining, matrix mineralization and osteogenic gene expression. It surpassed solely sulfonated and other functionalized sPEEK groups, demonstrating comparable efficacy even when compared to the titanium (Ti) group. Crucially, animal experiments also corroborated the significant enhancement of osteogenesis due to the dual loading of cobalt ions and PTH (1-34). This study demonstrated the potential of bioactive Co2+ and PTH (1-34) for bone replacement, optimizing the bone integration of PEEK implants in clinical applications.
Collapse
Affiliation(s)
- Jiajia Zhang
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - Tongtong Ma
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - Xueye Liu
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - Xiaoran Zhang
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - Wenqing Meng
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - Junling Wu
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| |
Collapse
|
15
|
Bačáková L, Chlupáč J, Filová E, Musílková J, Tomšů J, Wu YC, Svobodová L, Pražák Š, Brož A. Vascular Damage and Repair - Are Small-Diameter Vascular Grafts Still the "Holy Grail" of Tissue Engineering? Physiol Res 2024; 73:S335-S363. [PMID: 38836460 PMCID: PMC11412351 DOI: 10.33549/physiolres.935294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Cardiovascular diseases are the most important cause of morbidity and mortality in the civilized world. Stenosis or occlusion of blood vessels leads not only to events that are directly life-threatening, such as myocardial infarction or stroke, but also to a significant reduction in quality of life, for example in lower limb ischemia as a consequence of metabolic diseases. The first synthetic polymeric vascular replacements were used clinically in the early 1950s. However, they proved to be suitable only for larger-diameter vessels, where the blood flow prevents the attachment of platelets, pro-inflammatory cells and smooth muscle cells on their inner surface, whereas in smaller-diameter grafts (6 mm or less), these phenomena lead to stenosis and failure of the graft. Moreover, these polymeric vascular replacements, like biological grafts (decellularized or devitalized), are cell-free, i.e. there are no reconstructed physiological layers of the blood vessel wall, i.e. an inner layer of endothelial cells to prevent thrombosis, a middle layer of smooth muscle cells to perform the contractile function, and an outer layer to provide innervation and vascularization of the vessel wall. Vascular substitutes with these cellular components can be constructed by tissue engineering methods. However, it has to be admitted that even about 70 years after the first polymeric vascular prostheses were implanted into human patients, there are still no functional small-diameter vascular grafts on the market. The damage to small-diameter blood vessels has to be addressed by endovascular approaches or by autologous vascular substitutes, which leads to some skepticism about the potential of tissue engineering. However, new possibilities of this approach lie in the use of modern technologies such as 3D bioprinting and/or electrospinning in combination with stem cells and pre-vascularization of tissue-engineered vascular grafts. In this endeavor, sex-related differences in the removal of degradable biomaterials by the cells and in the behavior of stem cells and pre-differentiated vascular cells need to be taken into account. Key words: Blood vessel prosthesis, Regenerative medicine, Stem cells, Footprint-free iPSCs, sr-RNA, Dynamic bioreactor, Sex-related differences.
Collapse
Affiliation(s)
- L Bačáková
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Jiang X, Zuo X, Wang H, Zhu P, Kang YJ. Fabrication of Vascular Grafts Using Poly(ε-Caprolactone) and Collagen-Encapsuled ADSCs for Interposition Implantation of Abdominal Aorta in Rhesus Monkeys. ACS Biomater Sci Eng 2024; 10:3120-3135. [PMID: 38624019 DOI: 10.1021/acsbiomaterials.3c01209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The production of small-diameter artificial vascular grafts continues to encounter numerous challenges, with concerns regarding the degradation rate and endothelialization being particularly critical. In this study, porous PCL scaffolds were prepared, and PCL vascular grafts were fabricated by 3D bioprinting of collagen materials containing adipose-derived mesenchymal stem cells (ADSCs) on the internal wall of the porous PCL scaffold. The PCL vascular grafts were then implanted in the abdominal aorta of Rhesus monkeys for up to 640 days to analyze the degradation of the scaffolds and regeneration of the aorta. Changes in surface morphology, mechanical properties, crystallization property, and molecular weight of porous PCL revealed a similar degradation process of PCL in PBS at pH 7.4 containing Thermomyces lanuginosus lipase and in situ in the abdominal aorta of rhesus monkeys. The contrast of in vitro and in vivo degradation provided valuable reference data for predicting in vivo degradation based on in vitro enzymatic degradation of PCL for further optimization of PCL vascular graft fabrication. Histological analysis through hematoxylin and eosin (HE) staining and fluorescence immunostaining demonstrated that the PCL vascular grafts successfully induced vascular regeneration in the abdominal aorta over the 640-day period. These findings provided valuable insights into the regeneration processes of the implanted vascular grafts. Overall, this study highlights the significant potential of PCL vascular grafts for the regeneration of small-diameter blood vessels.
Collapse
Affiliation(s)
- Xia Jiang
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiao Zuo
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Tasly Stem Cell Biology Laboratory, Tianjin 300410, China
| | - Hongge Wang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ping Zhu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Y James Kang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Tasly Stem Cell Biology Laboratory, Tianjin 300410, China
| |
Collapse
|
17
|
Hao M, Wei S, Su S, Tang Z, Wang Y. A Multifunctional Hydrogel Fabricated by Direct Self-Assembly of Natural Herbal Small Molecule Mangiferin for Treating Diabetic Wounds. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38709623 DOI: 10.1021/acsami.4c01265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Clinical studies have continually referred to the involvement of drug carrier having dramatic negative influences on the biocompatibility, biodegradability, and loading efficacy of hydrogel. To overcome this deficiency, researchers have proposed to directly self-assemble natural herbal small molecules into a hydrogel without any structural modification. However, it is still a formidable challenge due to the high requirements on the structure of natural molecules, leading to a rarity of this type of hydrogel. Mangiferin (MF) is a natural polyphenol of C-glucoside xanthone with various positive health benefits, including the treatment of diabetic wounds, but its poor hydrosolubility and low bioavailability significantly restrict the clinical application. Inspired by these, with heating/cooling treatment, a carrier-free hydrogel (MF-gel) is developed by assembling the natural herbal molecule mangiferin, which is mainly governed through hydrogen bonds and intermolecular π-π stacking interactions. The as-prepared hydrogel has injectable and self-healing properties and shows excellent biocompatibility, continuous release ability, and reversible stimuli-responsive performances. All of the superiorities enable the MF-based hydrogel to serve as a potential wound dressing for treating diabetic wounds, which was further confirmed by both the vitro and vivo studies. In vitro, the MF-gel could promote the migration of healing-related cells from peripheral as well as the angiogenesis and displays the capacity of mediating inflammation response by scavenging the intracellular ROS. In vivo, the MF-gel accelerates wound contraction and healing via inflammatory adjustment, collagen deposition, and angiogenesis. This study provides a facile and effective method for diabetic wound management and emphasizes the direct self-assembly hydrogel from natural herbal small molecule.
Collapse
Affiliation(s)
- Mengke Hao
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang 712083, China
| | - Simin Wei
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang 712083, China
| | - Siqi Su
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang 712083, China
| | - Zhishu Tang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang 712083, China
| | - Yinghui Wang
- College of Science, Chang'an University, Xi'an 710064, China
| |
Collapse
|
18
|
Zhao W, Xu F, Shen Y, Ding Q, Wang Y, Liang L, Dai W, Chen Y. Temporal control in shell-core structured nanofilm for tracheal cartilage regeneration: synergistic optimization of anti-inflammation and chondrogenesis. Regen Biomater 2024; 11:rbae040. [PMID: 38769993 PMCID: PMC11105955 DOI: 10.1093/rb/rbae040] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 05/22/2024] Open
Abstract
Cartilage tissue engineering offers hope for tracheal cartilage defect repair. Establishing an anti-inflammatory microenvironment stands as a prerequisite for successful tracheal cartilage restoration, especially in immunocompetent animals. Hence, scaffolds inducing an anti-inflammatory response before chondrogenesis are crucial for effectively addressing tracheal cartilage defects. Herein, we develop a shell-core structured PLGA@ICA-GT@KGN nanofilm using poly(lactic-co-glycolic acid) (PLGA) and icariin (ICA, an anti-inflammatory drug) as the shell layer and gelatin (GT) and kartogenin (KGN, a chondrogenic factor) as the core via coaxial electrospinning technology. The resultant PLGA@ICA-GT@KGN nanofilm exhibited a characteristic fibrous structure and demonstrated high biocompatibility. Notably, it showcased sustained release characteristics, releasing ICA within the initial 0 to 15 days and gradually releasing KGN between 11 and 29 days. Subsequent in vitro analysis revealed the potent anti-inflammatory capabilities of the released ICA from the shell layer, while the KGN released from the core layer effectively induced chondrogenic differentiation of bone marrow stem cells (BMSCs). Following this, the synthesized PLGA@ICA-GT@KGN nanofilms were loaded with BMSCs and stacked layer by layer, adhering to a 'sandwich model' to form a composite sandwich construct. This construct was then utilized to repair circular tracheal defects in a rabbit model. The sequential release of ICA and KGN facilitated by the PLGA@ICA-GT@KGN nanofilm established an anti-inflammatory microenvironment before initiating chondrogenic induction, leading to effective tracheal cartilage restoration. This study underscores the significance of shell-core structured nanofilms in temporally regulating anti-inflammation and chondrogenesis. This approach offers a novel perspective for addressing tracheal cartilage defects, potentially revolutionizing their treatment methodologies.
Collapse
Affiliation(s)
- Wen Zhao
- Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Department of Thoracic Surgery, Tongren Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200050, China
| | - Fanglan Xu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Yumei Shen
- Operation Room Department, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Qifeng Ding
- Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Yifei Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Leilei Liang
- Department of Gynecologic Oncology, Zhejiang Cancer Hospital, Hangzhou, 310005, China
| | - Wufei Dai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China
| | - Yongbing Chen
- Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| |
Collapse
|
19
|
Shen J, Tong A, Zhong X, Yin C, Ahmad B, Wu Z, Yang Y, Tong C. Near-infrared laser-assisted Ag@Chi-PB nanocompounds for synergistically eradicating multidrug-resistant bacteria and promoting diabetic abscess healing. Biomed Pharmacother 2024; 173:116311. [PMID: 38412718 DOI: 10.1016/j.biopha.2024.116311] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 02/29/2024] Open
Abstract
Chronic wound infections, particularly multidrug-resistant microbe-caused infections, have imposed severe challenges in clinical administration. The therapeutic effectiveness of the current strategy using conventional antibiotics is extremely unsatisfactory. The development of novel treatment strategies to inhibit the infections caused by multidrug-resistant bacteria is highly desired. In this work, based on the combination of nanocompounds with the assistance of NIR laser, an antibacterial strategy was designed for MRSA-infected abscesses in diabetic mice. The nanocompounds named Ag@Chi-PB were prepared by using chitosan-coated Prussian blue (PB) as a nanocarrier for silver nanoparticles anchoring. Combined with near-infrared (NIR) laser, the nanocompounds were more efficient at killing Escherichia coli (E. coli) and Methicillin-resistant staphyllococcus aureus (MRSA) in vitro. Notably, MRSA was significantly removed in vivo and promoted diabetic abscess healing by the combined therapy of this nanocompound and NIR laser, owing to the synergistic antibacterial effect of photothermal therapy and release of Ag+. Meanwhile, the nanocompound showed satisfactory biocompatibility and superior biosafety. Collectively, the combination therapy of this nanocompound with the assistance of NIR laser may represent a promising strategy for clinical anti-infection.
Collapse
Affiliation(s)
- Jingyi Shen
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province Changsha 410013, PR China
| | - Aidi Tong
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province Changsha 410013, PR China
| | - Xianghua Zhong
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province Changsha 410013, PR China; College of Biology, South China University of Technology, Guangzhou 10561, PR China
| | - Caiyun Yin
- College of Biology, Hunan University, Changsha 410082, PR China
| | - Bilal Ahmad
- College of Biology, Hunan University, Changsha 410082, PR China
| | - Zhou Wu
- College of Biology, Hunan University, Changsha 410082, PR China
| | - Yuejun Yang
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province Changsha 410013, PR China.
| | - Chunyi Tong
- College of Biology, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
20
|
He W, Li C, Zhao S, Li Z, Wu J, Li J, Zhou H, Yang Y, Xu Y, Xia H. Integrating coaxial electrospinning and 3D printing technologies for the development of biphasic porous scaffolds enabling spatiotemporal control in tumor ablation and osteochondral regeneration. Bioact Mater 2024; 34:338-353. [PMID: 38274295 PMCID: PMC10809007 DOI: 10.1016/j.bioactmat.2023.12.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024] Open
Abstract
The osteochondral defects (OCDs) resulting from the treatment of giant cell tumors of bone (GCTB) often present two challenges for clinicians: tumor residue leading to local recurrence and non-healing of OCDs. Therefore, this study focuses on developing a double-layer PGPC-PGPH scaffold using shell-core structure nanofibers to achieve "spatiotemporal control" for treating OCDs caused by GCTB. It addresses two key challenges: eliminating tumor residue after local excision and stimulating osteochondral regeneration in non-healing OCD cases. With a shell layer of protoporphyrin IX (PpIX)/gelatin (GT) and inner cores containing chondroitin sulfate (CS)/poly(lactic-co-glycolic acid) (PLGA) or hydroxyapatite (HA)/PLGA, coaxial electrospinning technology was used to create shell-core structured PpIX/GT-CS/PLGA and PpIX/GT-HA/PLGA nanofibers. These nanofibers were shattered into nano-scaled short fibers, and then combined with polyethylene oxide and hyaluronan to formulate distinct 3D printing inks. The upper layer consists of PpIX/GT-CS/PLGA ink, and the lower layer is made from PpIX/GT-HA/PLGA ink, allowing for the creation of a double-layer PGPC-PGPH scaffold using 3D printing technique. After GCTB lesion removal, the PGPC-PGPH scaffold is surgically implanted into the OCDs. The sonosensitizer PpIX in the shell layer undergoes sonodynamic therapy to selectively damage GCTB tissue, effectively eradicating residual tumors. Subsequently, the thermal effect of sonodynamic therapy accelerates the shell degradation and release of CS and HA within the core layer, promoting stem cell differentiation into cartilage and bone tissues at the OCD site in the correct anatomical position. This innovative scaffold provides temporal control for anti-tumor treatment followed by tissue repair and spatial control for precise osteochondral regeneration.
Collapse
Affiliation(s)
- Wenbao He
- Department of Orthopedics, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chunlin Li
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shitong Zhao
- Department of Orthopedics, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhendong Li
- Department of Orthopedics, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jing Wu
- Jinan Clinical Research Centre for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Junjun Li
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haichao Zhou
- Department of Orthopedics, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yunfeng Yang
- Department of Orthopedics, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huitang Xia
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, PR China
- Jinan Clinical Research Centre for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| |
Collapse
|
21
|
Fahad MAA, Lee HY, Park S, Choi M, Shanto PC, Park M, Bae SH, Lee BT. Small-diameter vascular graft composing of core-shell structured micro-nanofibers loaded with heparin and VEGF for endothelialization and prevention of neointimal hyperplasia. Biomaterials 2024; 306:122507. [PMID: 38367300 DOI: 10.1016/j.biomaterials.2024.122507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
Despite the significant progress made in recent years, clinical issues with small-diameter vascular grafts related to low mechanical strength, thrombosis, intimal hyperplasia, and insufficient endothelialization remain unresolved. This study aims to design and fabricate a core-shell fibrous small-diameter vascular graft by co-axial electrospinning process, which will mechanically and biologically meet the benchmarks for blood vessel replacement. The presented graft (PGHV) comprised polycaprolactone/gelatin (shell) loaded with heparin-VEGF and polycaprolactone (core). This study hypothesized that the shell structure of the fibers would allow rapid degradation to release heparin-VEGF, and the core would provide mechanical strength for long-term application. Physico-mechanical evaluation, in vitro biocompatibility, and hemocompatibility assays were performed to ensure safe in vivo applications. After 25 days, the PGHV group released 79.47 ± 1.54% of heparin and 86.25 ± 1.19% of VEGF, and degradation of the shell was observed but the core remained pristine. Both the control (PG) and PGHV groups demonstrated robust mechanical properties. The PGHV group showed excellent biocompatibility and hemocompatibility compared to the PG group. After four months of rat aorta implantation, PGHV exhibited smooth muscle cell regeneration and complete endothelialization with a patency rate of 100%. The novel core-shell structured graft could be pivotal in vascular tissue regeneration application.
Collapse
Affiliation(s)
- Md Abdullah Al Fahad
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Hyun-Yong Lee
- Department of Surgery, Soonchunhyang University Cheonan Hospital, Cheonan, 31151, Republic of Korea
| | - Seongsu Park
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Minji Choi
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Prayas Chakma Shanto
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Myeongki Park
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Sang Ho Bae
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, 31151, Republic of Korea; Department of Surgery, Soonchunhyang University Cheonan Hospital, Cheonan, 31151, Republic of Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea; Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, 31151, Republic of Korea.
| |
Collapse
|
22
|
Fan Y, Pei J, Qin Y, Du H, Qu X, Li W, Huang B, Tan J, Liu Y, Li G, Ke M, Xu Y, Zhu C. Construction of tissue-engineered vascular grafts with enhanced patency by integrating heparin, cell-adhesive peptide, and carbon monoxide nanogenerators into acellular blood vessels. Bioact Mater 2024; 34:221-236. [PMID: 38235307 PMCID: PMC10792202 DOI: 10.1016/j.bioactmat.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 01/19/2024] Open
Abstract
Small-diameter tissue-engineered vascular grafts (sdTEVGs) have garnered significant attention as a potential treatment modality for vascular bypass grafting and replacement therapy. However, the intimal hyperplasia and thrombosis are two major complications that impair graft patency during transplantation. To address this issue, we fabricated the covalent-organic framework (COF)-based carbon monoxide (CO) nanogenerator-and co-immobilized with LXW-7 peptide and heparin to establish a multifunctional surface on TEVGs constructed from acellular blood vessels for preventing thrombosis and stenosis. The cell-adhesive peptide LXW-7 could capture endothelial-forming cells (EFCs) to promote endothelialization, while the antithrombotic molecule heparin prevented thrombus formation. The reactive oxygen species (ROS)-triggered CO release suppressed the adhesion and activation of macrophages, leading to the reduction of ROS and inflammatory factors. As a result, the endothelial-to-mesenchymal transition (EndMT) triggered by inflammation was restricted, facilitating the maintenance of the homeostasis of the neo-endothelium and preventing pathological remodeling in TEVGs. When transplanted in vivo, these vascular grafts exhibited negligible intimal hyperplasia and remained patent for 3 months. This achievement provided a novel approach for constructing antithrombotic and anti-hyperplastic TEVGs.
Collapse
Affiliation(s)
- Yonghong Fan
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
- Laboratory of Basic Medicine, The General Hospital of Western Theater Command, Chengdu, 610083, China
- Engineering Research Center of Tissue and Organ Regeneration and Manufacturing, Ministry of Education, Chongqing, 400038, China
| | - Juan Pei
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Yinhua Qin
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Huifang Du
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Xiaohang Qu
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Wenya Li
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Boyue Huang
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Ju Tan
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Yong Liu
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Gang Li
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Ming Ke
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
- Engineering Research Center of Tissue and Organ Regeneration and Manufacturing, Ministry of Education, Chongqing, 400038, China
| | - Youqian Xu
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
- Engineering Research Center of Tissue and Organ Regeneration and Manufacturing, Ministry of Education, Chongqing, 400038, China
| | - Chuhong Zhu
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
- Engineering Research Center of Tissue and Organ Regeneration and Manufacturing, Ministry of Education, Chongqing, 400038, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, 400038, China
- Department of Plastic and Aesthetic Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| |
Collapse
|
23
|
Bi J, Zhou W, Tang Z. Pathogenesis of diabetic complications: Exploring hypoxic niche formation and HIF-1α activation. Biomed Pharmacother 2024; 172:116202. [PMID: 38330707 DOI: 10.1016/j.biopha.2024.116202] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Hypoxia is a common feature of diabetic tissues, which highly correlates to the progression of diabetes. The formation of hypoxic context is induced by disrupted oxygen homeostasis that is predominantly driven by vascular remodeling in diabetes. While different types of vascular impairments have been reported, the specific features and underlying mechanisms are yet to be fully understood. Under hypoxic condition, cells upregulate hypoxia-inducible factor-1α (HIF-1α), an oxygen sensor that coordinates oxygen concentration and cell metabolism under hypoxic conditions. However, diabetic context exploits this machinery for pathogenic functions. Although HIF-1α protects cells from diabetic insult in multiple tissues, it also jeopardizes cell function in the retina. To gain a deeper understanding of hypoxia in diabetic complications, we focus on the formation of tissue hypoxia and the outcomes of HIF-1α dysregulation under diabetic context. Hopefully, this review can provide a better understanding on hypoxia biology in diabetes.
Collapse
Affiliation(s)
- Jingjing Bi
- Basic Medicine Research Innovation Center for cardiometabolic diseases, Ministry of Education,Southwest Medical University, Ministry of Education, Southwest Medical University, Luzhou, China
| | - Wenhao Zhou
- Yucebio Technology Co., Ltd., Shenzhen, China
| | - Zonghao Tang
- Basic Medicine Research Innovation Center for cardiometabolic diseases, Ministry of Education,Southwest Medical University, Ministry of Education, Southwest Medical University, Luzhou, China; Baylor College of Medicine, Department of Molecular and Cellular Biology, Houston, TX, USA.
| |
Collapse
|
24
|
Gao W, Cheng T, Tang Z, Zhang W, Xu Y, Han M, Zhou G, Tao C, Xu N, Xia H, Sun W. Enhancing cartilage regeneration and repair through bioactive and biomechanical modification of 3D acellular dermal matrix. Regen Biomater 2024; 11:rbae010. [PMID: 38414795 PMCID: PMC10898337 DOI: 10.1093/rb/rbae010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/02/2024] [Accepted: 01/21/2024] [Indexed: 02/29/2024] Open
Abstract
Acellular dermal matrix (ADM) shows promise for cartilage regeneration and repair. However, an effective decellularization technique that removes cellular components while preserving the extracellular matrix, the transformation of 2D-ADM into a suitable 3D scaffold with porosity and the enhancement of bioactive and biomechanical properties in the 3D-ADM scaffold are yet to be fully addressed. In this study, we present an innovative decellularization method involving 0.125% trypsin and 0.5% SDS and a 1% Triton X-100 solution for preparing ADM and converting 2D-ADM into 3D-ADM scaffolds. These scaffolds exhibit favorable physicochemical properties, exceptional biocompatibility and significant potential for driving cartilage regeneration in vitro and in vivo. To further enhance the cartilage regeneration potential of 3D-ADM scaffolds, we incorporated porcine-derived small intestinal submucosa (SIS) for bioactivity and calcium sulfate hemihydrate (CSH) for biomechanical reinforcement. The resulting 3D-ADM+SIS scaffolds displayed heightened biological activity, while the 3D-ADM+CSH scaffolds notably bolstered biomechanical strength. Both scaffold types showed promise for cartilage regeneration and repair in vitro and in vivo, with considerable improvements observed in repairing cartilage defects within a rabbit articular cartilage model. In summary, this research introduces a versatile 3D-ADM scaffold with customizable bioactive and biomechanical properties, poised to revolutionize the field of cartilage regeneration.
Collapse
Affiliation(s)
- Wei Gao
- Qingdao Medical College of Qingdao University, Qingdao, 266071, China
| | - Tan Cheng
- Department of Cardiothoracic Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200040, China
| | - Zhengya Tang
- Department of Plastic surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200023, China
| | - Wenqiang Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Shandong First Medical University, Jinan, 266299, China
| | - Yong Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Min Han
- Department of Orthopedic Surgery, Shanghai Eighth People's Hospital, Shanghai, 200235, China
| | - Guangdong Zhou
- Department of Plastic surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200023, China
| | - Chunsheng Tao
- Department of Orthopaedics, Ninety-seventh Hospital of the Chinese People's Liberation Army Navy, Qingdao, 266071, China
| | - Ning Xu
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Orthopedic Surgery, Shanghai Eighth People's Hospital, Shanghai, 200235, China
| | - Huitang Xia
- Department of Plastic Surgery & Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University, Jinan, 266299, China
| | - Weijie Sun
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Shushan, Hefei, 230022, China
| |
Collapse
|
25
|
Chen K, He W, Gao W, Wu Y, Zhang Z, Liu M, Hu Y, Xiao X, Li F, Feng Q. A Dual Reversible Cross-Linked Hydrogel with Enhanced Mechanical Property and Capable of Proangiogenic and Osteogenic Activities for Bone Defect Repair. Macromol Biosci 2024; 24:e2300325. [PMID: 37805941 DOI: 10.1002/mabi.202300325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/29/2023] [Indexed: 10/10/2023]
Abstract
The clinical treatment of bone defects presents ongoing challenges. One promising approach is bone tissue engineering (BTE), wherein hydrogels have garnered significant attention. However, the application of hydrogels in BTE is severely limited due to their poor mechanical properties, as well as their inferior proangiogenic and osteogenic activities. To address these limitations, our develop a dual cross-linked alendronate (ALN)-Ca2+ /Mg2+ -doped sulfated hyaluronic acid (SHA@CM) hydrogel, using a one-step mixing injection molding method known as "three-in-one" approach. This approach enabled the simultaneous formation of Schiff-Base crosslinking and electric attraction-based crosslinking within the hydrogel. The Schiff-Base crosslinking contributed to the majority of the hydrogel's mechanical strength, while the electric attraction-based crosslinking served as a release reservoir for Ca2+ /Mg2+ and ALN, promoting enhanced osteogenic activities and providing additional mechanical reinforcement to the hydrogel. These experimental data demonstrates several favorable properties of the SHA@CM hydrogel, including satisfactory injectability, rapid gelation, self-healing capacity, and excellent cytocompatibility. Moreover, the presence of sulfated groups and Mg2+ within the SHA@CM hydrogel exhibited pro-angiogenic effects, while the controlled release of nanoparticles formed by Ca2+ /Mg2+ and ALN further enhanced the osteogenesis of the hydrogel. Overall, these results indicate that the SHA@CM hydrogel holds significant potential for the clinical translation of BTE.
Collapse
Affiliation(s)
- Kai Chen
- School of Resources and Chemical Engineering, Sanming University, Sanming, 365004, China
| | - Wenbao He
- Department of Orthopedics, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Wei Gao
- Qingdao medical college of Qingdao University, Qingdao, 266073, China
| | - Yan Wu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Zhe Zhang
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Mingxiang Liu
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350117, China
| | - Yunping Hu
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350117, China
| | - Xiufeng Xiao
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350117, China
| | - Fuping Li
- Department of Spine Surgery, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200434, China
| | - Qian Feng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
26
|
Chen X, He S, Dong Y, Chen M, Xia Z, Cai K, Hu Y. Cobalt-doped layered hydroxide coating on titanium implants promotes vascularization and osteogenesis for accelerated fracture healing. Mater Today Bio 2024; 24:100912. [PMID: 38226010 PMCID: PMC10788619 DOI: 10.1016/j.mtbio.2023.100912] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/28/2023] [Accepted: 12/10/2023] [Indexed: 01/17/2024] Open
Abstract
Angiogenesis at the fracture site plays crucial roles in the endogenous osteogenesis process and is a prerequisite for the efficient repair of implant fixed bone defects. To improve the peri-implant vascularization of titanium implant for accelerating defect healing, we developed a Co-doped Mg-Al layered hydroxide coating on the surface of titanium using hydrothermal reaction and then modified the surface with gallic acid (Ti-LDH/GA). Gallic acid coating enabled the sustained release of Co2+ and Mg2+ to the defect site over a month. Ti-LDH/GA treatment profoundly stimulated the angiogenic potential of endothelial cells by upregulating the vascularization regulators such as vascular endothelial growth factor VEGF) and hypoxia-inducible factor-1α (HIF-1α), leading to enhanced osteogenic capability of mesenchymal stem cells (MSCs). These pro-bone healing benefits were attributed to the synergistic effects of Co ions and Mg ions in promoting angiogenesis and new bone formation. These insights collectively suggested the potent pro-osteogenic effect of Ti-LDH/GA through leveraging peri-implant vascularization, offering a new approach for developing biofunctional titanium implants.
Collapse
Affiliation(s)
- Xiaodong Chen
- College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Shuohan He
- College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yilong Dong
- Department of Orthopaedics, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People's Hospital), Wenzhou 325016, China
| | - Maohua Chen
- College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Zengzilu Xia
- College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Kaiyong Cai
- College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yan Hu
- College of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
27
|
Qi L, Huang Y, Sun D, Liu Z, Jiang Y, Liu J, Wang J, Liu L, Feng G, Li Y, Zhang L. Guiding the Path to Healing: CuO 2 -Laden Nanocomposite Membrane for Diabetic Wound Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305100. [PMID: 37688343 DOI: 10.1002/smll.202305100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/11/2023] [Indexed: 09/10/2023]
Abstract
Diabetic chronic wounds pose significant clinical challenges due to their characteristic features of impaired extracellular matrix (ECM) function, diminished angiogenesis, chronic inflammation, and increased susceptibility to infection. To tackle these challenges and provide a comprehensive therapeutic approach for diabetic wounds, the first coaxial electrospun nanocomposite membrane is developed that incorporates multifunctional copper peroxide nanoparticles (n-CuO2 ). The membrane's nanofiber possesses a unique "core/sheath" structure consisting of n-CuO2 +PVP (Polyvinylpyrrolidone)/PCL (Polycaprolactone) composite sheath and a PCL core. When exposed to the wound's moist environment, PVP within the sheath gradually disintegrates, releasing the embedded n-CuO2 . Under a weakly acidic microenvironment (typically diabetic and infected wounds), n-CuO2 decomposes to release H2 O2 and Cu2+ ions and subsequently produce ·OH through chemodynamic reactions. This enables the anti-bacterial activity mediated by reactive oxygen species (ROS), suppressing the inflammation while enhancing angiogenesis. At the same time, the dissolution of PVP unveils unique nano-grooved surface patterns on the nanofibers, providing desirable cell-guiding function required for accelerated skin regeneration. Through meticulous material selection and design, this study pioneers the development of functional nanocomposites for multi-modal wound therapy, which holds great promise in guiding the path to healing for diabetic wounds.
Collapse
Affiliation(s)
- Lin Qi
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Yong Huang
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Dan Sun
- Advanced Composite Research Group (ACRG), School of Mechanical and Aerospace Engineering, Queens University Belfast, Belfast, BT9 5AH, UK
| | - Zheng Liu
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Yulin Jiang
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Jiangshan Liu
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Jing Wang
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Limin Liu
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Ganjun Feng
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Yubao Li
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Li Zhang
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
28
|
Zhou J. Curcumin-loaded porous scaffold: an anti-angiogenic approach to inhibit endochondral ossification. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:2255-2273. [PMID: 37382577 DOI: 10.1080/09205063.2023.2231663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 06/30/2023]
Abstract
Bone marrow stem cells (BMSCs) are recognized for their robust proliferative capabilities and multidirectional differentiation potential. Ectopic endochondral ossification of BMSC-generated cartilage in subcutaneous environments is a concern associated with vascularization. Hence, devising a reliable strategy to inhibit vascularization is crucial. In this study, an anti-angiogenic drug, curcumin (Cur), was encapsulated into gelatin to create a porous Cur/Gelatin scaffold, with the aim of inhibiting vascular invasion and preventing endochondral ossification of BMSC-regenerated cartilage. In vitro wound healing tests demonstrated that a 30 μM Cur solution could inhibit the migration and growth of human umbilical vein endothelial cells without impeding BMSCs migration and growth. Compared to the gelatin scaffold, our findings verified that the Cur/Gelatin scaffold significantly inhibited vascular invasion after being subcutaneously implanted into rabbits for 12 weeks, as evidenced by gross observation and immunofluorescence CD31 staining. Moreover, both the porous gelatin and Cur/Gelatin scaffolds were populated with BMSCs and underwent in vitro chondrogenic cultivation to produce cartilage, followed by subcutaneous implantation in rabbits for 12 weeks. Histological examinations (including HE, Safranin-O/Fast Green, toluidine blue, and immunohistochemical COL II staining) revealed that the BMSC-generated cartilage in the gelatin group exhibited prominent endochondral ossification. In contrast, the BMSC-generated cartilage in the Cur/Gelatin group maintained cartilage features, such as cartilage matrix and lacunar structure. This study suggests that Cur-loaded scaffolds offer a reliable platform to inhibit endochondral ossification of BMSC-generated cartilage.
Collapse
Affiliation(s)
- Jianwei Zhou
- Department of Orthopedics, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
29
|
Zhu G, Zhang R, Xie Q, Li P, Wang F, Wang L, Li C. Shish-kebab structure fiber with nano and micro diameter regulate macrophage polarization for anti-inflammatory and bone differentiation. Mater Today Bio 2023; 23:100880. [PMID: 38149017 PMCID: PMC10750111 DOI: 10.1016/j.mtbio.2023.100880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/28/2023] Open
Abstract
Biopolymer grafts often have limited biocompatibility, triggering excessive inflammatory responses similar to foreign bodies. Macrophage phenotype shifts are pivotal in the inflammatory response and graft success. The effects of the morphology and physical attributes of the material itself on macrophage polarization should be the focus. In this study, we prepared electrospun fibers with diverse diameters and formed a shish-kebab (SK) structure on the material surface by solution-induced crystallization, forming electrospun fiber scaffolds with diverse pore sizes and roughness. In vitro cell culture experiments demonstrated that SK structure fibers could regulate macrophage differentiation toward M2 phenotype, and the results of in vitro simulation of in vivo tissue reconstruction by the microenvironment demonstrated that the paracrine role of M2 phenotype macrophages could promote bone marrow mesenchymal stem cells (BMSCs) to differentiate into osteoblasts. In rats implanted with a subcutaneous SK-structured fiber scaffold, the large-pore size and low-stiffness SK fiber scaffolds demonstrated superior immune performance, less macrophage aggregation, and easier differentiation to the anti-inflammatory M2 phenotype. Large pore sizes and low-stiffness SK fiber scaffolds guide the morphological design of biological scaffolds implanted in vivo, which is expected to be an effective strategy for reducing inflammation when applied to graft materials in clinical settings.
Collapse
Affiliation(s)
- Gaowei Zhu
- Key Laboratory of Textile Science & Technology Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Rongyan Zhang
- Key Laboratory of Textile Science & Technology Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Qianyang Xie
- Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, and Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, No. 639, Zhizaoju Rd., Shanghai, 200011, China
| | - Peilun Li
- Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, and Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, No. 639, Zhizaoju Rd., Shanghai, 200011, China
| | - Fujun Wang
- Key Laboratory of Textile Science & Technology Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Lu Wang
- Key Laboratory of Textile Science & Technology Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Chaojing Li
- Key Laboratory of Textile Science & Technology Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| |
Collapse
|
30
|
Wang H, Xiao Y, Fang Z, Zhang Y, Yang L, Zhao C, Meng Z, Liu Y, Li C, Han Q, Feng Z. Fabrication and performance evaluation of PLCL-hCOLIII small-diameter vascular grafts crosslinked with procyanidins. Int J Biol Macromol 2023; 251:126293. [PMID: 37591423 DOI: 10.1016/j.ijbiomac.2023.126293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023]
Abstract
Cardiovascular disease has become one of the main causes of death. It is the common goal of researchers worldwide to develop small-diameter vascular grafts to meet clinical needs. Collagen is a valuable biomaterial that has been used in the preparation of vascular grafts and has shown good results. Recombinant humanized collagen (RHC) has the advantages of clear chemical structure, batch stability, no virus hazard and low immunogenicity compared with animal-derived collagen, which can be developed as vascular materials. In this study, Poly (l-lactide- ε-caprolactone) with l-lactide/ε-caprolactone (PLCL) and type III recombinant humanized collagen (hCOLIII) were selected as raw materials to prepare vascular grafts, which were prepared by the same-nozzle electrospinning apparatus. Meanwhile, procyanidin (PC), a plant polyphenol, was used to cross-link the vascular grafts. The physicochemical properties and biocompatibility of the fabricated vascular grafts were investigated by comparing with glutaraldehyde (GA) crosslinked vascular grafts and pure PLCL grafts. Finally, the performance of PC cross-linked PLCL-hCOLIII vascular grafts were evaluated by rabbit carotid artery transplantation model. The results indicate that the artificial vascular grafts have good cell compatibility, blood compatibility, and anti-calcification performance, and can remain unobstructed after 30 days carotid artery transplantation in rabbits. The grafts also showed inhibitory effects on the proliferation of SMCs and intimal hyperplasia, demonstrating its excellent performance as small diameter vascular grafts.
Collapse
Affiliation(s)
- Han Wang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China; National Institute for Food and Drug Control, Beijing 102629, China
| | - Yonghao Xiao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhiping Fang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuanguo Zhang
- Department of Thyroid-Breast-Vascular Surgery, Shanxian Central Hospital, Heze, Shandong 274300, China
| | - Liu Yang
- National Institute for Food and Drug Control, Beijing 102629, China
| | - Chenyu Zhao
- National Institute for Food and Drug Control, Beijing 102629, China
| | - Zhu Meng
- National Institute for Food and Drug Control, Beijing 102629, China
| | - Yu Liu
- National Institute for Food and Drug Control, Beijing 102629, China; Yantai University, Yantai, Shandong 264005, China
| | - Chongchong Li
- National Institute for Food and Drug Control, Beijing 102629, China
| | - Qianqian Han
- National Institute for Food and Drug Control, Beijing 102629, China.
| | - Zengguo Feng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
31
|
Hao D, Lin J, Liu R, Pivetti C, Yamashiro K, Schutzman LM, Sageshima J, Kwong M, Bahatyrevich N, Farmer DL, Humphries MD, Lam KS, Panitch A, Wang A. A bio-instructive parylene-based conformal coating suppresses thrombosis and intimal hyperplasia of implantable vascular devices. Bioact Mater 2023; 28:467-479. [PMID: 37408799 PMCID: PMC10318457 DOI: 10.1016/j.bioactmat.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023] Open
Abstract
Implantable vascular devices are widely used in clinical treatments for various vascular diseases. However, current approved clinical implantable vascular devices generally have high failure rates primarily due to their surface lacking inherent functional endothelium. Here, inspired by the pathological mechanisms of vascular device failure and physiological functions of native endothelium, we developed a new generation of bioactive parylene (poly(p-xylylene))-based conformal coating to address these challenges of the vascular devices. This coating used a polyethylene glycol (PEG) linker to introduce an endothelial progenitor cell (EPC) specific binding ligand LXW7 (cGRGDdvc) onto the vascular devices for preventing platelet adhesion and selectively capturing endogenous EPCs. Also, we confirmed the long-term stability and function of this coating in human serum. Using two vascular disease-related large animal models, a porcine carotid artery interposition model and a porcine carotid artery-jugular vein arteriovenous graft model, we demonstrated that this coating enabled rapid generation of self-renewable "living" endothelium on the blood contacting surface of the expanded polytetrafluoroethylene (ePTFE) grafts after implantation. We expect this easy-to-apply conformal coating will present a promising avenue to engineer surface properties of "off-the-shelf" implantable vascular devices for long-lasting performance in the clinical settings.
Collapse
Affiliation(s)
- Dake Hao
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817, United States
| | - Jonathan Lin
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Christopher Pivetti
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817, United States
| | - Kaeli Yamashiro
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Linda M. Schutzman
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Junichiro Sageshima
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Mimmie Kwong
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Nataliya Bahatyrevich
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Diana L. Farmer
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817, United States
| | - Misty D. Humphries
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Kit S. Lam
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Alyssa Panitch
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, United States
- Department of Biomedical Engineering, University of California Davis, Davis, CA, 95616, United States
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817, United States
- Department of Biomedical Engineering, University of California Davis, Davis, CA, 95616, United States
| |
Collapse
|
32
|
Zhou SY, Li L, Xie E, Li MX, Cao JH, Yang XB, Wu DY. Small-diameter PCL/PU vascular graft modified with heparin-aspirin compound for preventing the occurrence of acute thrombosis. Int J Biol Macromol 2023; 249:126058. [PMID: 37524284 DOI: 10.1016/j.ijbiomac.2023.126058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/20/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
The occurrence of acute thrombosis, directly related to platelet aggregation and coagulant system, is a considerable reason for the failure of small-diameter vascular grafts. Heparin is commonly used as a functional molecule for graft modification due to the strong anticoagulant effect. Unfortunately, heparin cannot directly resist the adhesion and aggregation of platelets. Therefore, we have prepared a heparin-aspirin compound by coupling heparin with aspirin, an antiplatelet drug, and covalently grafted it onto the surface of polycaprolactone/polyurethane composite tube. In this way, the graft not only showed a dual function of both anticoagulation and antiplatelet, but also effectively avoided the rapid drug release and excessive toxicity to other organs caused by simple blending the medicine with material matrix. The compound retained the original function of heparin, showing good hydrophilicity and biocompatibility, which could promote the adhesion and proliferation of endothelial cells (ECs) and facilitate the process of tissue regeneration. What's more, the compound showed more effective than heparin in reducing platelet activation and preventing thrombosis. The graft modified by this compound maintained completely unobstructed for one month of implantation, while severe obstruction or stenosis occurred in PCL/PU and PCL/PU-Hep lumen at the first week, verifying the effect of the compound on preventing acute thrombosis. In general, this study proposed a designing method for small-diameter vascular graft which could prevent acute thrombosis and promote intimal construction.
Collapse
Affiliation(s)
- Si-Yuan Zhou
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lei Li
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Enzehua Xie
- Department of Cardiovascular Surgery, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100037, PR China
| | - Mei-Xi Li
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jian-Hua Cao
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xiu-Bin Yang
- Department of Cardiac Surgery, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China.
| | - Da-Yong Wu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
33
|
Zhang M, Yao A, Ai F, Lin J, Fu Q, Wang D. Cobalt-containing borate bioactive glass fibers for treatment of diabetic wound. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:42. [PMID: 37530851 PMCID: PMC10397116 DOI: 10.1007/s10856-023-06741-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/10/2023] [Indexed: 08/03/2023]
Abstract
Impaired angiogenesis is one of the predominant reasons for non-healing diabetic wounds. Cobalt is well known for its capacity to induce angiogenesis by stabilizing hypoxia-inducible factor-1α (HIF-1α) and subsequently inducing the production of vascular endothelial growth factor (VEGF). In this study, Co-containing borate bioactive glasses and their derived fibers were fabricated by partially replacing CaO in 1393B3 borate glass with CoO. Fourier transform infrared (FTIR) spectroscopy and nuclear magnetic resonance (NMR) analyses were performed to characterize the effect of Co incorporation on the glass structure, and the results showed that the substitution promoted the transformation of [BO3] into [BO4] units, which endow the glass with higher chemical durability and lower reaction rate with the simulated body fluid (SBF), thereby achieving sustained and controlled Co2+ ion release. In vitro biological assays were performed to assess the angiogenic potential of the Co-containing borate glass fibers. It was found that the released Co2+ ion significantly enhanced the proliferation, migration and tube formation of the Human Umbilical Vein Endothelial Cells (HUVECs) by upregulating the expression of angiogenesis-related proteins such as HIF-1α and VEGF. Finally. In vivo results demonstrated that the Co-containing fibers accelerated full-thickness skin wound healing in streptozotocin (STZ)-induced diabetic rat model by promoting angiogenesis and re-epithelialization.
Collapse
Affiliation(s)
- Minhui Zhang
- School of Materials Science and Engineering, Tongji University, 200092, Shanghai, China
| | - Aihua Yao
- School of Materials Science and Engineering, Tongji University, 200092, Shanghai, China
- Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, 200092, Shanghai, China
| | - Fanrong Ai
- School of Mechatronics Engineering, Nanchang University, 330031, Nanchang, China
| | - Jian Lin
- School of Materials Science and Engineering, Tongji University, 200092, Shanghai, China.
- Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, 200092, Shanghai, China.
| | - Qingge Fu
- Department of Orthopedic trauma, Changhai Hospital, Second Military Medical University, 200433, Shanghai, China.
| | - Deping Wang
- School of Materials Science and Engineering, Tongji University, 200092, Shanghai, China
- Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, 200092, Shanghai, China
| |
Collapse
|
34
|
Huang Y, Qi L, Liu Z, Jiang Y, Wang J, Liu L, Li Y, Zhang L, Feng G. Radially Electrospun Fibrous Membrane Incorporated with Copper Peroxide Nanodots Capable of Self-Catalyzed Chemodynamic Therapy for Angiogenesis and Healing Acceleration of Diabetic Wounds. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37463246 DOI: 10.1021/acsami.3c06703] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Vascular dysfunction severely hinders the healing process of diabetic wounds. Therefore, a radially structured fibrous membrane was fabricated through electrospinning by using a polycaprolactone (PCL) and polyvinylpyrrolidone (PVP) mixed solution containing copper peroxide nanoparticles (CPs) as the chemodynamic therapy (CDT) agents, aiming to simultaneously accelerate tissue regeneration and angiogenesis. The fabricated membrane allowed for the in situ H2O2 generation activated by the acidic diabetic microenvironment and the subsequent Fenton-type reactions to realize 99.4% elimination against Staphylococcus aureus. Besides, the released Cu2+ ions significantly enhanced the expression of hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) in human umbilical vein endothelial cells (HUVECs), and they showed enhanced in vitro angiogenesis. Interestingly, the CP-embedded membrane also guided cell spreading and orientated migration of L929 fibroblasts along the fiber distribution through the radially aligned topology. The in vivo implantation indicated that the raidally structured membrane modified by CPs not only dramatically accelerated wound healing of diabetic Sprague-Dawley (SD) rats in 14 days but also promoted angiogenesis in wound sites. The combination of the in situ CDT with the radially structured morphology of the functional membrane is highly promising in applications to promote diabetic wound healing through anti-infection and revascularization.
Collapse
Affiliation(s)
- Yong Huang
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Lin Qi
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Zheng Liu
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Yulin Jiang
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Jing Wang
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Limin Liu
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Yubao Li
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Li Zhang
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Ganjun Feng
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu 610065, China
| |
Collapse
|
35
|
Cui J, Yu X, Shen Y, Sun B, Guo W, Liu M, Chen Y, Wang L, Zhou X, Shafiq M, Mo X. Electrospinning Inorganic Nanomaterials to Fabricate Bionanocomposites for Soft and Hard Tissue Repair. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:204. [PMID: 36616113 PMCID: PMC9823959 DOI: 10.3390/nano13010204] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Tissue engineering (TE) has attracted the widespread attention of the research community as a method of producing patient-specific tissue constructs for the repair and replacement of injured tissues. To date, different types of scaffold materials have been developed for various tissues and organs. The choice of scaffold material should take into consideration whether the mechanical properties, biodegradability, biocompatibility, and bioresorbability meet the physiological properties of the tissues. Owing to their broad range of physico-chemical properties, inorganic materials can induce a series of biological responses as scaffold fillers, which render them a good alternative to scaffold materials for tissue engineering (TE). While it is of worth to further explore mechanistic insight into the use of inorganic nanomaterials for tissue repair, in this review, we mainly focused on the utilization forms and strategies for fabricating electrospun membranes containing inorganic components based on electrospinning technology. A particular emphasis has been placed on the biological advantages of incorporating inorganic materials along with organic materials as scaffold constituents for tissue repair. As well as widely exploited natural and synthetic polymers, inorganic nanomaterials offer an enticing platform to further modulate the properties of composite scaffolds, which may help further broaden the application prospect of scaffolds for TE.
Collapse
Affiliation(s)
- Jie Cui
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Xiao Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Yihong Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Binbin Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Wanxin Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Mingyue Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Yujie Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Li Wang
- College of Science, Donghua University, Shanghai 201620, China
| | - Xingping Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Muhammad Shafiq
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395, Japan
- Department of Biotechnology, Faculty of Science and Technology (FOST), University of Central Punjab (UCP), Lahore 54000, Pakistan
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
36
|
Yuan Z, Zhang L, Jiang S, Shafiq M, Cai Y, Chen Y, Song J, Yu X, Ijima H, Xu Y, Mo X. Anti-inflammatory, antibacterial, and antioxidative bioactive glass-based nanofibrous dressing enables scarless wound healing. SMART MATERIALS IN MEDICINE 2023; 4:407-426. [DOI: 10.1016/j.smaim.2023.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|