1
|
Lohana P, Suryaprawira A, Woods EL, Dally J, Gait-Carr E, Alaidaroos NYA, Heard CM, Lee KY, Ruge F, Farrier JN, Enoch S, Caley MP, Peake MA, Davies LC, Giles PJ, Thomas DW, Stephens P, Moseley R. Role of Enzymic Antioxidants in Mediating Oxidative Stress and Contrasting Wound Healing Capabilities in Oral Mucosal/Skin Fibroblasts and Tissues. Antioxidants (Basel) 2023; 12:1374. [PMID: 37507914 PMCID: PMC10375950 DOI: 10.3390/antiox12071374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Unlike skin, oral mucosal wounds are characterized by rapid healing and minimal scarring, attributable to the "enhanced" healing properties of oral mucosal fibroblasts (OMFs). As oxidative stress is increasingly implicated in regulating wound healing outcomes, this study compared oxidative stress biomarker and enzymic antioxidant profiles between patient-matched oral mucosal/skin tissues and OMFs/skin fibroblasts (SFs) to determine whether superior oral mucosal antioxidant capabilities and reduced oxidative stress contributed to these preferential healing properties. Oral mucosa and skin exhibited similar patterns of oxidative protein damage and lipid peroxidation, localized within the lamina propria/dermis and oral/skin epithelia, respectively. SOD1, SOD2, SOD3 and catalase were primarily localized within epithelial tissues overall. However, SOD3 was also widespread within the lamina propria localized to OMFs, vasculature and the extracellular matrix. OMFs were further identified as being more resistant to reactive oxygen species (ROS) generation and oxidative DNA/protein damage than SFs. Despite histological evaluation suggesting that oral mucosa possessed higher SOD3 expression, this was not fully substantiated for all OMFs examined due to inter-patient donor variability. Such findings suggest that enzymic antioxidants have limited roles in mediating privileged wound healing responses in OMFs, implying that other non-enzymic antioxidants could be involved in protecting OMFs from oxidative stress overall.
Collapse
Affiliation(s)
- Parkash Lohana
- Disease Mechanisms Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
- Canniesburn Plastic Surgery Unit, Glasgow Royal Infirmary, Glasgow G4 0SF, UK
| | - Albert Suryaprawira
- Disease Mechanisms Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
| | - Emma L Woods
- Disease Mechanisms Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
| | - Jordanna Dally
- Disease Mechanisms Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
| | - Edward Gait-Carr
- Disease Mechanisms Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
| | - Nadia Y A Alaidaroos
- Disease Mechanisms Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
| | - Charles M Heard
- School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF10 3NB, UK
| | - Kwok Y Lee
- Disease Mechanisms Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
| | - Fiona Ruge
- Disease Mechanisms Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Jeremy N Farrier
- Disease Mechanisms Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
- Oral and Maxilliofacial Surgery, Gloucestershire Royal General Hospital, Gloucester GL1 3NN, UK
| | - Stuart Enoch
- Disease Mechanisms Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
- Department of Burns and Plastic Surgery, University Hospital of South Manchester, Manchester M23 9LT, UK
| | - Matthew P Caley
- Disease Mechanisms Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
- Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Matthew A Peake
- Disease Mechanisms Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
- School of Biology, Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
| | - Lindsay C Davies
- Disease Mechanisms Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, Biomedicum, 17165 Solna, Sweden
| | - Peter J Giles
- Division of Medical Genetics, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XN, UK
| | - David W Thomas
- Advanced Therapies Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
| | - Phil Stephens
- Advanced Therapies Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
| | - Ryan Moseley
- Disease Mechanisms Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
| |
Collapse
|
2
|
Matthiesen CL, Hu L, Torslev AS, Poulsen ET, Larsen UG, Kjaer-Sorensen K, Thomsen JS, Brüel A, Enghild JJ, Oxvig C, Petersen SV. Superoxide dismutase 3 is expressed in bone tissue and required for normal bone homeostasis and mineralization. Free Radic Biol Med 2021; 164:399-409. [PMID: 33476796 DOI: 10.1016/j.freeradbiomed.2021.01.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/22/2020] [Accepted: 01/12/2021] [Indexed: 12/14/2022]
Abstract
Superoxide dismutase 3 (SOD3) is an extracellular protein with the capacity to convert superoxide into hydrogen peroxide, an important secondary messenger in redox regulation. To investigate the utility of zebrafish in functional studies of SOD3 and its relevance for redox regulation, we have characterized the zebrafish orthologues; Sod3a and Sod3b. Our analyses show that both recombinant Sod3a and Sod3b express SOD activity, however, only Sod3b is able to bind heparin. Furthermore, RT-PCR analyses reveal that sod3a and sod3b are expressed in zebrafish embryos and are present primarily in separate organs in adult zebrafish, suggesting distinct functions in vivo. Surprisingly, both RT-PCR and whole mount in situ hybridization showed specific expression of sod3b in skeletal tissue. To further investigate this observation, we compared femoral bone obtained from wild-type and SOD3-/- mice to determine whether a functional difference was apparent in healthy adult mice. Here we report, that bone from SOD3-/- mice is less mineralized and characterized by significant reduction of cortical and trabecular thickness in addition to reduced mechanical strength. These analyses show that SOD3 plays a hitherto unappreciated role in bone development and homeostasis.
Collapse
Affiliation(s)
| | - Lili Hu
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Ebbe T Poulsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Ulrike G Larsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | | | - Annemarie Brüel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
3
|
Checa J, Aran JM. Airway Redox Homeostasis and Inflammation Gone Awry: From Molecular Pathogenesis to Emerging Therapeutics in Respiratory Pathology. Int J Mol Sci 2020; 21:E9317. [PMID: 33297418 PMCID: PMC7731288 DOI: 10.3390/ijms21239317] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/05/2020] [Indexed: 02/06/2023] Open
Abstract
As aerobic organisms, we are continuously and throughout our lifetime subjected to an oxidizing atmosphere and, most often, to environmental threats. The lung is the internal organ most highly exposed to this milieu. Therefore, it has evolved to confront both oxidative stress induced by reactive oxygen species (ROS) and a variety of pollutants, pathogens, and allergens that promote inflammation and can harm the airways to different degrees. Indeed, an excess of ROS, generated intrinsically or from external sources, can imprint direct damage to key structural cell components (nucleic acids, sugars, lipids, and proteins) and indirectly perturb ROS-mediated signaling in lung epithelia, impairing its homeostasis. These early events complemented with efficient recognition of pathogen- or damage-associated recognition patterns by the airway resident cells alert the immune system, which mounts an inflammatory response to remove the hazards, including collateral dead cells and cellular debris, in an attempt to return to homeostatic conditions. Thus, any major or chronic dysregulation of the redox balance, the air-liquid interface, or defects in epithelial proteins impairing mucociliary clearance or other defense systems may lead to airway damage. Here, we review our understanding of the key role of oxidative stress and inflammation in respiratory pathology, and extensively report current and future trends in antioxidant and anti-inflammatory treatments focusing on the following major acute and chronic lung diseases: acute lung injury/respiratory distress syndrome, asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, and cystic fibrosis.
Collapse
Affiliation(s)
| | - Josep M. Aran
- Immune-Inflammatory Processes and Gene Therapeutics Group, IDIBELL, L’Hospitalet de Llobregat, 08908 Barcelona, Spain;
| |
Collapse
|
4
|
The dynamic uptake and release of SOD3 from intracellular stores in macrophages modulates the inflammatory response. Redox Biol 2019; 26:101268. [PMID: 31326693 PMCID: PMC6639747 DOI: 10.1016/j.redox.2019.101268] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/24/2019] [Accepted: 07/01/2019] [Indexed: 11/20/2022] Open
Abstract
Superoxide dismutase 3 (SOD3) is an extracellular enzyme with the capacity to modulate extracellular redox conditions by catalyzing the dismutation of superoxide to hydrogen peroxide. In addition to synthesis and release of this extracellular protein via the secretory pathway, several studies have shown that the protein also localizes to intracellular compartments in neutrophils and macrophages. Here we show that human macrophages release SOD3 from an intracellular compartment within 30 min following LPS stimulation. This release acutely increases the level of SOD3 on the cell surface as well as in the extracellular environment. Generation of the intracellular compartment in macrophages is supported by endocytosis of extracellular SOD3 via the LDL receptor-related protein 1 (LRP1). Using bone marrow-derived macrophages established from wild-type and SOD3−/− mice, we further show that the pro-inflammatory profile established in LPS-stimulated cells is altered in the absence of SOD3, suggesting that the active release of this protein affects the inflammatory response. The internalization and acute release from stimulated macrophages indicates that SOD3 not only functions as a passive antioxidant in the extracellular environment, but also plays an active role in modulating redox signaling to support biological responses. Stimulated macrophages release SOD3 from a pre-formed intracellular compartment. The intracellular compartment is established by receptor-mediated endocytosis. Release of SOD3 from stimulated macrophages modulates the inflammatory response. The level of SOD3 in the extracellular space is actively controlled.
Collapse
|
5
|
Srivastava D, Kukkuta Sarma GR, Dsouza DS, Muralidharan M, Srinivasan K, Mandal AK. Characterization of residue-specific glutathionylation of CSF proteins in multiple sclerosis - A MS-based approach. Anal Biochem 2018; 564-565:108-115. [PMID: 30367882 DOI: 10.1016/j.ab.2018.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/12/2018] [Accepted: 10/14/2018] [Indexed: 12/27/2022]
Abstract
Reduction of a disulfide linkage between cysteine residues in proteins, a standard step in the preanalytical preparation of samples in conventional proteomics approach, presents a challenge to characterize S-glutathionylation of proteins. S-glutathionylation of proteins has been reported in medical conditions associated with high oxidative stress. In the present study, we attempted to characterize glutathionylation of CSF proteins in patients with multiple sclerosis which is associated with high oxidative stress. Using the nano-LC/ESI-MS platform, we adopted a modified proteomics approach and a targeted database search to investigate glutathionylation at the residue level of CSF proteins. Compared to patients with Intracranial hypertension, the following CSF proteins: Extracellular Superoxide dismutase (ECSOD) at Cys195, α1-antitrypsin (A1AT) at Cys232, Phospholipid transfer protein (PLTP) at Cys318, Alpha-2-HS-glycoprotein at Cys340, Ectonucleotide pyrophosphate (ENPP-2) at Cys773, Gelsolin at Cys304, Interleukin-18 (IL-18) at Cys38 and Ig heavy chain V III region POM at Cys22 were found to be glutathionylated in patients with multiple sclerosis during a relapse. ECSOD, A1AT, and PLTP were observed to be glutathionylated at the functionally important cysteine residues. In conclusion, in the present study using a modified proteomics approach we have identified and characterized glutathionylation of CSF proteins in patients with multiple sclerosis.
Collapse
Affiliation(s)
- Deepsikha Srivastava
- Division of Molecular Medicine, Clinical Proteomics Unit, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, 560034, India
| | - Gosala Raja Kukkuta Sarma
- Department of Neurology, St. John's Hospital, St. John's National Academy of Health Sciences, Bangalore, 560034, India
| | - Delon Snehal Dsouza
- Department of Neurology, St. John's Hospital, St. John's National Academy of Health Sciences, Bangalore, 560034, India
| | - Monita Muralidharan
- Division of Molecular Medicine, Clinical Proteomics Unit, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, 560034, India
| | - Krishnamachari Srinivasan
- Department of Psychiatry, St. John's Medical College and Hospital, St. John's National Academy of Health Sciences, Bangalore, 560034, India
| | - Amit Kumar Mandal
- Division of Molecular Medicine, Clinical Proteomics Unit, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, 560034, India.
| |
Collapse
|
6
|
Wert KJ, Velez G, Cross MR, Wagner BA, Teoh-Fitzgerald ML, Buettner GR, McAnany JJ, Olivier A, Tsang SH, Harper MM, Domann FE, Bassuk AG, Mahajan VB. Extracellular superoxide dismutase (SOD3) regulates oxidative stress at the vitreoretinal interface. Free Radic Biol Med 2018; 124:408-419. [PMID: 29940351 PMCID: PMC6233711 DOI: 10.1016/j.freeradbiomed.2018.06.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/21/2018] [Indexed: 02/07/2023]
Abstract
Oxidative stress is a pathogenic feature in vitreoretinal disease. However, the ability of the inner retina to manage metabolic waste and oxidative stress is unknown. Proteomic analysis of antioxidants in the human vitreous, the extracellular matrix opposing the inner retina, identified superoxide dismutase-3 (SOD3) that localized to a unique matrix structure in the vitreous base and cortex. To determine the role of SOD3, Sod3-/- mice underwent histological and clinical phenotyping. Although the eyes were structurally normal, at the vitreoretinal interface Sod3-/- mice demonstrated higher levels of 3-nitrotyrosine, a key marker of oxidative stress. Pattern electroretinography also showed physiological signaling abnormalities within the inner retina. Vitreous biopsies and epiretinal membranes collected from patients with diabetic vitreoretinopathy (DVR) and a mouse model of DVR showed significantly higher levels of nitrates and/or 3-nitrotyrosine oxidative stress biomarkers suggestive of SOD3 dysfunction. This study analyzes the molecular pathways that regulate oxidative stress in human vitreous substructures. The absence or dysregulation of the SOD3 antioxidant at the vitreous base and cortex results in increased oxidative stress and tissue damage to the inner retina, which may underlie DVR pathogenesis and other vitreoretinal diseases.
Collapse
Affiliation(s)
- Katherine J Wert
- Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA, United States; Omics Laboratory, Stanford University, Palo Alto, CA, United States
| | - Gabriel Velez
- Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA, United States; Omics Laboratory, Stanford University, Palo Alto, CA, United States
| | - Madeline R Cross
- Department of Pediatrics, University of Iowa, Iowa City, IA, United States
| | - Brett A Wagner
- Department of Radiation Oncology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Melissa L Teoh-Fitzgerald
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Garry R Buettner
- Department of Radiation Oncology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - J Jason McAnany
- Department of Ophthalmology, University of Illinois at Chicago, Chicago, IL, United States
| | - Alicia Olivier
- Division of Comparative Pathology, Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Stephen H Tsang
- Bernard and Shirlee Brown Glaucoma Laboratory and Barbara & Donald Jonas Laboratory of Regenerative Medicine, Columbia University, New York, NY, United States; Edward S. Harkness Eye Institute, Columbia University, New York, NY, United States; Departments of Ophthalmology, Pathology & Cell Biology, and Institute of Human Nutrition, Columbia University, New York, NY, United States
| | - Matthew M Harper
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States; Department of Veterans Affairs Iowa City Health Care System, Iowa City, IA, United States; Veterans Affairs Center for the Prevention and Treatment of Visual Loss, Iowa City, IA, United States
| | - Frederick E Domann
- Department of Radiation Oncology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Alexander G Bassuk
- Department of Pediatrics, University of Iowa, Iowa City, IA, United States
| | - Vinit B Mahajan
- Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA, United States; Omics Laboratory, Stanford University, Palo Alto, CA, United States; Palo Alto Veterans Administration, Palo Alto, CA, United States.
| |
Collapse
|
7
|
Garcia AM, Allawzi A, Tatman P, Hernandez-Lagunas L, Swain K, Mouradian G, Bowler R, Karimpour-Fard A, Sucharov CC, Nozik-Grayck E. R213G polymorphism in SOD3 protects against bleomycin-induced inflammation and attenuates induction of proinflammatory pathways. Physiol Genomics 2018; 50:807-816. [PMID: 30004839 DOI: 10.1152/physiolgenomics.00053.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Extracellular superoxide dismutase (EC-SOD), one of three mammalian SOD isoforms, is the sole extracellular enzymatic defense against superoxide. A known human single nucleotide polymorphism (SNP) in the matrix-binding domain of EC-SOD characterized by an arginine-to-glycine substitution at position 213 (R213G) redistributes EC-SOD from the matrix into extracellular fluids. We previously reported that knock-in mice harboring the human R213G SNP (R213G mice) exhibited enhanced resolution of inflammation with subsequent protection against fibrosis following bleomycin treatment compared with wild-type (WT) littermates. Herein we set out to determine the underlying pathways with RNA-Seq analysis of WT and R213G lungs 7 days post-PBS and bleomycin. RNA-Seq analysis uncovered significant differential gene expression changes induced in WT and R213G strains in response to bleomycin. Ingenuity Pathways Analysis was used to predict differentially regulated up- and downstream processes based on transcriptional changes. Most prominent was the induction of inflammatory and immune responses in WT mice, which were suppressed in the R213G mice. Specifically, PKC signaling in T lymphocytes, IL-6, and NFΚB signaling were opposed in WT mice when compared with R213G. Several upstream regulators such as IFNγ, IRF3, and IKBKG were implicated in the divergent responses between WT and R213G mice. Our data suggest that the redistributed EC-SOD due to the R213G SNP attenuates the dysregulated inflammatory responses observed in WT mice. We speculate that redistributed EC-SOD protects against dysregulated alveolar inflammation via reprogramming of recruited immune cells toward a proresolving state.
Collapse
Affiliation(s)
- Anastacia M Garcia
- Department of Pediatrics, Division of Cardiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Ayed Allawzi
- Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Philip Tatman
- Medical Scientist Training Program, University of Colorado, Anschutz Medical Campus, Aurora, Colorado.,Department of Medicine, Division of Cardiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Laura Hernandez-Lagunas
- Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Kalin Swain
- Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Gary Mouradian
- Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Russell Bowler
- Department of Medicine, National Jewish Health , Denver, Colorado
| | - Anis Karimpour-Fard
- Department of Pharmacology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Carmen C Sucharov
- Department of Medicine, Division of Cardiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Eva Nozik-Grayck
- Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
8
|
Asadi S, Moradi MN, Khyripour N, Goodarzi MT, Mahmoodi M. Resveratrol Attenuates Copper and Zinc Homeostasis and Ameliorates Oxidative Stress in Type 2 Diabetic Rats. Biol Trace Elem Res 2017; 177:132-138. [PMID: 27744600 DOI: 10.1007/s12011-016-0861-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 09/28/2016] [Indexed: 01/25/2023]
Abstract
Diabetes is a common metabolic disorder characterized by elevated blood glucose level. Trace element homeostasis causes disturbances in diabetes due to hyperglycemia. Superoxide dismutase (SOD), an antioxidant enzyme, contains zinc and copper ions as its cofactors. Defects in SOD level and activity have been observed in diabetes. Resveratrol (RSV) has displayed hypoglycemic effects and is proven to improve oxidative stress. The aim of the present study was to examine the possible effects of RSV on blood glucose level, serum copper and zinc levels, SOD, and a number of other oxidative markers in type 2 diabetic rats. Diabetes was induced in male Wistar rats with administration of streptozotocin and nicotine amide. The studied groups containing six animals per group were as follows: group 1 normal control group; group 2 diabetic control group; groups 3, 4, and 5 diabetic rats that received 1, 5, and 10 mg/kg body weight of RSV, respectively for 30 days. Serum glucose, copper, zinc, SOD activity, total oxidant status (TOS) as well as thiol groups were all measured. Blood glucose in RSV treated groups significantly decreased. Similarly, copper significantly decreased in diabetic groups treated with RSV. Treatment with 10 mg/kg RSV resulted in significantly increased serum zinc. Furthermore, Cu/Zn ratio was observed to decrease in treated groups compared with untreated diabetic control group. RSV treated groups revealed an increased level of SOD activity as well as improved oxidative status. In summary, the results showed that RSV has potential hypoglycemic effect, attenuates trace element homeostasis, and consequently increases SOD activity level.
Collapse
Affiliation(s)
- Soheila Asadi
- Students Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Nejat Khyripour
- Students Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Taghi Goodarzi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Marzieh Mahmoodi
- Department of Biostatistics, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
9
|
Morales K, Olesen MN, Poulsen ET, Larsen UG, Enghild JJ, Petersen SV. The effects of hypochlorous acid and neutrophil proteases on the structure and function of extracellular superoxide dismutase. Free Radic Biol Med 2015; 81:38-46. [PMID: 25582887 DOI: 10.1016/j.freeradbiomed.2014.12.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/02/2014] [Accepted: 12/12/2014] [Indexed: 11/19/2022]
Abstract
Extracellular superoxide dismutase (EC-SOD) is expressed by both macrophages and neutrophils and is known to influence the inflammatory response. Upon activation, neutrophils generate hypochlorous acid (HOCl) and secrete proteases to combat invading microorganisms. This produces a hostile environment in which enzymatic activity in general is challenged. In this study, we show that EC-SOD exposed to physiologically relevant concentrations of HOCl remains enzymatically active and retains the heparin-binding capacity, although HOCl exposure established oxidative modification of the N-terminal region (Met32) and the formation of an intermolecular cross-link in a fraction of the molecules. The cross-linking was also induced by activated neutrophils. Moreover, we show that the neutrophil-derived proteases human neutrophil elastase and cathepsin G cleaved the N-terminal region of EC-SOD irrespective of HOCl oxidation. Although the cleavage by elastase did not affect the quaternary structure, the cleavage by cathepsin G dissociated the molecule to produce EC-SOD monomers. The present data suggest that EC-SOD is stable and active at the site of inflammation and that neutrophils have the capacity to modulate the biodistribution of the protein by generating EC-SOD monomers that can diffuse into tissue.
Collapse
Affiliation(s)
- Karla Morales
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | | | - Ebbe Toftgaard Poulsen
- Department of Molecular Biology and Genetics, Interdisciplinary Nanoscience Center and Center for Insoluble Protein Structures, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Ulrike G Larsen
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Interdisciplinary Nanoscience Center and Center for Insoluble Protein Structures, Aarhus University, DK-8000 Aarhus C, Denmark
| | | |
Collapse
|
10
|
Abass RM, Hamdan HZ, Elhassan EM, Hamdan SZ, Ali NI, Adam I. Zinc and copper levels in low birth weight deliveries in Medani Hospital, Sudan. BMC Res Notes 2014; 7:386. [PMID: 24958541 PMCID: PMC4081538 DOI: 10.1186/1756-0500-7-386] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 06/16/2014] [Indexed: 11/25/2022] Open
Abstract
Background Low birth weight (LBW) is a worldwide health problem, especially in developing countries. We conducted a case–control study at Medani Hospital, Sudan. Cases were women who delivered a LBW (<2500 g) newborn and consecutive women who delivered a normal weight (>2500 g) newborn were controls. Questionnaires were used to collect clinical data. Zinc and copper levels were measured by an atomic absorption spectrophotometer. Findings The two groups (50 in each arm) were well matched in their basic characteristics. Median (25–75th interquartile range) maternal zinc (62.9 [36.3–96.8] vs. 96.2 [84.6–125.7] μg/dl; P <0.001) and copper (81.6 [23.7–167.5] vs. 139.8 [31.9–186.2] μg/dl; P = 0.04) levels were significantly lower in cases than in controls. Cord copper levels in cases were significantly lower than those in controls (108 [55.1–157.9] vs. 147.5 [84.5–185.2] μg/dl; P = 0.02). There were significant direct correlations between birth weight and maternal copper levels and maternal and cord zinc levels. Conclusions Maternal zinc and copper levels, as well as cord copper levels, are lower in LBW newborns than in those with normal weight.
Collapse
Affiliation(s)
| | - Hamdan Z Hamdan
- Faculty of Medicine, Al-Neelain University, P,O, Box 12702, Khartoum, Sudan.
| | | | | | | | | |
Collapse
|
11
|
Scheiber IF, Mercer JF, Dringen R. Metabolism and functions of copper in brain. Prog Neurobiol 2014; 116:33-57. [DOI: 10.1016/j.pneurobio.2014.01.002] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 01/08/2014] [Accepted: 01/08/2014] [Indexed: 12/15/2022]
|
12
|
Bae JY, Koo BK, Ryu HB, Song JA, Nguyen MT, Vu TTT, Son YJ, Lee HK, Choe H. Cu/Zn incorporation during purification of soluble human EC-SOD from E. coli stabilizes proper disulfide bond formation. Appl Biochem Biotechnol 2013; 169:1633-47. [PMID: 23329142 DOI: 10.1007/s12010-012-0025-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 12/05/2012] [Indexed: 01/05/2023]
Abstract
Extracellular superoxide dismutase (EC-SOD) is the only enzyme that removes superoxide radical in the extracellular space. The reduction of EC-SOD is linked to many diseases, suggesting that the protein may have therapeutic value. EC-SOD is reported to be insoluble and to make inclusion bodies when overexpressed in the cytoplasm of Escherichia coli. The refolding process has the advantage of high yield, but has the disadvantage of frequent aggregation or misfolding during purification. For the first time, this study shows that fusion with maltose-binding protein (MBP), N-utilization substance protein A, and protein disulfide isomerase enabled the soluble overexpression of EC-SOD in the cytoplasm of E. coli. MBP-tagged human EC-SOD (hEC-SOD) was purified by MBP affinity and anion exchange chromatography, and its identity was confirmed by MALDI-TOF MS analysis. The purified protein showed good enzyme activity in vitro; however, there was a difference in metal binding. When copper and zinc were incorporated into hEC-SOD before MBP tag cleavage, the enzymatic activity was higher than when the metal ions were bound to the purified protein after MBP tag cleavage. Therefore, the enzymatic activity of hEC-SOD is associated with metal incorporation and protein folding via disulfide bond.
Collapse
Affiliation(s)
- Ji-Young Bae
- Department of Physiology and Bio-Medical Institute of Technology, University of Ulsan College of Medicine, 86 Asanbyeongwon-gil, Seoul 138-736, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Extracellular superoxide dismutase in cultured astrocytes: decrease in cell-surface activity and increase in medium activity by lipopolysaccharide-stimulation. Neurochem Res 2012; 37:2108-16. [PMID: 22740163 DOI: 10.1007/s11064-012-0832-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 06/04/2012] [Accepted: 06/16/2012] [Indexed: 10/28/2022]
Abstract
Under pathological conditions such as ischemia/reperfusion, a large amount of superoxide anion (O(2) (-)) is produced and released in brain. Among three isozymes of superoxide dismutase (SOD), extracellular (EC)-SOD, known to be excreted outside cells and bound to extracellular matrix, should play a role to detoxify O(2) (-) in extracellular space; however, a little is known about EC-SOD in brain. In order to evaluate the SOD activity in extracellular space of CNS as direct as possible, we attempted to measure the cell-surface SOD activity on primary cultured rat brain cells by the inhibition of color development of a water-soluble tetrazolium due to O(2) (-) generation by xanthine oxidase/hypoxanthine added into extracellular medium of intact cells. The cell-surface SOD activity on cultured neuron and microglia was below the detection limit; however, that on cultured astrocyte was high enough to measure. By means of RT-PCR, all mRNA of three isozymes of SOD could be detected in the three types of the cells examined; however, the semi-quantitative analysis revealed that the level of EC-SOD mRNA in astrocytes was significantly higher than that in neurons and microglia. When astrocytes were stimulated with lipopolysaccharide (LPS) for 12-24 h, the cell-surface SOD activity decreased to a half, whereas the activity recovered after 36-48 h. The decrease in the activity was dependent on the LPS concentration. On the other hand, the SOD activity in the medium increased by the LPS-stimulation in a dose dependent manner; suggesting that the SOD protein localized on cell-surface, probably EC-SOD, was released into the medium. These results suggest that EC-SOD of astrocyte play a role for detoxification of extracellular O(2) (-) and the regulation of EC-SOD in astrocytes may contribute to the defensive mechanism against oxidative stress in brain.
Collapse
|
14
|
Gottfredsen RH, Tran SMH, Larsen UG, Madsen P, Nielsen MS, Enghild JJ, Petersen SV. The C-terminal proteolytic processing of extracellular superoxide dismutase is redox regulated. Free Radic Biol Med 2012; 52:191-7. [PMID: 22062630 DOI: 10.1016/j.freeradbiomed.2011.10.443] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 10/08/2011] [Accepted: 10/13/2011] [Indexed: 01/12/2023]
Abstract
The antioxidant protein extracellular superoxide dismutase (EC-SOD) encompasses a C-terminal region that mediates interactions with a number of ligands in the extracellular matrix (ECM). This ECM-binding region can be removed by limited proteolysis before secretion, thus supporting the formation of EC-SOD tetramers with variable binding capacity. The ECM-binding region contains a cysteine residue (Cys219) that is known to be involved in an intersubunit disulfide bridge. We have determined the redox potential of this disulfide bridge and show that both EC-SOD dimers and EC-SOD monomers are present within the intracellular space. The proteolytic processing of the ECM-binding region in vitro was modulated by the redox status of Cys219, allowing cleavage under reducing conditions only. When wild-type EC-SOD or the monomeric variant Cys219Ser was expressed in mammalian cells proteolysis did not occur. However, when cells were exposed to oxidative stress conditions, proteolytic processing was observed for wild-type EC-SOD but not for the Cys219Ser variant. Although the cellular response to oxidative stress is complex, our data suggest that proteolytic removal of the ECM-binding region is regulated by the intracellular generation of an EC-SOD monomer and that Cys219 plays an important role as a redox switch allowing the cellular machinery to secrete cleaved EC-SOD.
Collapse
|
15
|
Jung JE, Kim GS, Chen H, Maier CM, Narasimhan P, Song YS, Niizuma K, Katsu M, Okami N, Yoshioka H, Sakata H, Goeders CE, Chan PH. Reperfusion and neurovascular dysfunction in stroke: from basic mechanisms to potential strategies for neuroprotection. Mol Neurobiol 2010; 41:172-9. [PMID: 20157789 DOI: 10.1007/s12035-010-8102-z] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 01/11/2010] [Indexed: 12/11/2022]
Abstract
Effective stroke therapies require recanalization of occluded cerebral blood vessels. However, reperfusion can cause neurovascular injury, leading to cerebral edema, brain hemorrhage, and neuronal death by apoptosis/necrosis. These complications, which result from excess production of reactive oxygen species in mitochondria, significantly limit the benefits of stroke therapies. We have developed a focal stroke model using mice deficient in mitochondrial manganese-superoxide dismutase (SOD2-/+) to investigate neurovascular endothelial damage that occurs during reperfusion. Following focal stroke and reperfusion, SOD2-/+ mice had delayed blood-brain barrier breakdown, associated with activation of matrix metalloproteinase and high brain hemorrhage rates, whereas a decrease in apoptosis and hemorrhage was observed in SOD2 overexpressors. Thus, induction and activation of SOD2 is a novel strategy for neurovascular protection after ischemia/reperfusion. Our recent study identified the signal transducer and activator of transcription 3 (STAT3) as a transcription factor of the mouse SOD2 gene. During reperfusion, activation of STAT3 and its recruitment into the SOD2 gene were blocked, resulting in increased oxidative stress and neuronal apoptosis. In contrast, pharmacological activation of STAT3 induced SOD2 expression, which limits ischemic neuronal death. Our studies point to antioxidant-based neurovascular protective strategies as potential treatments to expand the therapeutic window of currently approved therapies.
Collapse
Affiliation(s)
- Joo Eun Jung
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305-5487, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Samoila OC, Carter AM, Futers ST, Otiman G, Anghel A, Tamas L, Seclaman E. Polymorphic Variants of Extracellular Superoxide Dismutase Gene in a Romanian Population with Atheroma. Biochem Genet 2008; 46:634-43. [DOI: 10.1007/s10528-008-9177-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Accepted: 03/10/2008] [Indexed: 10/21/2022]
|
17
|
Qin Z, Reszka KJ, Fukai T, Weintraub NL. Extracellular superoxide dismutase (ecSOD) in vascular biology: an update on exogenous gene transfer and endogenous regulators of ecSOD. Transl Res 2008; 151:68-78. [PMID: 18201674 PMCID: PMC4230486 DOI: 10.1016/j.trsl.2007.10.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 10/10/2007] [Accepted: 10/11/2007] [Indexed: 12/29/2022]
Abstract
Extracellular superoxide dismutase (ecSOD) is the major extracellular scavenger of superoxide (O(2)(.-)) and a main regulator of nitric oxide (NO) bioactivity in the blood vessel wall, heart, lungs, kidney, and placenta. Involvement of O(2)(.-) has been implicated in many pathological processes, and removal of extracellular O(2)(.-) by ecSOD gene transfer has emerged as a promising experimental technique to treat vascular disorders associated with increased oxidant stress. In addition, recent studies have clarified mechanisms that regulate ecSOD expression, tissue binding, and activity, and they have provided new insight into how ecSOD interacts with other factors that regulate vascular function. Finally, studies of a common gene variant in humans associated with disruption of ecSOD tissue binding suggest that displacement of the enzyme from the blood vessel wall may contribute to vascular diseases. The purpose of this review is to summarize recent research findings related to ecSOD function and gene transfer and to stimulate other investigations into the role of this unique antioxidant enzyme in vascular pathophysiology and therapeutics.
Collapse
Affiliation(s)
- Zhenyu Qin
- Division of Cardiovascular Disease, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267, USA.
| | | | | | | |
Collapse
|
18
|
Isobe M, Kai H, Kurahashi T, Suwan S, Pitchayawasin-Thapphasaraphong S, Franz T, Tani N, Higashi K, Nishida H. The Molecular Mechanism of the Termination of Insect Diapause, Part 1: A Timer Protein, TIME-EA4, in the Diapause Eggs of the Silkworm Bombyx mori is a Metallo-Glycoprotein. Chembiochem 2006; 7:1590-8. [PMID: 16952188 DOI: 10.1002/cbic.200600138] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
TIME-EA4 is an ATPase that measures time intervals, functioning as a diapause duration clock in diapause eggs of the silkworm, Bombyx mori. Characterization of the primary and higher structures of the TIME-EA4 would be desirable to clarify the mechanism by which the protein measures the time intervals. In our current studies, the whole sequence of TIME-EA4 has been established as that of a metallo-glycoprotein by combinational means involving peptide sequence analysis, nano-HPLC-ESI-Q-TOF-MS and MS/MS, and cDNA dictation. The amino acid sequence of TIME-EA4 showed 46-55 % homology with the reported proteins of the Cu,Zn-SOD (superoxide dismutase) family; in particular, the SOD active site (core domain) includes metal-binding amino acid ligands and a disulfide bond, and these structures are completely identical in Bombyx SOD, bovine SOD, and TIME-EA4 proteins. We found, however, that TIME-EA4 contains one more copper ion than other SODs, as was proven under neutral nondenaturing conditions. ESI mass spectrometry revealed that the timer function was not in the SOD core domain. In addition, TIME-EA4 has an attached sugar chain, which is indispensable to its functioning as a timer protein.
Collapse
Affiliation(s)
- Minoru Isobe
- Laboratory of Organic Chemistry Graduate School of Bioagricultural Sciences, Nagoya University Chikusa, Nagoya 464-8601, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Iida S, Chu Y, Weiss RM, Kang YM, Faraci FM, Heistad DD. Vascular effects of a common gene variant of extracellular superoxide dismutase in heart failure. Am J Physiol Heart Circ Physiol 2006; 291:H914-20. [PMID: 16840738 DOI: 10.1152/ajpheart.00080.2006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A common gene variant of human extracellular superoxide dismutase (ecSOD), in ∼5% of humans, is associated with increased risk of ischemic heart disease. The purpose of this study was to examine vascular effects of ecSOD with effects of the ecSOD variant (ecSODR213G) in rats with heart failure. Seven weeks after coronary artery ligation, we studied rats with heart failure and sham-operated rats. Adenoviral vectors expressing human ecSOD, ecSODR213G, or a control virus were injected intravenously. In the aorta from rats with heart failure, responses to acetylcholine (69 ± 4% relaxation, means ± SE) and basal levels of nitric oxide (NO) (vasoconstrictor responses to a NO synthase inhibitor) were greatly impaired, and levels of superoxide and peroxynitrite were increased. Gene transfer of ecSOD restored responses to acetylcholine (92 ± 2% relaxation) and basal levels of NO to normal and reduced levels of superoxide [from 2.3 ± 0.2 to 0.9 ± 0.2 relative light units per second per millimeter squared (RLU·s−1·mm−2)] and peroxynitrite (from 2.4 ± 0.2 to 0.9 ± 0.1 RLU·s−1·mm−2) in the aorta from rats with heart failure. Gene transfer of ecSODR213G produced little or no improvement. Responses to nitroprusside were not different among the groups. Expression of endogenous mRNA for SODs (CuZnSOD, MnSOD, and ecSOD) and endothelial NOS in the aorta was not different among the groups. In contrast to ecSOD, gene transfer of ecSODR213G in rats with heart failure has minimal beneficial effect on oxidative stress, endothelial function, or basal bioavailability of NO. We speculate that greatly diminished efficacy of ecSODR213G in protection against oxidative stress and endothelial dysfunction may contribute to increased risk of cardiovascular disease in humans with ecSODR213G.
Collapse
Affiliation(s)
- Shinichiro Iida
- Department of Internal Medicine, Cardiovascular Center, Univ. of Iowa Roy J. and Lucille A. Carver, College of Medicine Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
20
|
Mukhopadhyay S, Rajaratnam V, Mukherjee S, Smith M, Das SK. Modulation of the expression of superoxide dismutase gene in lung injury by 2-chloroethyl ethyl sulfide, a mustard analog. J Biochem Mol Toxicol 2006; 20:142-9. [PMID: 16788954 DOI: 10.1002/jbt.20128] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mustard gas exposure causes inflammatory lung diseases. Many inflammatory lung diseases are associated with oxidative stress. Reactive oxygen species (ROS) are involved in the maintenance of physiological functions. In tissues, it is therefore essential to maintain a steady-state level of antioxidant activity to allow both for the physiological functions of ROS to proceed and at the same time preventing tissue damage. We have recently reported that mustard gas exposure decreases the overall activity of superoxide dismutase (SOD). In the present study, we investigated the effects of mustard gas on each of the three isozymes: SOD-1 (Cu/Zn), SOD-2 (Mn), and SOD-3 (extracellular). Adult guinea pigs were intratracheally injected single doses of 2-chloroethyl ethyl sulfide (CEES) (2 mg/kg body weight) in ethanol. Control animals were injected with vehicle in the same way. The animals were sacrificed after 7 days, and lungs were removed after perfusion with physiological saline. Lung injury was established by measuring the leakage of iodinated-BSA into lung tissue. Mustard gas exposure caused a significant increase in the activity of SOD-1 (35%). However, the SOD-3 activity which is the predominant type in lung was significantly decreased (62%), whereas no change was observed in SOD-2 activity. Thus the decrease in the total activity of SOD was primarily due to the SOD-3 isozyme. Northern blot analysis indicated 3.5-fold increased expression of SOD-1 in mustard gas exposed lung, but no significant change in the expression of SOD-2 and SOD-3 was observed. Mustard gas exposure did not cause mutation in the coding region of SOD-1 gene while causing modulation in expression levels. The protein levels of SOD-1, SOD-2, and SOD-3 were not altered significantly in the mustard gas exposed lung. Our results indicate that the overall decrease in the activity of SOD by mustard gas exposure is probably mediated by direct inactivation of the SOD-3 gene or the enzyme itself. This decrease in the activity of SOD-3 may be due to the cleavage of active form of the protein to an inactive form. The existence of active and inactive forms of SOD-3 as a result of shifts in Cys-Cys disulfide bonding has been described in human, recently. Studies are underway in our laboratory to investigate whether mustard gas induced inactivation of SOD-3 in lung is similarly mediated by a change in Cys-Cys disulfide bonding.
Collapse
Affiliation(s)
- Sutapa Mukhopadhyay
- Department of Biomedical Sciences, Meharry Medical College, Nashville, TN 37208, USA
| | | | | | | | | |
Collapse
|
21
|
Abstract
Copper (Cu), a redox active metal, is an essential nutrient for all species studied to date. During the past decade, there has been increasing interest in the concept that marginal deficits of this element can contribute to the development and progression of a number of disease states including cardiovascular disease and diabetes. Deficits of this nutrient during pregnancy can result in gross structural malformations in the conceptus, and persistent neurological and immunological abnormalities in the offspring. Excessive amounts of Cu in the body can also pose a risk. Acute Cu toxicity can result in a number of pathologies, and in severe cases, death. Chronic Cu toxicity can result in liver disease and severe neurological defects. The concept that elevated ceruloplasmin is a risk factor for certain diseases is discussed. In this paper, we will review recent literature on the potential causes of Cu deficiency and Cu toxicity, and the pathological consequences associated with the above. Finally, we will review some of the potential biochemical lesions that might underlie these pathologies. Given that oxidative stress is a characteristic of Cu deficiency, the role of Cu in the oxidative defense system will receive special attention. The concept that excess Cu may be a precipitating factor in Alzheimer's disease is discussed.
Collapse
Affiliation(s)
- Janet Y Uriu-Adams
- Department of Nutrition, One Shields Ave., University of California-Davis, Davis, CA 95616, USA.
| | | |
Collapse
|