1
|
Peng ZX, Gu HW, Pan Y, Wang Y, Yan J, Long W, Fu H, She Y. Revealing the key antioxidant compounds and potential action mechanisms of Chinese Cabernet Sauvignon red wines by integrating UHPLC-QTOF-MS-based untargeted metabolomics, network pharmacology and molecular docking approaches. Food Chem 2024; 460:140540. [PMID: 39053274 DOI: 10.1016/j.foodchem.2024.140540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/03/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
In recent years, red wine drinking has become more popular in China owing to its antioxidant effects. However, the key antioxidant compounds and their action mechanisms of Chinese red wines are still unclear. Herein, the antioxidant activities and chemical compositions of 45 Chinese Cabernet Sauvignon red wine samples were determined using chemical antioxidant assays and an UHPLC-QTOF-MS-based untargeted metabolomics method. The key antioxidant compounds in red wines and potential action mechanisms were revealed by integrating network pharmacology and molecular docking approaches. Results showed that there are 8 key antioxidant compounds in the red wine samples. These compounds are involved in several metabolic pathways in the body, particularly PI3K/AKT. What's more, they bind to the core antioxidant targets through hydrogen bonding and hydrophobic interaction. Among them, myricetin, laricitrin, 2,3,8-tri-O-methylellagic acid and AKT1 have the highest binding energies. This study could provide the theoretical basis for further investigation of physiological activities and functions of Chinese red wines.
Collapse
Affiliation(s)
- Zhi-Xin Peng
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China
| | - Hui-Wen Gu
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China.
| | - Yuan Pan
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China
| | - Yan Wang
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China
| | - Jun Yan
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Wanjun Long
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Haiyan Fu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China.
| | - Yuanbin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
2
|
Chai W, Yu X, Lin Y, Bai QH, Wu YF, Wu WJ, Ou-Yang HY, Pan QX, Shu HL. 7-(Diethylamino) coumarin-3-carboxylic acid as a novel antibrowning agent: Activity and mechanism. Int J Biol Macromol 2024; 282:137286. [PMID: 39510471 DOI: 10.1016/j.ijbiomac.2024.137286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/24/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Browning caused by polyphenol oxidase (PPO) and microorganisms significantly impacts the nutritional quality of fruits and vegetables. This study identified 7-(Diethylamino) coumarin-3-carboxylic acid (7-DCCA) as an effective inhibitor of both PPO and bacteria. Enzyme assays revealed that 7-DCCA competitively inhibits PPO activity with an IC50 value of 0.275 ± 0.002 mM. Fluorescence and molecular simulation methods demonstrated that 7-DCCA forms a complex with PPO through hydrogen bonding and hydrophobic interactions, altering the enzyme's structure and reducing its activity. Thermogravimetric and differential scanning calorimetry (DSC) assays showed that 7-DCCA stabilizes PPO, delaying its thermal decomposition. Antibacterial tests proved that 7-DCCA inhibits Staphylococcus aureus and Escherichia coli by disrupting cell membranes. Additionally, 7-DCCA suppressed PPO and peroxidase activities, delaying phenolic oxidation and preventing browning in fruits and vegetables. Cytotoxicity assays confirmed its safety, with over 85 % cell viability at concentrations up to 0.1 mM. Stability experiments verified that 7-DCCA had greatly light and thermal stability. This study highlighted 7-DCCA as a promising antibrowning agent with potential application in food preservation.
Collapse
Affiliation(s)
- Weiming Chai
- College of Life Science and Jiangxi Key Laboratory of Biodiversity Conservation and Bioresource Utilization, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| | - Xia Yu
- College of Life Science and Jiangxi Key Laboratory of Biodiversity Conservation and Bioresource Utilization, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Yan Lin
- College of Life Science and Jiangxi Key Laboratory of Biodiversity Conservation and Bioresource Utilization, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Qiu-Han Bai
- College of Life Science and Jiangxi Key Laboratory of Biodiversity Conservation and Bioresource Utilization, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Yi-Feng Wu
- College of Life Science and Jiangxi Key Laboratory of Biodiversity Conservation and Bioresource Utilization, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Wen-Jing Wu
- College of Life Science and Jiangxi Key Laboratory of Biodiversity Conservation and Bioresource Utilization, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Hui-Ying Ou-Yang
- College of Life Science and Jiangxi Key Laboratory of Biodiversity Conservation and Bioresource Utilization, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Qiu-Xia Pan
- College of Life Science and Jiangxi Key Laboratory of Biodiversity Conservation and Bioresource Utilization, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Hui-Lin Shu
- College of Life Science and Jiangxi Key Laboratory of Biodiversity Conservation and Bioresource Utilization, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| |
Collapse
|
3
|
Batran RZ, Sabt A, Dziadek J, Kassem AF. Design, synthesis and computational studies of new azaheterocyclic coumarin derivatives as anti- Mycobacterium tuberculosis agents targeting enoyl acyl carrier protein reductase (InhA). RSC Adv 2024; 14:21763-21777. [PMID: 38984262 PMCID: PMC11232110 DOI: 10.1039/d4ra02746a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/17/2024] [Indexed: 07/11/2024] Open
Abstract
In this study, we designed and synthesized a series of coumarin derivatives as antitubercular agents targeting the enoyl acyl carrier protein reductase (InhA) enzyme. Among the synthesized compounds, the tetrazole derivative 4c showed the most potent antitubercular effect with a minimum inhibitory concentration value (MIC) of 15 μg mL-1 against Mtb H37Rv and could also inhibit the growth of the mutant strain (ΔkatG). Compound 4c was able to penetrate Mtb-infected human macrophages and suppress the intracellular growth of tubercle bacilli. Moreover, the target derivative 4c showed a potent inhibitory effect against InhA enzyme with an IC50 value of 0.565 μM, which was superior to the reference InhA inhibitor triclosan. Molecular docking of compound 4c within the InhA active site revealed the importance of the 4-phenylcoumarin ring system and tetrazole moiety for activity. Finally, the physicochemical properties and pharmacokinetic parameters of 4c were investigated.
Collapse
Affiliation(s)
- Rasha Z Batran
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre Dokki Cairo 12622 Egypt
| | - Ahmed Sabt
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre Dokki Cairo 12622 Egypt
| | - Jarosław Dziadek
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology of the Polish Academy of Sciences Lodz Poland
| | - Asmaa F Kassem
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre Dokki Cairo 12622 Egypt
| |
Collapse
|
4
|
Timón ML, Andrés AI, Petrón MJ. Antioxidant Activity of Aqueous Extracts Obtained from By-Products of Grape, Olive, Tomato, Lemon, Red Pepper and Pomegranate. Foods 2024; 13:1802. [PMID: 38928744 PMCID: PMC11202578 DOI: 10.3390/foods13121802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/29/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
The aim of this work was to study the antioxidant potential of aqueous extracts obtained from different by-products. The effectiveness of these extracts was compared with that of rosemary extract. Total phenol carotenoid and vitamin C contents, as well as in vitro antioxidant activity, were assessed. Phenol content was positively correlated with in vitro antioxidant activity in extracts, while carotenoids showed a less clear relationship. Vitamin C was associated with antioxidant activity in lemon and pepper pomace extracts. Extracts from olive, grape, and lemon by-products displayed the highest antioxidant activity (radical scavenging activity), this being similar to the activity of rosemary extracts. Moreover, the phenolic profile of the extracts was analyzed, revealing diverse phenolic compounds. Rosemary extracts contained the highest variety and quantity of phenolic compounds, while olive pomace extracts were rich in hydroxytyrosol and 4-hydroxybenzoic acid. Lemon and pepper extracts contained high amounts of tyrosol, and tomato extracts had abundant epicatechin. The PCA analysis distinguished extracts based on in vitro antioxidant activity, phenol, carotenoid, and vitamin C content, along with their phenolic compound profiles. This study emphasizes the capacity of aqueous extract by-products as valuable sources of antioxidants and highlights the importance of understanding their bioactive components.
Collapse
Affiliation(s)
- María Luisa Timón
- Food Technology Department, School of Agricultural Engineering, University of Extremadura, 06007 Badajoz, Spain; (A.I.A.); (M.J.P.)
| | | | | |
Collapse
|
5
|
Rostom B, Goya-Jorge E, Muro LV, Boubrik I, Wiorek S, Karaky R, Kassab I, Rodríguez MEJ, Sylla-Iyarreta Veitía M. Fishing antioxidant 4-hydroxycoumarin derivatives: synthesis, characterization, and in vitro assessments. Can J Physiol Pharmacol 2024; 102:361-373. [PMID: 38447123 DOI: 10.1139/cjpp-2023-0455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Coumarins represent a diverse class of natural compounds whose importance in pharmaceutical and agri-food sectors has motivated multiple novel synthetic derivatives with broad applicability. The phenolic moiety in 4-hydroxycoumarins underscores their potential to modulate the equilibrium between free radicals and antioxidant species within biological systems. The aim of this work was to assess the antioxidant activity of 18 4-hydroxycoumarin coumarin derivatives, six of which are commercially available and the other 12 were synthesized and chemically characterized and described herein. The 4-hydroxycoumarins were prepared by a two steps synthetic strategy with satisfactory yields. Their antioxidant potential was evaluated through three in vitro methods, two free radical-scavenging assays (DPPH• and ABTS•+) and a metal chelating activity assay. Six synthetic coumarins (4a, 4g, 4h, 4i, 4k, 4l) had a scavenging capacity of DPPH• higher than butylated hydroxytoluene (BHT) (IC50 = 0.58 mmol/L) and compound 4a (4-hydroxy-6-methoxy-2 H-chromen-2-one) with an IC50 = 0.05 mmol/L outperformed both BHT and ascorbic acid (IC50 = 0.06 mmol/L). Nine hydroxycoumarins had a scavenging capacity against ABTS•+ greater (C3, 4a, 4c) or comparable (C1, C2, C4, C6, 4g, 4l) to Trolox (IC50 = 34.34 µmol/L). Meanwhile, the set had a modest ferrous chelation capacity, but most of them (C2, C5, C6, 4a, 4b, 4h, 4i, 4j, 4k, 4l) reached up to more than 20% chelating ability percentage. Collectively, this research work provides valuable structural insights that may determine the scavenging and metal chelating activity of 4-hydroxycoumarins. Notably, substitutions at the C6 position appeared to enhance scavenging potential, while the introduction of electron-withdrawing groups showed promise in augmenting chelation efficiency.
Collapse
Affiliation(s)
- Batoul Rostom
- Laboratoire de Génomique, Bioinformatique et Chimie Moléculaire (EA 7528), Conservatoire National des Arts et Métiers (Cnam), HESAM Université, Paris, France
- Laboratoire de valorisation des ressources naturelles et des produits de santé, Faculté de Pharmacie, Université Libanaise, Campus Universitaire Rafik Hariri, Hadat, Liban
| | - Elizabeth Goya-Jorge
- Departamento de Farmacia, Facultad de Química-Farmacia, Universidad Central "Marta Abreu" de las Villas, Santa Clara, Villa Clara 54830, Cuba
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Liliana Vicet Muro
- Departamento de Farmacia, Facultad de Química-Farmacia, Universidad Central "Marta Abreu" de las Villas, Santa Clara, Villa Clara 54830, Cuba
| | - Imrane Boubrik
- Laboratoire de Génomique, Bioinformatique et Chimie Moléculaire (EA 7528), Conservatoire National des Arts et Métiers (Cnam), HESAM Université, Paris, France
| | - Sarah Wiorek
- Laboratoire de Génomique, Bioinformatique et Chimie Moléculaire (EA 7528), Conservatoire National des Arts et Métiers (Cnam), HESAM Université, Paris, France
| | - Racha Karaky
- Laboratoire de valorisation des ressources naturelles et des produits de santé, Faculté de Pharmacie, Université Libanaise, Campus Universitaire Rafik Hariri, Hadat, Liban
| | - Issam Kassab
- Laboratoire de valorisation des ressources naturelles et des produits de santé, Faculté de Pharmacie, Université Libanaise, Campus Universitaire Rafik Hariri, Hadat, Liban
| | - María Elisa Jorge Rodríguez
- Departamento de Farmacia, Facultad de Química-Farmacia, Universidad Central "Marta Abreu" de las Villas, Santa Clara, Villa Clara 54830, Cuba
| | - Maité Sylla-Iyarreta Veitía
- Laboratoire de Génomique, Bioinformatique et Chimie Moléculaire (EA 7528), Conservatoire National des Arts et Métiers (Cnam), HESAM Université, Paris, France
| |
Collapse
|
6
|
Zhang Z, Geng D, Yang Z, Pan L, Jin L. Synthesis and Antifungal Activity of Coumarin Derivatives Containing Hydrazone Moiety. Chem Biodivers 2024; 21:e202400583. [PMID: 38590217 DOI: 10.1002/cbdv.202400583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/10/2024]
Abstract
Plant disease control mainly relies on pesticides. In this study, a series of coumarin derivatives containing hydrazone moiety were designed and synthesized. The synthesized compounds were characterized and used to evaluate the antifungal activity against four pathogens, Botrytis cinerea, Alternaria solani, Fusarium oxysporum, and Alternaria alternata. The results showed that the inhibition rate of some compounds at 100 μg/mL in 96 hours reached around 70 % against A. alternata, higher than that of the positive control. The corresponding EC50 values were found at around 30 μg/mL. Finally, the compound 3 b was screened out with the lowest EC50 value (19.49 μg/mL). The analysis of SEM and TEM confirmed that the compound 3 b can obviously damage the morphological structure of hyphae, resulting in the depletion of the cells by the destruction of morphological matrix and leakage of contents. RNA sequencing showed that compounds 3 b mainly affected the pentose phosphate pathway, which caused to destroy the layer of mitochondrial structure. Molecular docking showed that compounds 3 b fitted the binding pocket of yeast transketolase and interacted with lysine at the hydrazone structure. Our results suggested that the introduction of hydrazone was an effective strategy for the design of novel bioactive compounds.
Collapse
Affiliation(s)
- Zibo Zhang
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, 830052, Urumqi, China
| | - Dongxian Geng
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, 830052, Urumqi, China
| | - Zhou Yang
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, 830052, Urumqi, China
| | - Le Pan
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, 830052, Urumqi, China
| | - Lu Jin
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, 830052, Urumqi, China
| |
Collapse
|
7
|
Li J, Qin CF, Chen ND. Evaluation of antioxidant, antidiabetic and antiobesity potential of phenylpropanoids (PPs): Structure-activity relationship and insight into action mechanisms against dual digestive enzymes by comprehensive technologies. Bioorg Chem 2024; 146:107290. [PMID: 38507999 DOI: 10.1016/j.bioorg.2024.107290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/03/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
Phenylpropanoids (PPs), a group of natural compounds characterized by one or more C6-C3 units, have exhibited considerable potential in addressing metabolic disease. However, the comprehensive investigation on the relationship of compound structures and involved activity, along with the action mechanisms on the drug target is absent. This study aimed to evaluate the antioxidant and inhibitory activities of 16 PPs against two digestive enzymes, including α-glucosidase and pancreatic lipase, explore the structure-activity relationships and elucidate the mechanisms underlying enzyme inhibition. The findings revealed the similarities in the rules governing antioxidant and enzyme inhibitory activities of PPs. Specifically, the introduction of hydroxyl groups generally exerted positive effects on the activities, while the further methoxylation and glycosylation were observed to be unfavorable. Among the studied PPs, esculetin exhibited the most potent antioxidant activity and dual enzymes inhibition potential, displaying IC50 values of 0.017 and 0.0428 mM for DPPH and ABTS radicals scavenging, as well as 1.36 and 6.67 mM for α-glucosidase and lipase inhibition, respectively. Quantification analysis indicated esculetin bound on both α-glucosidase and lipase successfully by a mixed-type mode. Further analyses by UV-Vis, FT-IR, fluorescence spectra, surface hydrophobicity, SEM, and molecular docking elucidated that esculetin could bind on the catalytic or non-catalytic sites of enzymes to form complex, impacting the normal spatial conformation for hydrolyzing the substrate, thus exhibiting the weakened activity. These results may shed light on the utilization value of natural PPs for the management of hyperglycemia and hyperlipemia, and afford the theoretical basis for designing drugs with stronger inhibition against the dual digestive enzymes based on esculetin.
Collapse
Affiliation(s)
- Jiao Li
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, China; Anhui Province Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, Lu'an 237012, China; Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resource, Lu'an 237012, China; Lu'an City Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, Lu'an 237012, China
| | - Chao-Feng Qin
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, China; Anhui Province Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, Lu'an 237012, China; Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resource, Lu'an 237012, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Lu'an City Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, Lu'an 237012, China
| | - Nai-Dong Chen
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, China; Anhui Province Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, Lu'an 237012, China; Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resource, Lu'an 237012, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Lu'an City Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, Lu'an 237012, China.
| |
Collapse
|
8
|
Kou X, Hu C, Pang Z, Zhang X, Wang H, Shen R, Yang A. A coumarin-based multifunctional chemosensor for Cu 2+/Al 3+ as an AD theranostic agent: Synthesis, X-ray single crystal analysis and activity study. Anal Chim Acta 2023; 1279:341818. [PMID: 37827640 DOI: 10.1016/j.aca.2023.341818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/01/2023] [Accepted: 09/10/2023] [Indexed: 10/14/2023]
Abstract
The pathogenesis of Alzheimer's disease (AD) is complex. So far there is no effective drug to treat the disease. The pathological changes of AD began 30 years before symptoms, so early diagnosis is considered to be important for AD treatment. Integrating diagnosis and therapy into a single regent has provided a new opportunity for AD treatment. Given that metal dyshomeostasis is thought to be one of the key factors to cause AD, a Schiff base substituted coumarin (probe 1) has been designed and synthesized as a selective metal chelator for multi-factor anti-AD in this work. The results of metal ions recognition showed that probe 1 had high selective fluorescent turn-on response to Al3+ and fluorescent turn-off response to Cu2+, due to intramolecular charge transfer (ICT) mechanism. Meanwhile, the results of both in vitro and in vivo bioactivities evaluation including metal chelation, reactive oxide species (ROS) elimination, self-/Cu2+-induced Aβ aggregation showed that 1 and 1-Cu(II) complex had excellent synergistic anti-AD activities. In addition, 1 had low cytotoxicity and was predicted to cross the blood-brain barrier (BBB). Noticeably, X-ray single crystal diffraction of 1-Cu(II) provided molecular level information to explain the structure and theranostic activity relationship. To sum up, 1 may be a promising candidate for the development of AD theranostic agent.
Collapse
Affiliation(s)
- Xiaodi Kou
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Chengting Hu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zi Pang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xinyu Zhang
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Huiyan Wang
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Rui Shen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Aihong Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
9
|
Radwan EM, Abo-Elabass E, Abd El-Baky AE, Alshwyeh HA, Almaimani RA, Almaimani G, Ibrahim IAA, Albogami A, Jaremko M, Alshawwa SZ, Saied EM. Unveiling the antitumor potential of novel N-(substituted-phenyl)-8-methoxycoumarin-3-carboxamides as dual inhibitors of VEGFR2 kinase and cytochrome P450 for targeted treatment of hepatocellular carcinoma. Front Chem 2023; 11:1231030. [PMID: 37601910 PMCID: PMC10436493 DOI: 10.3389/fchem.2023.1231030] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Being the sixth most diagnosed cancer and the fourth leading cause of cancer-related deaths worldwide, liver cancer is considered as a serious disease with a high prevalence and poor prognosis. Current anticancer drugs for liver cancer have drawbacks, such as limited efficacy in later stages of the disease, toxicity to healthy cells, and the potential for drug resistance. There is ample evidence that coumarin-based compounds are potent anticancer agents, with numerous analogues currently being investigated in preclinical and clinical studies. The current study aimed to explore the antitumor potency of a new class of 8-methoxycoumarin-3-carboxamides against liver cancer. Toward this aim, we have designed, synthesized, and characterized a new set of N-(substituted-phenyl)-8-methoxycoumarin-3-carboxamide analogues. The assessment of antitumor activity revealed that the synthesized class of compounds possesses substantial cytotoxicity toward Hep-G2 cells when compared to staurosporine, without significant impact on normal cells. Out of the synthesized compounds, compound 7 demonstrated the most potent cytotoxic effect against Hep-G2 cells with an IC50 of 0.75 µM, which was more potent than the drug staurosporine (IC50 = 8.37 µM). The investigation into the mechanism behind the antiproliferative activity of compound 7 revealed that it interferes with DNA replication and induces DNA damage, leading to cell cycle arrest as demonstrated by a significant decrease in the percentage of cells in the G1 and G2/M phases, along with an increase in the percentage of cells in the S phase. Flow cytometric analysis further revealed that compound 7 has the ability to trigger programmed cell death by inducing necrosis and apoptosis in HepG-2 cells. Further explorations into the mechanism of action demonstrated that compound 7 displays a potent dual-inhibitory activity toward cytochrome P450 and vascular endothelial growth factor receptor-2 (VEGFR-2) proteins, as compared to sorafenib drug. Further, detailed computational studies revealed that compound 7 displays a considerable binding affinity toward the binding cavity of VEGFR2 and CYP450 proteins. Taken together, our findings indicate that the newly synthesized class of compounds, particularly compound 7, could serve as a promising scaffold for the development of highly effective anticancer agents against liver cancer.
Collapse
Affiliation(s)
- Eman M. Radwan
- The Division of Organic Chemistry, Chemistry Department, Faculty of Science, Port-Said University, Port-Said, Egypt
| | - Eman Abo-Elabass
- The Division of Biochemistry, Chemistry Department, Faculty of Science, Port-Said University, Port-Said, Egypt
| | - Atef E. Abd El-Baky
- Biochemistry Department, Faculty of Pharmacy, Port-Said University, Port-Said, Egypt
| | - Hussah Abdullah Alshwyeh
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Basic and Applied Scientific Research Centre, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Riyad A. Almaimani
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ghassan Almaimani
- Department of Surgery, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdulaziz Albogami
- Biology Department, Faculty of science, Al-Baha University, Al Aqiq, Saudi Arabia
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences (BESE) and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Samar Z. Alshawwa
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Essa M. Saied
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
10
|
Todorov L, Saso L, Kostova I. Antioxidant Activity of Coumarins and Their Metal Complexes. Pharmaceuticals (Basel) 2023; 16:ph16050651. [PMID: 37242434 DOI: 10.3390/ph16050651] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Ubiquitously present in plant life, coumarins, as a class of phenolic compounds, have multiple applications-in everyday life, in organic synthesis, in medicine and many others. Coumarins are well known for their broad spectrum of physiological effects. The specific structure of the coumarin scaffold involves a conjugated system with excellent charge and electron transport properties. The antioxidant activity of natural coumarins has been a subject of intense study for at least two decades. Significant research into the antioxidant behavior of natural/semi-synthetic coumarins and their complexes has been carried out and published in scientific literature. The authors of this review have noted that, during the past five years, research efforts seem to have been focused on the synthesis and examination of synthetic coumarin derivatives with the aim to produce potential drugs with enhanced, modified or entirely novel effects. As many pathologies are associated with oxidative stress, coumarin-based compounds could be excellent candidates for novel medicinal molecules. The present review aims to inform the reader on some prominent results from investigations into the antioxidant properties of novel coumarin compounds over the past five years.
Collapse
Affiliation(s)
- Lozan Todorov
- Department of Chemistry, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Faculty of Pharmacy and Medicine, Sapienza University, 00185 Rome, Italy
| | - Irena Kostova
- Department of Chemistry, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria
| |
Collapse
|
11
|
Lu W, Tang J, Gu Z, Sun L, Wei H, Wang Y, Yang S, Chi X, Xu L. Crystal structure, in vitro cytotoxicity, DNA binding and DFT calculations of new copper (II) complexes with coumarin-amide ligand. J Inorg Biochem 2023; 238:112030. [PMID: 36327496 DOI: 10.1016/j.jinorgbio.2022.112030] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/06/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
Abstract
This work describes the synthesis, anticancer activity and electron structure study of two Cu (II) complexes with coumarin-3-formyl-(3-(aminomethyl) pyridine) ligand (L) - C1 (Cu2L2(OAc)4) and C2 (CuL2(NO3)2). The structure of C1 and C2 was confirmed by elemental analysis, FTIR, and single-crystal X-ray analysis. Complex C1 crystallizes as binuclear where two Cu (II) ions are bridged by four acetate ligands while C2 is a mononuclear complex with twisted octahedral geometry. Density functional theory (DFT) calculations revealed that electronic transitions originate from metal-ligand charge transfer and d-d transitions of metal ions. According to the results of UV-Vis and fluorescence titrations, C1 and C2 intercalate with DNA with the binding constants of 6.9 × 105 M-1 and 5.9 × 105 M-1, respectively. The in vitro cytotoxicity assays on four cancer cell lines (HeLa, HepG2, MCF-7 and A549) and a normal HUVEC cell line indicated higher anti-MCF-7 activity of C2 compared with cisplatin (IC50 = 2.86 ± 0.08 μM vs. 9.07 ± 0.10 μM). Moreover, C2 had superior selectivity since IC50 toward HUVEC cells was over 150 μM compared with 0.58 ± 0.05 μM for cisplatin. We concluded that the anti-MCF activity of mononuclear C2 complex is better than that of binuclear C1 and cisplatin. Therefore, C2 has been selected as a hit compound to develop novel non‑platinum anticancer agents through modification of coumarin-amide structure and variation of copper (II) salts.
Collapse
Affiliation(s)
- Wen Lu
- College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Jiongya Tang
- College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Zhenzhen Gu
- College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Lu Sun
- College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Haimeng Wei
- College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yanqin Wang
- College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Shilong Yang
- The Advanced Analysis and Testing Center, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xingwei Chi
- College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Li Xu
- College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Institute of Material Physics&Chemistry, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
12
|
Polo-Cuadrado E, Rojas-Peña C, Acosta-Quiroga K, Camargo-Ayala L, Brito I, Cisterna J, Moncada F, Trilleras J, Rodríguez-Núñez YA, Gutierrez M. Design, synthesis, theoretical study, antioxidant, and anticholinesterase activities of new pyrazolo-fused phenanthrolines. RSC Adv 2022; 12:33032-33048. [PMID: 36425206 PMCID: PMC9671100 DOI: 10.1039/d2ra05532e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/03/2022] [Indexed: 10/19/2023] Open
Abstract
Pyrazole-fused phenanthroline compounds were obtained through several synthetic routes. NMR, HRMS, and IR techniques were used to characterize and confirm the chemical structures. Crystal structures were obtained from compounds 3a, 5b, 5j, 5k, and 5n and analyzed using X-ray diffraction. Compounds were evaluated as acetyl (AChE) and butyrylcholinesterase (BChE) inhibitors, and the results showed a moderate activity. Compound 5c presented the best activity against AChE (IC50 = 53.29 μM) and compound 5l against BChE enzyme (IC50 = 119.3 μM). Furthermore, the ability of the synthetic compounds to scavenge cationic radicals DPPH and ABTS was evaluated. Compound 5e (EC50 = 26.71 μg mL-1) presented the best results in the DPPH assay, and compounds 5e, 5f and 5g (EC50 = 11.51, 3.10 and <3 μg mL-1, respectively) showed better ABTS cationic radical scavenging results. Finally, in silico analyses indicated that 71% of the compounds show good oral availability and are within the ranges established by the Lipinski criteria.
Collapse
Affiliation(s)
- Efraín Polo-Cuadrado
- Laboratorio Síntesis Orgánica y Actividad Biológica (LSO-Act-Bio), Instituto de Química de Recursos Naturales, Universidad de Talca Casilla 747 Talca 3460000 Chile
| | - Cristian Rojas-Peña
- Laboratorio Síntesis Orgánica y Actividad Biológica (LSO-Act-Bio), Instituto de Química de Recursos Naturales, Universidad de Talca Casilla 747 Talca 3460000 Chile
- Doctorado en Química, Departamento de Química Orgánica y Fisicoquímica, Universidad de Chile Santiago Chile
| | - Karen Acosta-Quiroga
- Laboratorio Síntesis Orgánica y Actividad Biológica (LSO-Act-Bio), Instituto de Química de Recursos Naturales, Universidad de Talca Casilla 747 Talca 3460000 Chile
- Doctorado en Química, Departamento de Química Orgánica y Fisicoquímica, Universidad de Chile Santiago Chile
| | - Lorena Camargo-Ayala
- Doctorado en Ciencias Mención I + D de Productos Bioactivos, Instituto de Química de Recursos Naturales, Laboratorio de Síntesis Orgánica (LSO-Act-Bio), Universidad de Talca Casilla 747 Talca 3460000 Chile
| | - Iván Brito
- Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Avda., Campus Coloso Antofagasta 02800 Chile
| | - Jonathan Cisterna
- Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Avda., Campus Coloso Antofagasta 02800 Chile
| | - Félix Moncada
- Departamento de Química, Universidad Nacional de Colombia Av. Cra 30 # 45-03 Bogotá Colombia
| | - Jorge Trilleras
- Grupo de Investigación en Compuestos Heterocíclicos, Universidad del Atlántico Puerto Colombia 081007 Colombia
| | - Yeray A Rodríguez-Núñez
- Departamento de Química, Facultad de Ciencias Exactas, Universidad Andrés Bello Republica 275 Santiago 8370146 Chile
| | - Margarita Gutierrez
- Laboratorio Síntesis Orgánica y Actividad Biológica (LSO-Act-Bio), Instituto de Química de Recursos Naturales, Universidad de Talca Casilla 747 Talca 3460000 Chile
| |
Collapse
|
13
|
Kecel Gunduz S, Budama Kilinc Y, Bicak B, Gok B, Belmen B, Aydogan F, Yolacan C. New Coumarin Derivative with Potential Antioxidant Activity: Synthesis, DNA Binding and In Silico Studies (Docking, MD, ADMET). ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
14
|
Lipids and coumarin extraction from cumaru seeds (Dipteryx odorata) using sequential supercritical CO2+solvent and pressurized ethanol. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Paul S, Alam MA, Pal TK, Uddin MN, Islam MM, Sheikh MC. Quantum computational, spectroscopic investigation, molecular docking, and in vitro pharmacological studies of sulfonamide Schiff base. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Keri RS, Budagumpi S, Balappa Somappa S. Synthetic and natural coumarins as potent anticonvulsant agents: A review with structure-activity relationship. J Clin Pharm Ther 2022; 47:915-931. [PMID: 35288962 DOI: 10.1111/jcpt.13644] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/09/2022] [Accepted: 02/24/2022] [Indexed: 12/25/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE The main objective of this review is to highlight the most relevant studies since 1990 (to date) in the area of medicinal chemistry aspects to provide a panoramic view to the biologists/medicinal chemists working in this area and would assist them in their efforts to design, synthesize and extract (from natural source) coumarin-based anticonvulsant agents. Also, the structure-activity relationship (SAR) studies are also discussed for further rational design of this kind of derivatives. It is hoped that this review will be helpful for new thoughts in the quest for rational designs of more active and less toxic coumarin-based antiepileptic agents. METHODS A literature review emphasizing the application of coumarin core as antiepileptic agents identify articles related to the topic; we performed a standardized search from 1990 to November 2021, using search engines like Scifinder, web of Science, Pubmed and Scopus. RESULTS AND DISCUSSION This review gives an overview of attempts to shed light and compile published reports on coumarin derivatives along with some opinions on different approaches to help the medicinal chemists in designing future generation potent yet safer anticonvulsant agents. The possible structure-activity relationships (SARs) will also be discussed to indicate the direction for the rational design of more effective candidates. WHAT IS NEW AND CONCLUSION The findings from this review provide new indications or directions for the discovery of new and better drugs from synthetic and naturally occurring coumarins as antiepileptic agents. In our review, we have tried to depict the recent researches which made in the design and development of novel anticonvulsant compounds with coumarin nucleus. Also, SAR of expressed derivatives indicated that the choice of a fitting substitution containing electron-withdrawing/donating groups to coumarin or with some heterocyclic moieties joined to parent coumarin skeleton assumes an essential role in changing the anticonvulsant activity of synthesized derivatives. These findings encourage the scientific community towards the optimization of the pharmacological profile of this structural moiety as an important scaffold for the treatment of epilepsy.
Collapse
Affiliation(s)
- Rangappa S Keri
- Centre for Nano and Material Sciences, Jain University, Bangalore, India
| | | | - Sasidhar Balappa Somappa
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.,Organic Chemistry Section, Chemical Sciences and Technology Division, Council of Scientific and Industrial Research (CSIR)-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, India
| |
Collapse
|
17
|
Pan Y, Liu T, Wang X, Sun J. Research progress of coumarins and their derivatives in the treatment of diabetes. J Enzyme Inhib Med Chem 2022; 37:616-628. [PMID: 35067136 PMCID: PMC8788346 DOI: 10.1080/14756366.2021.2024526] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Diabetes is a group of metabolic diseases characterised by chronic hyperglycaemia caused by multiple causes, which is caused by insulin secretion and/or utilisation defects. It is characterised by increased fasting and postprandial blood glucose levels due to insulin deficiency or insulin resistance. It is reported that the harm of diabetes mainly comes from its complications, and the cardiovascular disease caused by diabetes is the primary cause of its harm. China has the largest number of diabetic patients in the world, and the prevention and control of diabetes are facing great challenges. In recent years, many kinds of literature have been published abroad, which have proved that coumarin and its derivatives are effective in the treatment of diabetic complications such as nephropathy and cardiovascular disease. In this paper, the types of antidiabetic drugs and the anti-diabetic mechanism of coumarins were reviewed.
Collapse
Affiliation(s)
- Yinbo Pan
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University, Jinan, Shandong, China
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Teng Liu
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University, Jinan, Shandong, China
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaojing Wang
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University, Jinan, Shandong, China
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jie Sun
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University, Jinan, Shandong, China
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
18
|
Smolyaninov IV, Burmistrova DA, Arsenyev MV, Almyasheva NR, Ivanova ES, Smolyaninova SA, Pashchenko KP, Poddel'sky AI, Berberova NT. Catechol‐ and Phenol‐Containing Thio‐Schiff Bases: Synthesis, Electrochemical Properties and Biological Evaluation. ChemistrySelect 2021. [DOI: 10.1002/slct.202102246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ivan V. Smolyaninov
- Department of Chemistry Astrakhan State Technical University 16 Tatischeva str. Astrakhan 414056 Russia
| | - Daria A. Burmistrova
- Department of Chemistry Astrakhan State Technical University 16 Tatischeva str. Astrakhan 414056 Russia
| | - Maxim V. Arsenyev
- G.A. Razuvaev Institute of Organometallic Chemistry Russian Academy of Sciences 49 Tropinina str. 603137 Nizhny Novgorod Russia
| | - Nailya R. Almyasheva
- Gause Institute of New Antibiotics 11/1 Bolshaya Pirogovskaya str. Moscow 119021 Russian Federation
| | - Ekaterina S. Ivanova
- Blokhin National Medical Research Center of Oncology 24 Kashirskoye Shosse Moscow 115478 Russian Federation
| | - Susanna A. Smolyaninova
- Department of Chemistry Astrakhan State Technical University 16 Tatischeva str. Astrakhan 414056 Russia
| | - Konstantin P. Pashchenko
- Department of Chemistry Astrakhan State Technical University 16 Tatischeva str. Astrakhan 414056 Russia
| | - Andrey I. Poddel'sky
- G.A. Razuvaev Institute of Organometallic Chemistry Russian Academy of Sciences 49 Tropinina str. 603137 Nizhny Novgorod Russia
| | - Nadezhda T. Berberova
- Department of Chemistry Astrakhan State Technical University 16 Tatischeva str. Astrakhan 414056 Russia
| |
Collapse
|
19
|
Katopodi A, Tsotsou E, Iliou T, Deligiannidou GE, Pontiki E, Kontogiorgis C, Tsopelas F, Detsi A. Synthesis, Bioactivity, Pharmacokinetic and Biomimetic Properties of Multi-Substituted Coumarin Derivatives. Molecules 2021; 26:5999. [PMID: 34641543 PMCID: PMC8512853 DOI: 10.3390/molecules26195999] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/20/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022] Open
Abstract
A series of novel multi-substituted coumarin derivatives were synthesized, spectroscopically characterized, and evaluated for their antioxidant activity, soybean lipoxygenase (LOX) inhibitory ability, their influence on cell viability in immortalized human keratinocytes (HaCaT), and cytotoxicity in adenocarcinomic human alveolar basal epithelial cells (A549) and human melanoma (A375) cells, in vitro. Coumarin analogues 4a-4f, bearing a hydroxyl group at position 5 of the coumarin scaffold and halogen substituents at the 3-phenyl ring, were the most promising ABTS•+ scavengers. 6,8-Dibromo-3-(4-hydroxyphenyl)-4-methyl-chromen-2-one (4k) and 6-bromo-3-(4,5-diacetyloxyphenyl)-4-methyl-chromen-2-one (3m) exhibited significant lipid peroxidation inhibitory activity (IC50 36.9 and 37.1 μM). In the DCF-DA assay, the 4'-fluoro-substituted compound 3f (100%), and the 6-bromo substituted compounds 3i (80.9%) and 4i (100%) presented the highest activity. The 3'-fluoro-substituted coumarins 3e and 4e, along with 3-(4-acetyloxyphenyl)-6,8-dibromo-4-methyl-chromen-2-one (3k), were the most potent lipoxygenase (LOX) inhibitors (IC50 11.4, 4.1, and 8.7 μM, respectively) while displaying remarkable hydroxyl radical scavenging ability, 85.2%, 100%, and 92.9%, respectively. In silico docking studies of compounds 4e and 3k, revealed that they present allosteric interactions with the enzyme. The majority of the analogues (100 μΜ) did not affect the cell viability of HaCaT cells, though several compounds presented over 60% cytotoxicity in A549 or A375 cells. Finally, the human oral absorption (%HOA) and plasma protein binding (%PPB) properties of the synthesized coumarins were also estimated using biomimetic chromatography, and all compounds presented high %HOA (>99%) and %PPB (60-97%) values.
Collapse
Affiliation(s)
- Annita Katopodi
- Laboratory of Organic Chemistry, Department of Chemical Sciences, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (A.K.); (E.T.)
| | - Evangelia Tsotsou
- Laboratory of Organic Chemistry, Department of Chemical Sciences, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (A.K.); (E.T.)
- Laboratory of Inorganic and Analytical Chemistry, Department of Chemical Sciences, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece;
| | - Triantafylia Iliou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (T.I.); (G.-E.D.); (C.K.)
| | - Georgia-Eirini Deligiannidou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (T.I.); (G.-E.D.); (C.K.)
| | - Eleni Pontiki
- Laboratory of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Christos Kontogiorgis
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (T.I.); (G.-E.D.); (C.K.)
| | - Fotios Tsopelas
- Laboratory of Inorganic and Analytical Chemistry, Department of Chemical Sciences, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece;
| | - Anastasia Detsi
- Laboratory of Organic Chemistry, Department of Chemical Sciences, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (A.K.); (E.T.)
| |
Collapse
|
20
|
4-(Trifluoromethyl) coumarin-fused pyridines: Regioselective synthesis and photophysics, electrochemical, and antioxidative activity. J Fluor Chem 2021. [DOI: 10.1016/j.jfluchem.2021.109822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Zhang ZG, Li YY, Lin B, Guan PP, Mu Y, Qiao WJ, Zhang JS, Huang XS, Han L. New phenolic glycosides from Anemone chinensis Bunge and their antioxidant activity. Nat Prod Res 2021; 36:5009-5015. [PMID: 33908333 DOI: 10.1080/14786419.2021.1917569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
ABATRACTNine compounds, five phenolic glycosides (1, 2, 4-6), three phenylpropanoids (7-9), and a furanone glycoside (3), were isolated from aqueous soluble extract of the dried roots of Anemone chinensis Bunge. The structures of new compounds (1-4) were elucidated by comprehensive spectroscopic data analysis as well as chemical evidence. Pulsatillanin A (1) demonstrated significant antioxidant effects through scavenging free radical in DPPH assay, and relieved the oxidative stress in LPS-induced RAW 264.7 cells by reducing ROS production, enhancing antioxidant enzyme SOD activity, replenishing depleted GSH in a dose-dependent manner. Western blot analysis revealed that 1 showed antioxidant activity via activating Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Zeng-Guang Zhang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, People's Republic of China
| | - Yuan-Yuan Li
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, People's Republic of China
| | - Bin Lin
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Pei-Pei Guan
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, People's Republic of China
| | - Yu Mu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, People's Republic of China
| | - Wen-Jun Qiao
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, People's Republic of China
| | - Jing-Sheng Zhang
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, People's Republic of China
| | - Xue-Shi Huang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, People's Republic of China
| | - Li Han
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, People's Republic of China
| |
Collapse
|
22
|
Badran AS, Ibrahim MA, Ahmed A. Nucleophilic reactions with the novel condensation product derived from 3-formylchromone and 4-hydroxycoumarin. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1910961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Al-Shimaa Badran
- Department of Chemistry, Faculty of Education, Ain Shams University, Cairo, Egypt
| | - Magdy A. Ibrahim
- Department of Chemistry, Faculty of Education, Ain Shams University, Cairo, Egypt
| | - Aya Ahmed
- Department of Chemistry, Faculty of Education, Ain Shams University, Cairo, Egypt
| |
Collapse
|