1
|
Barakat K, Ragheb MA, Soliman MH, Abdelmoniem AM, Abdelhamid IA. Novel thiazole-based cyanoacrylamide derivatives: DNA cleavage, DNA/BSA binding properties and their anticancer behaviour against colon and breast cancer cells. BMC Chem 2024; 18:183. [PMID: 39304938 DOI: 10.1186/s13065-024-01284-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/30/2024] [Indexed: 09/22/2024] Open
Abstract
A novel series of 2-cyano-3-(pyrazol-4-yl)-N-(thiazol-2-yl)acrylamide derivatives (3a-f) were synthesized using Knoevenagel condensation and characterized using various spectral tools. The weak nuclease activity of compounds (3a-f) against pBR322 plasmid DNA was greatly enhanced by irradiation at 365 nm. Compounds 3b and 3c, incorporating thienyl and pyridyl moieties, respectively, exhibited the utmost nuclease activity in degrading pBR322 plasmid DNA through singlet oxygen and superoxide free radicals' species. Furthermore, compounds 3b and 3c affinities towards calf thymus DNA (CT-DNA) and bovine serum albumin (BSA) were investigated using UV-Vis and fluorescence spectroscopic analysis. They revealed good binding characteristics towards CT-DNA with Kb values of 6.68 × 104 M-1 and 1.19 × 104 M-1 for 3b and 3c, respectively. In addition, compounds 3b and 3c ability to release free radicals on radiation were targeted to be used as cytotoxic compounds in vitro for colon (HCT116) and breast cancer (MDA-MB-231) cells. A significant reduction in the cell viability on illumination at 365 nm was observed, with IC50 values of 23 and 25 µM against HCT116 cells, and 30 and 9 µM against MDA-MB-231 cells for compounds 3b and 3c, respectively. In conclusion, compounds 3b and 3c exhibited remarkable DNA cleavage and cytotoxic activity on illumination at 365 nm which might be associated with free radicals' production in addition to having a good affinity for interacting with CT-DNA and BSA.
Collapse
Affiliation(s)
- Karim Barakat
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Mohamed A Ragheb
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Marwa H Soliman
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Amr M Abdelmoniem
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Ismail A Abdelhamid
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
2
|
Al-Thani AN, Jan AG, Abbas M, Geetha M, Sadasivuni KK. Nanoparticles in cancer theragnostic and drug delivery: A comprehensive review. Life Sci 2024; 352:122899. [PMID: 38992574 DOI: 10.1016/j.lfs.2024.122899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/27/2024] [Accepted: 07/06/2024] [Indexed: 07/13/2024]
Abstract
This comprehensive review provides an in-depth analysis of how nanotechnology has revolutionized cancer theragnostic, which combines diagnostic and therapeutic methods to customize cancer treatment. The study examines the unique attributes, uses, and difficulties linked to different types of nanoparticles, including gold, iron oxide, silica, Quantum dots, Carbon nanotubes, and liposomes, in the context of cancer treatment. In addition, the paper examines the progression of nanotheranostics, emphasizing its uses in precise medication administration, photothermal therapy, and sophisticated diagnostic methods such as MRI, CT, and fluorescence imaging. Moreover, the article highlights the capacity of nanoparticles to improve the effectiveness of drugs, reduce the overall toxicity in the body, and open up new possibilities for treating cancer by releasing drugs in a controlled manner and targeting specific areas. Furthermore, it tackles concerns regarding the compatibility of nanoparticles and their potential harmful effects, emphasizing the significance of continuous study to improve nanotherapeutic methods for use in medical treatments. The review finishes by outlining potential future applications of nanotechnology in predictive oncology and customized medicine.
Collapse
Affiliation(s)
- Alshayma N Al-Thani
- College of Arts and Sciences, Department of Biological and Environmental Science, Qatar
| | - Asma Ghafoor Jan
- College of Arts and Sciences, Department of Biological and Environmental Science, Qatar
| | - Mohamed Abbas
- Centre for Advanced Materials, Qatar University, Qatar.
| | - Mithra Geetha
- Centre for Advanced Materials, Qatar University, Qatar
| | - Kishor Kumar Sadasivuni
- Centre for Advanced Materials, Qatar University, Qatar; Centre for Advanced Materials, Qatar University, Qatar Department of Mechanical and Industrial Engineering, Qatar
| |
Collapse
|
3
|
Nagavath R, Thupurani MK, Badithapuram V, Manchal R, Vasam CS, Thirukovela NS. Organo NHC catalyzed aqueous synthesis of 4β-isoxazole-podophyllotoxins: in vitro anticancer, caspase activation, tubulin polymerization inhibition and molecular docking studies. RSC Adv 2024; 14:23574-23582. [PMID: 39070249 PMCID: PMC11276401 DOI: 10.1039/d4ra04297b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024] Open
Abstract
We present, for the first time, the organo-N-heterocyclic carbene (NHC) catalyzed 1,3-dipolar cycloaddition of 4β-O-propargyl podophyllotoxin (1) with in situ aromatic nitrile oxides to afford regioselective 4β-isoxazolepodophyllotoxin hybrids (6a-n) in benign aqueous-organic media. Preliminary anticancer activity results showed that compound 6e displayed superior activity against MCF-7, HeLa and MIA PaCa2 human cell lines compared with podophyllotoxin. Compounds 6j and 6n showed greater activity against the MCF-7 cell line than the positive control. Caspase activation studies revealed that compound 6e at 20 μg ml-1 concentration had greater caspase 3/7 activation in MCF-7 and MIAPaCa2 cells than podophyllotoxin. Furthermore, in vitro tubulin polymerization inhibition studies revealed that compound 6e showed comparable activity with podophyllotoxin. Finally, in silico molecular docking studies of compounds 6e, 6j, 6n and podophyllotoxin on α,β-tubulin (pdb id 1SA0) revealed that compound 6n showed excellent binding energies and inhibition constants compared with podophyllotoxin.
Collapse
Affiliation(s)
- Rajkumar Nagavath
- Department of Chemistry, Chaitanya (Deemed to be University) Himayathnagar (V), Moinabad (M), Ranga Reddy (D) Hyderabad India
| | - Murali Krishna Thupurani
- Department of Biotechnology, Chaitanya (Deemed to be University) Himayathnagar (V), Moinabad (M), Ranga Reddy (D) Hyderabad India
| | - Vinitha Badithapuram
- Department of Chemistry, Chaitanya (Deemed to be University) Himayathnagar (V), Moinabad (M), Ranga Reddy (D) Hyderabad India
| | - Ravinder Manchal
- Department of Chemistry, Chaitanya (Deemed to be University) Himayathnagar (V), Moinabad (M), Ranga Reddy (D) Hyderabad India
| | | | - Narasimha Swamy Thirukovela
- Department of Chemistry, Chaitanya (Deemed to be University) Himayathnagar (V), Moinabad (M), Ranga Reddy (D) Hyderabad India
| |
Collapse
|
4
|
Rajabzadeh K, Sardarian AR. Well-defined nanomagnetic nitrilotriacetic acid complex of Cu(ii) supported on silica-coated nanosized magnetite: a new highly efficient and magnetically separable catalyst for C-N bond formation. RSC Adv 2024; 14:21954-21970. [PMID: 38993503 PMCID: PMC11237964 DOI: 10.1039/d4ra03675a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 06/27/2024] [Indexed: 07/13/2024] Open
Abstract
A nitrilotriacetic acid (NTA) complex of Cu(ii) supported on silica-coated nanosized magnetite Fe3O4@SiO2-Pr-DEA-[NTA-Cu(ii)]2 was prepared as a new well-defined magnetically separable nanomaterial and fully characterized via IR, XRD, FESEM, TEM, TGA, DLS, BET, VSM, solid-state UV-vis spectroscopy, EDX, ICP-OES, and FESEM-EDX map analyses. Thereafter, it was successfully applied as a new easily magnetically separable and reusable heterogeneous nanocatalyst for the Buchwald-Hartwig C-N bond formation reaction in DMF at 110 °C. Using this method, various kinds of nitrogen heterocycles, such as imidazoles, 2-methyl-1H-imidazole, benzimidazole, indole, and 10H-phenothiazine as well as aliphatic secondary amines such as piperidine, piperazine, morpholine, dimethylamine, and diethylamine, were reacted with aryl halide compounds, and the desired products were obtained with good to excellent yields. In all cases, the applied catalyst could be recovered easily and rapidly using an external magnet and reused 7 times without significant loss of catalytic activity.
Collapse
|
5
|
Alharbi HM. Exploring the Frontier of Biopolymer-Assisted Drug Delivery: Advancements, Clinical Applications, and Future Perspectives in Cancer Nanomedicine. Drug Des Devel Ther 2024; 18:2063-2087. [PMID: 38882042 PMCID: PMC11178098 DOI: 10.2147/dddt.s441325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
The burgeoning global mortality rates attributed to cancer have precipitated a critical reassessment of conventional therapeutic modalities, most notably chemotherapy, due to their pronounced adverse effects. This reassessment has instigated a paradigmatic shift towards nanomedicine, with a particular emphasis on the potentialities of biopolymer-assisted drug delivery systems. Biopolymers, distinguished by their impeccable biocompatibility, versatility, and intrinsic biomimetic properties, are rapidly ascending as formidable vectors within the cancer theragnostic arena. This review endeavors to meticulously dissect the avant-garde methodologies central to biopolymer-based nanomedicine, exploring their synthesis, functional mechanisms, and subsequent clinical ramifications. A key focus of this analysis is the pioneering roles and efficacies of lipid-based, polysaccharide, and composite nano-carriers in enhancing drug delivery, notably amplifying the enhanced permeation and retention effect. This examination is further enriched by referencing flagship nano formulations that have received FDA endorsement, thereby underscoring the transformative potential and clinical viability of biopolymer-based nanomedicines. Furthermore, this discourse illuminates groundbreaking advancements in the realm of photodynamic therapy and elucidates the implications of advanced imaging techniques in live models. Conclusively, this review not only synthesizes current research trajectories but also delineates visionary pathways for the integration of cutting-edge biomaterials in cancer treatment. It charts a course for future explorations within the dynamic domain of biopolymer-nanomedicine, thereby contributing to a deeper understanding and enhanced application of these novel therapeutic strategies.
Collapse
Affiliation(s)
- Hanan M Alharbi
- Department of Pharmaceutical Sciences, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
6
|
Tyagi K, Venkatesh V. Emerging potential approaches in alkaline phosphatase (ALP) activatable cancer theranostics. RSC Med Chem 2024; 15:1148-1160. [PMID: 38665831 PMCID: PMC11042160 DOI: 10.1039/d3md00565h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/09/2024] [Indexed: 04/28/2024] Open
Abstract
Alkaline phosphatase (ALP) is known as one of the most crucial members of the phosphatase family and encompasses the enormous ability to hydrolyze the phosphate group in various biomolecules; by this, it regulates several events in the pool of biological medium. Owing to its overexpression in various cancer cells, recently, its potential has evolved as a prominent biomarker in cancer research. In this article, we have underlined the recent advances (2019 onwards) of alkaline phosphatase in the arena of emerging cancer theranostics. Herein, we mainly focused on phosphate-locked molecular systems such as peptides, prodrugs, and aggregation-induced emission (AIE)-based molecules. When these theranostics encounter cancer cell-overexpressed ALP, it results in the hydrolysis of the phosphate group, which leads to the release of highly cytotoxic agents along with turn-on fluorophore/pre-existing fluorophore.
Collapse
Affiliation(s)
- Kartikay Tyagi
- Laboratory of Chemical Biology and Medicinal Chemistry, Department of Chemistry, Indian Institute of Technology Roorkee Uttarakhand-247667 India
| | - V Venkatesh
- Laboratory of Chemical Biology and Medicinal Chemistry, Department of Chemistry, Indian Institute of Technology Roorkee Uttarakhand-247667 India
| |
Collapse
|
7
|
Salazar Sandoval S, Díaz-Saldívar P, Araya I, Celis F, Cortés-Arriagada D, Riveros A, Rojas-Romo C, Jullian C, Silva N, Yutronic N, Kogan MJ, Jara P. Controlled Release of the Anticancer Drug Cyclophosphamide from a Superparamagnetic β-Cyclodextrin Nanosponge by Local Hyperthermia Generated by an Alternating Magnetic Field. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38640460 DOI: 10.1021/acsami.3c18038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
A β-cyclodextrin (β-CD) nanosponge (NS) was synthesized using diphenyl carbonate (DPC) as a cross-linker to encapsulate the antitumor drug cyclophosphamide (CYC), thus obtaining the NSs-CYC system. The formulation was then associated with magnetite nanoparticles (MNPs) to develop the MNPs-NSs-CYC ternary system. The formulations mentioned above were characterized to confirm the deposition of the MNPs onto the organic matrix and that the superparamagnetic nature of the MNPs was preserved upon association. The association of the MNPs with the NSs-drug complex was confirmed through field emission scanning electron microscopy, energy dispersive spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, dynamic light scattering, ζ-potential, atomic absorption spectroscopy, X-ray powder diffraction, selected area electron diffraction, and vibrating-sample magnetometer. The superparamagnetic properties of the ternary system allowed the release of CYC by utilizing magnetic hyperthermia upon the exposure of an alternating magnetic field (AMF). The drug release experiments were carried out at different frequencies and intensities of the magnetic field, complying with the "Atkinson-Brezovich criterion". The assays in AMF showed the feasibility of release by controlling hyperthermia of the drug, finding that the most efficient conditions were F = 280 kHz, H = 15 mT, and a concentration of MNPs of 5 mg/mL. CYC release was temperature-dependent, facilitated by local heat generation through magnetic hyperthermia. This phenomenon was confirmed by DFT calculations. Furthermore, the ternary systems outperformed the formulations without MNPs regarding the amount of released drug. The MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assays demonstrated that including CYC within the magnetic NS cavities reduced the effects on mitochondrial activity compared to those observed with the free drug. Finally, the magnetic hyperthermia assays showed that the tertiary system allows the generation of apoptosis in HeLa cells, demonstrating that the MNPs embedded maintain their properties to generate hyperthermia. These results suggest that using NSs associated with MNPs could be a potential tool for a controlled drug delivery in tumor therapy since the materials are efficient and potentially nontoxic.
Collapse
Affiliation(s)
- Sebastián Salazar Sandoval
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile
- Departamento de Química Farmacológica y Toxicológica, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile
- Facultad de Diseño, Universidad del Desarrollo, Avenida Plaza 680, Las Condes, Santiago 7610658, Chile
| | - Patricia Díaz-Saldívar
- Laboratorio de Nanomedicina y Biosensores, Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile
| | - Ingrid Araya
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Santiago 8370003, Chile
| | - Freddy Celis
- Laboratorio de Procesos Fotónicos y Electroquímicos, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Valparaíso 2360002, Chile
| | - Diego Cortés-Arriagada
- Instituto Universitario de Investigación y Desarrollo Tecnológico, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago 8940577, Chile
| | - Ana Riveros
- Departamento de Química Farmacológica y Toxicológica, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile
| | - Carlos Rojas-Romo
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile
| | - Carolina Jullian
- Departamento de Química Orgánica y Fisicoquímica, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
| | - Nataly Silva
- Facultad de Diseño, Universidad del Desarrollo, Avenida Plaza 680, Las Condes, Santiago 7610658, Chile
| | - Nicolás Yutronic
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile
| | - Marcelo J Kogan
- Departamento de Química Farmacológica y Toxicológica, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile
| | - Paul Jara
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile
| |
Collapse
|
8
|
Wang X, Zhao Y, Yan M, Liang X, Zhao N, Lu T. iRGD mediated pH-responsive mesoporous silica enhances drug accumulation in tumors. Eur J Pharm Sci 2024; 195:106725. [PMID: 38346565 DOI: 10.1016/j.ejps.2024.106725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/23/2024] [Accepted: 02/07/2024] [Indexed: 02/29/2024]
Abstract
The limited penetration of nanocarriers into tumors and the slow release of drugs from these carriers to tumor cells are significant challenges in cancer therapy. In this study, we developed a novel drug delivery carrier derived from mesoporous silica, dually modified with the tumor-homing cyclic peptide iRGD (CRGDKGPDC) and the pH-responsive polymer poly(2-ethyl-2-oxazoline) (PEOz) for treating triple-negative breast cancer. The carrier selectively bound to the αvβ3 integrin receptor, which is specifically expressed in MDA-MB-231 breast cancer cells and vessels. Subsequently, it penetrated deep into the tumor parenchyma through NRP-1 receptor-dependent internalization, with the drug-loaded particles releasing drugs rapidly in the acidic cytoplasmic environment. Results indicated that the drug release rate of PEOz-modified formulations was pH-dependent. Lysosomal escape experiments demonstrated that PEOz-modified particles efficiently escaped lysosomes to release drugs. In vitro cytotoxicity assays revealed that iRGD-functionalized particles were more cytotoxic to NRP-1-positive MDA-MB-231 cells compared to NRP-1-negative MCF-7 cells. Cellular uptake studies demonstrated that iRGD mediated enhanced endocytosis of nanoparticles into MDA-MB-231 cells. In vitro tumor cell spheroid penetration assays confirmed that the PEOz and iRGD dual-modified carrier facilitated deeper distribution of DOX in multicellular spheroids compared to free DOX. Moreover, in a nude mouse model of triple-negative breast cancer, the dual-modified drug-loaded carrier significantly inhibited tumor growth without inducing weight loss or liver and kidney damage. This dual-modified mesoporous silica presents a novel and promising delivery carrier for enhancing cancer treatment.
Collapse
Affiliation(s)
- Xiaoning Wang
- College of Pharmacy, Xi'an Medical University, Xi'an, Shaanxi 710021, PR China; The School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China.
| | - Yangguang Zhao
- College of Pharmacy, Xi'an Medical University, Xi'an, Shaanxi 710021, PR China
| | - Mengru Yan
- College of Pharmacy, Xi'an Medical University, Xi'an, Shaanxi 710021, PR China
| | - Xiaoyan Liang
- College of Pharmacy, Xi'an Medical University, Xi'an, Shaanxi 710021, PR China
| | - Ning Zhao
- College of Pharmacy, Xi'an Medical University, Xi'an, Shaanxi 710021, PR China
| | - Tingli Lu
- The School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China
| |
Collapse
|
9
|
Lu A, Li S. Polysaccharides as a Hydrophilic Building Block of Amphiphilic Block Copolymers for the Conception of Nanocarriers. Pharmaceutics 2024; 16:467. [PMID: 38675130 PMCID: PMC11054713 DOI: 10.3390/pharmaceutics16040467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Polysaccharides are gaining increasing attention for their relevance in the production of sustainable materials. In the domain of biomaterials, polysaccharides play an important role as hydrophilic components in the design of amphiphilic block copolymers for the development of drug delivery systems, in particular nanocarriers due to their outstanding biocompatibility, biodegradability, and structural versatility. The presence of a reducing end in polysaccharide chains allows for the synthesis of polysaccharide-based block copolymers. Compared with polysaccharide-based graft copolymers, the structure of block copolymers can be more precisely controlled. In this review, the synthesis methods of polysaccharide-based amphiphilic block copolymers are discussed in detail, taking into consideration the structural characteristics of polysaccharides. Various synthetic approaches, including reductive amination, oxime ligation, and other chain-end modification reactions, are explored. This review also focuses on the advantages of polysaccharides as hydrophilic blocks in polymeric nanocarriers. The structure and unique properties of different polysaccharides such as cellulose, hyaluronic acid, chitosan, alginate, and dextran are described along with examples of their applications as hydrophilic segments in the synthesis of amphiphilic copolymers to construct nanocarriers for sustained drug delivery.
Collapse
Affiliation(s)
- Aijing Lu
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610064, China;
| | - Suming Li
- Institut Européen des Membranes, UMR CNRS 5635, Université de Montpellier, 34095 Montpellier, France
| |
Collapse
|
10
|
Ghosh A, Maske P, Patel V, Dubey J, Aniket K, Srivastava R. Theranostic applications of peptide-based nanoformulations for growth factor defective cancers. Int J Biol Macromol 2024; 260:129151. [PMID: 38181914 DOI: 10.1016/j.ijbiomac.2023.129151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
Growth factors play a pivotal role in orchestrating cellular growth and division by binding to specific cell surface receptors. Dysregulation of growth factor production or activity can contribute to the uncontrolled cell proliferation observed in cancer. Peptide-based nanoformulations (PNFs) have emerged as promising therapeutic strategies for growth factor-deficient cancers. PNFs offer multifaceted capabilities including targeted delivery, imaging modalities, combination therapies, resistance modulation, and personalized medicine approaches. Nevertheless, several challenges remain, including limited specificity, stability, pharmacokinetics, tissue penetration, toxicity, and immunogenicity. To address these challenges and optimize PNFs for clinical translation, in-depth investigations are warranted. Future research should focus on elucidating the intricate interplay between peptides and nanoparticles, developing robust spectroscopic and computational methodologies, and establishing a comprehensive understanding of the structure-activity relationship governing peptide-nanoparticle interactions. Bridging these knowledge gaps will propel the translation of peptide-nanoparticle therapies from bench to bedside. While a few peptide-nanoparticle drugs have obtained FDA approval for cancer treatment, the integration of nanostructured platforms with peptide-based medications holds tremendous potential to expedite the implementation of innovative anticancer interventions. Therefore, growth factor-deficient cancers present both challenges and opportunities for targeted therapeutic interventions, with peptide-based nanoformulations positioned as a promising avenue. Nonetheless, concerted research and development endeavors are essential to optimize the specificity, stability, and safety profiles of PNFs, thereby advancing the field of peptide-based nanotherapeutics in the realm of oncology research.
Collapse
Affiliation(s)
- Arnab Ghosh
- Indian Institute of Technology Bombay, NanoBios lab, Department of Biosciences and Bioengineering, Mumbai, India.
| | - Priyanka Maske
- Indian Institute of Technology Bombay, NanoBios lab, Department of Biosciences and Bioengineering, Mumbai, India
| | - Vinay Patel
- Indian Institute of Technology Bombay, NanoBios lab, Department of Biosciences and Bioengineering, Mumbai, India
| | - Jyoti Dubey
- Indian Institute of Technology Bombay, NanoBios lab, Department of Biosciences and Bioengineering, Mumbai, India
| | - Kundu Aniket
- Indian Institute of Technology Bombay, NanoBios lab, Department of Biosciences and Bioengineering, Mumbai, India.
| | - Rohit Srivastava
- Indian Institute of Technology Bombay, NanoBios lab, Department of Biosciences and Bioengineering, Mumbai, India.
| |
Collapse
|
11
|
Zhong Y, Zeng W, Chen Y, Zhu X. The effect of lipid metabolism on cuproptosis-inducing cancer therapy. Biomed Pharmacother 2024; 172:116247. [PMID: 38330710 DOI: 10.1016/j.biopha.2024.116247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024] Open
Abstract
Cuproptosis provides a new therapeutic strategy for cancer treatment and is thought to have broad clinical application prospects. Nevertheless, some oncological clinical trials have yet to demonstrate favorable outcomes, highlighting the need for further research into the molecular mechanisms underlying cuproptosis in tumors. Cuproptosis primarily hinges on the intracellular accumulation of copper, with lipid metabolism exerting a profound influence on its course. The interaction between copper metabolism and lipid metabolism is closely related to cuproptosis. Copper imbalance can affect mitochondrial respiration and lipid metabolism changes, while lipid accumulation can promote copper uptake and absorption, and inhibit cuproptosis induced by copper. Anomalies in lipid metabolism can disrupt copper homeostasis within cells, potentially triggering cuproptosis. The interaction between cuproptosis and lipid metabolism regulates the occurrence, development, metastasis, chemotherapy drug resistance, and tumor immunity of cancer. Cuproptosis is a promising new target for cancer treatment. However, the influence of lipid metabolism and other factors should be taken into consideration. This review provides a brief overview of the characteristics of the interaction between cuproptosis and lipid metabolism in cancer and analyses potential strategies of applying cuproptosis for cancer treatment.
Collapse
Affiliation(s)
- Yue Zhong
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Wei Zeng
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Yongbo Chen
- Rehabilitation College of Gannan Medical University, Ganzhou 341000, China
| | - Xiuzhi Zhu
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
12
|
Yin C, Hemstedt J, Scheuer K, Struczyńska M, Weber C, Schubert US, Bossert J, Jandt KD. The Effect of Stereocomplexation and Crystallinity on the Degradation of Polylactide Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:440. [PMID: 38470771 DOI: 10.3390/nano14050440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/03/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024]
Abstract
Polymeric nanoparticles (PNPs) are frequently researched and used in drug delivery. The degradation of PNPs is highly dependent on various properties, such as polymer chemical structure, size, crystallinity, and melting temperature. Hence, a precise understanding of PNP degradation behavior is essential for optimizing the system. This study focused on enzymatic hydrolysis as a degradation mechanism by investigation of the degradation of PNP with various crystallinities. The aliphatic polyester polylactide ([C3H4O2]n, PLA) was used as two chiral forms, poly l-lactide (PlLA) and poly d-lactide (PdLA), and formed a unique crystalline stereocomplex (SC). PNPs were prepared via a nanoprecipitation method. In order to further control the crystallinity and melting temperatures of the SC, the polymer poly(3-ethylglycolide) [C6H8O4]n (PEtGly) was synthesized. Our investigation shows that the PNP degradation can be controlled by various chemical structures, crystallinity and stereocomplexation. The influence of proteinase K on PNP degradation was also discussed in this research. AFM did not reveal any changes within the first 24 h but indicated accelerated degradation after 7 days when higher EtGly content was present, implying that lower crystallinity renders the particles more susceptible to hydrolysis. QCM-D exhibited reduced enzyme adsorption and a slower degradation rate in SC-PNPs with lower EtGly contents and higher crystallinities. A more in-depth analysis of the degradation process unveiled that QCM-D detected rapid degradation from the outset, whereas AFM exhibited delayed changes of degradation. The knowledge gained in this work is useful for the design and creation of advanced PNPs with enhanced structures and properties.
Collapse
Affiliation(s)
- Chuan Yin
- Chair of Material Science (CMS), Otto Schott Institute for Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany
| | - Jenny Hemstedt
- Chair of Material Science (CMS), Otto Schott Institute for Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany
| | - Karl Scheuer
- Chair of Material Science (CMS), Otto Schott Institute for Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany
| | - Maja Struczyńska
- Chair of Material Science (CMS), Otto Schott Institute for Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany
- Jena School for Microbial Communication (JSMC), Neugasse 23, 07743 Jena, Germany
| | - Christine Weber
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
| | - Ulrich S Schubert
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
| | - Jörg Bossert
- Chair of Material Science (CMS), Otto Schott Institute for Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany
| | - Klaus D Jandt
- Chair of Material Science (CMS), Otto Schott Institute for Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany
- Jena School for Microbial Communication (JSMC), Neugasse 23, 07743 Jena, Germany
| |
Collapse
|
13
|
Trivedi HD, Patel BY, Hadiyal SD, Italiya G, Ramalingam PS. A green one-pot synthetic protocol of hexahydropyrimido[4,5-d]pyrimidin-4(1H)-one derivatives: molecular docking, ADMET, anticancer and antimicrobial studies. Mol Divers 2024; 28:183-195. [PMID: 37566199 DOI: 10.1007/s11030-023-10712-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Ten hexahydropyrimido[4,5-d]pyrimidine derivatives have been synthesized by using a green and time-efficient microwave method. The synthesized motifs were evaluated for their anticancer activity, antimicrobial activity, molecular docking, drug likeliness and ADMET studies. Comparatively, the hetero-aromatic pyrazole substituted compound 4a exhibited the highest anticancer activity [Mean growth percent: 35.57], while EDG [-N(CH3)2] substituted compound 4i indicated very good activity [Mean growth percent: 60.92] against various cell lines. From the computational studies, Compound 4a passed the drug-likeness and ADME properties, fewer toxic properties, and potent inhibitory potential against the RIPK2 with significant binding affinity. In-silico molecular docking revealed that the compound 4a has significant binding energy (- 9.8 kcal/mol) and dissociation constant (0.54 µM) properties. Additionally, synthesized motifs were evaluated for antimicrobial activity by MIC referencing the standards. According to the SAR evaluations, the compounds 4f (4-NO2), 4g (3-NO2), and 4h (2-Cl) that include EWGs substituted aldehydes performed well as antimicrobials against selected bacterial and fungal strains. Thus, the synthesized pyrimido[4,5-d]pyrimidine with the heterocyclic and EWGs substituents could act as a potential candidate after further structural optimization for anticancer and antimicrobial drug discovery, respectively.
Collapse
Affiliation(s)
- Harsh D Trivedi
- Department of Chemistry, B.V. Shah (Vadi-Vihar) Science College, C.U. Shah University, Wadhwan City, Gujarat, 363001, India
| | - Bonny Y Patel
- Department of Chemistry, School of Science, RK University, Rajkot, Gujarat, 360020, India.
| | - Sanjay D Hadiyal
- Department of Chemistry, Atmiya University, Rajkot, Gujarat, 360005, India
| | - Gopal Italiya
- School of Bio Science and Technology (SBST), Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | | |
Collapse
|
14
|
Zaib S, Shah HS, Khan I, Jawad Z, Sarfraz M, Riaz H, Asjad HMM, Ishtiaq M, Ogaly HA, Othman G, Ahmed DAEM. Fabrication and evaluation of anticancer potential of diosgenin incorporated chitosan-silver nanoparticles; in vitro, in silico and in vivo studies. Int J Biol Macromol 2024; 254:127975. [PMID: 37944715 DOI: 10.1016/j.ijbiomac.2023.127975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/22/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
The discovery of effective therapeutic approaches with minimum side effects and their tendency to completely eradicate the disease is the main challenge in the history of cancer treatment. Fenugreek (FGK) seeds are a rich source of phytochemicals, especially Diosgenin (DGN), which shows outstanding anticancer activities. In the present study, chitosan-silver nanoparticles (ChAgNPs) containing Diosgenin (DGN-ChAgNPs) were synthesized and evaluated for their anticancer activity against breast cancer cell line (MCF-7). For the physical characterization, the hydrodynamic diameter and zeta potential of DGN-ChAgNPs were determined to be 160.4 ± 12 nm and +37.19 ± 5.02 mV, respectively. Transmission electron microscopy (TEM) showed that nanoparticles shape was mostly round with smooth edges. Moreover, DGN was efficiently entrapped in nanoformulation with good entrapment efficacy (EE) of ~88 ± 4 %. The in vitro anti-proliferative activity of DGN-ChAgNPs was performed by sulforhodamine B (SRB) assay with promising inhibitory concentration of 6.902 ± 2.79 μg/mL. DAPI staining, comet assay and flow cytometry were performed to validate the anticancer potential of DGN-ChAgNPs both qualitatively and quantitatively. The percentage of survival rate and tumor reduction weight was evaluated in vivo in different groups of mice. Cisplatin was used as a standard anticancer drug. The DGN-ChAgNPs (12.5 mg/kg) treated group revealed higher percentage of survival rate and tumor reduction weight as compared to pure DGN treated group. These findings suggest that DGN-ChAgNPs could be developed as potential treatment therapy for breast cancer.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan.
| | - Hamid Saeed Shah
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan.
| | - Imtiaz Khan
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.
| | - Zobia Jawad
- Ladywillingdon Hospital, King Edward Medical University, Lahore, Pakistan
| | - Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Al Ain 64141, United Arab Emirates
| | - Huma Riaz
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan
| | - Hafiz Muhammad Mazhar Asjad
- Department of Pharmaceutical Sciences, Faculty of Biomedical Sciences and Engineering, Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology, Mang, Khanpur Road, Haripur, KPK, Pakistan
| | - Memoona Ishtiaq
- Leads College of Pharmacy, Lahore LEADS University, Lahore, Pakistan
| | - Hanan A Ogaly
- Chemistry Department, College of Science, King Khalid University, Abha 61421, Saudi Arabia
| | - Gehan Othman
- Biology Department, College of Science, King Khalid University, Abha 61421, Saudi Arabia
| | | |
Collapse
|
15
|
Zou P, Wu C, Liu TCY, Duan R, Yang L. Oligodendrocyte progenitor cells in Alzheimer's disease: from physiology to pathology. Transl Neurodegener 2023; 12:52. [PMID: 37964328 PMCID: PMC10644503 DOI: 10.1186/s40035-023-00385-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/01/2023] [Indexed: 11/16/2023] Open
Abstract
Oligodendrocyte progenitor cells (OPCs) play pivotal roles in myelin formation and phagocytosis, communicating with neighboring cells and contributing to the integrity of the blood-brain barrier (BBB). However, under the pathological circumstances of Alzheimer's disease (AD), the brain's microenvironment undergoes detrimental changes that significantly impact OPCs and their functions. Starting with OPC functions, we delve into the transformation of OPCs to myelin-producing oligodendrocytes, the intricate signaling interactions with other cells in the central nervous system (CNS), and the fascinating process of phagocytosis, which influences the function of OPCs and affects CNS homeostasis. Moreover, we discuss the essential role of OPCs in BBB formation and highlight the critical contribution of OPCs in forming CNS-protective barriers. In the context of AD, the deterioration of the local microenvironment in the brain is discussed, mainly focusing on neuroinflammation, oxidative stress, and the accumulation of toxic proteins. The detrimental changes disturb the delicate balance in the brain, impacting the regenerative capacity of OPCs and compromising myelin integrity. Under pathological conditions, OPCs experience significant alterations in migration and proliferation, leading to impaired differentiation and a reduced ability to produce mature oligodendrocytes. Moreover, myelin degeneration and formation become increasingly active in AD, contributing to progressive neurodegeneration. Finally, we summarize the current therapeutic approaches targeting OPCs in AD. Strategies to revitalize OPC senescence, modulate signaling pathways to enhance OPC differentiation, and explore other potential therapeutic avenues are promising in alleviating the impact of AD on OPCs and CNS function. In conclusion, this review highlights the indispensable role of OPCs in CNS function and their involvement in the pathogenesis of AD. The intricate interplay between OPCs and the AD brain microenvironment underscores the complexity of neurodegenerative diseases. Insights from studying OPCs under pathological conditions provide a foundation for innovative therapeutic strategies targeting OPCs and fostering neurodegeneration. Future research will advance our understanding and management of neurodegenerative diseases, ultimately offering hope for effective treatments and improved quality of life for those affected by AD and related disorders.
Collapse
Affiliation(s)
- Peibin Zou
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Timon Cheng-Yi Liu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Rui Duan
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
16
|
Rampogu S, Badvel P, Hoon Jo B, Kim Y, Kim SW, Lee KW. A review on Millepachine and its derivatives as potential multitarget anticancer agents. Biochem Biophys Res Commun 2023; 681:249-270. [PMID: 37793311 DOI: 10.1016/j.bbrc.2023.09.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/04/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023]
Abstract
Chalcones have a long history of being used for many medical purposes. These are the most prestigious scaffolds in medicine. The potential of Millepachine and its derivatives to treat various malignancies has been demonstrated in this review. The anticancer effects of Millepachine and its derivatives on ovarian cancer, hepatocellular carcinoma, breast, liver, colon, cervical, prostate, stomach, and gliomas are highlighted in the current review. Several genes that are crucial in reducing the severity of the disease have been altered by these substances. They mainly work by preventing tubulin polymerizing. They also exhibit apoptosis and cell cycle arrest at the G2/M phase. Additionally, these compounds inhibit invasion and migration and have antiproliferative effects. Preclinical studies have shown that Millepachine and its derivatives offer exceptional potential for treating a number of cancers. These results need to be confirmed in clinical research in order to develop viable cancer therapies.
Collapse
Affiliation(s)
- Shailima Rampogu
- Department of Bio & Medical Big Data (BK4 Program), Division of Life Sciences, Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828, South Korea.
| | | | - Byung Hoon Jo
- Division of Applied Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea; ABC-RLRC, Gyeongsang National University, Jinju, 52828, Republic of Korea; Division of Life Science and Research Institute of Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Yongseong Kim
- Department of Pharmaceutical Engineering, Kyungnam University, Changwon, 51767, Republic of Korea
| | - Seon-Won Kim
- Division of Applied Life Science (BK21 Four), ABC-RLRC, PMBBRC, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| | - Keun Woo Lee
- Department of Bio & Medical Big Data (BK4 Program), Division of Life Sciences, Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828, South Korea.
| |
Collapse
|
17
|
Anwer KE, Sayed GH, Essa BM, Selim AA. Green synthesis of highly functionalized heterocyclic bearing pyrazole moiety for cancer-targeted chemo/radioisotope therapy. BMC Chem 2023; 17:139. [PMID: 37853452 PMCID: PMC10585773 DOI: 10.1186/s13065-023-01053-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023] Open
Abstract
New derivatives of heterocyclic bearing pyrazole moiety were synthesized (eight new compounds from 2 to 9) via green synthesis methods (microwave-assisted and grinding techniques). 4,6-Diamino-1,3-diphenyl-1H-pyrazolo[3,4-b]pyridine-5-carbonitrile (2) shows high anti-cancer activity against both HepG2 and HCT-116 with IC50 of 9.2 ± 2.8 and 7.7 ± 1.8 µM, respectively, which referenced to 5-Fu which is showing activity of 7.86 ± 0.5 and 5.35 ± 0.3 against both HepG2 and HCT-116, respectively. The cytotoxic activity against HCT-116 and HepG2 was slightly decreased and slightly increased, respectively, by a different pyrazole moiety (compound 5). Pharmacokinetics of compound 2 was carried out using the radioiodination technique in tumour-bearing Albino mice which shows good uptake at the tumour site. The biodistribution showed high accumulation in tumour tissues with a ratio of 13.7% ID/g organ after one hour in comparison with 2.97% ID/g organ at normal muscle at the same time point. As I-131 has maximum beta and gamma energies of 606.3 and 364.5 keV, respectively, therefore the newly synthesized compound 2 may be used for chemotherapy and TRT.
Collapse
Affiliation(s)
- Kurls E Anwer
- Heterocyclic Synthesis Lab, Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Galal H Sayed
- Heterocyclic Synthesis Lab, Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Basma M Essa
- Radioactive Isotopes and Generators Department, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt.
| | - Adli A Selim
- Labelled Compounds Department, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt
| |
Collapse
|
18
|
Bhattacharya T, Preetam S, Ghosh B, Chakrabarti T, Chakrabarti P, Samal SK, Thorat N. Advancement in Biopolymer Assisted Cancer Theranostics. ACS APPLIED BIO MATERIALS 2023; 6:3959-3983. [PMID: 37699558 PMCID: PMC10583232 DOI: 10.1021/acsabm.3c00458] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023]
Abstract
Applications of nanotechnology have increased the importance of research and nanocarriers, which have revolutionized the method of drug delivery to treat several diseases, including cancer, in the past few years. Cancer, one of the world's fatal diseases, has drawn scientists' attention for its multidrug resistance to various chemotherapeutic drugs. To minimize the side effects of chemotherapeutic agents on healthy cells and to develop technological advancement in drug delivery systems, scientists have developed an alternative approach to delivering chemotherapeutic drugs at the targeted site by integrating it inside the nanocarriers like synthetic polymers, nanotubes, micelles, dendrimers, magnetic nanoparticles, quantum dots (QDs), lipid nanoparticles, nano-biopolymeric substances, etc., which has shown promising results in both preclinical and clinical trials of cancer management. Besides that, nanocarriers, especially biopolymeric nanoparticles, have received much attention from researchers due to their cost-effectiveness, biodegradability, treatment efficacy, and ability to target drug delivery by crossing the blood-brain barrier. This review emphasizes the fabrication processes, the therapeutic and theragnostic applications, and the importance of different biopolymeric nanocarriers in targeting cancer both in vitro and in vivo, which conclude with the challenges and opportunities of future exploration using biopolymeric nanocarriers in onco-therapy with improved availability and reduced toxicity.
Collapse
Affiliation(s)
- Tanima Bhattacharya
- Department
of Food and Nutrition, College of Human Ecology, Kyung Hee University, 26 Kyunghee-daero, Dongdaemun-gu, Seoul 02447, Republic
of Korea
- Nondestructive
Bio-Sensing Laboratory, Dept. of Biosystems Machinery Engineering,
College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Subham Preetam
- Centre
for Biotechnology, Siksha O Anusandhan (Deemed
to be University), Bhubaneswar 751024, Odisha, India
- Daegu
Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea
| | - Basab Ghosh
- KIIT
School of Biotechnology, Kalinga Institute
of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Tulika Chakrabarti
- Department
of Chemistry, Sir Padampat Singhania University, Bhatewar, Udaipur 313601, Rajasthan, India
| | | | - Shailesh Kumar Samal
- Section of
Immunology and Chronic Disease, Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Nanasaheb Thorat
- Nuffield
Department of Women’s & Reproductive Health, Medical Science
Division, John Radcliffe Hospital University
of Oxford, Oxford OX3 9DU, United Kingdom
- Department
of Physics, Bernal Institute and Limerick Digital Cancer Research
Centre (LDCRC), University of Limerick, Castletroy, Limerick V94T9PX, Ireland
| |
Collapse
|
19
|
Juhász Á, Ungor D, Varga N, Katona G, Balogh GT, Csapó E. Lipid-Based Nanocarriers for Delivery of Neuroprotective Kynurenic Acid: Preparation, Characterization, and BBB Transport. Int J Mol Sci 2023; 24:14251. [PMID: 37762551 PMCID: PMC10531491 DOI: 10.3390/ijms241814251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Encapsulation possibilities of an extensively investigated neuroprotective drug (kynurenic acid, KYNA) are studied via lipid-based nanocarriers to increase the blood-brain barrier (BBB) specific permeability. The outcomes of various preparation conditions such as stirring and sonication time, concentration of the lipid carriers and the drug, and the drug-to-lipid ratio are examined. Considering the experimentally determined encapsulation efficiency, hydrodynamic diameter, and ζ-potential values, the initial lipid and drug concentration as well as the stirring and sonication time of the preparation were optimized. The average hydrodynamic diameter of the prepared asolectin-(LIP) and water-soluble lipopolymer (WSLP)-based liposomes was found to be ca. 25 and 60 nm under physiological conditions. The physicochemical characterization of the colloidal carriers proves that the preparation of the drug-loaded liposomes was a successful process, and secondary interactions were indicated between the drug molecule and the polymer residues around the WSLP membrane. Dissolution profiles of the active molecule under physiological conditions were registered, and the release of the unformulated and encapsulated drug is very similar. In addition to this outcome, the in vitro polar brain lipid extract (porcine)-based permeability test proved the achievement of two- or fourfold higher BBB specific penetration and lipid membrane retention for KYNA in the liposomal carriers relative to the unformatted drug.
Collapse
Affiliation(s)
- Ádám Juhász
- Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich B. Sqr. 1, H-6720 Szeged, Hungary;
- MTA-SZTE Lendület “Momentum” Noble Metal Nanostructures Research Group, University of Szeged, Rerrich B. Sqr. 1, H-6720 Szeged, Hungary;
| | - Ditta Ungor
- MTA-SZTE Lendület “Momentum” Noble Metal Nanostructures Research Group, University of Szeged, Rerrich B. Sqr. 1, H-6720 Szeged, Hungary;
| | - Norbert Varga
- Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich B. Sqr. 1, H-6720 Szeged, Hungary;
- MTA-SZTE Lendület “Momentum” Noble Metal Nanostructures Research Group, University of Szeged, Rerrich B. Sqr. 1, H-6720 Szeged, Hungary;
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Str. 6, H-6720 Szeged, Hungary;
| | - György T. Balogh
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre út 9, H-1092 Budapest, Hungary;
- Department of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, Műegyetem Rakpart 3, H-1111 Budapest, Hungary
| | - Edit Csapó
- Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich B. Sqr. 1, H-6720 Szeged, Hungary;
- MTA-SZTE Lendület “Momentum” Noble Metal Nanostructures Research Group, University of Szeged, Rerrich B. Sqr. 1, H-6720 Szeged, Hungary;
| |
Collapse
|
20
|
Malik S, Muhammad K, Waheed Y. Emerging Applications of Nanotechnology in Healthcare and Medicine. Molecules 2023; 28:6624. [PMID: 37764400 PMCID: PMC10536529 DOI: 10.3390/molecules28186624] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Knowing the beneficial aspects of nanomedicine, scientists are trying to harness the applications of nanotechnology in diagnosis, treatment, and prevention of diseases. There are also potential uses in designing medical tools and processes for the new generation of medical scientists. The main objective for conducting this research review is to gather the widespread aspects of nanomedicine under one heading and to highlight standard research practices in the medical field. Comprehensive research has been conducted to incorporate the latest data related to nanotechnology in medicine and therapeutics derived from acknowledged scientific platforms. Nanotechnology is used to conduct sensitive medical procedures. Nanotechnology is showing successful and beneficial uses in the fields of diagnostics, disease treatment, regenerative medicine, gene therapy, dentistry, oncology, aesthetics industry, drug delivery, and therapeutics. A thorough association of and cooperation between physicians, clinicians, researchers, and technologies will bring forward a future where there is a more calculated, outlined, and technically programed field of nanomedicine. Advances are being made to overcome challenges associated with the application of nanotechnology in the medical field due to the pathophysiological basis of diseases. This review highlights the multipronged aspects of nanomedicine and how nanotechnology is proving beneficial for the health industry. There is a need to minimize the health, environmental, and ethical concerns linked to nanotechnology.
Collapse
Affiliation(s)
- Shiza Malik
- Bridging Health Foundation, Rawalpindi 46000, Pakistan
| | - Khalid Muhammad
- Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates
| | - Yasir Waheed
- Office of Research, Innovation and Commercialization, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad 44000, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos 1401, Lebanon
| |
Collapse
|
21
|
Huang W, Yao F, Tian S, Liu M, Liu G, Jiang Y. Recent Advances in Zein-Based Nanocarriers for Precise Cancer Therapy. Pharmaceutics 2023; 15:1820. [PMID: 37514006 PMCID: PMC10384823 DOI: 10.3390/pharmaceutics15071820] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer has emerged as a leading cause of death worldwide. However, the pursuit of precise cancer therapy and high-efficiency delivery of antitumor drugs remains an enormous obstacle. The major challenge is the lack of a smart drug delivery system with the advantages of biodegradability, biocompatibility, stability, targeting and response release. Zein, a plant-based protein, possesses a unique self-assembly ability to encapsulate anticancer drugs directly or indirectly. Using zein as a nanotherapeutic pharmaceutic preparation can protect anticancer drugs from harsh environments, such as sunlight, stomach acid and pepsin. Moreover, the surface functionalization of zein is easily realized, which can endow it with targeting and stimulus-responsive release capacity. Hence, zein is an ideal nanocarrier for the precise delivery of anticancer drugs. Combined with our previous research experiences, we attempt to review the current state of the preparation of zein-based nanocarriers for anticancer drug delivery. The challenges, solutions and development trends of zein-based nanocarriers for precise cancer therapy are discussed. This review will provide a guideline for precise cancer therapy in the future.
Collapse
Affiliation(s)
- Wenquan Huang
- College of Medicine and Health Science, China Three Gorges University, Yichang 443002, China
| | - Fei Yao
- College of Medicine and Health Science, China Three Gorges University, Yichang 443002, China
| | - Shuangyan Tian
- College of Medicine and Health Science, China Three Gorges University, Yichang 443002, China
| | - Mohao Liu
- College of Medicine and Health Science, China Three Gorges University, Yichang 443002, China
| | - Guijin Liu
- School of Pharmaceutical Sciences, Hainan University, Haikou 570100, China
| | - Yanbin Jiang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
22
|
Xia Y, Fu S, Ma Q, Liu Y, Zhang N. Application of Nano-Delivery Systems in Lymph Nodes for Tumor Immunotherapy. NANO-MICRO LETTERS 2023; 15:145. [PMID: 37269391 PMCID: PMC10239433 DOI: 10.1007/s40820-023-01125-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/07/2023] [Indexed: 06/05/2023]
Abstract
Immunotherapy has become a promising research "hotspot" in cancer treatment. "Soldier" immune cells are not uniform throughout the body; they accumulate mostly in the immune organs such as the spleen and lymph nodes (LNs), etc. The unique structure of LNs provides the microenvironment suitable for the survival, activation, and proliferation of multiple types of immune cells. LNs play an important role in both the initiation of adaptive immunity and the generation of durable anti-tumor responses. Antigens taken up by antigen-presenting cells in peripheral tissues need to migrate with lymphatic fluid to LNs to activate the lymphocytes therein. Meanwhile, the accumulation and retaining of many immune functional compounds in LNs enhance their efficacy significantly. Therefore, LNs have become a key target for tumor immunotherapy. Unfortunately, the nonspecific distribution of the immune drugs in vivo greatly limits the activation and proliferation of immune cells, which leads to unsatisfactory anti-tumor effects. The efficient nano-delivery system to LNs is an effective strategy to maximize the efficacy of immune drugs. Nano-delivery systems have shown beneficial in improving biodistribution and enhancing accumulation in lymphoid tissues, exhibiting powerful and promising prospects for achieving effective delivery to LNs. Herein, the physiological structure and the delivery barriers of LNs were summarized and the factors affecting LNs accumulation were discussed thoroughly. Moreover, developments in nano-delivery systems were reviewed and the transformation prospects of LNs targeting nanocarriers were summarized and discussed.
Collapse
Affiliation(s)
- Yiming Xia
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Shunli Fu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Qingping Ma
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Yongjun Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China.
| | - Na Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China.
| |
Collapse
|
23
|
Kulkarni AS, Dash A, Shingare RD, Chand J, Manhas D, Singh A, Nandi U, Goswami A, Srinivasa Reddy D. Identification of new modulator of DNA repairing pathways based on natural product (±)-peharmaline A. Bioorg Med Chem 2023; 91:117365. [PMID: 37392722 DOI: 10.1016/j.bmc.2023.117365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/04/2023] [Accepted: 05/27/2023] [Indexed: 07/03/2023]
Abstract
The complex heterogenic environment of tumour mass often leads to drug resistance and facilitate chemo insensitivity triggering more malignant phenotypes among cancer patients. Major DNA-damaging cancer drugs have been consistently proven unsuccessful in terms of elevating chemo-resistance. (±)-peharmaline A, a hybrid natural product isolated from seeds of Peganum harmala L. possesses significant cytotoxic activities. Herein, we have described the design, and synthesis of a novel library of close and simplified analogues around the anticancer natural product (±)-peharmaline A and investigated their cytotoxic activities, which led to the identification of three structurally simplified lead compounds exhibiting better potency than parent natural product. Among them, demethoxy analogue of peharmaline A was further investigated for its anticancer potential eliciting demethoxy analogue as potent DNA-damage inducing agent attenuating the expression of the proteins responsible for the DNA damage repair. Therefore, this demethoxy analogue warrants detailed investigations for the confirmations of the molecular mechanism-based studies responsible for its anticancer activity. ______________________________________________________________________________.
Collapse
Affiliation(s)
- Akshay S Kulkarni
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anshurekha Dash
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India; Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Rahul D Shingare
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jagdish Chand
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Diksha Manhas
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India; Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Aman Singh
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Utpal Nandi
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India; Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Anindya Goswami
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India; Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India.
| | - D Srinivasa Reddy
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
24
|
Khan N, Slathia G, Kaliya K, Saneja A. Recent progress in covalent organic frameworks for cancer therapy. Drug Discov Today 2023; 28:103602. [PMID: 37119962 DOI: 10.1016/j.drudis.2023.103602] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/09/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
Covalent organic frameworks (COFs) have gained tremendous interest in cancer therapy owing to their multifunctional properties, such as biocompatibility, tunable cavities, excellent crystallinity, ease of modification/functionalization, and high flexibility. These unique properties offer multiple benefits, such as high loading capacity, prevention from premature leakage, targeted delivery to the tumor microenvironment (TME), and release of therapeutic agents in a controlled manner, which makes them effective and excellent nanoplatforms for cancer therapeutics. In this review, we outline recent advances in using COFs as delivery system for chemotherapeutic agents, photodynamic therapy (PDT), photothermal therapy (PTT), sonodynamic therapy (SDT), cancer diagnostics, and combinatorial therapy for cancer therapeutics. We also summarize current challenges and future directions of this unique research field. Teaser: This review highlights recent advances in covalent organic frameworks as multifaceted nanoplatform with recent case studies for improving therapeutic outcomes for cancer therapeutics.
Collapse
Affiliation(s)
- Nabab Khan
- Formulation Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, Uttar Pradesh, India
| | - Garima Slathia
- Formulation Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India
| | - Kajal Kaliya
- Formulation Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, Uttar Pradesh, India
| | - Ankit Saneja
- Formulation Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, Uttar Pradesh, India.
| |
Collapse
|
25
|
Parvaneh S, Pourmadadi M, Abdous M, Pourmousavi SA, Yazdian F, Rahdar A, Diez-Pascual AM. Carboxymethyl cellulose/starch/reduced graphene oxide composite as a pH-sensitive nanocarrier for curcumin drug delivery. Int J Biol Macromol 2023; 241:124566. [PMID: 37100314 DOI: 10.1016/j.ijbiomac.2023.124566] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 04/28/2023]
Abstract
Nanocomposites are promising drug carriers to treat terminal cancers with few adverse effects. Herein, nanocomposite hydrogels composed of carboxymethyl cellulose (CMC)/starch/reduced graphene oxide (RGO) were synthesized via a green chemistry approach and then encapsulated in double nanoemulsions to act as pH-responsive delivery systems for curcumin, a potential antitumor drug. A water/oil/water nanoemulsion containing bitter almond oil served as a membrane surrounding the nanocarrier to control drug release. DLS and zeta potential measurements were used to estimate the size and confirm the stability of curcumin-loaded nanocarriers. The intermolecular interactions, crystalline structure and morphology of the nanocarriers were analyzed through FTIR spectroscopy, XRD and FESEM, respectively. The drug loading and entrapment efficiencies were significantly improved compared to previously reported curcumin delivery systems. In vitro release experiments demonstrated the pH-responsiveness of the nanocarriers and the faster curcumin release at a lower pH. The MTT assay revealed the increased toxicity of the nanocomposites against MCF-7 cancer cells compared to CMC, CMC/RGO or free curcumin. Apoptosis was detected in MCF-7 cells via flow cytometry tests. The results obtained herein support that the developed nanocarriers are stable, uniform and effective delivery systems for a sustained and pH-sensitive curcumin release.
Collapse
Affiliation(s)
| | - Mehrab Pourmadadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Majid Abdous
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran.
| | | | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran.
| | - Abbas Rahdar
- Department of Physics, Faculty of Sciences, University of Zabol, Zabol 538-98615, Iran.
| | - Ana M Diez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
26
|
5-Fluorouracil-Immobilized Hyaluronic Acid Hydrogel Arrays on an Electrospun Bilayer Membrane as a Drug Patch. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120742. [PMID: 36550948 PMCID: PMC9774285 DOI: 10.3390/bioengineering9120742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
The hyaluronic acid (HA) hydrogel array was employed for immobilization of 5-fluorouracil (5-FU), and the electrospun bilayer (hydrophilic: polyurethane/pluronic F-127 and hydrophobic: polyurethane) membrane was used to support the HA hydrogel array as a patch. To visualize the drug propagating phenomenon into tissues, we experimentally investigated how FITC-BSA diffused into the tissue by applying hydrogel patches to porcine tissue samples. The diffusive phenomenon basically depends on the FITC-BSA diffusion coefficient in the hydrogel, and the degree of diffusion of FITC-BSA may be affected by the concentration of HA hydrogel, which demonstrates that the high density of HA hydrogel inhibits the diffusive FITC-BSA migration toward the low concentration region. YD-10B cells were employed to investigate the release of 5-FU from the HA array on the bilayer membrane. In the control group, YD-10B cell viability was over 98% after 3 days. However, in the 5-FU-immobilized HA hydrogel array, most of the YD-10B cells were not attached to the bilayer membrane used as a scaffold. These results suggest that 5-FU was locally released and initiated the death of the YD-10B cells. Our results show that 5-FU immobilized on HA arrays significantly reduces YD-10B cell adhesion and proliferation, affecting cells even early in the cell culture. Our results suggest that when 5-FU is immobilized in the HA hydrogel array on the bilayer membrane as a drug patch, it is possible to control the drug concentration, to release it continuously, and that the patch can be applied locally to the targeted tumor site and administer the drug in a time-stable manner. Therefore, the developed bilayer membrane-based HA hydrogel array patch can be considered for sustained release of the drug in biomedical applications.
Collapse
|
27
|
Mobeen H, Safdar M, Fatima A, Afzal S, Zaman H, Mehdi Z. Emerging applications of nanotechnology in context to immunology: A comprehensive review. Front Bioeng Biotechnol 2022; 10:1024871. [PMID: 36619389 PMCID: PMC9815620 DOI: 10.3389/fbioe.2022.1024871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
Numerous benefits of nanotechnology are available in many scientific domains. In this sense, nanoparticles serve as the fundamental foundation of nanotechnology. Recent developments in nanotechnology have demonstrated that nanoparticles have enormous promise for use in almost every field of life sciences. Nanoscience and nanotechnology use the distinctive characteristics of tiny nanoparticles (NPs) for various purposes in electronics, fabrics, cosmetics, biopharmaceutical industries, and medicines. The exclusive physical, chemical, and biological characteristics of nanoparticles prompt different immune responses in the body. Nanoparticles are believed to have strong potential for the development of advanced adjuvants, cytokines, vaccines, drugs, immunotherapies, and theranostic applications for the treatment of targeted bacterial, fungal, viral, and allergic diseases and removal of the tumor with minimal toxicity as compared to macro and microstructures. This review highlights the medical and non-medical applications with a detailed discussion on enhanced and targeted natural and acquired immunity against pathogens provoked by nanoparticles. The immunological aspects of the nanotechnology field are beyond the scope of this Review. However, we provide updated data that will explore novel theragnostic immunological applications of nanotechnology for better and immediate treatment.
Collapse
Affiliation(s)
- Hifsa Mobeen
- Department of Allied Health Sciences, Superior University, Lahore, Pakistan
| | - Muhammad Safdar
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Asma Fatima
- Pakistan Institute of Quality Control, Superior University, Lahore, Pakistan
| | - Samia Afzal
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Hassan Zaman
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Zuhair Mehdi
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
28
|
Shahabadi N, Zendehcheshm S, Khademi F. Green Synthesis, in vitro Cytotoxicity, Antioxidant Activity and Interaction Studies of CuO Nanoparticles with DNA, Serum Albumin, Hemoglobin and Lysozyme. ChemistrySelect 2022. [DOI: 10.1002/slct.202202916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nahid Shahabadi
- Inorganic Chemistry Department Faculty of Chemistry Razi University Kermanshah Iran
| | - Saba Zendehcheshm
- Inorganic Chemistry Department Faculty of Chemistry Razi University Kermanshah Iran
| | - Fatemeh Khademi
- Medical Biology Research Center Health Technology Institute Kermanshah University of Medical Sciences Kermanshah Iran
| |
Collapse
|
29
|
Chen Y, Wang Z, Wang X, Su M, Xu F, Yang L, Jia L, Zhang Z. Advances in Antitumor Nano-Drug Delivery Systems of 10-Hydroxycamptothecin. Int J Nanomedicine 2022; 17:4227-4259. [PMID: 36134205 PMCID: PMC9482956 DOI: 10.2147/ijn.s377149] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/25/2022] [Indexed: 01/10/2023] Open
Abstract
10-Hydroxycamptothecin (HCPT) is a natural plant alkaloid from Camptotheca that shows potent antitumor activity by targeting intracellular topoisomerase I. However, factors such as instability of the lactone ring and insolubility in water have limited the clinical application of this drug. In recent years, unprecedented advances in biomedical nanotechnology have facilitated the development of nano drug delivery systems. It has been found that nanomedicine can significantly improve the stability and water solubility of HCPT. NanoMedicines with different diagnostic and therapeutic functions have been developed to significantly improve the anticancer effect of HCPT. In this paper, we collected reports on HCPT nanomedicines against tumors in the past decade. Based on current research advances, we dissected the current status and limitations of HCPT nanomedicines development and looked forward to future research directions.
Collapse
Affiliation(s)
- Yukun Chen
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| | - Zhenzhi Wang
- Shaanxi University of Chinese Medicine, Xianyang, 712046, People's Republic of China
| | - Xiaofan Wang
- Department of Oncology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, People's Republic of China
| | - Mingliang Su
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| | - Fan Xu
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| | - Lian Yang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| | - Lijun Jia
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| | - Zhanxia Zhang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| |
Collapse
|
30
|
Rezaei A, Hooman Vahidi S, Nasrabadi M, Ali Beyramabadi S, Morsali A. Quantum chemical study of 2-hydroxypropyl-β-cyclodextrin and genipin-crosslinked chitosan nanocarriers functionalized with cytarabine anticancer drug. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
31
|
Chauhan N, Saxena K, Jain U. Smart Nanomaterials Employed Recently for Drug Delivery in Cancer Therapy: an Intelligent Approach. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-01022-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Biomineralization and biotechnological applications of bacterial magnetosomes. Colloids Surf B Biointerfaces 2022; 216:112556. [PMID: 35605573 DOI: 10.1016/j.colsurfb.2022.112556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/27/2022] [Accepted: 05/07/2022] [Indexed: 01/13/2023]
Abstract
Magnetosomes intracellularly biomineralized by Magnetotactic bacteria (MTB) are membrane-enveloped nanoparticles of the magnetic minerals magnetite (Fe3O4) or greigite (Fe3S4). MTB thrive in oxic-anoxic interface and exhibit magnetotaxis due to the presence of magnetosomes. Because of the unique characteristic and bionavigation inspiration of magnetosomes, MTB has been a subject of study focused on by biologists, medical pharmacologists, geologists, and physicists since the discovery. We herein first briefly review the features of MTB and magnetosomes. The recent insights into the process and mechanism for magnetosome biomineralization including iron uptake, magnetosome membrane invagination, iron mineralization and magnetosome chain assembly are summarized in detail. Additionally, the current research progress in biotechnological applications of magnetosomes is also elucidated, such as drug delivery, MRI image contrast, magnetic hyperthermia, wastewater treatment, and cell separation. This review would expand our understanding of biomineralization and biotechnological applications of bacterial magnetosomes.
Collapse
|
33
|
Zhao B, Chen S, Hong Y, Jia L, Zhou Y, He X, Wang Y, Tian Z, Yang Z, Gao D. Research Progress of Conjugated Nanomedicine for Cancer Treatment. Pharmaceutics 2022; 14:1522. [PMID: 35890416 PMCID: PMC9315807 DOI: 10.3390/pharmaceutics14071522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 12/05/2022] Open
Abstract
The conventional cancer therapeutic modalities include surgery, chemotherapy and radiotherapy. Although immunotherapy and targeted therapy are also widely used in cancer treatment, chemotherapy remains the cornerstone of tumor treatment. With the rapid development of nanotechnology, nanomedicine is believed to be an emerging field to further improve the efficacy of chemotherapy. Until now, there are more than 17 kinds of nanomedicine for cancer therapy approved globally. Thereinto, conjugated nanomedicine, as an important type of nanomedicine, can not only possess the targeted delivery of chemotherapeutics with great precision but also achieve controlled drug release to avoid adverse effects. Meanwhile, conjugated nanomedicine provides the platform for combining several different therapeutic approaches (chemotherapy, photothermal therapy, photodynamic therapy, thermodynamic therapy, immunotherapy, etc.) with the purpose of achieving synergistic effects during cancer treatment. Therefore, this review focuses on conjugated nanomedicine and its various applications in synergistic chemotherapy. Additionally, the further perspectives and challenges of the conjugated nanomedicine are also addressed, which clarifies the design direction of a new generation of conjugated nanomedicine and facilitates the translation of them from the bench to the bedside.
Collapse
Affiliation(s)
- Bin Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (B.Z.); (S.C.); (L.J.); (Y.Z.); (X.H.); (Y.W.); (Z.T.)
- Department of Epidemiology, Shaanxi Provincial Cancer Hospital, Xi’an 710061, China
| | - Sa Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (B.Z.); (S.C.); (L.J.); (Y.Z.); (X.H.); (Y.W.); (Z.T.)
- Shaanxi Provincial Centre for Disease Control and Prevention, Xi’an 710054, China
| | - Ye Hong
- Center of Digestive Endoscopy, Shaanxi Provincial Cancer Hospital, Xi’an 710061, China;
| | - Liangliang Jia
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (B.Z.); (S.C.); (L.J.); (Y.Z.); (X.H.); (Y.W.); (Z.T.)
| | - Ying Zhou
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (B.Z.); (S.C.); (L.J.); (Y.Z.); (X.H.); (Y.W.); (Z.T.)
| | - Xinyu He
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (B.Z.); (S.C.); (L.J.); (Y.Z.); (X.H.); (Y.W.); (Z.T.)
| | - Ying Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (B.Z.); (S.C.); (L.J.); (Y.Z.); (X.H.); (Y.W.); (Z.T.)
| | - Zhongmin Tian
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (B.Z.); (S.C.); (L.J.); (Y.Z.); (X.H.); (Y.W.); (Z.T.)
| | - Zhe Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (B.Z.); (S.C.); (L.J.); (Y.Z.); (X.H.); (Y.W.); (Z.T.)
- Research Institute of Xi’an Jiaotong University, Hangzhou 311200, China
| | - Di Gao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (B.Z.); (S.C.); (L.J.); (Y.Z.); (X.H.); (Y.W.); (Z.T.)
| |
Collapse
|
34
|
Egil AC, Ozdemir B, Gunduz SK, Altıkatoglu-Yapaoz M, Budama-Kilinc Y, Mostafavi E. Chitosan/calcium nanoparticles as advanced antimicrobial coating for paper documents. Int J Biol Macromol 2022; 215:521-530. [PMID: 35764166 DOI: 10.1016/j.ijbiomac.2022.06.142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/04/2022] [Accepted: 06/20/2022] [Indexed: 12/17/2022]
Abstract
Preservation of paper-based historical artifacts against deterioration due to the presence of bacteria and fungi colonies has been one of the major issues for the importance of protecting the cultural heritage of humankind. Advances in nanotechnology have enabled the implementation of nanomaterials for this purpose. In this work, calcium/chitosan nanoparticles (Ca/CS NPs) were prepared and well-characterized to investigate their potential as a novel approach for preserving paper-based documents. Following the fundamental characterizations, it was found that Ca/CS NPs are spherical nanoparticles with ~65 nm average size and homogenous dispersion (PdI: 0.2). Besides, minimum inhibition concentration results revealed that Ca/CS NPs show a superior antimicrobial effect against specific bacteria and fungi strains commonly found on paper documents compared to the effect of bare chitosan nanoparticles (CS NPs). After the deposition of Ca/CS NPs onto the paper the pH level was increased and stabilized, and only a limited amount of microbial colony formation was observed for up to 20 days. Moreover, molecular docking analysis provided a better insight into the antibacterial and antifungal activities of these nanoparticles. The antimicrobial activity of CS NPs and Ca/CS NPs was investigated through their interactions with E. coli DNA gyrase B and C. albicans dihydrofolate reductase. The binding modes and all possible interactions of active sites were confirmed by in silico molecular docking method. Collectively, our findings revealed that the formulated Ca/CS NPs are promising candidates for preserving paper documents.
Collapse
Affiliation(s)
- Abdurrahim Can Egil
- Sabancı University, Faculty of Engineering and Natural Sciences, Department of Materials Science and Nanoengineering, 34956 İstanbul, Turkey; Piccolo Nanotechnology and Engineering Limited Company, Yildiz Technopark, 34220 Istanbul, Turkey
| | - Burak Ozdemir
- Acıbadem Mehmet Ali Aydınlar University, Faculty of Engineering, Department of Medical Engineering, Istanbul, Turkey
| | - Serda Kecel Gunduz
- Istanbul University, Faculty of Science, Physics Department, 34134 Istanbul, Turkey
| | - Melda Altıkatoglu-Yapaoz
- Yildiz Technical University, Faculty of Art and Sciences, Department of Chemistry, Istanbul 34220, Turkey
| | - Yasemin Budama-Kilinc
- Yildiz Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, 34220 İstanbul, Turkey
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, CA 94305, USA.
| |
Collapse
|
35
|
A C19Ti Cage Vehicle for the Drug Delivery of Purinethol Anticancer: Computational Assessments. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Veres T, Voniatis C, Molnár K, Nesztor D, Fehér D, Ferencz A, Gresits I, Thuróczy G, Márkus BG, Simon F, Nemes NM, García-Hernández M, Reiniger L, Horváth I, Máthé D, Szigeti K, Tombácz E, Jedlovszky-Hajdu A. An Implantable Magneto-Responsive Poly(aspartamide) Based Electrospun Scaffold for Hyperthermia Treatment. NANOMATERIALS 2022; 12:nano12091476. [PMID: 35564185 PMCID: PMC9101327 DOI: 10.3390/nano12091476] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023]
Abstract
When exposed to an alternating magnetic field, superparamagnetic nanoparticles can elicit the required hyperthermic effect while also being excellent magnetic resonance imaging (MRI) contrast agents. Their main drawback is that they diffuse out of the area of interest in one or two days, thus preventing a continuous application during the typical several-cycle multi-week treatment. To solve this issue, our aim was to synthesise an implantable, biodegradable membrane infused with magnetite that enabled long-term treatment while having adequate MRI contrast and hyperthermic capabilities. To immobilise the nanoparticles inside the scaffold, they were synthesised inside hydrogel fibres. First, polysuccinimide (PSI) fibres were produced by electrospinning and crosslinked, and then, magnetitc iron oxide nanoparticles (MIONs) were synthesised inside and in-between the fibres of the hydrogel membranes with the well-known co-precipitation method. The attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR) investigation proved the success of the chemical synthesis and the presence of iron oxide, and the superconducting quantum interference device (SQUID) study revealed their superparamagnetic property. The magnetic hyperthermia efficiency of the samples was significant. The given alternating current (AC) magnetic field could induce a temperature rise of 5 °C (from 37 °C to 42 °C) in less than 2 min even for five quick heat-cool cycles or for five consecutive days without considerable heat generation loss in the samples. Short-term (1 day and 7 day) biocompatibility, biodegradability and MRI contrast capability were investigated in vivo on Wistar rats. The results showed excellent MRI contrast and minimal acute inflammation.
Collapse
Affiliation(s)
- Tamás Veres
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, 1089 Budapest, Hungary; (T.V.); (C.V.); (K.M.)
| | - Constantinos Voniatis
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, 1089 Budapest, Hungary; (T.V.); (C.V.); (K.M.)
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, 1082 Budapest, Hungary
| | - Kristóf Molnár
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, 1089 Budapest, Hungary; (T.V.); (C.V.); (K.M.)
| | - Dániel Nesztor
- Department of Food Engineering, University of Szeged, 6725 Szeged, Hungary; (D.N.); (E.T.)
| | - Daniella Fehér
- Heart and Vascular Centre, Department of Surgical Research and Techniques, Semmelweis University, 1122 Budapest, Hungary; (D.F.); (A.F.)
| | - Andrea Ferencz
- Heart and Vascular Centre, Department of Surgical Research and Techniques, Semmelweis University, 1122 Budapest, Hungary; (D.F.); (A.F.)
| | - Iván Gresits
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (I.G.); (I.H.); (D.M.); (K.S.)
| | - György Thuróczy
- NRIRR “Frédéric Joliot-Curie” National Research Institute for Radiobiology and Radiohygiene, 1221 Budapest, Hungary;
| | - Bence Gábor Márkus
- Stavropoulos Center for Complex Quantum Matter, Department of Physics and Astronomy, University of Notre Dame, Notre Dame, IN 46556, USA;
- Institute of Physics, Budapest University of Technology and Economics, 1521 Budapest, Hungary;
- Wigner Research Centre for Physics Economics, 1121 Budapest, Hungary
| | - Ferenc Simon
- Institute of Physics, Budapest University of Technology and Economics, 1521 Budapest, Hungary;
- Wigner Research Centre for Physics Economics, 1121 Budapest, Hungary
| | - Norbert Marcell Nemes
- Grupo de Física de Materiales Complejos (GFMC), Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain; (N.M.N.); (M.G.-H.)
| | - Mar García-Hernández
- Grupo de Física de Materiales Complejos (GFMC), Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain; (N.M.N.); (M.G.-H.)
| | - Lilla Reiniger
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary;
| | - Ildikó Horváth
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (I.G.); (I.H.); (D.M.); (K.S.)
| | - Domokos Máthé
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (I.G.); (I.H.); (D.M.); (K.S.)
- Hungarian Center of Excellence for Molecular Medicine (HCEMM), In Vivo Imaging Advanced Core Facility, Semmelweis University Site, 1094 Budapest, Hungary
| | - Krisztián Szigeti
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (I.G.); (I.H.); (D.M.); (K.S.)
| | - Etelka Tombácz
- Department of Food Engineering, University of Szeged, 6725 Szeged, Hungary; (D.N.); (E.T.)
- Soós Ernő Water Technology Research and Development Center, University of Pannonia, 8800 Nagykanizsa, Hungary
| | - Angela Jedlovszky-Hajdu
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, 1089 Budapest, Hungary; (T.V.); (C.V.); (K.M.)
- Correspondence:
| |
Collapse
|
37
|
An Overview of Cell Membrane Perforation and Resealing Mechanisms for Localized Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14040886. [PMID: 35456718 PMCID: PMC9031838 DOI: 10.3390/pharmaceutics14040886] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/09/2022] [Accepted: 04/14/2022] [Indexed: 01/04/2023] Open
Abstract
Localized and reversible plasma membrane disruption is a promising technique employed for the targeted deposition of exogenous therapeutic compounds for the treatment of disease. Indeed, the plasma membrane represents a significant barrier to successful delivery, and various physical methods using light, sound, and electrical energy have been developed to generate cell membrane perforations to circumvent this issue. To restore homeostasis and preserve viability, localized cellular repair mechanisms are subsequently triggered to initiate a rapid restoration of plasma membrane integrity. Here, we summarize the known emergency membrane repair responses, detailing the salient membrane sealing proteins as well as the underlying cytoskeletal remodeling that follows the physical induction of a localized plasma membrane pore, and we present an overview of potential modulation strategies that may improve targeted drug delivery approaches.
Collapse
|
38
|
Cordeiro RA, Mendonça PV, Coelho J, Faneca H. Engineering silica-polymer hybrid nanosystems for dual drug and gene delivery. BIOMATERIALS ADVANCES 2022; 135:212742. [PMID: 35929215 DOI: 10.1016/j.bioadv.2022.212742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/23/2022] [Accepted: 02/27/2022] [Indexed: 06/15/2023]
Abstract
In recent years, it has been shown that a combination of different antitumour strategies involving distinct therapeutic agents, such as chemical compounds and genetic material, could result in an effective therapeutic activity that is much higher than that obtained by conventionally used individual approaches. Therefore, the main goal of this work was to develop a new hybrid nanosystem based on mesoporous silica nanoparticles and polymers to efficiently transport and deliver drug and plasmid DNA into cancer cells. Moreover, its potential to mediate a combinatorial antitumour strategy involving epirubicin and herpes simplex virus thymidine kinase/ganciclovir (HSV-TK/GCV) gene therapy was evaluated. For this purpose, various cationic polymers were assessed, including poly(β-amino ester) homopolymer, gelatine type A, gelatine type B, and poly(ethylene glycol)-b-poly(2-aminoethyl methacrylate hydrochloride) block copolymer. The obtained results show that using different polymers leads to nanosystems with different physicochemical properties and, consequently, different biological activities. The best formulation was obtained for hybrid nanosystems coated with PEG-b-PAMA. They demonstrated the ability to cotransport and codeliver an anticancer drug and plasmid DNA and effectively mediate the combined antitumour strategy in 2D and 3D tumour cell culture models. In summary, we developed a novel silica- and polymer-based nanosystem able to mediate a dual chemotherapeutic and suicide gene therapy strategy with a much higher therapeutic effect than that obtained through the use of individual approaches, showing its potential for cancer treatment.
Collapse
Affiliation(s)
- Rosemeyre A Cordeiro
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Patrícia V Mendonça
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal
| | - Jorge Coelho
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal
| | - Henrique Faneca
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
39
|
Maleki Dizaj S, Salatin S, Khezri K, Lee JY, Lotfipour F. Targeting Multidrug Resistance With Antimicrobial Peptide-Decorated Nanoparticles and Polymers. Front Microbiol 2022; 13:831655. [PMID: 35432230 PMCID: PMC9009044 DOI: 10.3389/fmicb.2022.831655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/09/2022] [Indexed: 01/21/2023] Open
Abstract
As a category of small peptides frequently found in nature, antimicrobial peptides (AMPs) constitute a major part of the innate immune system of various organisms. Antimicrobial peptides feature various inhibitory effects against fungi, bacteria, viruses, and parasites. Due to the increasing concerns of antibiotic resistance among microorganisms, development of antimicrobial peptides is an emerging tool as a favorable applicability prospect in food, medicine, aquaculture, animal husbandry, and agriculture. This review presents the latest research progress made in the field of antimicrobial peptides, such as their mechanism of action, classification, application status, design techniques, and a review on decoration of nanoparticles and polymers with AMPs that are used in treating multidrug resistance. Lastly, we will highlight recent progress in antiviral peptides to treat emerging viral diseases (e.g., anti-coronavirus peptides) and discuss the outlook of AMP applications.
Collapse
Affiliation(s)
- Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Dental Biomaterials, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Salatin
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khadijeh Khezri
- Deputy of Food and Drug Administration, Urmia University of Medical Sciences, Urmia, Iran
| | - Jyh-Yeuan Lee
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Farzaneh Lotfipour
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Food and Drug Safety Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
40
|
El-Gogary RI, Nasr M, Rahsed LA, Hamzawy MA. Ferulic acid nanocapsules as a promising treatment modality for colorectal cancer: Preparation and in vitro/in vivo appraisal. Life Sci 2022; 298:120500. [PMID: 35341825 DOI: 10.1016/j.lfs.2022.120500] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 12/11/2022]
Abstract
AIMS Ferulic acid is a polyphenolic compound with proven anticancer properties, but it suffers from low solubility and bioavailability. In the current work, polymeric and lipidic nanocapsules of ferulic acid were prepared, characterized, and tested on colorectal cancer (CRC) cell lines (HCT-116 and Caco2 cells), with mechanistic anticancer elucidation using flow cytometry. The selected NCs formulation was further tested in vivo on rats after inducing CRC using 1,2 dimethylhydrazine (DMH), followed by biochemical analysis, molecular and histological examinations. KEY FINDINGS Results revealed that both polymeric and lipidic nanocapsules showed favorable properties, but the latter was smaller in size and presented higher cumulative percent released of FA. The lipidic nanocapsules displayed better anticancer activity than the drug on both cell lines; with apoptosis being the dominant cell death mode. The in vivo study revealed that ferulic acid lipid NCs exhibited significant antioxidant and anti-inflammatory activities. They also downregulated cyclin D1, IGF II, and VEGF, and autoregulated the apoptotic/anti-apoptotic gene BAX/Bcl-2; indicating their apoptotic and anti-angiogenic potential, which was further confirmed by histological examination. SIGNIFICANCE Findings prove that the proposed ferulic acid lipid nanocapsules are an ideal system for treatment of CRC, and can serve as a preventive measure against metastasis.
Collapse
Affiliation(s)
- Riham I El-Gogary
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Laila A Rahsed
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed A Hamzawy
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| |
Collapse
|
41
|
Sahil, Kaur K, Jaitak V. Thiazole and Related Heterocyclic Systems as Anticancer Agents: A Review on Synthetic Strategies, Mechanisms of Action and SAR Studies. Curr Med Chem 2022; 29:4958-5009. [DOI: 10.2174/0929867329666220318100019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 11/22/2022]
Abstract
Background:
Cancer is the second leading cause of death throughout the world. Many anticancer drugs are commercially available, but lack of selectivity, target specificity, cytotoxicity and development of resistance lead to serious side effects. There have been several experiments going on to develop compounds with minor or no side effects.
Objective:
This review mainly emphasizes synthetic strategies, SAR studies, and mechanism of action for thiazole, benzothiazole, and imidazothiazole containing compounds as anticancer agents.
Methods:
Recent literature related to thiazole and thiazole-related derivatives endowed with encouraging anticancer potential is reviewed. This review emphasizes contemporary strategies used for the synthesis of thiazole and related derivatives, mechanistic targets, and comprehensive structural activity relationship studies to provide perspective into the rational design of high-efficiency thiazole-based anticancer drug candidates.
Results:
Exhaustive literature survey indicated that thiazole derivatives are associated with properties of inducing
apoptosis and disturbing tubulin assembly. Thiazoles are also associated with the inhibition of NFkB/mTOR/PI3K/AkT and regulation of estrogen-mediated activity. Furthermore, thiazole derivatives have been found to modulate critical targets such as topoisomerase and HDAC.
Conclusion:
Thiazole derivatives seem to be quite competent and act through various mechanisms. Some of the thiazole derivatives, such as compounds 29, 40, 62, and 74a with IC50 values of 0.05 μM, 0.00042 μM, 0.18 μM, and 0.67 μM, respectively not only have anticancer activity but they also have lower toxicity and better absorption. Therefore, some other similar compounds could be investigated to aid in the development of anticancer pharmacophores.
Collapse
Affiliation(s)
- Sahil
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda (Pb.), India
| | - Kamalpreet Kaur
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda (Pb.), India
| | - Vikas Jaitak
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda (Pb.), India
| |
Collapse
|
42
|
Nemčeková K, Svitková V, Sochr J, Gemeiner P, Labuda J. Gallic acid-coated silver nanoparticles as perspective drug nanocarriers: bioanalytical study. Anal Bioanal Chem 2022; 414:5493-5505. [PMID: 35294597 PMCID: PMC8923963 DOI: 10.1007/s00216-022-03955-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/14/2022] [Accepted: 02/01/2022] [Indexed: 11/28/2022]
Abstract
The ability of silver nanoparticles (AgNPs) to be used as drug nanocarriers has helped rapidly to invent novel strategies to treat diseases, such as cancer. The nanoparticles may offer a valuable tool to novel pH-sensitive drug delivery systems in the present scenario because of their undergoing mechanisms associated with the regulated dissolution, aggregation, and generation of oxygen radicals as well. These processes could be monitored by electrochemical (bio)sensors that are less money and time-consuming compared to other analytical approaches, however, with comparable analytical performance. In this paper, synthesized and microscopically characterized gallic acid-coated AgNPs (GA-AgNPs) are investigated using spectral and electrochemical methods. To investigate the Ag+ release, a 21-day ageing experiment is performed spectrophotometrically, finding that the peak maximum of GA-AgNPs spectra diminished by 24.5%. The highest Ag+ content was electrochemically determined in the supernatant solution after centrifugation (6.97 μmol·L-1), while no significant concentration of silver ions in solution after redispersion was observed (1.26 μmol·L-1). The interaction experiment indicates a stabilization of GA-AgNPs in the presence of long-chain dsDNA as well as a mutual electrostatic interaction with DNA sugar-phosphate backbone. This interaction mechanism is confirmed by FTIR analysis, showing a shift (1049 to 1061 cm-1 and 913 to 964 cm-1) specific to DNA phosphate bands. Finally, doxorubicin-loaded GA-AgNPs are monitored for the specific drug release in the physiological and more reactive weakly acidic microenvironment. Hereby, electrochemical (bio)sensing of GA-AgNPs undergoing mechanisms shows a huge potential to be used for monitoring of drug delivery systems at cancer therapy.
Collapse
Affiliation(s)
- Katarína Nemčeková
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237, Bratislava, Slovakia.
| | - Veronika Svitková
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237, Bratislava, Slovakia
| | - Jozef Sochr
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237, Bratislava, Slovakia
| | - Pavol Gemeiner
- Department of Graphic Arts Technology and Applied Photochemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237, Bratislava, Slovakia
| | - Ján Labuda
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237, Bratislava, Slovakia
| |
Collapse
|
43
|
Yaghoubi F, Motlagh NSH, Naghib SM, Haghiralsadat F, Jaliani HZ, Moradi A. A functionalized graphene oxide with improved cytocompatibility for stimuli-responsive co-delivery of curcumin and doxorubicin in cancer treatment. Sci Rep 2022; 12:1959. [PMID: 35121783 PMCID: PMC8816945 DOI: 10.1038/s41598-022-05793-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/11/2022] [Indexed: 01/08/2023] Open
Abstract
Nowadays, the usage of nanoparticles in various fields such as drug delivery, attracts the attention of many researchers in the treatment of cancers. Graphene oxide (GO) is one of the novel drug delivery systems which is used broadly owing to its unique features. In this survey, doxorubicin (DOX) was accompanied by natural medicine, curcumin (CUR), to diminish its side effects and enhance its efficiency. Cytotoxicity assay in human gastric cancer (AGS), prostate cancer (PC3), and ovarian cancer (A2780), was evaluated. Also, the uptake of DOX and CUR into cells, was assessed using a fluorescence microscope. Moreover, real-time PCR was applied for the evaluation of the expression of RB1 and CDK2 genes, which were involved in the cell cycle. In both separate and simultaneous forms, DOX and CUR were loaded with high efficiency and the release behavior of both drugs was pH-sensitive. The higher release rate was attained at pH 5.5 and 42 °C for DOX (80.23%) and CUR (13.06), respectively. The intensity of fluorescence in the free form of the drugs, was higher than the loaded form. In the same concentration, the free form of CUR and DOX were more toxic than the loaded form in all cell lines. Also, free drugs showed more impact on the expression of RB1 and CDK2 genes. Co-delivery of CUR and DOX into the mentioned cell lines, was more effective than the free form of CUR and DOX due to its lower toxicity to normal cells.
Collapse
Affiliation(s)
- Fatemeh Yaghoubi
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Herbal Medicine Research Center, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), P.O. Box 16846-13114, Tehran, Iran
| | - Fateme Haghiralsadat
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Medical Nanotechnology & Tissue Engineering Research Center, Department of Advanced Medical Sciences and Technologies, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Zarei Jaliani
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Moradi
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
44
|
Obireddy SR, Lai WF. ROS-Generating Amine-Functionalized Magnetic Nanoparticles Coupled with Carboxymethyl Chitosan for pH-Responsive Release of Doxorubicin. Int J Nanomedicine 2022; 17:589-601. [PMID: 35173432 PMCID: PMC8840919 DOI: 10.2147/ijn.s338897] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/05/2021] [Indexed: 12/13/2022] Open
Abstract
Purpose Methods Results Conclusion
Collapse
Affiliation(s)
- Sreekanth Reddy Obireddy
- Department of Chemistry, Sri Krishnadevaraya University, Anantapur, 515003, India
- Ciechanover Institute of Precision and Regenerative Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen, 518172, People’s Republic of China
| | - Wing-Fu Lai
- Ciechanover Institute of Precision and Regenerative Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen, 518172, People’s Republic of China
- Correspondence: Wing-Fu Lai, Ciechanover Institute of Precision and Regenerative Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen, 518172, People’s Republic of China, Email
| |
Collapse
|
45
|
Xia D, Liu H, Cheng X, Maraswami M, Chen Y, Lv X. Recent Developments of Coumarin-based Hybrids in Drug Discovery. Curr Top Med Chem 2022; 22:269-283. [PMID: 34986774 DOI: 10.2174/1568026622666220105105450] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/23/2021] [Accepted: 12/05/2021] [Indexed: 11/22/2022]
Abstract
Coumarin scaffold is a highly significant O-heterocycle, namely benzopyran-2-ones, form an elite class of naturally occurring compounds that possess promising therapeutic perspectives. Based on its broad spectrum of biological activities, the privileged coumarin scaffold is applied to medicinal and pharmacological treatments by several rational design strategies and approaches. Structure-activity relationships of the coumarin-based hybrids with various bioactivity fragments revealed significant information toward the further development of highly potent and selective disorder therapeutic agents. The molecular docking studies between coumarins and critical therapeutic enzymes demonstrated mode of action by forming noncovalent interactions with more than one receptor, further rationally confirm information about structure-activity relationships. This review summarizes recent developments relating to coumarin-based hybrids with other pharmacophores aiming to numerous feasible therapeutic enzymatic targets to combat various therapeutic fields, including anticancer, antimicrobic, anti-Alzheimer, anti-inflammatory activities.
Collapse
Affiliation(s)
- Dongguo Xia
- School of Science, Anhui Agricultural University, 230036, Hefei, China
| | - Hao Liu
- School of Science, Anhui Agricultural University, 230036, Hefei, China
| | - Xiang Cheng
- School of Science, Anhui Agricultural University, 230036, Hefei, China
| | - Manikantha Maraswami
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Yiting Chen
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, Minjiang University, 350108, Fuzhou, China
| | - Xianhai Lv
- School of Science, Anhui Agricultural University, 230036, Hefei, China
| |
Collapse
|
46
|
Sahajpal K, Sharma S, Shekhar S, Kumar A, Meena MK, Bhagi AK, Sharma B. Dynamic Protein and Polypeptide Hydrogels Based on Schiff Base Co-assembly for Biomedicine. J Mater Chem B 2022; 10:3173-3198. [DOI: 10.1039/d2tb00077f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stimuli-responsive hydrogels are promising building blocks for biomedical devices, attributable to their excellent hydrophilicity, biocompatibility, and dynamic responsiveness to temperature, light, pH, and water content. Although hydrogels find interesting applications...
Collapse
|
47
|
Shen W, Ge S, Liu X, Yu Q, Jiang X, Wu Q, Tian Y, Gao Y, Liu Y, Wu C. Folate-functionalized SMMC-7721 liver cancer cell membrane-cloaked paclitaxel nanocrystals for targeted chemotherapy of hepatoma. Drug Deliv 2021; 29:31-42. [PMID: 34962215 PMCID: PMC8725828 DOI: 10.1080/10717544.2021.2015481] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In this study, we prepared a folic acid-functionalized SMMC-7721 liver cancer cell membrane (CM)-encapsulated paclitaxel nanocrystals system (FCPN) for hepatoma treatment. Transmission electron microscopy (TEM) characterization showed that FCPN was irregular spherical shapes with a particle size larger than 200 nm and a coated thickness of approximately 20 nm. In an in vitro release experiment, FCPN indicated a slowly release effect of paclitaxel (PTX). Cell experiments demonstrated that FCPN was taken up by SMMC-7721 cells and significantly inhibited the proliferation of SMMC-7721 cells, which illustrated that FCPN had good targeting ability compared with PN and CPN. According to the results of in vivo animal experiments, FCPN significantly inhibited tumor growth. Tissue distribution experiments proved that FCPN could accumulate significantly in tumor tissues, which further explained why FCPN had good targeting ability. These results clearly suggested that folate-functionalized homotypic CM bionic nanosystems might represent a very valuable method for liver cancer treatment in the future.
Collapse
Affiliation(s)
- Wenwen Shen
- Pharmacy School, Jinzhou Medical University, Jinzhou, China
| | - Shuke Ge
- Department of Emergency Management, Liaoning Provincial Center for Disease Control and Prevention, Shenyang, China
| | - Xiaoyao Liu
- Pharmacy School, Jinzhou Medical University, Jinzhou, China
| | - Qi Yu
- Pharmacy School, Jinzhou Medical University, Jinzhou, China
| | - Xue Jiang
- Pharmacy School, Jinzhou Medical University, Jinzhou, China
| | - Qian Wu
- Pharmacy School, Jinzhou Medical University, Jinzhou, China
| | - YuChen Tian
- Department of Medical Oncology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yu Gao
- Department of Medical Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Ying Liu
- Pharmacy School, Jinzhou Medical University, Jinzhou, China
| | - Chao Wu
- Pharmacy School, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
48
|
Preparation, Characterization, and Pharmacological Investigation of Withaferin-A Loaded Nanosponges for Cancer Therapy; In Vitro, In Vivo and Molecular Docking Studies. Molecules 2021; 26:molecules26226990. [PMID: 34834081 PMCID: PMC8623412 DOI: 10.3390/molecules26226990] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/13/2021] [Accepted: 11/14/2021] [Indexed: 11/17/2022] Open
Abstract
The rapidly growing global burden of cancer poses a major challenge to public health and demands a robust approach to access promising anticancer therapeutics. In parallel, nanotechnology approaches with various pharmacological properties offer efficacious clinical outcomes. The use of new artificial variants of nanosponges (NS) as a transporter of chemotherapeutic drugs to target cells has emerged as a very promising tool. Therefore, in this research, ethylcellulose (EC) NS were prepared using the ultrasonication assisted-emulsion solvent evaporation technique. Withaferin-A (WFA), an active ingredient in Withania somnifera, has been implanted into the nanospongic framework with enhanced anticancer properties. Inside the polymeric structure, WFA was efficiently entrapped (85 ± 11%). The drug (WFA) was found to be stable within polymeric nanosponges, as demonstrated by Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC) studies. The WFA-NS had a diameter of 117 ± 4 nm and zeta potential of −39.02 ± 5.71 mV with a polydispersity index (PDI) of 0.419 ± 0.073. In addition, scanning electron microscopy (SEM) revealed the porous surface texture of WFA-NS. In vitro anticancer activity (SRB assay) results showed that WFA–NS exhibited almost twice the anticancer efficacy against MCF-7 cells (IC50 = 1.57 ± 0.091 µM), as quantified by flow cytometry and comet tests. Moreover, fluorescence microscopy with DAPI staining and analysis of DNA fragmentation revealed apoptosis as a mechanism of cancer cell death. The anticancer activity of WFA-NS was further determined in vivo and results were compared to cisplatin. The anticancer activity of WFA-NS was further investigated in vivo, and the data were consistent to those obtained with cisplatin. At Day 10, WFA-NS (10 mg/kg) significantly reduced tumour volume to 72 ± 6%, which was comparable to cisplatin (10 mg/kg), which reduced tumour volume to 78 ± 8%. Finally, the outcomes of molecular modeling (in silico) also suggested that WFA established a stable connection with nanosponges, generating persistent hydrophobic contacts (polar and nonpolar) and helping with the attractive delayed-release features of the formulation. Collectively, all the findings support the use of WFA in nanosponges as a prototype for cancer treatment, and opened up new avenues for increasing the efficacy of natural product-derived medications.
Collapse
|
49
|
Nano-engineered immune cells as "guided missiles" for cancer therapy. J Control Release 2021; 341:60-79. [PMID: 34785315 DOI: 10.1016/j.jconrel.2021.11.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 12/11/2022]
Abstract
Immune cells can actively regulate tumors or inflammatory sites and have good biocompatibility and safety. Currently, they are one of the most promising candidates for drug delivery systems. Moreover, immune cells can significantly extend the circulation time of nanoparticles and have broad-spectrum tumor-targeting properties. This article first introduces the immune cell types most commonly used in recent years, analyzes their advantages and disadvantages, and elucidates their application in anti-tumor therapy. Next, the various ways of loading nanoparticles on immune cells that have been used in recent years are summarized and simply divided into two categories: backpacks and Trojan horses. Finally, the two "mountains" that stand in front of us when using immune cells as cell carriers, off-target problems and effective release strategies, are discussed.
Collapse
|
50
|
Enhanced anticancer activities of curcumin-loaded green gum acacia-based silver nanoparticles against melanoma and breast cancer cells. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-02176-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|