1
|
Avula SK, Ullah S, Ebrahimi A, Rostami A, Halim SA, Khan A, Anwar MU, Gibbons S, Csuk R, Al-Harrasi A. Dihydrofolate reductase inhibitory potential of 1H-indole-based-meldrum linked 1H-1,2,3-triazoles as new anticancer derivatives: In-vitro and in-silico studies. Eur J Med Chem 2025; 283:117174. [PMID: 39708770 DOI: 10.1016/j.ejmech.2024.117174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/24/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024]
Abstract
In this present work, we describe the syntheses of a new series of 32 1H-indole-based-meldrum linked 1H-1,2,3-triazole derivatives (2-13, 15a-15f, 16a-16f, 17a-17f and 19a, 19b, 20a), which constitute a new class of 1H-1,2,3-triazoles. Compounds 15a-15f, 16a-16f, 17a-17f have been prepared by employing "click" reactions between substituted 1H-indole-based meldrum alkynes (11, 12 and 13) and substituted aromatic azides (14a-14f) in the presence of copper iodide (CuI) and Hünig's base. Then, the synthesis of compounds 19, 20 through decomposition of meldrum moiety. The resulting compounds have been screened for their dihydrofolate reductase (DHFR) inhibition activity. All the newly synthesized compounds were characterized by 1H NMR, 13C NMR, 19F NMR (spectroscopy when applicable), and HR-ESI-MS spectroscopy techniques. The X-ray crystallography studies have unambiguously confirmed the structure of compounds 6, 11 and 13. Furthermore, their DHFR-inhibitory activity was evaluated in-vitro. The results obtained from the DHFR-inhibitory assay revealed that all the synthesized 1H-indole-based-meldrum linked 1H-1,2,3-triazole derivatives were highly potent inhibitors, with IC50 values in the range 3.48 ± 0.16-30.37 ± 1.20 μM. Ten compounds (15c-15f, 16c-16f, 17e and 17f) among the 32 synthesized 1H-indole-based-meldrum linked 1H-1,2,3-triazole compounds were found to exhibit exceptional inhibitory while the rest of the derivatives showed moderate activities. Additionally, molecular docking analysis of the most active (16f), moderate (15c) and least active (16a) inhibitors reflect excellent binding of 16f with the binding residues of DHFR with higher docking score (-9.13 kcal/mol) than that of 15c and 16a. The docking analysis correlates well with the inhibitory potential of these synthesized molecules. Overall, this study may pave the way to medicinal analogues of 1H-indole-based-meldrum linked 1H-1,2,3-triazoles as potent DHFR inhibition activity.
Collapse
Affiliation(s)
- Satya Kumar Avula
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616, Nizwa, Oman.
| | - Saeed Ullah
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616, Nizwa, Oman
| | - Amirhossein Ebrahimi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616, Nizwa, Oman
| | - Ali Rostami
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616, Nizwa, Oman
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616, Nizwa, Oman
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616, Nizwa, Oman
| | - Muhammad U Anwar
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616, Nizwa, Oman
| | - Simon Gibbons
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616, Nizwa, Oman
| | - René Csuk
- Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120, Halle, Saale, Germany
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616, Nizwa, Oman.
| |
Collapse
|
2
|
Sharma A, Dubey R, Bhupal R, Patel P, Verma SK, Kaya S, Asati V. An insight on medicinal attributes of 1,2,3- and 1,2,4-triazole derivatives as alpha-amylase and alpha-glucosidase inhibitors. Mol Divers 2024; 28:3605-3634. [PMID: 37733243 DOI: 10.1007/s11030-023-10728-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/02/2023] [Indexed: 09/22/2023]
Abstract
Diabetes Mellitus (DM) is the globe's common leading disease which is caused by high consumption of glucose. DM compiles groups of metabolic disorders which are characterized by inadequate secretion of insulin from pancreas, resulting in hyperglycemia condition. Many enzymes play a vital role in the metabolism of carbohydrate known as α-amylase and α-glucosidase which is calcium metalloenzyme that leads to breakdown of complex polysaccharides into glucose. To tackle this problem, search for newer antidiabetic drugs is the utmost need for the treatment and/or management of increasing diabetic burden. The inhibition of α-amylase and α-glucosidase is one of the effective therapeutic approaches for the development of antidiabetic therapeutics. The exhaustive literature survey has shown the importance of medicinally privileged triazole specifically 1,2,3-triazol and 1,2,4-triazoles scaffold tethered, fused and/or clubbed with other heterocyclic rings structures as promising agents for designing and development of novel antidiabetic therapeutics. Molecular hybrids namely pyridazine-triazole, pyrazoline-triazole, benzothiazole-triazole, benzimidazole-triazole, curcumin-triazole, (bis)coumarin-triazole, acridine-9-carboxamide linked triazole, quinazolinone-triazole, xanthone-triazole, thiazolo-triazole, thiosemicarbazide-triazole, and indole clubbed-triazole are few examples which have shown promising antidiabetic activity by inhibiting α-amylase and/or α-glucosidase. The present review summarizes the structure-activity relationship (SAR), enzyme inhibitory activity including IC50 values, percentage inhibition, kinetic studies, molecular docking studies, and patents filed of the both scaffolds as alpha-amylase and alpha-glucosidase inhibitors, which may be used for further development of potent inhibitors against both enzymes.
Collapse
Affiliation(s)
- Anushka Sharma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Rahul Dubey
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Ritu Bhupal
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Sant Kumar Verma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Savas Kaya
- Health Services Vocational School, Department of Pharmacy, Sivas Cumhuriyet University, 58140, Sivas, Turkey
| | - Vivek Asati
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India.
| |
Collapse
|
3
|
Güleç Ö, Türkeş C, Arslan M, Işık M, Demir Y, Duran HE, Fırat M, Küfrevioğlu Öİ, Beydemir Ş. Dynamics of small molecule-enzyme interactions: Novel benzenesulfonamides as multi-target agents endowed with inhibitory effects against some metabolic enzymes. Arch Biochem Biophys 2024; 759:110099. [PMID: 39009270 DOI: 10.1016/j.abb.2024.110099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/30/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
In contemporary medicinal chemistry, employing a singular small molecule to concurrently multi-target disparate molecular entities is emerging as a potent strategy in the ongoing battle against metabolic disease. In this study, we present the meticulous design, synthesis, and comprehensive biological evaluation of a novel series of 1,2,3-triazolylmethylthio-1,3,4-oxadiazolylbenzenesulfonamide derivatives (8a-m) as potential multi-target inhibitors against human carbonic anhydrase (EC.4.2.1.1, hCA I/II), α-glycosidase (EC.3.2.1.20, α-GLY), and α-amylase (EC.3.2.1.1, α-AMY). Each synthesized sulfonamide underwent rigorous assessment for inhibitory effects against four distinct enzymes, revealing varying degrees of hCA I/II, a-GLY, and a-AMY inhibition across the tested compounds. hCA I was notably susceptible to inhibition by all compounds, demonstrating remarkably low inhibition constants (KI) ranging from 42.20 ± 3.90 nM to 217.90 ± 11.81 nM compared to the reference standard AAZ (KI of 439.17 ± 9.30 nM). The evaluation against hCA II showed that most of the synthesized compounds exhibited potent inhibition effects with KI values spanning the nanomolar range 16.44 ± 1.53-70.82 ± 4.51 nM, while three specific compounds, namely 8a-b and 8d, showcased lower inhibitory potency than other derivatives that did not exceed that of the reference drug AAZ (with a KI of 98.28 ± 1.69 nM). Moreover, across the spectrum of synthesized compounds, potent inhibition profiles were observed against diabetes mellitus-associated α-GLY (KI values spanning from 0.54 ± 0.06 μM to 5.48 ± 0.50 μM), while significant inhibition effects were noted against α-AMY, with IC50 values ranging between 0.16 ± 0.04 μM and 7.81 ± 0.51 μM) compared to reference standard ACR (KI of 23.53 ± 2.72 μM and IC50 of 48.17 ± 2.34 μM, respectively). Subsequently, these inhibitors were evaluated for their DPPH· and ABTS+· radical scavenging activity. Moreover, molecular docking investigations were meticulously conducted within the active sites of hCA I/II, α-GLY, and α-AMY to provide comprehensive elucidation and rationale for the observed inhibitory outcomes.
Collapse
Affiliation(s)
- Özcan Güleç
- Department of Chemistry, Faculty of Arts and Science, Sakarya University, Sakarya, 54187, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, 24002, Turkey.
| | - Mustafa Arslan
- Department of Chemistry, Faculty of Arts and Science, Sakarya University, Sakarya, 54187, Turkey.
| | - Mesut Işık
- Department of Bioengineering, Faculty of Engineering, Bilecik Şeyh Edebali University, Bilecik, 11230, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, 75700, Turkey
| | - Hatice Esra Duran
- Department of Medical Biochemistry, Faculty of Medicine, Kafkas University, Kars, 36100, Turkey
| | - Muhammet Fırat
- Department of Biotechnology, Graduate Institute, Bilecik Şeyh Edebali University, Bilecik, 11230, Turkey
| | - Ömer İrfan Küfrevioğlu
- Department of Chemistry, Faculty of Sciences, Atatürk University, 25240, Erzurum, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, 26470, Turkey
| |
Collapse
|
4
|
Singh A, Singh K, Sharma A, Kaur U, Kaur K, Mohinder Singh Bedi P. Recent Developments in 1,2,3-Triazole Based α-Glucosidase Inhibitors: Design Strategies, Structure-Activity Relationship and Mechanistic Insights. Chem Biodivers 2024; 21:e202401109. [PMID: 38951966 DOI: 10.1002/cbdv.202401109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/03/2024]
Abstract
Diabetes mellitus is a chronic and most prevalent metabolic disorder affecting 422 million the people worldwide and causing life-threatening associated conditions including disorders of kidney, heart, and nervous system as well as leg amputation and retinopathy. Steadily rising cases from the last few decades suggest the failure of currently available drugs in containment of this disease. α-Glucosidase is a potential target for effectively tackling this disease and attracting significant interest from medicinal chemists around the globe. Besides having a set of side effects, currently available α-glucosidase inhibitors (carbohydrate mimics) offer better tolerability, safety, and synergistic pharmacological outcomes with other antidiabetic drugs therefore medicinal chemists have working extensively over last three decades for developing alternative α-glucosidase inhibitors. The 1,2,3-Triazole nucleus is energetically used by various research groups around the globe for the development of α-glucosidase inhibitors posing it as an optimum scaffold in the field of antidiabetic drug development. This review is a systematic analysis of α-glucosidase inhibitors developed by employing 1,2,3-triazole scaffold with special focus on design strategies, structure-activity relationships, and mechanism of inhibitory effect. This article will act as lantern for medicinal chemists in developing of potent, safer, and effective α-glucosidase inhibitors with desired properties and improved therapeutic efficacy.
Collapse
Affiliation(s)
- Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Karanvir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Aman Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Uttam Kaur
- University School of Business Management, Chandigarh University, Gharuan, 140413, India
| | - Kamaljit Kaur
- Hershey Dental Group, Hershey, Pennsylvania, 17033, USA
| | - Preet Mohinder Singh Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
- Drug and Pollution testing Laboratory, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| |
Collapse
|
5
|
Patnam N, Chevula K, Chennamsetti P, Aleti B, Kotha AK, Manga V. Synthesis, antidiabetic activity and molecular docking studies of novel aryl benzylidenethiazolidine-2,4-dione based 1,2,3-triazoles. Mol Divers 2024; 28:1551-1563. [PMID: 37326778 DOI: 10.1007/s11030-023-10674-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
A series of novel aryl benzylidenethiazolidine-2,4-dione based 1,2,3-triazoles synthesized in a straightforward route consisting of benzylidenethiazolidine-2,4-dione and 1,2,3-triazole pharmacophores. The new scaffolds tested for in vitro antidiabetic activity by inhibition of aldose reductase enzyme and its inhibition measured in half of Inhibition Concentration (IC50). The activity results correlated with standard reference Sorbinil (IC50: 3.45 ± 0.25 µM). Among all the titled compounds 8f (1.42 ± 0.21 µM), 8d (1.85 ± 0.39 µM), 13a (1.94 ± 0.27 µM) and 8b (1.98 ± 0.58 µM) shown potent activity. In addition, molecular docking results against the crystal structure of aldose reductase (PDB ID: 1PWM) revealed that the binding affinities shown by all synthesized compounds are higher than the reference compound Sorbinil. The docking scores, H-bond interactions, and hydrophobic interactions well defined inhibition strength of all compounds.
Collapse
Affiliation(s)
- Nagesh Patnam
- Molecular Modelling and Medicinal Chemistry Laboratory, Department of Chemistry, Osmania University, Hyderabad, Telangana, 500007, India
| | - Kishan Chevula
- Molecular Modelling and Medicinal Chemistry Laboratory, Department of Chemistry, Osmania University, Hyderabad, Telangana, 500007, India
| | - Prasad Chennamsetti
- Molecular Modelling and Medicinal Chemistry Laboratory, Department of Chemistry, Osmania University, Hyderabad, Telangana, 500007, India
| | - Balaswamy Aleti
- Molecular Modelling and Medicinal Chemistry Laboratory, Department of Chemistry, Osmania University, Hyderabad, Telangana, 500007, India
| | - Aruna Kumari Kotha
- Department of Sciences and Humanities, Matrusri Engineering College, Hyderabad, Telangana, 500059, India
| | - Vijjulatha Manga
- Molecular Modelling and Medicinal Chemistry Laboratory, Department of Chemistry, Osmania University, Hyderabad, Telangana, 500007, India.
- Telangana Mahila Viswavidyalayam, Hyderabad, Telangana, 500095, India.
| |
Collapse
|
6
|
Ullah S, Halim SA, Waqas M, Mansoor F, Avula SK, Khan FA, Perviaz M, Ogaly HA, Khan A, Al-Harrasi A. Biochemical and computational inhibition of α-glucosidase by novel metronidazole-linked 1 H-1,2,3-triazole and carboxylate moieties: kinetics and dynamic investigations. J Biomol Struct Dyn 2024:1-21. [PMID: 38433423 DOI: 10.1080/07391102.2024.2322622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/16/2024] [Indexed: 03/05/2024]
Abstract
In the current study, metronidazole derivatives containing 1H-1,2,3-triazole and carboxylate moieties were evaluated in vitro and by computational methods for their anti-diabetic potential to insight into their medicinal use for the management of type II diabetes mellitus. Interestingly all 14 compounds displayed high to significant inhibitory capability against the key carbohydrate's digestive enzyme α-glucosidase with IC50 values in range of 9.73-56.39 μM, as compared to marketed drug acarbose (IC50 = 873.34 ± 1.67 μM). Compounds 5i and 7c exhibited the highest inhibition, therefore, these two compounds were further evaluated for their mechanistic studies to explore its type of inhibition. Compounds 5i and 7c both displayed a concentration-dependent (competitive type of inhibition) with Ki values 7.14 ± 0.01, 6.15 ± 0.02 μM, respectively, which conclude their favourable interactions with the active site residues of the α-glucosidase. Interestingly all compounds are non-cytotoxic against BJ cell line. To further validate our findings, in-silico approaches like molecular docking, and molecular dynamic simulations were applied to investigate the mode of bindings of compounds with the enzyme and identifies their inhibition mechanism, which strongly complements our experimental findings.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Saeed Ullah
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Muhammad Waqas
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Farheen Mansoor
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Satya Kumar Avula
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Farhan A Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, KPK, Pakistan
| | - Muhammad Perviaz
- Department of Basic & Applied Chemistry, Faculty of Science & Technology, University of Central Punjab, Lahore, Pakistan
| | - Hanan A Ogaly
- Chemistry Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| |
Collapse
|
7
|
Patel P, Shah D, Bambharoliya T, Patel V, Patel M, Patel D, Bhavsar V, Padhiyar S, Patel B, Mahavar A, Patel R, Patel A. A Review on the Development of Novel Heterocycles as α-Glucosidase Inhibitors for the Treatment of Type-2 Diabetes Mellitus. Med Chem 2024; 20:503-536. [PMID: 38275074 DOI: 10.2174/0115734064264591231031065639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/30/2023] [Accepted: 09/08/2023] [Indexed: 01/27/2024]
Abstract
One of the most effective therapeutic decencies in the treatment of Type 2 Diabetes Mellitus is the inhibition of α-glucosidase enzyme, which is present at the brush border of the intestine and plays an important role in carbohydrate digestion to form mono-, di-, and polysaccharides. Acarbose, Voglibose, Miglitol, and Erniglitate have been well-known α-glucosidase inhibitors in science since 1990. However, the long synthetic route and side effects of these inhibitors forced the researchers to move their focus to innovate simple and small heterocyclic scaffolds that work as excellent α-glucosidase inhibitors. Moreover, they are also effective against the postprandial hyperglycemic condition in Type 2 Diabetes Mellitus. In this aspect, this review summarizes recent progress in the discovery and development of heterocyclic molecules that have been appraised to show outstanding inhibition of α-glucosidase to yield positive effects against diabetes.
Collapse
Affiliation(s)
- Prexa Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, India
| | - Drashti Shah
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, India
| | | | - Vidhi Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, India
| | - Mehul Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, India
| | - Dharti Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, India
| | | | | | | | - Anjali Mahavar
- Chandaben Mohanbhai Patel Institute of Computer Application, Charotar University of Science and Technology, CHARUSAT-Campus, Changa, Gujarat, India
| | - Riddhisiddhi Patel
- Department of Pharmaceutical Science, Saurashtra University, Rajkot, Gujarat, India
| | - Ashish Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, India
| |
Collapse
|
8
|
Tashrifi Z, Khanaposhtani MM, Bahadorikhalili S, Larijani B, Mahdavi M. Intramolecular Click Cycloaddition Reactions: Synthesis of 1,2,3-Triazoles. Curr Org Synth 2024; 21:166-194. [PMID: 37026493 DOI: 10.2174/1570179420666230407103320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 01/19/2023] [Accepted: 02/01/2023] [Indexed: 04/08/2023]
Abstract
Click Chemistry, as a powerful tool, has been used for the synthesis of a variety of 1,2,3-triazoles. Among click cycloaddition reactions, intramolecular click reactions carried out in azido-alkyne precursors has not been thoroughly reviewed. Hence, in this review, we have summarized and categorised the recent literature (from 2012 on) based on the azidoalkynyl precursor's type and a brief and concise description of the involved mechanisms is presented. Accordingly, we have classified the relevant literature into three categories: (1) substitution precursors (2) addition and (3) multi-component reaction (MCR) products.
Collapse
Affiliation(s)
- Zahra Tashrifi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Saeed Bahadorikhalili
- Department of Electronic Engineering, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Jaiswal MK, Tiwari VK. Growing Impact of Intramolecular Click Chemistry in Organic Synthesis. CHEM REC 2023; 23:e202300167. [PMID: 37522634 DOI: 10.1002/tcr.202300167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/11/2023] [Indexed: 08/01/2023]
Abstract
Click Chemistry, a modular, rapid, and one of the most reliable tool for the regioselective 1,2,3-triazole forming [3+2] reaction of organic azide and terimal alkyne is widely explored in various emerging domains of research ranging from chemical biology to catalysis and medicinal chemistry to material science. This regioselective reaction from a diverse range of azido-alkyne scaffolds has been well performed in both intermolecular as well as intramolecular fashions. In comparison to the intermolecular metal (Cu/Ru/Ni) variant of 'Click Chemistry', the intramolecular click tool is little addressed. The intramolecular click chemistry is exemplified as a mordern tool of cyclization which involves metal-catalyzed (CuAAC/RuAAC) cyclization, organo-catalyzed cyclization, and thermal-induced topochemical reaction. Thus, we report herein the recent approaches on intramolecular azide-alkyne cycloaddition 'Click Chemistry' with their wide-spread emerging applications in the developement of a diverse range of molecules including fused-heterocycles, well-defined peptidomemics, and macrocyclic architectures of various notable features.
Collapse
Affiliation(s)
- Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
10
|
Ritu, Sharma P, Gupta GD, Asati V. Design, synthesis and antidiabetic study of triazole clubbed indole derivatives as α-glucosidase inhibitors. Bioorg Chem 2023; 139:106750. [PMID: 37499530 DOI: 10.1016/j.bioorg.2023.106750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/23/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
α -Glucosidase is an enzyme present near the brush boundary of the small intestine that is essential in the hydrolysis of carbohydrates to glucose. Because inhibiting this enzyme slows the release of glucose, α-Glucosidase inhibitors are appealing medications for treating diabetes as a carbohydrate-related illness. The present study includes the design, synthesis and antidiabetic potential of novel triazole based indole derivatives as α-glucosidase inhibitor. Among them, the compound R1 was found to be most potent with promising candidate with IC50 value of 10.1 μM and R2 and R3 showed the good inhibitory potency with IC50 values 12.95 μM, 11.35 μM, respectively when compared to the standard drug acarbose having IC50 value of 13.5 μM. In in vivo studies, body weight of the mice was increased when compared to standard drug acarbose, the blood glucose level of the mice was decreased, same as the total cholesterol level, LDL, and triglycerides level decreased in comparison to standard drug. The level HDL was increased as it is a good cholesterol in comparison to standard drug acarbose. Furthermore, these synthesized compounds were docked with α-glucosidase using PDB ID:3WY1 which showed that compound R1 having good docking score -6.734 kcal/mol and compound R2, R3 showed docking score -6.14, -6.10 kcal/mol, respectively when compared with standard acarbose having docking score -4.55 kcal/mol. R1 showed the similar interaction with amino acid PHE166, GLU271, comparison with standard drug Acarbose. The synthesized compounds have been confirmed for antidiabetic activity and may be used for further development of potent compounds.
Collapse
Affiliation(s)
- Ritu
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Priyanka Sharma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - G D Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Vivek Asati
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India.
| |
Collapse
|
11
|
Basri R, Ullah S, Halim SA, Alharthy RD, Rauf U, Khan A, Hussain J, Al-Ghafri A, Al-Harrasi A, Shafiq Z. Synthesis, biological evaluation, and molecular docking study of chromen-linked hydrazine carbothioamides as potent α-glucosidase inhibitors. Drug Dev Res 2023; 84:962-974. [PMID: 37186392 DOI: 10.1002/ddr.22065] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/29/2023] [Accepted: 04/08/2023] [Indexed: 05/17/2023]
Abstract
Inhibiting α-glucosidase is a reliable method for reducing blood sugar levels in diabetic individuals. Several novel chromen-linked hydrazine carbothioamide (3a-r) were designed and synthesized by condensation of chromone-3-carbaldehyde with a variety of substituted thiosemicarbazides. The structures of these new analogues were elucidated through various advanced spectroscopic techniques (1 H NMR, 13 C NMR, and ESI-MS). The resulted compounds were screened for α-glucosidase inhibitory potential and all the compounds (3a-r) exhibited potent inhibition of α-glucosidase with IC50 values ranging 0.29-53.70 µM. Among them compounds 3c, 3f, 3h, and 3r displayed the highest α-glucosidase inhibitor capability with IC50 values of 1.50, 1.28, 1.08, and 0.29 µM, respectively. Structure-activity relationship showed that different substituted groups are responsible for the variation in the α-glucosidase inhibition. The kinetics studies of the most active inhibitor (3r) were performed, to investigate the mode of inhibition and dissociation constants (Ki), that indicated a competitive inhibitor with Ki value of 1.47 ± 0.31 µM. Furthermore, molecular docking studies was performed to reveal the possible interactions, such as H-bonding, or π-π stacking, with the key residues of α-glucosidase. Docking analysis revealed the importance of hydrazine carbothioamide moiety of compounds in the attachment of ligands with the crucial residues of α-glucosidase. The estimated pharmacokinetic, physicochemical, and drug likeness properties of compounds 3a-r reflects that these molecules have acceptable range of these properties.
Collapse
Affiliation(s)
- Rabia Basri
- Institute of Chemical Sciences, Bahauddin Zakariya University, 60800, Multan, Pakistan
| | - Saeed Ullah
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Sultanate of Oman
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Sultanate of Oman
| | - Rima D Alharthy
- Department of Chemistry, Faculty of Science & Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Umair Rauf
- Institute of Chemical Sciences, Bahauddin Zakariya University, 60800, Multan, Pakistan
| | - Ajmal Khan
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Sultanate of Oman
| | - Javid Hussain
- Department of Biological Sciences and Chemistry, College of Arts and Sciences, University of Nizwa, 616, Nizwa, Birkat Al- Mouz Nizwa, Oman
| | - Ahmed Al-Ghafri
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Sultanate of Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Sultanate of Oman
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, 60800, Multan, Pakistan
| |
Collapse
|
12
|
Avula S, Ullah S, Halim SA, Khan A, Anwar MU, Csuk R, Al-Harrasi A, Rostami A. Meldrum-Based-1 H-1,2,3-Triazoles as Antidiabetic Agents: Synthesis, In Vitro α-Glucosidase Inhibition Activity, Molecular Docking Studies, and In Silico Approach. ACS OMEGA 2023; 8:24901-24911. [PMID: 37483205 PMCID: PMC10357758 DOI: 10.1021/acsomega.3c01291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/19/2023] [Indexed: 07/25/2023]
Abstract
A series of novel alkyl derivatives (2-5a,b) and 1H-1,2,3-triazole analogues (7a-k) of Meldrum's acid were synthesized in a highly effective way by using "click" chemistry and screened for in vitro α-glucosidase inhibitory activity to examine their antidiabetic potential. 1H NMR, 13C-NMR, and high-resolution electrospray ionization mass spectra (HR-ESI-MS) were used to analyze each of the newly synthesized compounds. Interestingly, these compounds demonstrated high to moderate α-glucosidase inhibitory potency having an IC50 range of 4.63-80.21 μM. Among these derivatives, compound 7i showed extraordinary inhibitory activity and was discovered to be several times more potent than the parent compound Meldrum (1) and the standard drug acarbose. Later, molecular docking was performed to understand the binding mode and the binding strength of all the compounds with the target enzyme, which revealed that all compounds are well fitted in the active site of α-glucosidase. To further ascertain the structure of compounds, suitable X-ray single crystals of compounds 5a, 7a, and 7h were developed and studied. The current investigation has shown that combining 1H-1,2,3-triazole with the Meldrum moiety is beneficial. Furthermore, this is the first time that the aforementioned activity of these compounds has been reported.
Collapse
Affiliation(s)
- Satya
Kumar Avula
- Natural
and Medical Sciences Research Center, University
of Nizwa, P.O. Box 33,
Postal Code 616, Birkat Al Mauz, Nizwa, Sultanate of Oman
| | - Saeed Ullah
- Natural
and Medical Sciences Research Center, University
of Nizwa, P.O. Box 33,
Postal Code 616, Birkat Al Mauz, Nizwa, Sultanate of Oman
| | - Sobia Ahsan Halim
- Natural
and Medical Sciences Research Center, University
of Nizwa, P.O. Box 33,
Postal Code 616, Birkat Al Mauz, Nizwa, Sultanate of Oman
| | - Ajmal Khan
- Natural
and Medical Sciences Research Center, University
of Nizwa, P.O. Box 33,
Postal Code 616, Birkat Al Mauz, Nizwa, Sultanate of Oman
| | - Muhammad U. Anwar
- Natural
and Medical Sciences Research Center, University
of Nizwa, P.O. Box 33,
Postal Code 616, Birkat Al Mauz, Nizwa, Sultanate of Oman
| | - René Csuk
- Organic
Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Ahmed Al-Harrasi
- Natural
and Medical Sciences Research Center, University
of Nizwa, P.O. Box 33,
Postal Code 616, Birkat Al Mauz, Nizwa, Sultanate of Oman
| | - Ali Rostami
- Natural
and Medical Sciences Research Center, University
of Nizwa, P.O. Box 33,
Postal Code 616, Birkat Al Mauz, Nizwa, Sultanate of Oman
| |
Collapse
|
13
|
Esmaili S, Ebadi A, Khazaei A, Ghorbani H, Faramarzi MA, Mojtabavi S, Mahdavi M, Najafi Z. Novel Pyrano[3,2- c]quinoline-1,2,3-triazole Hybrids as Potential Anti-Diabetic Agents: In Vitro α-Glucosidase Inhibition, Kinetic, and Molecular Dynamics Simulation. ACS OMEGA 2023; 8:23412-23424. [PMID: 37426262 PMCID: PMC10324058 DOI: 10.1021/acsomega.3c00133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 05/30/2023] [Indexed: 07/11/2023]
Abstract
In this study, a novel series of pyrano[3,2-c]quinoline-1,2,3-triazole hybrids 8a-o were synthesized and evaluated against the α-glucosidase enzyme. All compounds showed significant in vitro inhibitory activity (IC50 values of 1.19 ± 0.05 to 20.01 ± 0.02 μM) compared to the standard drug acarbose (IC50 = 750.0 μM). Among them, 2-amino-4-(3-((1-benzyl-1H-1,2,3-triazol-4-yl)methoxy)phenyl)-5-oxo-5,6-dihydro-4H-pyrano[3,2-c]quinoline-3-carbonitrile (compound 8k) demonstrated the best inhibitory effect toward α-glucosidase (IC50 = 1.19 ± 0.05 μM) with a competitive pattern of inhibition. Since compound 8k was synthesized as a racemic mixture, molecular docking and dynamics simulations were performed on R- and S-enantiomers of compound 8k. Based on the molecular docking results, both R- and S-enantiomers of compound 8k displayed significant interactions with key residues including catalytic triad (Asp214, Glu276, and Asp349) in the enzyme active site. However, an in silico study indicated that S- and R-enantiomers were inversely located in the enzyme active site. The R-enantiomer formed a more stable complex with a higher binding affinity to the active site of α-glucosidase than that of the S- enantiomer. The benzyl ring in the most stable complex ((R)-compound 8k) was located in the bottom of the binding site and interacted with the enzyme active site, while the pyrano[3,2-c]quinoline moiety occupied the high solvent accessible entrance of the active site. Thus, the synthesized pyrano[3,2-c]quinoline-1,2,3-triazole hybrids seem to be promising scaffolds for the development of novel α-glucosidase inhibitors.
Collapse
Affiliation(s)
- Soheila Esmaili
- Department
of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838683, Iran
| | - Ahmad Ebadi
- Department
of Medicinal Chemistry, School of Pharmacy, Medicinal Plants and Natural
Products Research Center, Hamadan University
of Medical Sciences, Hamadan 6517838678, Iran
| | - Ardeshir Khazaei
- Department
of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838683, Iran
| | - Hamideh Ghorbani
- Department
of Medicinal Chemistry, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan 6517838678, Iran
| | - Mohammad Ali Faramarzi
- Department
of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology
Research Center, Tehran University of Medical
Sciences, Tehran 1417614411, Iran
| | - Somayeh Mojtabavi
- Department
of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology
Research Center, Tehran University of Medical
Sciences, Tehran 1417614411, Iran
| | - Mohammad Mahdavi
- Endocrinology
and Metabolism Research Center, Endocrinology and Metabolism Clinical
Sciences Institute, Tehran University of
Medical Sciences, Tehran 1416753955, Iran
| | - Zahra Najafi
- Department
of Medicinal Chemistry, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan 6517838678, Iran
| |
Collapse
|
14
|
Islam M, Khan A, Khan M, Halim SA, Ullah S, Hussain J, Al-Harrasi A, Shafiq Z, Tasleem M, El-Gokha A. Synthesis and biological evaluation of 2-nitrocinnamaldehyde derived thiosemicarbazones as urease inhibitors. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
15
|
Banu HAN, Kalluraya B, Manju N, Ramu R, Patil SM, Lokanatha Rai KM, Kumar N. Synthesis of Pyrazoline‐Embedded 1,2,3‐Triazole Derivatives via 1,3‐Dipolar Cycloaddition Reactions with in vitro and in silico Studies. ChemistrySelect 2023. [DOI: 10.1002/slct.202203578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- H. A. Nagma Banu
- Department of studies in Chemistry Mangalore University Mangalagangothri Konaje 574199 Karnataka India
| | - Balakrishna Kalluraya
- Department of studies in Chemistry Mangalore University Mangalagangothri Konaje 574199 Karnataka India
| | - N. Manju
- Department of studies in Chemistry Mangalore University Mangalagangothri Konaje 574199 Karnataka India
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics School of Life Sciences JSS Academy of Higher Education and Research, SS Nagar Mysuru 570015 Karnataka India
| | - Shashank M. Patil
- Department of Biotechnology and Bioinformatics School of Life Sciences JSS Academy of Higher Education and Research, SS Nagar Mysuru 570015 Karnataka India
| | - K. M. Lokanatha Rai
- Department of studies in Chemistry PG centre, Chikkaaluvara Mangalore university Mangalagangothri Karnataka India
| | - Naveen Kumar
- Department of Chemistry Sri Dharmasthala Manjunatheshwara College (Autonomous) Ujire 574240 Karnataka India
| |
Collapse
|
16
|
Mushtaq A, Azam U, Mehreen S, Naseer MM. Synthetic α-glucosidase inhibitors as promising anti-diabetic agents: Recent developments and future challenges. Eur J Med Chem 2023; 249:115119. [PMID: 36680985 DOI: 10.1016/j.ejmech.2023.115119] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
Diabetes mellitus is one of the biggest challenges for the scientific community in the 21st century. It is a well-recognized multifactorial health problem contributes significantly to high mortality rates by causing serious health complications mainly related to cardiovascular diseases, kidney damage and neuropathy. The inhibition of α-glucosidase (enzyme that catalyses starch hydrolysis in the intestine) is an effective therapeutic approach for controlling hyperglycemia associated with type-2 diabetes. However, the presently approved drugs/inhibitors such as acarbose, miglitol and voglibose have several undesirable gastrointestinal side effects impeding their applications. Therefore, search for novel and more effective inhibitors with reduced side effects and less cost remains a fascinating area of research. In this context, a large variety of α-glucosidase inhibitors have been identified in recent years that demands attention from drug development community. This review is therefore an effort to summarize and highlight the promising α-glucosidase inhibitors especially those which are primarily based on aromatic heterocyclic scaffolds such as coumarin, imidazole, isatin, pyrimidine, quinazoline, triazine, thiazole etc, having improved safety and pharmacological profiles.
Collapse
Affiliation(s)
- Alia Mushtaq
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Uzma Azam
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Saba Mehreen
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | | |
Collapse
|
17
|
Şahin İ, Çeşme M, Yüce N, Tümer F. Discovery of new 1,4-disubstituted 1,2,3-triazoles: in silico ADME profiling, molecular docking and biological evaluation studies. J Biomol Struct Dyn 2023; 41:1988-2001. [PMID: 35057704 DOI: 10.1080/07391102.2022.2025905] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this work, eight new 1,2,3-triazoles (6a-h) were synthesized from acetylenes' "click" reaction with p-substituted azide derivatives. The structures of the compounds were characterized using standard analytical and spectroscopic methods (elemental analysis, FT-IR, 1H(13C)NMR). The anticancer, antioxidant, α-amylase, ADME, molecular docking studies of synthesized triazoles were investigated. According to α -amylase enzyme inhibition results, all compounds except 6c (IC50: 2299 μg/mL) were found to have a higher IC50 value than the standard drug acarbose (IC50: 891 μg/mL). Compound 6g (IC50: 68 μg/mL) exhibited 13 times higher activity than standard acarbose. All compounds, except 6e, have been shown to have greater DPPH radical scavenging capabilities than BHT and β-carotene standards. According to ABTS radical scavenging studies, all compounds showed higher scavenging activity than ascorbic acid and Trolox. To determine the anticancer activity of the synthesized compounds, they were screened against the Hela cell line, and the results were compared with standard cisplatin (IC50: 16.30 μg/mL). Compound 6a (IC50: 49.03 μg/mL) was determined to have moderate activity relative to cisplatin. The compounds were examined comprehensively for ADME characteristics and did not violate any drug-likeness rule. ADME data showed that all physicochemical and pharmacological parameters of the compounds remained within defined limits as specified in Lipinski's rules (RO5) and put forth a high bioavailability profile. The molecular docking findings show that all molecules have a high affinity by exhibiting polar and apolar contact with essential residues in the binding pocket of α-amylase.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- İrfan Şahin
- Department of Chemistry, Faculty of Art and Sciences, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Mustafa Çeşme
- Department of Chemistry, Faculty of Art and Sciences, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Neslihan Yüce
- Department of Medical Biochemistry, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Ferhan Tümer
- Department of Chemistry, Faculty of Art and Sciences, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| |
Collapse
|
18
|
Devi M, Jaiswal S, Yaduvanshi N, Kaur N, Kishore D, Dwivedi J, Sharma S. Design, Synthesis, Antibacterial Evaluation and Docking Studies of Triazole and Tetrazole Linked 1,4‐benzodiazepine Nucleus via Click Approach. ChemistrySelect 2023. [DOI: 10.1002/slct.202204710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Meenu Devi
- Department of Chemistry Banasthali Vidyapith Banasthali, Rajasthan 304022 India
| | - Shivangi Jaiswal
- Department of Chemistry Banasthali Vidyapith Banasthali, Rajasthan 304022 India
| | - Neetu Yaduvanshi
- Department of Chemistry Banasthali Vidyapith Banasthali, Rajasthan 304022 India
| | - Navjeet Kaur
- Department of Chemistry Banasthali Vidyapith Banasthali, Rajasthan 304022 India
| | - Dharma Kishore
- Department of Chemistry Banasthali Vidyapith Banasthali, Rajasthan 304022 India
| | - Jaya Dwivedi
- Department of Chemistry Banasthali Vidyapith Banasthali, Rajasthan 304022 India
| | - Swapnil Sharma
- Department of Pharmacy Banasthali Vidyapith Banasthali, Rajasthan 304022 India
| |
Collapse
|
19
|
Khouzani MA, Mogharabi M, Faramarzi MA, Mojtabavi S, Azizian H, Mahdavi M, Hashemi SM. Development of coumarin tagged 1,2,3-triazole derivatives targeting α-glucosidase inhibition: synthetic modification, biological evaluation, kinetic and in silico studies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
20
|
Pasha AR, Khan A, Ullah S, Halim SA, Hussain J, Khalid M, Naseer MM, El-Kott AF, Negm S, Al-Harrasi A, Shafiq Z. Synthesis of new diphenyl urea-clubbed imine analogs and its Implications in diabetic management through in vitro and in silico approaches. Sci Rep 2023; 13:1877. [PMID: 36725861 PMCID: PMC9892044 DOI: 10.1038/s41598-023-28828-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Type II diabetes mellitus (T2DM) is a global health issue with high rate of prevalence. The inhibition of α-glucosidase enzyme has prime importance in the management of T2DM. This study was established to synthesize Schiff bases of 1,3-dipheny urea (3a-y) and to investigate their in vitro anti-diabetic capability via inhibiting α-glucosidase, a key player in the catabolism of carbohydrates. The structures of all compounds were confirmed through various techniques including, Fourier-transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR) and mass-spectrometry (MS) methods. Interestingly all these compounds displayed potent inhibition IC50 values in range of 2.14-115 µM as compared to acarbose used as control. Additionally, all the compounds were docked at the active site of α-glucosidase to predict their mode of binding. The docking results indicates that Glu277 and Asn350 play important role in the stabilization of these compounds in the active site of enzyme. These molecules showed excellent predicted pharmacokinetics, physicochemical and drug-likeness profile. The anti-diabetic potential of these molecules signifies their medical importance and provide insights into prospective therapeutic options for the treatment of T2DM.
Collapse
Affiliation(s)
- Anam Rubbab Pasha
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan.,Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman
| | - Saeed Ullah
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman.,International Center for Chemical and Biological Sciences, H. E. J. Research Institute of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman
| | - Javid Hussain
- Department of Biological Sciences and Chemistry, University of Nizwa, Nizwa-616, Nizwa, Oman
| | - Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan.,Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | | | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, 61421, Abha, Saudi Arabia.,Department of Zoology, College of Science, Damanhour University, Damanhour, 22511, Egypt
| | - Sally Negm
- Department of Life Sciences, College of Science and Art Mahyel Aseer, King Khalid University, 62529, Abha, Saudi Arabia.,Unit of Food Bacteriology, Central Laboratory of Food Hygiene, Ministry of Health, Branch in Zagazig, Zagazig, 44511, Egypt
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman.
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan. .,Department of Pharmaceutical and Medicinal Chemistry, An der Immenburg 4, 53121, Bonn, Germany.
| |
Collapse
|
21
|
Triazole-tethered boswellic acid derivatives against breast cancer: synthesis, in vitro, and in-silico studies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
22
|
M. A. Asif H, Kamal S, Aziz-ur-Rehman, Bibi I, AlMasoud N, Alomar TS, Iqbal M. Synthesis characterization and evaluation of novel triazole based analogs as a acetylcholinesterase and α-glucosidase inhibitors. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
23
|
Sharma S, Mittal N, Banik BK. Chemistry and Therapeutic Aspect of Triazole: Insight into the Structure-activity Relationship. Curr Pharm Des 2023; 29:2702-2720. [PMID: 37916492 DOI: 10.2174/0113816128271288231023045049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/18/2023] [Indexed: 11/03/2023]
Abstract
The triazole ring is a highly significant heterocycle that occurs naturally in many commodities and is a common feature in pharmaceuticals. Recently, heterocyclic compounds and their derivatives have been getting a lot of attention in medicinal chemistry because they have a lot of pharmacological and biological potential. For example, a lot of drugs have nitrogen-containing heterocyclic moieties. The triazole ring is often used as a bio-isostere of the oxadiazole nucleus. The oxygen atom in the oxadiazole nucleus is replaced by nitrogen in the triazole analogue. This article explores the pharmacological properties of the triazole moiety, including but not limited to antibacterial, analgesic, anticonvulsant, anthelmintic, anti-inflammatory, antitubercular, antimalarial, antioxidant, antiviral, and other properties. Additionally, we discuss the diverse multi- target pharmacological activities exhibited by triazole-based compounds. Based on a literature review, it is evident that triazole-based chemicals hold significant potential for various applications.
Collapse
Affiliation(s)
- Shikha Sharma
- Department of Pharmaceutical Science, Lords University, Alwar 301028, India
| | - Nitin Mittal
- Department of Pharmaceutical Science, Lords University, Alwar 301028, India
| | - Bimal Krishna Banik
- Department of Mathematics and Natural Sciences, College of Sciences and Human Studies, Prince Mohammad Bin Fahd University, Al Khobar, Kingdom of Saudi Arabia
| |
Collapse
|
24
|
Shankara SD, Isloor AM, Kudva AK, Raghu SV, Jayaswamy PK, Venugopal PP, Shetty P, Chakraborty D. 2,5-Bis(2,2,2-trifluoroethoxy)phenyl-tethered 1,3,4-Oxadiazoles Derivatives: Synthesis, In Silico Studies, and Biological Assessment as Potential Candidates for Anti-Cancer and Anti-Diabetic Agent. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248694. [PMID: 36557829 PMCID: PMC9781914 DOI: 10.3390/molecules27248694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022]
Abstract
In the present work, a series of new 1-{5-[2,5-bis(2,2,2-trifluoroethoxy)phenyl]-1,3,4-oxadiazol-3-acetyl-2-aryl-2H/methyl derivatives were synthesized through a multistep reaction sequence. The compounds were synthesized by the condensation of various aldehydes and acetophenones with the laboratory-synthesized acid hydrazide, which afforded the Schiff's bases. Cyclization of the Schiff bases yielded 1,3,4-oxadiazole derivatives. By spectral analysis, the structures of the newly synthesized compounds were elucidated, and further, their anti-cancer and anti-diabetic properties were investigated. To examine the dynamic behavior of the candidates at the binding site of the protein, molecular docking experiments on the synthesized compounds were performed, followed by a molecular dynamic simulation. ADMET (chemical absorption, distribution, metabolism, excretion, and toxicity) prediction revealed that most of the synthesized compounds follow Lipinski's rule of 5. The results were further correlated with biological studies. Using a cytotoxic assay, the newly synthesized 1,3,4-Oxadiazoles were screened for their in vitro cytotoxic efficacy against the LN229 Glioblastoma cell line. From the cytotoxic assay, the compounds 5b, 5d, and 5m were taken for colony formation assay and tunnel assay have shown significant cell apoptosis by damaging the DNA of cancer cells. The in vivo studies using a genetically modified diabetic model, Drosophila melanogaster, indicated that compounds 5d and 5f have better anti-diabetic activity among the different synthesized compounds. These compounds lowered the glucose levels significantly in the tested model.
Collapse
Affiliation(s)
- Sathyanarayana D. Shankara
- Membrane and Separation Technology Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore 575025, India
- Solara Active Pharma Sciences, No:120 A&B, Industrial Area, Baikampady, New Mangalore, Mangalore 575011, India
| | - Arun M. Isloor
- Membrane and Separation Technology Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore 575025, India
- Correspondence: ; Fax: +91-824-2474033
| | - Avinash K. Kudva
- Department of Biochemistry, Mangalore University, Mangalagangothri, Mangalore 574199, India
| | - Shamprasad Varija Raghu
- Neurogenetics Lab, Department of Applied Zoology, Mangalore University, Mangalagangothri, Mangalore 574199, India
| | - Pavan K. Jayaswamy
- Central Research Laboratory, KS. Hegde Medical Academy, Nitte (Deemed to be University), Deralakatte, Mangalore 575018, India
| | - Pushyaraga P. Venugopal
- Biophysical and Computational Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore 575025, India
| | - Praveenkumar Shetty
- Central Research Laboratory, KS. Hegde Medical Academy, Nitte (Deemed to be University), Deralakatte, Mangalore 575018, India
- Department of Biochemistry, K.S. Hegde Medical Academy, Nitte (Deemed to be University), Deralakatte, Mangalore 575018, India
| | - Debashree Chakraborty
- Biophysical and Computational Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore 575025, India
| |
Collapse
|
25
|
Khan M, Avula SK, Halim SA, Waqas M, Asmari M, Khan A, Al-Harrasi A. Biochemical and in silico inhibition of bovine and human carbonic anhydrase-II by 1H-1,2,3-triazole analogs. Front Chem 2022; 10:1072337. [PMID: 36505753 PMCID: PMC9732439 DOI: 10.3389/fchem.2022.1072337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/09/2022] [Indexed: 11/26/2022] Open
Abstract
A series of 1H-1,2,3-triazole analogs (7a-7d and 9a-9s) were synthesized via "click" chemistry and evaluated for in vitro carbonic anhydrase-II (bovine and human) inhibitory activity. The synthesis of intermediates, 7a and 7c, was achieved by using (S)-(-)ethyl lactate as a starting material. These compounds (7a and 7c) underwent Suzuki-Miyaura cross-coupling reaction with different arylboronic acids in 1,4-dioxane, reflux at 90-120°C for 8 h using Pd(PPh3)4 as a catalyst (5 mol%), and K2CO3 (3.0 equiv)/K2PO4 (3.0 equiv) as a base to produce target 1H-1,2,3-triazole molecules (9a-9s) for a good yield of 67-86%. All the synthesized compounds were characterized through NMR spectroscopic techniques. Furthermore, all those compounds have shown significant inhibitory potential for both sources of carbonic anhydrase-II (CA-II). In the case of bCA-II, compounds 9i, 7d, 9h, 9o, 9g, and 9e showed potent activity with IC50 values in the range of 11.1-17.8 µM. Whereas for hCA-II, compounds 9i, 9c, 9o, and 9j showed great potential with IC50 values in the range of 10.9-18.5 µM. The preliminary structure-activity relationship indicates that the presence of the 1H-1,2,3-triazole moiety in those synthesized 1H-1,2,3-triazole analogs (7a-7d and 9a-9s) significantly contributes to the overall activity. However, several substitutions on this scaffold affect the activity to several folds. The selectivity index showed that compounds 9c, 9k, and 9p are selective inhibitors of hCA-II. Kinetics studies showed that these compounds inhibited both enzymes (bCA-II and hCA-II) in a competitive manner. Molecular docking indicates that all the active compounds fit well in the active site of CA-II. This study has explored the role of 1H-1,2,3-triazole-containing compounds in the inhibition of CA-II to combat CA-II-related disorders.
Collapse
Affiliation(s)
- Majid Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, Nizwa, Oman,H.E.J Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Satya Kumar Avula
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, Nizwa, Oman
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, Nizwa, Oman
| | - Muhammad Waqas
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, Nizwa, Oman
| | - Mufarreh Asmari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, Nizwa, Oman,*Correspondence: Ajmal Khan, ; Ahmed Al-Harrasi,
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, Nizwa, Oman,*Correspondence: Ajmal Khan, ; Ahmed Al-Harrasi,
| |
Collapse
|
26
|
Lengerli D, Ibis K, Nural Y, Banoglu E. The 1,2,3-triazole 'all-in-one' ring system in drug discovery: a good bioisostere, a good pharmacophore, a good linker, and a versatile synthetic tool. Expert Opin Drug Discov 2022; 17:1209-1236. [PMID: 36164263 DOI: 10.1080/17460441.2022.2129613] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION The 1,2,3-triazole ring occupies an important space in medicinal chemistry due to its unique structural properties, synthetic versatility and pharmacological potential making it a critical scaffold. Since it is readily available through click chemistry for creating compound collections against various diseases, it has become an emerging area of interest for medicinal chemists. AREAS COVERED This review article addresses the unique properties of the1,2,3-triazole nucleus as an intriguing ring system in drug discovery while focusing on the most recent medicinal chemistry strategies exploited for the design and development of 1,2,3-triazole analogs as inhibitors of various biological targets. EXPERT OPINION Evidently, the 1,2,3-triazole ring with unique structural features has enormous potential in drug design against various diseases as a pharmacophore, a bioisoster or a structural platform. The most recent evidence indicates that it may be more emerging in drug molecules in near future along with an increasing understanding of its prominent roles in drug structures. The synthetic feasibility and versatility of triazole chemistry make it certainly ideal for creating compound libraries for more constructive structure-activity relationship studies. However, more comparative and target-specific studies are needed to gain a deeper understanding of the roles of the 1,2,3-triazole ring in molecular recognition.[Figure: see text].
Collapse
Affiliation(s)
- Deniz Lengerli
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Kübra Ibis
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Yahya Nural
- Department of Analytical Chemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Erden Banoglu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| |
Collapse
|
27
|
Singh G, Mohit, Diksha, Pawan, Satija P, Sushma, Sharma S, Gupta S, Singh K. Organosilane as potent HIV-1 protease inhibitors and its hybrid silica nanoparticles as a “turn-off” fluorescent sensor for silver ion recognition. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
28
|
Ullah I, Ilyas M, Omer M, Alamzeb M, Adnan, Sohail M. Fluorinated triazoles as privileged potential candidates in drug development—focusing on their biological and pharmaceutical properties. Front Chem 2022; 10:926723. [PMID: 36017163 PMCID: PMC9395585 DOI: 10.3389/fchem.2022.926723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/30/2022] [Indexed: 11/21/2022] Open
Abstract
Fluorinated heterocycles have attracted extensive attention not only in organic synthesis but also in pharmaceutical and medicinal sciences due to their enhanced biological activities than their non-fluorinated counterparts. Triazole is a simple five-membered heterocycle with three nitrogen atoms found in both natural and synthetic molecules that impart a broad spectrum of biological properties including but not limited to anticancer, antiproliferative, inhibitory, antiviral, antibacterial, antifungal, antiallergic, and antioxidant properties. In addition, incorporation of fluorine into triazole and its derivatives has been reported to enhance their pharmacological activity, making them promising drug candidates. This mini-review explores the current developments of backbone-fluorinated triazoles and functionalized fluorinated triazoles with established biological activities and pharmacological properties.
Collapse
|
29
|
Design, Synthesis, Molecular Docking and Antimicrobial Activities of Novel Triazole-ferulic acid ester Hybrid Carbohydrates. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
El Ashry ESH, Farahat MM, Awad LF, Balbaa M, Yusef H, Badawy ME, Abd Al Moaty MN. New 4-(arylidene)amino-1,2,4-traizole-5-thiol derivatives and their acyclo thioglycosides as α-glucosidase and α-amylase inhibitors: Design, synthesis, and molecular modelling studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132733] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Chakraborty A, Jaiswal C, Hassan A, Kumar S, Singh K, Mandal BB, Das N. Tunable and improved antiproliferative activity of Pt (II)–based organometallics bearing alkynyls and 1,2,3‐triazole moieties. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Arnab Chakraborty
- Department of Chemistry Indian Institute of Technology Patna Bihta Bihar India
| | - Chitra Jaiswal
- Department of Biosciences and Bioengineering Indian Institute of Technology Guwahati Guwahati Assam India
| | - Atikur Hassan
- Department of Chemistry Indian Institute of Technology Patna Bihta Bihar India
| | - Saurabh Kumar
- Department of Chemistry Indian Institute of Technology Patna Bihta Bihar India
| | - Khushwant Singh
- Department of Chemistry Indian Institute of Technology Patna Bihta Bihar India
| | - Biman B. Mandal
- Department of Biosciences and Bioengineering Indian Institute of Technology Guwahati Guwahati Assam India
- Centre for Nanotechnology Indian Institute of Technology Guwahati Guwahati Assam India
- School of Health Science and Technology Indian Institute of Technology Guwahati Guwahati Assam India
| | - Neeladri Das
- Department of Chemistry Indian Institute of Technology Patna Bihta Bihar India
| |
Collapse
|
32
|
Fallah Z, Tajbakhsh M, Alikhani M, Larijani B, Faramarzi MA, Hamedifar H, Mohammadi-Khanaposhtani M, Mahdavi M. A review on synthesis, mechanism of action, and structure-activity relationships of 1,2,3-triazole-based α-glucosidase inhibitors as promising anti-diabetic agents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132469] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
33
|
Farwa U, Raza MA. Heterocyclic compounds as a magic bullet for diabetes mellitus: a review. RSC Adv 2022; 12:22951-22973. [PMID: 36105949 PMCID: PMC9379558 DOI: 10.1039/d2ra02697j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022] Open
Abstract
Diabetes mellitus (DM) is a major metabolic disorder due to hyperglycemia, which is increasing all over the world. From the last two decades, the use of synthetic agents has risen due to their major involvement in curing of chronic diseases including DM. The core skeleton of drugs has been studied such as thiazolidinone, azole, chalcone, pyrrole and pyrimidine along with their derivatives. Diabetics assays have been performed in consideration of different enzymes such as α-glycosidase, α-amylase, and α-galactosidase against acarbose standard drug. The studied moieties were depicted in both models: in vivo as well as in vitro. Molecular docking of the studied compounds as antidiabetic molecules was performed with the help of Auto Dock and molecular operating environment (MOE) software. Amino acid residues Asp349, Arg312, Arg439, Asn241, Val303, Glu304, Phe158, His103, Lys422 and Thr207 that are present on the active sites of diabetic related enzymes showed interactions with ligand molecules. In this review data were organized for the synthesis of heterocyclic compounds through various routes along with their antidiabetic potential, and further studies such as pharmacokinetic and toxicology studies should be executed before going for clinical trials. Diabetes mellitus (DM) is a major metabolic disorder due to hyperglycemia, which is increasing all over the world.![]()
Collapse
Affiliation(s)
- Umme Farwa
- Department of Chemistry, University of Gujrat, Gujrat 50700, Pakistan
| | | |
Collapse
|
34
|
Li Y, Zhang JH, Xie HX, Ge YX, Wang KM, Song ZL, Zhu KK, Zhang J, Jiang CS. Discovery of new 2-phenyl-1H-benzo[d]imidazole core-based potent α-glucosidase inhibitors: Synthesis, kinetic study, molecular docking, and in vivo anti-hyperglycemic evaluation. Bioorg Chem 2021; 117:105423. [PMID: 34717239 DOI: 10.1016/j.bioorg.2021.105423] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 11/18/2022]
Abstract
In the present study, a series of 2-phenyl-1H-benzo[d]imidazole-based α-glucosidase inhibitors were synthesized and evaluated for their in vitro and in vivo anti-diabetic potential. Screening of an in-house library revealed a moderated α-glucosidase inhibitor, 6a with 3-(1H-benzo[d]imidazol-2-yl)aniline core, and then the structural optimization was performed to obtain more efficient derivatives. Most of these derivatives showed increased activity than 6a, and the most promising inhibitors were found to be compounds 15o and 22d with IC50 values of 2.09 ± 0.04 and 0.71 ± 0.02 µM, respectively. Fluorescence quenching experiment confirmed the direct binding of compounds 15o and 22d with α-glucosidase. Kinetic study revealed that both compounds were non-competitive inhibitors, that was consistent with the result of molecular docking studies where they located at the allosteric site of the enzyme. Cell viability evaluation demonstrated the non-cytotoxicity of 15o and 22d against LO2 cells. Furthermore, the in vivo pharmacodynamic study revealed that compound 15o showed significant hypoglycemic activity and improved oral sucrose tolerance, comparable to the positive control acarbose.
Collapse
Affiliation(s)
- Yue Li
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Jin-He Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Hong-Xu Xie
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Yong-Xi Ge
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Kai-Ming Wang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Zhi-Ling Song
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Kong-Kai Zhu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Juan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| | - Cheng-Shi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| |
Collapse
|
35
|
Avula SK, Raza Shah S, Al-Hosni K, U Anwar M, Csuk R, Das B, Al-Harrasi A. Synthesis and antimicrobial activity of 1 H-1,2,3-triazole and carboxylate analogues of metronidazole. Beilstein J Org Chem 2021; 17:2377-2384. [PMID: 34621399 PMCID: PMC8450958 DOI: 10.3762/bjoc.17.154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/03/2021] [Indexed: 11/23/2022] Open
Abstract
Herein, a series of novel 1H-1,2,3-triazole and carboxylate derivatives of metronidazole (5a-i and 7a-e) were synthesized and evaluated for their antimicrobial activity in vitro. All the newly synthesized compounds were characterized by 1H NMR, 13C NMR, HRMS, and 19F NMR (5b, 5c and 5h) spectroscopy wherever applicable. The structures of compounds 3, 5c and 7b were unambiguously confirmed by single crystal X-ray analysis diffraction method. Single crystal X-ray structure analysis supported the formation of the metronidazole derivatives. The antimicrobial (antifungal and antibacterial) activity of the prepared compounds was studied. All compounds (except 2 and 3) showed a potent inhibition rate of fungal growth as compared to control and metronidazole. The synthetic compounds also showed higher bacterial growth inhibiting effects compared to the activity of the parent compound. Amongst the tested compounds 5b, 5c, 5e, 7b and 7e displayed excellent potent antimicrobial activity. The current study has demonstrated the usefulness of the 1H-1,2,3-triazole moiety in the metronidazole skeleton.
Collapse
Affiliation(s)
- Satya Kumar Avula
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Postal Code 616, Birkat Al Mauz, Nizwa, Sultanate of Oman
| | - Syed Raza Shah
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Postal Code 616, Birkat Al Mauz, Nizwa, Sultanate of Oman
| | - Khdija Al-Hosni
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Postal Code 616, Birkat Al Mauz, Nizwa, Sultanate of Oman
| | - Muhammad U Anwar
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Postal Code 616, Birkat Al Mauz, Nizwa, Sultanate of Oman
| | - Rene Csuk
- Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, d-06120, Halle (Saale), Germany
| | - Biswanath Das
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Postal Code 616, Birkat Al Mauz, Nizwa, Sultanate of Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Postal Code 616, Birkat Al Mauz, Nizwa, Sultanate of Oman
| |
Collapse
|
36
|
Huang J, Zang X, Yang W, Yin X, Huang J, Wu S, Hong Y. Pentacyclic triterpene carboxylic acids derivatives integrated piperazine-amino acid complexes for α-glucosidase inhibition in vitro. Bioorg Chem 2021; 115:105212. [PMID: 34333423 DOI: 10.1016/j.bioorg.2021.105212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 11/30/2022]
Abstract
Eighteen derivatives of pentacyclic triterpene carboxylic acids (Maslinic acid, Corosolic acid and Asiatic acid) have been prepared by coupling the piperazine complex of l-amino acids at the C-28 site of the parent compounds. The α-glucosidase inhibitory activities of the pristine derivatives were evaluated in vitro. The results indicated that the inhibitory activity of some compounds (15e IC50 = 591 μM, 16e IC50 = 423 μM) was closed to that of the reference acarbose (IC50 = 347 μM) in ethanol-water system. In addition, compound 16e (IC50 = 380 μM) showed superior inhibitory activity than acarbose (IC50 = 493 μM) in the measurement system with DMSO as solvent. The comparison of two different solvent systems showed that the derivatives had better α-glucosidase inhibitory activity in the DMSO system than that of in ethanol-water system. Regrettably, all of the as-synthesized derivatives exhibited inferior α-glucosidase inhibitory activities than those of the parent compounds in both test solvent systems. Furthermore, the result of enzyme kinetics demonstrated that the inhibition mechanism of compound 16e was noncompetitive inhibition with the inhibition constant Ki = 552 μM.
Collapse
Affiliation(s)
- Jinxiang Huang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xufeng Zang
- Department of Applied Physics, Huzhou University, Huzhou 313000, China
| | - Wuying Yang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaoli Yin
- Library of Jiangxi Agricultural University, Nanchang 330045, China
| | - Jianping Huang
- College of Science, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Shumin Wu
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yanping Hong
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
37
|
Avula SK, Khan M, Halim SA, Khan A, Al-Riyami SA, Csuk R, Das B, Al-Harrasi A. Synthesis of New 1 H-1,2,3-Triazole Analogs in Aqueous Medium via " Click" Chemistry: A Novel Class of Potential Carbonic Anhydrase-II Inhibitors. Front Chem 2021; 9:642614. [PMID: 34277561 PMCID: PMC8278147 DOI: 10.3389/fchem.2021.642614] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/28/2021] [Indexed: 11/23/2022] Open
Abstract
A series of novel 1H-1,2,3-triazole analogs (9a–j) were synthesized via “Click” chemistry and Suzuki–Miyaura cross-coupling reaction in aqueous medium. The compounds were evaluated for their carbonic anhydrase-II enzyme inhibitory activity in vitro. The synthesis of triazole 7a was accomplished using (S)-(-) ethyl lactate as a starting material. This compound (7a) underwent Suzuki–Miyaura cross-coupling reaction with different arylboronic acids in aqueous medium to afford the target molecules, 9a–j in good yields. All newly synthesized compounds were characterized by 1H NMR, 13C NMR, FT-IR, HRMS, and where applicable 19F NMR spectroscopy (9b, 9e, 9h, and 9j). The new compounds have shown moderate inhibition potential against carbonic anhydrase-II enzyme. A preliminary structure-activity relationship suggested that the presence of polar group at the 1H-1,2,3-triazole substituted phenyl ring in these derivatives (9a–j) has contributed to the overall activity of these compounds. Furthermore, via molecular docking, it was deduced that the compounds exhibit inhibitory potential through direct binding with the active site residues of carbonic anhydrase-II enzyme. This study has unraveled a new series of triazole derivatives as good inhibitors against carbonic anhydrase-II.
Collapse
Affiliation(s)
- Satya Kumar Avula
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Majid Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman.,H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | | | - Rene Csuk
- Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Biswanath Das
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| |
Collapse
|
38
|
Synthesis of novel 5-(2,5-bis(2,2,2-trifluoroethoxy)phenyl)-1,3,4-oxadiazole-2-thiol derivatives as potential glucosidase inhibitors. Bioorg Chem 2021; 114:105046. [PMID: 34126575 DOI: 10.1016/j.bioorg.2021.105046] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND A hybrid molecule of different biologically active substances can improve affinity and efficiency compared to a standard drug. Hence based on this fact, we predict that a combination of fluorine, oxadiazole, sulfur, etc., may enhance α-glucosidase inhibition activity compared to a standard drug. METHODS A series of novel 5-(2,5-bis(2,2,2-trifluoroethoxy)phenyl)-1,3,4-oxadiazole-2-thiol derivatives (2a-2i) were synthesized and characterized using spectroscopic techniques such as 1HNMR and LC-MS. In order to evaluate its bioactivity, in vitro α-amylase and α-glycosidase inhibitory activity were performed. In vivo study was carried using a genetic model, Drosophila melanogaster, for assessing the antihyperglycemic effects. RESULTS The compounds 2a-2i demonstrated α-amylase inhibitory activity in the range of IC50 = 40.00-80.00 μg/ml as compare to standard acarbose (IC50 = 34.71 μg/ml). Compounds 2a-2i demonstrated α-glucosidase inhibitory activity in the range of IC50 = 46.01-81.65 μg/ml as compared to standard acarbose (IC50 = 34.72 μg/ml). Docking studies on a target protein, N-terminal subunit of human Maltase-glucoamylase (PDB:2QMJ) was carried and the compounds were found to dock into the active site of the enzyme (Fig. 1). The predicted binding energies of the compounds were calculated. The in vitro studies indicate that compounds 2b and 2g had better activity among the synthesized compounds. Whereas in vivo study indicates that 2b, 2g, and 2i could lower glucose levels in the Drosophila, but then 17-30% reduced capacity than acarbose and may be overcome by adjusting their dosage. CONCLUSIONS The in vitro and in vivo studies indicate that compounds 2b and 2g had better activity among the synthesized compounds. This study has recognized that compounds like 2b, 2g, and 2i may be considered potential candidates for further developing a novel class of antidiabetic agents.
Collapse
|
39
|
Kumar S, Khokra SL, Yadav A. Triazole analogues as potential pharmacological agents: a brief review. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021; 7:106. [PMID: 34056014 PMCID: PMC8148872 DOI: 10.1186/s43094-021-00241-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/03/2021] [Indexed: 02/01/2023] Open
Abstract
Background A large number of studies have recently reported that, because of their significant biological and pharmacological properties, heterocyclic compounds and their derivatives have attracted a strong interest in medicinal chemistry. The triazole nucleus is one of the most important heterocycles which has a feature of natural products as well as medicinal agents. Heterocyclic nitrogen is abundantly present in most medicinal compounds. The derivatization of triazole ring is based on the phenomenon of bio-isosteres in which substituted the oxygen atom of oxadiazole nucleus with nitrogen triazole analogue. Main text This review focuses on recent synthetic procedure of triazole moiety, which comprises of various pharmacological activities such as antimicrobial, anticonvulsant, anti-inflammatory, analgesic, antitubercular, anthelmintic, antioxidant, antimalarial, antiviral, etc.. Conclusion This review highlights the current status of triazole compounds as different multi-target pharmacological activities. From the literature survey, triazole is the most widely used compound in different potential activities.
Collapse
Affiliation(s)
- Sachin Kumar
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana 136119 India
| | - Sukhbir Lal Khokra
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana 136119 India
| | - Akash Yadav
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana 136119 India
| |
Collapse
|
40
|
Avula SK, Rehman NU, Khan M, Halim SA, Khan A, Rafiq K, Csuk R, Das B, Al-Harrasi A. New synthetic 1H-1,2,3-triazole derivatives of 3-O-acetyl-β-boswellic acid and 3-O-acetyl-11-keto-β-boswellic acid from Boswellia sacra inhibit carbonic anhydrase II in vitro. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02723-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
41
|
Shareghi-Boroujeni D, Iraji A, Mojtabavi S, Faramarzi MA, Akbarzadeh T, Saeedi M. Synthesis, in vitro evaluation, and molecular docking studies of novel hydrazineylideneindolinone linked to phenoxymethyl-1,2,3-triazole derivatives as potential α-glucosidase inhibitors. Bioorg Chem 2021; 111:104869. [PMID: 33839583 DOI: 10.1016/j.bioorg.2021.104869] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/02/2021] [Accepted: 03/24/2021] [Indexed: 01/08/2023]
Abstract
In this work, a novel series of hydrazineylideneindolinone linked to phenoxymethyl-1,2,3-triazole derivatives were designed, synthesized, and evaluated for their anti-α-glucosidase activity due to an urgent need to develop effective anti-diabetic agents. Among tested 15 compounds, 8 derivatives (9a, 9b, 9c, 9d, 9e, 9f, 9h, and 9o) demonstrated superior potency compared to that of positive control, acarbose. Particularly, compound 9d possessed the best anti-α-glucosidase activity with around a 46-fold improvement in the inhibitory activity. Additionally, 9d showed a competitive type of inhibition in the kinetic study and the molecular docking study demonstrated that it well occupied the binding pocket of the catalytic center through desired interactions with residues, correlating to the experimental results.
Collapse
Affiliation(s)
- Diba Shareghi-Boroujeni
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Iraji
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran 1417614411, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran 1417614411, Iran
| | - Tahmineh Akbarzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Saeedi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
42
|
Kaur R, Kumar R, Dogra N, Kumar A, Yadav AK, Kumar M. Synthesis and studies of thiazolidinedione-isatin hybrids as α-glucosidase inhibitors for management of diabetes. Future Med Chem 2021; 13:457-485. [PMID: 33506699 DOI: 10.4155/fmc-2020-0022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Aim: Keeping in view the side effects associated with clinically used α-glucosidase inhibitors, novel thiazolidinedione-isatin hybrids were synthesized and evaluated by in vitro, in vivo and in silico procedures. Materials & methods: Biological evaluation, cytotoxicity assessment, molecular docking, binding free energy calculations and molecular dynamics studies were performed for hybrids. Results: The most potent inhibitor A-10 (IC50 = 24.73 ± 0.93 μM) was competitive in manner and observed as non-cytotoxic. A-10 possessed higher efficacy than the standard drug (acarbose) during in vivo biological testing. Conclusion: The enzyme inhibitory potential and safety profile of synthetic molecules was recognized after in vitro, in vivo, in silico and cytotoxicity studies. Further structural optimization of A-10 can offer potential hit molecules suitable for future investigations.
Collapse
Affiliation(s)
- Ramandeep Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Rajnish Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Varanasi 221005, India
| | - Nilambra Dogra
- Centre for Systems Biology & Bioinformatics, Panjab University, Chandigarh 160014, India
| | - Ashok Kumar
- Centre for Systems Biology & Bioinformatics, Panjab University, Chandigarh 160014, India
| | - Ashok Kumar Yadav
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Manoj Kumar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| |
Collapse
|
43
|
Microwave versus conventional synthesis, anticancer, DNA binding and docking studies of some 1,2,3-triazoles carrying benzothiazole. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.102997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
44
|
Islam M, Khan A, Shehzad MT, Khiat M, Halim SA, Hameed A, Shah SR, Basri R, Anwar MU, Hussain J, Csuk R, Al-Harrasi A, Shafiq Z. Therapeutic potential of N 4-substituted thiosemicarbazones as new urease inhibitors: Biochemical and in silico approach. Bioorg Chem 2021; 109:104691. [PMID: 33601138 DOI: 10.1016/j.bioorg.2021.104691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/23/2020] [Accepted: 01/22/2021] [Indexed: 02/06/2023]
Abstract
Urease enzyme plays a key role in pathogenesis of gastritis and peptic ulcers. Its inhibition averts our bodies from many disorders including formation of urinary calculi. In agriculture, the high urease content causes severe environmental and hence economic problems. Due to deficiency of effective and safer drugs to tackle the aforementioned disorders, the quest for new scaffolds becomes mandatory in the field of medicinal chemistry. In this regard, we herein report a new series of N4-substituted thiosemicarbazones 3a-v as potential candidates for urease inhibition. These new N4-substituted thiosemicarbazones 3a-v of distant chemical scaffolds were characterized by advanced spectroscopic techniques, such as FTIR, 1HNMR, 13CNMR, ESI-MS and in the case of compound 3g by single crystal X-ray analysis. The compounds were evaluated for their urease inhibitory potential. All newly synthesized compounds showed significant urease inhibitions with IC50 values in range of 2.7 ± 0.320-109.2 ± 3.217 μM. Molecular docking studies were used for interactions pattern and structure-activity relationship for all compounds, which demonstrated excellent binding interactions with the active site residues, such as hydrogen bonding, π-π interactions, π-H and nickel atom coordination.
Collapse
Affiliation(s)
- Muhammad Islam
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan; Natural and Medical Sciences Research Center, University of Nizwa, PO Box 33, 616 Birkat Al Mauz, Nizwa, Oman; Jadeed Group of Companies, 53-C, Satellite Town, Chandni Chowk, Murree Road, Rawalpindi, Pakistan
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, PO Box 33, 616 Birkat Al Mauz, Nizwa, Oman
| | | | - Mohammed Khiat
- Natural and Medical Sciences Research Center, University of Nizwa, PO Box 33, 616 Birkat Al Mauz, Nizwa, Oman
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, PO Box 33, 616 Birkat Al Mauz, Nizwa, Oman
| | - Abdul Hameed
- Department of Chemistry, Forman Christian College (A Charted University), Ferozepur Road, Lahore 54600, Pakistan
| | - Syed Raza Shah
- Natural and Medical Sciences Research Center, University of Nizwa, PO Box 33, 616 Birkat Al Mauz, Nizwa, Oman; Department of Chemistry, Bacha Khan University, Charsadda, KPK, Pakistan
| | - Rabia Basri
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad U Anwar
- Natural and Medical Sciences Research Center, University of Nizwa, PO Box 33, 616 Birkat Al Mauz, Nizwa, Oman
| | - Javid Hussain
- Department of Biological Sciences and Chemistry, University of Nizwa, PO Box 33, 616 Birkat Al Mauz, Nizwa, Oman
| | - René Csuk
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, PO Box 33, 616 Birkat Al Mauz, Nizwa, Oman.
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan.
| |
Collapse
|
45
|
Design, synthesis, anticancer and antioxidant activities of amide linked 1,4-disubstituted 1,2,3-triazoles. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129255] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
46
|
Almehmadi MA, Aljuhani A, Alraqa SY, Ali I, Rezki N, Aouad MR, Hagar M. Design, synthesis, DNA binding, modeling, anticancer studies and DFT calculations of Schiff bases tethering benzothiazole-1,2,3-triazole conjugates. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129148] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
47
|
Chaudhary AP, Shukla AK, Kant P. Design, synthesis, antibacterial evaluation, molecular docking and computational study of 4-alkoxy/aryloxyphenyl cyclopropyl methane oxime derivatives. Comput Biol Chem 2021; 91:107434. [PMID: 33514494 DOI: 10.1016/j.compbiolchem.2021.107434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/03/2020] [Accepted: 12/31/2020] [Indexed: 10/22/2022]
Abstract
A series of new 4-alkoxy/aryloxyphenyl cyclopropyl methane oxime derivatives 2(a-k) were synthesized and fully characterized by FT-IR, 1H-NMR, 13C-NMR and Mass spectrometry techniques. All the synthesized compounds 2(a-k) were assayed for in vitro antibacterial activity against a selected bacterial strain and the compound (2 h) and (2k) exerted excellent activity against Staphylococcus aureus, Escherichia coli and Salmonella typhi strains. The potency of inhibitors and possible interaction mechanism of synthetic oxime (2k) with 1GQN enzyme on Salmonella typhi was explored by molecular docking method. Amongst the all synthesized compounds, the quantum chemical calculations were done for Cyclopropyl(4-(pyridin-3-ylmethoxy)phenyl)methanone oxime (2k). The first hyperpolarizability calculation performed in different solvent such as CHCl3, CH2Cl2 and DMSO and compared to the reference compound urea. In addition, natural bond orbital analysis (NBO), local reactivity descriptors, thermodynamic properties, Mulliken charges, molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis were explored using theoretical calculations.
Collapse
Affiliation(s)
- Aniruddh Prasad Chaudhary
- Department of Chemistry, Udai Pratap College, Varanasi, 221002, India; Department of Chemistry, University of Lucknow, Lucknow, 226007, India.
| | - Akhilesh Kumar Shukla
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, 226025, UP, India
| | - Padam Kant
- Department of Chemistry, University of Lucknow, Lucknow, 226007, India
| |
Collapse
|
48
|
Dahmani R, Manachou M, Belaidi S, Chtita S, Boughdiri S. Structural characterization and QSAR modeling of 1,2,4-triazole derivatives as α-glucosidase inhibitors. NEW J CHEM 2021. [DOI: 10.1039/d0nj05298a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In order to identify potential new drugs classified as alpha-Glucosidase inhibitors (AGIs), we used quantum chemical descriptors and QSAR modeling to predict the biological activity of triazole derivatives as AGIs.
Collapse
Affiliation(s)
- Rahma Dahmani
- University of Tunis El Manar, Faculty of Sciences of Tunis
- Department of Chemistry
- Research Laboratory Characterization
- Applications and Modeling of Materials
- Tunis
| | - Marwa Manachou
- University of Tunis El Manar, Faculty of Sciences of Tunis
- Department of Chemistry
- Research Laboratory Characterization
- Applications and Modeling of Materials
- Tunis
| | - Salah Belaidi
- University of Biskra, Faculty of Sciences
- Department of Chemistry
- Group of Computational and Pharmaceutical Chemistry
- LMCE Laboratory
- Biskra
| | - Samir Chtita
- Hassan II university of Casablanca
- Faculty of Sciences Ben M'Sik
- Laboratory of Physical Chemistry of Materials
- B.P. 7955 Sidi Othmane
- Casablanca
| | - Salima Boughdiri
- University of Tunis El Manar, Faculty of Sciences of Tunis
- Department of Chemistry
- Research Laboratory Characterization
- Applications and Modeling of Materials
- Tunis
| |
Collapse
|
49
|
Liu R, Wu L, Feng H, Tang F, Si H, Yao X, He W. The study on the interactions of two 1,2,3-triazoles with several biological macromolecules by multiple spectroscopic methodologies and molecular docking. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 243:118795. [PMID: 32814256 DOI: 10.1016/j.saa.2020.118795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/18/2020] [Accepted: 07/26/2020] [Indexed: 06/11/2023]
Abstract
1-(4-chlorophenyl)-5-phenyl-1H-1,2,3-triazole (CPTC) and 5-(3-chlorophenyl) -1-phenyl-1H-1,2,3-triazole (PCTA) are two new derivatives of 1,2,3-triazole. Their structural and spectral properties were characterized by density functional theory calculations (DFT). The binding properties of CPTC or PCTA with several typical biomacromolecules such as human serum albumin (HSA), bovine hemoglobin (BHb), human immunoglobulin (HIgG) or DNA were investigated by molecular docking and multiple spectroscopic methodologies. The different parameters including binding constants and thermodynamic parameters for CPTC/PCTA-HSA/BHb/HIgG/DNA systems were obtained based on various fluorescence enhancement or quenching mechanisms. The results of binding constants indicated that there were the strong interactions between two triazoles and four biological macromolecules due to the higher order of magnitude between 103 and 105. The values of thermodynamic parameters revealed that the binding forces for these systems are mainly hydrophobic interactions, electrostatic force, or hydrogen bond, respectively, which are in agreement with the results of molecular docking to a certain extent. Moreover, the information from synchronous, 3D fluorescence and UV-Vis spectroscopies proved that two compounds CPTC and PCTA could affect the microenvironment of amino acids residues of three kinds of proteins. Based on the above experimental results, a comparison of the interaction mechanisms for CPTC/PCTA-proteins/DNA systems have been performed in view of their different molecular structures, which is beneficial for the further research in order to design them as the novel drugs.
Collapse
Affiliation(s)
- Rongqiang Liu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, 571158 Haikou, China
| | - Luyong Wu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, 571158 Haikou, China
| | - Huajie Feng
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, 571158 Haikou, China
| | - Fengqi Tang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, 571158 Haikou, China
| | - Hongzong Si
- Institute for Computational Science and Engineering, Qingdao University, 266071 Qingdao, China
| | - Xiaojun Yao
- College of Chemical and Chemical Engineering, Lanzhou University, 730000 Lanzhou, China
| | - Wenying He
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, 571158 Haikou, China.
| |
Collapse
|
50
|
Yadav P, Lal K, Kumar A. Antimicrobial Screening, in Silico Studies and QSAR of Chalcone-based 1,4-disubstituted 1,2,3-triazole Hybrids. Drug Res (Stuttg) 2020; 71:149-156. [PMID: 33285581 DOI: 10.1055/a-1296-7751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The in vitro antimicrobial properties of some chalcones (1A-1C: ) and chalcone tethred 1,4-disubstituted 1,2,3-triazoles (2A-2U: ) towards different microbial strains viz. Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Aspergillus niger and Candida albicans are reported. Compounds 2G: and 2U: exhibited better potency than the standard Fluconazole with MIC values of 0.0063 µmol/mL and 0.0068 µmol/mL, respectively. Furthermore, molecular docking was performed to investigate the binding modes of two potent compounds 2Q: and 2G: with E. coli topoisomerase II DNA gyrase B and C. albicans lanosterol 14α-demethylase, respectively. Based on these results, a statistically significant quantitative structure activity relationship (QSAR) model was successfully summarized for antibacterial activity against B. subtilis.
Collapse
Affiliation(s)
- Pinki Yadav
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| | - Kashmiri Lal
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| | - Ashwani Kumar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| |
Collapse
|