1
|
Dubey A, Sivaraman J. Investigating anti-inflammatory actions of marine algal compound against lipoxygenase concentrating on therapeutic applications through computational approach. J Biomol Struct Dyn 2024; 42:9050-9063. [PMID: 37643084 DOI: 10.1080/07391102.2023.2249115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/12/2023] [Indexed: 08/31/2023]
Abstract
Inflammation is the preliminary response given to any possible harmful stimuli including infections, injury or stress by immune system where neutrophils and macrophages gets activated and produces mediators, such as nitric oxide and cytokines that serves as biomarkers of inflammation. Lipoxygenases are enzymes that peroxidises lipids and are involved in the pathogenesis of several diseases including inflammatory diseases. These are oxidative enzymes comprising a non-heme iron atom in active site and are convoluted in inflammatory reactions. Fucoidan is sulphated polysaccharide that has numerous pharmacological implications. Implications of fucoidan on inflammatory diseases are still an objective of rigorous research. Therefore, this study focusses on investigating lipoxygenase inhibitory activities of fucoidan. The mechanism of lipoxygenase inhibitory activities of fucoidan was studied via molecular docking and molecular dynamics simulations. The docking score produced by the binding of the fucoidan to the lipoxygenase was - 6.69 kcal/mol whereas, the docking score in case of Aspirin and Zileuton were -5.8 kcal/mol and -7.0 kcal/mol and it was found that fucoidan makes hydrogen bonds with lipoxygenase protein through polar amino acid glutamine at GLN 514. The results obtained from molecular dynamics simulations proposed the development of a stable complex between fucoidan and lipoxygenase due to the establishment of favourable interactions with amino acid residues and indicated efficient results when compared with Aspirin and Zileuton. This study suggested that fucoidan had anti-inflammatory potentials and thus can be used as a promising drug candidate against inflammation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Akanksha Dubey
- Computational Drug Design Lab, Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Jayanthi Sivaraman
- Computational Drug Design Lab, Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
2
|
Kang H, Park CH, Kwon SO, Lee SG. ED Formula, a Complex of Ecklonia cava and Chrysanthemum indicum, Ameliorates Airway Inflammation in Lipopolysaccharide-Stimulated RAW Macrophages and Ovalbumin-Induced Asthma Mouse Model. Pharmaceuticals (Basel) 2023; 16:1185. [PMID: 37631100 PMCID: PMC10458152 DOI: 10.3390/ph16081185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/02/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Ecklonia cava (E. cava) and Chrysanthemum indicum Linne (C. indicum) are natural raw materials known to have beneficial effects on inflammatory-related diseases, as evidenced by various sources in the literature. This study aimed to investigate the airway-protective effects of a formulation called ED, comprising E. cava and C. indicum, by evaluating its potential anti-inflammatory properties. Methods: The major components of ED were analyzed using high-performance liquid chromatography (HPLC) and its anti-inflammatory activity was assessed in RAW 264.7 cells through measurements of nitric oxide's (NO) inhibitory effect, cyclooxygenase (COX)-2 protein expression, and the mitogen-activated protein kinase (MAPK) signaling pathway. Additionally, the anti-inflammatory effect of ED was evaluated in an ovalbumin-induced asthma model by measuring cytokine levels in serum, bronchoalveolar lavage fluid (BALF), and lung tissue. Through HPLC analysis, the major components of ED, dieckol and luteolin, were identified. ED demonstrated no cytotoxicity and effectively reduced NO production in lipopolysaccharide (LPS)-induced RAW 264.7 cells. Moreover, ED downregulated COX-2 expression through the MAPK signaling pathway in LPS-induced RAW 264.7 cells. In the ovalbumin-induced asthma model, the ED-treated group exhibited reduced levels of inflammatory cytokines in lung tissue. Furthermore, the ED-treated group showed a decrease in the number of inflammatory cells in BALF and lower serum interleukin (IL)-6 levels compared to the ovalbumin-treated group. These results suggest that ED has the potential to be a novel therapeutic agent for improving inflammatory respiratory diseases.
Collapse
Affiliation(s)
- Hyun Kang
- Department of Medical Laboratory Science, College of Health Science, Dankook University, Cheonan-si 31116, Chungnam, Republic of Korea; (H.K.); (C.-H.P.)
| | - Chan-Hwi Park
- Department of Medical Laboratory Science, College of Health Science, Dankook University, Cheonan-si 31116, Chungnam, Republic of Korea; (H.K.); (C.-H.P.)
| | - Sang-Oh Kwon
- S&D Co., Ltd., 473, Mansu-ri, Osong-eup, Heungdeok-gu, Cheongju-si 28156, Chungcheongbuk-do, Republic of Korea;
| | - Sung-Gyu Lee
- Department of Medical Laboratory Science, College of Health Science, Dankook University, Cheonan-si 31116, Chungnam, Republic of Korea; (H.K.); (C.-H.P.)
| |
Collapse
|
3
|
Structures and Anti-Allergic Activities of Natural Products from Marine Organisms. Mar Drugs 2023; 21:md21030152. [PMID: 36976202 PMCID: PMC10056057 DOI: 10.3390/md21030152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
In recent years, allergic diseases have occurred frequently, affecting more than 20% of the global population. The current first-line treatment of anti-allergic drugs mainly includes topical corticosteroids, as well as adjuvant treatment of antihistamine drugs, which have adverse side effects and drug resistance after long-term use. Therefore, it is essential to find alternative anti-allergic agents from natural products. High pressure, low temperature, and low/lack of light lead to highly functionalized and diverse functional natural products in the marine environment. This review summarizes the information on anti-allergic secondary metabolites with a variety of chemical structures such as polyphenols, alkaloids, terpenoids, steroids, and peptides, obtained mainly from fungi, bacteria, macroalgae, sponges, mollusks, and fish. Molecular docking simulation is applied by MOE to further reveal the potential mechanism for some representative marine anti-allergic natural products to target the H1 receptor. This review may not only provide insight into information about the structures and anti-allergic activities of natural products from marine organisms but also provides a valuable reference for marine natural products with immunomodulatory activities.
Collapse
|
4
|
Li H, Oh SH, Shin HC, Suh MW. Intratympanic Administration of Dieckol Prevents Ototoxic Hearing Loss. Mar Drugs 2022; 20:md20100622. [PMID: 36286446 PMCID: PMC9604621 DOI: 10.3390/md20100622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Systemic administration of dieckol reportedly ameliorates acute hearing loss. In this study, dieckol was delivered to the inner ear by the intratympanic route. The functional and anatomic effects and safety of dieckol were assessed using the rat ototoxicity model. MATERIALS AND METHODS Dieckol in a high-molecular-weight hyaluronic acid vehicle (dieckol+vehicle group) or vehicle without dieckol (vehicle-only group) were randomly delivered into 12 ears intratympanically. Ototoxic hearing loss was induced by intravenous administration of cisplatin, gentamicin, and furosemide. The hearing threshold and surviving outer hair cells (OHC) were enumerated. Biocompatibility was assessed by serial endoscopy of the tympanic membrane (TM), and the histology of the TM and the base of bulla (BB) mucosa was quantitatively assessed. RESULTS The hearing threshold was significantly better (difference of 20 dB SPL) in the dieckol+vehicle group than in the vehicle-only group. The number of surviving OHCs was significantly greater in the dieckol+vehicle group than in the vehicle-only group. There were no signs of inflammation or infection in the ear. The thickness of the TM and the BB mucosa did not differ between the two groups. CONCLUSION Intratympanic local delivery of dieckol may be a safe and effective method to prevent ototoxic hearing loss.
Collapse
Affiliation(s)
- Hui Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul 03080, Korea
| | - Seung Ha Oh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul 03080, Korea
| | - Hyeon-Cheol Shin
- Center for Molecular Intelligence, The State University of New York, Incheon 21985, Korea
| | - Myung-Whan Suh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul 03080, Korea
- Correspondence: ; Tel.: +82-2-2072-3649; Fax: +82-2-745-2387
| |
Collapse
|
5
|
Oh G, Choi I, Park WS, Jung W. Phlorotannin‐coated poly (ε‐caprolactone) film as a potential material for postsurgical adhesion prevention. J Appl Polym Sci 2022. [DOI: 10.1002/app.52756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Gun‐Woo Oh
- National Marine Biodiversity Institute of Korea Seochun Chungcheongnam Republic of Korea
| | - Il‐Whan Choi
- Department of Microbiology College of Medicine, Inje University Busan Republic of Korea
| | - Won Sun Park
- Department of Physiology, Institute of Medical Sciences Kangwon National University, School of Medicine Chuncheon South Korea
| | - Won‐Kyo Jung
- Research Center for Marine Integrated Bionics Technology Pukyong National University Busan Republic of Korea
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New‐Senior Healthcare Innovation Center (BK21 Plus) Pukyong National University Busan Republic of Korea
| |
Collapse
|
6
|
Rajasekar N, Sivanantham A, Kar A, Mukhopadhyay S, Mahapatra SK, Paramasivam SG, Rajasekaran S. Anti-asthmatic effects of tannic acid from Chinese natural gall nuts in a mouse model of allergic asthma. Int Immunopharmacol 2021; 98:107847. [PMID: 34126339 DOI: 10.1016/j.intimp.2021.107847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 12/31/2022]
Abstract
Asthma is a chronic inflammatory disease of the airways, which is characterized by infiltration of inflammatory cells, airway hyperresponsiveness (AHR), and airway remodeling. This study aimed to explore the role and mechanism of tannic acid (TA), a naturally occurring plant-derived polyphenol, in murine asthma model. BALB/c mice were given ovalbumin (OVA) to establish an allergic asthma model. The results revealed that TA treatment significantly decreased OVA-induced AHR, inflammatory cells infiltration, and the expression of various inflammatory mediators (Th2 and Th1 cytokines, eotaxin, and total IgE). Additionally, TA treatment also attenuated increases in mucins (Muc5ac and Muc5b) expression, mucus production in airway goblet cells, mast cells infiltration, and airway remodeling induced by OVA exposure. Furthermore, OVA-induced NF-κB (nuclear factor- kappa B) activation and cell adhesion molecules expression in the lungs was suppressed by TA treatment. In conclusion, TA effectively attenuated AHR, inflammatory response, and airway remodeling in OVA-challenged asthmatic mice. Therefore, TA may be a potential therapeutic option against allergic asthma in clinical settings.
Collapse
Affiliation(s)
- Nandhine Rajasekar
- Department of Biotechnology, BIT-Campus, Anna University, Tiruchirappalli, Tamil Nadu, India
| | - Ayyanar Sivanantham
- Department of Biotechnology, BIT-Campus, Anna University, Tiruchirappalli, Tamil Nadu, India
| | - Amrita Kar
- Department of Paramedical and Allied Health Sciences, Midnapore City College, Midnapore, West Bengal, India
| | - Sramana Mukhopadhyay
- Department of Pathology and Lab Medicine, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Santanu Kar Mahapatra
- Department of Paramedical and Allied Health Sciences, Midnapore City College, Midnapore, West Bengal, India
| | | | - Subbiah Rajasekaran
- Department of Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India.
| |
Collapse
|
7
|
Liu JX, Zhang Y, Yuan HY, Liang J. The treatment of asthma using the Chinese Materia Medica. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113558. [PMID: 33186702 DOI: 10.1016/j.jep.2020.113558] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/12/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Asthma is a costly global health problem that negatively influences the quality of life of patients. The Chinese Materia Medica (CMM) contains remedies that have been used for the treatment of asthma for millennia. This article strives to systematically summarize the current research progress so that more comprehensive examinations of various databases related to CMM anti-asthma drugs, can be performed, so as to sequentially provide effective basic data for development and application of anti-asthma drugs based on the CMM. MATERIALS AND METHODS The research data published over the past 20 years for asthma treatment based on traditional CMM remedies were retrieved and collected from libraries and online databases (PubMed, ScienceDirect, Elsevier, Spring Link, Web of Science, PubChem Compound, Wan Fang, CNKI, Baidu, and Google Scholar). Information was also added from classic CMM, literature, conference papers on classic herbal formulae, and dissertations (PhD or Masters) based on traditional Chinese medicine. RESULTS This review systematically summarizes the experimental studies on the treatment of asthma with CMM, covering the effective chemical components, typical asthma models, important mechanisms and traditional anti-asthma CMM formulae. The therapy value of the CMM for anti-asthma is clarified, and the original data and theoretical research foundation are provided for the development of new anti-asthmatic data and research for the CMM. CONCLUSIONS Substantial progress against asthma has been made through relevant experimental research based on the CMM. These advances improved the theoretical basis of anti-asthma drugs for CMM and provided a theoretical basis for the application of a asthma treatment that is unique. By compiling these data, it is expected that the CMM will now contain a clearer mechanism of action and a greater amount of practical data that can be used for future anti-asthma drug research.
Collapse
Affiliation(s)
- Jun-Xi Liu
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, PR China; Department of Pharmacy, Heilongjiang Nursing College, 209 Academy Road, Harbin, 150086, PR China
| | - Yang Zhang
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, PR China
| | - Hong-Yu Yuan
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, PR China
| | - Jun Liang
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, PR China.
| |
Collapse
|
8
|
Fraga-Corral M, Otero P, Cassani L, Echave J, Garcia-Oliveira P, Carpena M, Chamorro F, Lourenço-Lopes C, Prieto MA, Simal-Gandara J. Traditional Applications of Tannin Rich Extracts Supported by Scientific Data: Chemical Composition, Bioavailability and Bioaccessibility. Foods 2021; 10:251. [PMID: 33530516 PMCID: PMC7912241 DOI: 10.3390/foods10020251] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/16/2021] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
Tannins are polyphenolic compounds historically utilized in textile and adhesive industries, but also in traditional human and animal medicines or foodstuffs. Since 20th-century, advances in analytical chemistry have allowed disclosure of the chemical nature of these molecules. The chemical profile of extracts obtained from previously selected species was investigated to try to establish a bridge between traditional background and scientific data. The study of the chemical composition of these extracts has permitted us to correlate the presence of tannins and other related molecules with the effectiveness of their apparent uses. The revision of traditional knowledge paired with scientific evidence may provide a supporting background on their use and the basis for developing innovative pharmacology and food applications based on formulations using natural sources of tannins. This traditional-scientific approach can result useful due to the raising consumers' demand for natural products in markets, to which tannin-rich extracts may pose an attractive alternative. Therefore, it is of interest to back traditional applications with accurate data while meeting consumer's acceptance. In this review, several species known to contain high amounts of tannins have been selected as a starting point to establish a correlation between their alleged traditional use, tannins content and composition and potential bioaccessibility.
Collapse
Affiliation(s)
- Maria Fraga-Corral
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (L.C.); (J.E.); (P.G.-O.); (M.C.); (F.C.); (C.L.-L.)
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolonia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Paz Otero
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (L.C.); (J.E.); (P.G.-O.); (M.C.); (F.C.); (C.L.-L.)
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Veterinary, University of Santiago of Compostela, 27002 Lugo, Spain
| | - Lucia Cassani
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (L.C.); (J.E.); (P.G.-O.); (M.C.); (F.C.); (C.L.-L.)
- Research Group of Food Engineering, Faculty of Engineering, National University of Mar del Plata, Mar del Plata RA7600, Argentina
| | - Javier Echave
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (L.C.); (J.E.); (P.G.-O.); (M.C.); (F.C.); (C.L.-L.)
| | - Paula Garcia-Oliveira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (L.C.); (J.E.); (P.G.-O.); (M.C.); (F.C.); (C.L.-L.)
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolonia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Maria Carpena
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (L.C.); (J.E.); (P.G.-O.); (M.C.); (F.C.); (C.L.-L.)
| | - Franklin Chamorro
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (L.C.); (J.E.); (P.G.-O.); (M.C.); (F.C.); (C.L.-L.)
| | - Catarina Lourenço-Lopes
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (L.C.); (J.E.); (P.G.-O.); (M.C.); (F.C.); (C.L.-L.)
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (L.C.); (J.E.); (P.G.-O.); (M.C.); (F.C.); (C.L.-L.)
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (L.C.); (J.E.); (P.G.-O.); (M.C.); (F.C.); (C.L.-L.)
| |
Collapse
|
9
|
Maruthamuthu V, Henry LJK, Ramar MK, Kandasamy R. Myxopyrum serratulum ameliorates airway inflammation in LPS-stimulated RAW 264.7 macrophages and OVA-induced murine model of allergic asthma. JOURNAL OF ETHNOPHARMACOLOGY 2020; 255:112369. [PMID: 31683035 DOI: 10.1016/j.jep.2019.112369] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/12/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Myxopyrum serratulum A. W. Hill. (Oleaceae) is a traditionally used Indian medicinal plant for the treatment of cough, asthma and many other inflammatory diseases. AIM OF THE STUDY In this study, the protective effects of M. serratulum on airway inflammation was investigated in ovalbumin (OVA)-induced murine model of allergic asthma and lipopolysaccharide (LPS)-stimulated inflammation in RAW 264.7 murine macrophages, and the possible mechanisms were elucidated. MATERIALS AND METHODS The phytochemicals present in the methanolic leaf extract of M. serratulum (MEMS) were identified by reverse phase high performance liquid chromatography (RP-HPLC) analysis. In vitro anti-inflammatory activity of MEMS were evaluated by estimating the levels of nitric oxide (NO), reactive oxygen species (ROS) and cytokines (IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-10, IL-12, IL-17A, IFN-γ, TNF-α, G-CSF and GM-CSF) in LPS-stimulated RAW 264.7 macrophages. In vivo anti-asthmatic activity of MEMS was studied using OVA-induced murine model. Airway hyperresponsiveness (AHR), was measured; total and differential cell counts, eosinophil peroxidase (EPO), prostaglandin E2 (PGE2), NO, ROS, and cytokines (IL-4, IL-5 and IL-13), were estimated in bronchoalveolar lavage fluid (BALF). Serum total IgE level was measured; and the histopathological changes of lung tissues were observed. The expressions of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in lung tissue homogenates were detected by Western blot. RESULTS The chromatographic analysis of MEMS identified the presence of gallic acid, protocatechuic acid, catechin, ellagic acid, rutin, p-coumaric acid, quercetin, naringenin and apigenin. MEMS (125 and 250 μg/mL) dose-dependently reduced the levels of NO, ROS and pro-inflammatory cytokines in LPS-stimulated RAW 264.7 macrophages. MEMS (200 and 400 mg/kg, p.o.) significantly (p < 0.05) alleviated AHR; number of inflammatory cells, EPO, PGE2, NO, ROS, and cytokines (IL-4, IL-5 and IL-13) in BALF; serum total IgE and the histopathological changes associated with lung inflammation. Western blot studies showed that MEMS substantially suppressed COX-2 and iNOS protein expressions in the lung tissues of OVA-sensitized/challenged mice. CONCLUSIONS The present study corroborates for the first time the ameliorative effects of MEMS on airway inflammation by reducing the levels of oxidative stress, pro-inflammatory cytokines and inhibiting COX-2, iNOS protein expressions, thereby validating the ethnopharmacological uses of M. serratulum.
Collapse
Affiliation(s)
- Vijayalakshmi Maruthamuthu
- Department of Pharmaceutical Technology, Centre for Excellence in Nanobio Translational Research, Bharathidasan Institute of Technology, Anna University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Linda Jeeva Kumari Henry
- Department of Pharmaceutical Technology, Centre for Excellence in Nanobio Translational Research, Bharathidasan Institute of Technology, Anna University, Tiruchirappalli, 620024, Tamil Nadu, India; National Facility for Drug Development (NFDD) for Academia, Pharmaceutical and Allied Industries, Bharathidasan Institute of Technology, Anna University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Mohan Kumar Ramar
- Department of Pharmaceutical Technology, Centre for Excellence in Nanobio Translational Research, Bharathidasan Institute of Technology, Anna University, Tiruchirappalli, 620024, Tamil Nadu, India; National Facility for Drug Development (NFDD) for Academia, Pharmaceutical and Allied Industries, Bharathidasan Institute of Technology, Anna University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Ruckmani Kandasamy
- Department of Pharmaceutical Technology, Centre for Excellence in Nanobio Translational Research, Bharathidasan Institute of Technology, Anna University, Tiruchirappalli, 620024, Tamil Nadu, India; National Facility for Drug Development (NFDD) for Academia, Pharmaceutical and Allied Industries, Bharathidasan Institute of Technology, Anna University, Tiruchirappalli, 620024, Tamil Nadu, India.
| |
Collapse
|
10
|
Heo SY, Jeong MS, Lee HS, Kim YJ, Park SH, Jung WK. Phlorofucofuroeckol A from Ecklonia cava ameliorates TGF-β1-induced fibrotic response of human tracheal fibroblasts via the downregulation of MAPKs and SMAD 2/3 pathways inactivated TGF-β receptor. Biochem Biophys Res Commun 2020; 522:626-632. [PMID: 31785808 DOI: 10.1016/j.bbrc.2019.11.127] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 11/19/2019] [Indexed: 12/19/2022]
Abstract
The objective of this study was to investigate inhibitory effects of a bioactive compound isolated from Ecklonia cava on fibrotic responses to transforming growth factor-β1 (TGF-β1)-stimulated Hs680. Tr human tracheal fibroblasts and the associated mechanisms of action. Post consecutive purification, a potent bioactive compound was identified phlorofucofuroeckol A. Phlorofucofuroeckol A significantly suppressed protein expression levels of collagen type I and α-smooth muscle actin (α-SMA) on TGF-β1-stimulated Hs680. Tr human tracheal fibroblasts. Further mechanistic studies determined that phlorofucofuroeckol A suppressed the phosphorylation of p38, extracellular regulated kinase (ERK), and c-Jun N-terminal kinase (JNK) and SMAD 2/3 in TGF-β1-stimulated Hs680. Tr human tracheal fibroblasts. Moreover, we could show that phlorofucofuroeckol A inhibits binding of TGF-β1 to its TGF-β receptor by molecular docking. Based on the results, we propose that phlorofucofuroeckol A suppresses the MAPKs and SMAD 2/3 pathways and relieves cellular fibrotic activities, thus preventing tracheal fibrosis.
Collapse
Affiliation(s)
- Seong-Yeong Heo
- Department of Biomedical Engineering, Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, 48513, Republic of Korea; Marine-Integrated Bionics Research Center, Pukyong National University, Busan, 48513, Republic of Korea
| | - Min-Seon Jeong
- Department of Biomedical Engineering, Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, 48513, Republic of Korea; EONE-DIAGNOMICS Genome Center (EDGC), 291 Harmony-ro, Yeonsu-gu, Incheon, 22014, Republic of Korea
| | - Hyoung Shin Lee
- Department of Otolaryngology-Head and Neck Surgery, Kosin University College of Medicine, Busan, 49104, Republic of Korea
| | - Young Jick Kim
- ATEMs Co. Ltd., 306, Acekwanggyo Tower, 17 Daehak 4-ro, Yeongtong-gu, Suwon Gyeonggi, Republic of Korea
| | - Sang-Hyug Park
- Department of Biomedical Engineering, Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, 48513, Republic of Korea; Marine-Integrated Bionics Research Center, Pukyong National University, Busan, 48513, Republic of Korea
| | - Won-Kyo Jung
- Department of Biomedical Engineering, Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, 48513, Republic of Korea; Marine-Integrated Bionics Research Center, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
11
|
Oh JH, Ahn BN, Karadeniz F, Kim JA, Lee JI, Seo Y, Kong CS. Phlorofucofuroeckol A from Edible Brown Alga Ecklonia Cava Enhances Osteoblastogenesis in Bone Marrow-Derived Human Mesenchymal Stem Cells. Mar Drugs 2019; 17:E543. [PMID: 31546680 PMCID: PMC6836260 DOI: 10.3390/md17100543] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 02/06/2023] Open
Abstract
The deterioration of bone formation is a leading cause of age-related bone disorders. Lack of bone formation is induced by decreased osteoblastogenesis. In this study, osteoblastogenesis promoting effects of algal phlorotannin, phlorofucofuroeckol A (PFF-A), were evaluated. PFF-A was isolated from brown alga Ecklonia cava. The ability of PFF-A to enhance osteoblast differentiation was observed in murine pre-osteoblast cell line MC3T3-E1 and human bone marrow-derived mesenchymal stem cells (huBM-MSCs). Proliferation and alkaline phosphatase (ALP) activity of osteoblasts during differentiation was assayed following PFF-A treatment along extracellular mineralization. In addition, effect of PFF-A on osteoblast maturation pathways such as Runx2 and Smads was analyzed. Treatment of PFF-A was able to enhance the proliferation of differentiating osteoblasts. Also, ALP activity was observed to be increased. Osteoblasts showed increased extracellular mineralization, observed by Alizarin Red staining, following PFF-A treatment. In addition, expression levels of critical proteins in osteoblastogenesis such as ALP, bone morphogenetic protein-2 (BMP-2), osteocalcin and β-catenin were stimulated after the introduction of PFF-A. In conclusion, PFF-A was suggested to be a potential natural product with osteoblastogenesis enhancing effects which can be utilized against bone-remodeling imbalances and osteoporosis-related complications.
Collapse
Affiliation(s)
- Jung Hwan Oh
- Marine Biotechnology Center for Pharmaceuticals and Foods, Silla University, Busan 46958, Korea.
| | - Byul-Nim Ahn
- Marine Biotechnology Center for Pharmaceuticals and Foods, Silla University, Busan 46958, Korea.
| | - Fatih Karadeniz
- Marine Biotechnology Center for Pharmaceuticals and Foods, Silla University, Busan 46958, Korea.
| | - Jung-Ae Kim
- Marine Biotechnology Center for Pharmaceuticals and Foods, Silla University, Busan 46958, Korea.
| | - Jung Im Lee
- Marine Biotechnology Center for Pharmaceuticals and Foods, Silla University, Busan 46958, Korea.
| | - Youngwan Seo
- Division of Marine Bioscience, College of Ocean Science and Technology, Korea Maritime and Ocean University, Busan 49112, Korea.
- Department of Convergence Study on the Ocean Science and Technology, Ocean Science and Technology School, Korea Maritime and Ocean University, Busan 49112, Korea.
| | - Chang-Suk Kong
- Marine Biotechnology Center for Pharmaceuticals and Foods, Silla University, Busan 46958, Korea.
- Department of Food and Nutrition, College of Medical and Life Sciences, Silla University, Busan 46958, Korea.
| |
Collapse
|
12
|
Lee HS, Jeong M, Ko S, Heo S, Kang HW, Kim SW, Hwang CW, Lee KD, Oak C, Jung MJ, Oh J, Park WS, Choi I, Jung W. Fabrication and biological activity of polycaprolactone/phlorotannin endotracheal tube to prevent tracheal stenosis: An in vitro and in vivo study. J Biomed Mater Res B Appl Biomater 2019; 108:1046-1056. [DOI: 10.1002/jbm.b.34456] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/30/2019] [Accepted: 07/17/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Hyoung Shin Lee
- Department of Otolaryngology‐Head and Neck SurgeryKosin University College of Medicine Busan Republic of Korea
- Marine‐Integrated Bionics Research CenterPukyong National University Busan Republic of Korea
| | - Min‐Seon Jeong
- Marine‐Integrated Bionics Research CenterPukyong National University Busan Republic of Korea
- Department of Biomedical Engineering and Center for Marine‐Integrated Biomedical TechnologyPukyong National University Busan Republic of Korea
| | - Seok‐Chun Ko
- National Marine Bio‐Resources and Information CenterNational Marine Biodiversity Institute of Korea Seochun Chungcheongnam‐do Republic of Korea
| | - Seong‐Yeong Heo
- Marine‐Integrated Bionics Research CenterPukyong National University Busan Republic of Korea
- Department of Biomedical Engineering and Center for Marine‐Integrated Biomedical TechnologyPukyong National University Busan Republic of Korea
| | - Hyun Wook Kang
- Marine‐Integrated Bionics Research CenterPukyong National University Busan Republic of Korea
- Department of Biomedical Engineering and Center for Marine‐Integrated Biomedical TechnologyPukyong National University Busan Republic of Korea
| | - Sung Won Kim
- Department of Otolaryngology‐Head and Neck SurgeryKosin University College of Medicine Busan Republic of Korea
- Marine‐Integrated Bionics Research CenterPukyong National University Busan Republic of Korea
| | - Chi Woo Hwang
- Department of Molecular BiologyKosin University College of Medicine Busan Republic of Korea
| | - Kang Dae Lee
- Department of Otolaryngology‐Head and Neck SurgeryKosin University College of Medicine Busan Republic of Korea
- Marine‐Integrated Bionics Research CenterPukyong National University Busan Republic of Korea
| | - Chulho Oak
- Department of Internal MedicineKosin University College of Medicine Busan Republic of Korea
| | - Min Jung Jung
- Department of PathologyKosin University College of Medicine Busan Republic of Korea
| | - Junghwan Oh
- Department of Otolaryngology‐Head and Neck SurgeryKosin University College of Medicine Busan Republic of Korea
- Marine‐Integrated Bionics Research CenterPukyong National University Busan Republic of Korea
| | - Won Sun Park
- Department of PhysiologyKangwon National University, School of Medicine Chuncheon Gangwon Republic of Korea
| | - Il‐Whan Choi
- Department of MicrobiologyInje University College of Medicine Busan Republic of Korea
| | - Won‐Kyo Jung
- Marine‐Integrated Bionics Research CenterPukyong National University Busan Republic of Korea
- Department of Biomedical Engineering and Center for Marine‐Integrated Biomedical TechnologyPukyong National University Busan Republic of Korea
| |
Collapse
|
13
|
You SH, Kim JS, Kim YS. Apoptosis and Cell Cycle Arrest in Two Human Breast Cancer Cell Lines by Dieckol Isolated from <i>Ecklonia cava</i>. ACTA ACUST UNITED AC 2018. [DOI: 10.14449/jbd.2018.6.2.39] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Lee S, Youn K, Kim DH, Ahn MR, Yoon E, Kim OY, Jun M. Anti-Neuroinflammatory Property of Phlorotannins from Ecklonia cava on Aβ 25-35-Induced Damage in PC12 Cells. Mar Drugs 2018; 17:E7. [PMID: 30583515 PMCID: PMC6356621 DOI: 10.3390/md17010007] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/19/2018] [Accepted: 12/19/2018] [Indexed: 12/24/2022] Open
Abstract
Alzheimer disease (AD) is a neurodegenerative disorder characterized by excessive accumulation of amyloid-beta peptide (Aβ) and progressive loss of neurons. Therefore, the inhibition of Aβ-induced neurotoxicity is a potential therapeutic approach for the treatment of AD. Ecklonia cava is an edible brown seaweed, which has been recognized as a rich source of bioactive derivatives, mainly phlorotannins. In this study, phlorotannins including eckol, dieckol, 8,8'-bieckol were used as potential neuroprotective candidates for their anti-apoptotic and anti-inflammatory effects against Aβ25-35-induced damage in PC12 cells. Among the tested compounds, dieckol showed the highest effect in both suppressing intracellular oxidative stress and mitochondrial dysfunction and activation of caspase family. Three phlorotannins were found to inhibit TNF-α, IL-1β and PGE₂ production at the protein levels. These result showed that the anti-inflammatory properties of our compounds are related to the down-regulation of proinflammatory enzymes, iNOS and COX-2, through the negative regulation of the NF-κB pathway in Aβ25-35-stimulated PC12 cells. Especially, dieckol showed the strong anti-inflammatory effects via suppression of p38, ERK and JNK. However, 8,8'-bieckol markedly decreased the phosphorylation of p38 and JNK and eckol suppressed the activation of p38. Therefore, the results of this study indicated that dieckol from E. cava might be applied as a drug candidate for the development of new generation therapeutic agents against AD.
Collapse
Affiliation(s)
- Seungeun Lee
- Department of Food Science and Nutrition, College of Health Sciences, Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Korea.
- Center for Silver-Targeted Biomaterials, Brain Busan 21 Plus Program, Graduate School, Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Korea.
| | - Kumju Youn
- Department of Food Science and Nutrition, College of Health Sciences, Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Korea.
| | - Dong Hyun Kim
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Korea.
- Institute of Convergence Bio-Health, Dong-A University, Busan 49315, Korea.
| | - Mok-Ryeon Ahn
- Department of Food Science and Nutrition, College of Health Sciences, Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Korea.
- Center for Silver-Targeted Biomaterials, Brain Busan 21 Plus Program, Graduate School, Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Korea.
| | - Eunju Yoon
- Department of Food Science and Nutrition, College of Health Sciences, Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Korea.
| | - Oh-Yoen Kim
- Department of Food Science and Nutrition, College of Health Sciences, Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Korea.
- Center for Silver-Targeted Biomaterials, Brain Busan 21 Plus Program, Graduate School, Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Korea.
| | - Mira Jun
- Department of Food Science and Nutrition, College of Health Sciences, Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Korea.
- Center for Silver-Targeted Biomaterials, Brain Busan 21 Plus Program, Graduate School, Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Korea.
- Institute of Convergence Bio-Health, Dong-A University, Busan 49315, Korea.
| |
Collapse
|
15
|
Oh S, Son M, Lee HS, Kim HS, Jeon YJ, Byun K. Protective Effect of Pyrogallol-Phloroglucinol-6,6-Bieckol from Ecklonia cava on Monocyte-Associated Vascular Dysfunction. Mar Drugs 2018; 16:E441. [PMID: 30423960 PMCID: PMC6266154 DOI: 10.3390/md16110441] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 10/27/2018] [Accepted: 11/06/2018] [Indexed: 11/16/2022] Open
Abstract
Ecklonia cava (E. cava) can alleviate vascular dysfunction in diseases associated with poor circulation. E. cava contains various polyphenols with different functions, but few studies have compared the effects of these polyphenols. Here, we comparatively investigated four major compounds present in an ethanoic extract of E. cava. These four major compounds were isolated and their effects were examined on monocyte-associated vascular inflammation and dysfunctions. Pyrogallol-phloroglucinol-6,6-bieckol (PPB) significantly inhibited monocyte migration in vitro by reducing levels of inflammatory macrophage differentiation and of its related molecular factors. In addition, PPB protected against monocyte-associated endothelial cell death by increasing the phosphorylations of PI3K-AKT and AMPK, decreasing caspase levels, and reducing monocyte-associated vascular smooth muscle cell proliferation and migration by decreasing the phosphorylations of ERK and AKT. The results of this study show that four compounds were effective for reduction of monocyte-associated vascular inflammation and dysfunctions, but PPB might be more useful for the treatment of vascular dysfunction in diseases associated with poor circulation.
Collapse
Affiliation(s)
- Seyeon Oh
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea.
| | - Myeongjoo Son
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea.
- Department of Anatomy & Cell Biology, Graduate School of Medicine, Gachon University, Incheon 21936, Korea.
| | - Hye Sun Lee
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea.
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea.
| | - Hyun-Soo Kim
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea.
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea.
| | - Kyunghee Byun
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea.
- Department of Anatomy & Cell Biology, Graduate School of Medicine, Gachon University, Incheon 21936, Korea.
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea.
| |
Collapse
|
16
|
Yun JW, Kim SH, Kim YS, You JR, Cho EY, Yoon JH, Kwon E, Yun IJ, Oh JH, Jang JJ, Park JS, Che JH, Kang BC. Enzymatic extract from Ecklonia cava: Acute and subchronic oral toxicity and genotoxicity studies. Regul Toxicol Pharmacol 2018; 92:46-54. [PMID: 29108849 DOI: 10.1016/j.yrtph.2017.10.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 11/20/2022]
Abstract
Ecklonia cava (EC) is known to have antioxidant, anti-inflammatory, antidiabetic, and anticancer properties. Despite its wide use and beneficial properties, comprehensive toxicological information regarding EC extract is currently limited. Therefore, the purpose of this study was to investigate acute toxicity, subchronic toxicity, and genotoxicity of enzymatic EC extract according to test guidelines published by Organization for Economic Cooperation and Development. The acute oral LD50 values of this EC extract administered to rats and dogs were estimated to be more than 3000 mg/kg BW. In an oral 13-week toxicity study, changes in body weights of rats exposed to the EC extract up to 3000 mg/kg BW were found to be normal. In addition, repeated doses of EC extract failed to influence any systematic parameters of treatment-related toxic symptoms such as food/water consumption, mortality, urinalysis, hematology, serum biochemistry, organ weight, or histopathology. These results indicated that the no-observed-adverse-effect level for the EC extract was 3000 mg/kg/day for male and female rats. Data obtained from Ames test, chromosome aberration assay, and micronucleus assay indicated that EC extract was not mutagenic or clastogenic. Taken together, these results support the safety of enzymatic EC extract as a potential therapeutic for human consumption against various diseases.
Collapse
Affiliation(s)
- Jun-Won Yun
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Seung-Hyun Kim
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yun-Soon Kim
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Ji-Ran You
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Eun-Young Cho
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jung-Hee Yoon
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Euna Kwon
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - In-Jue Yun
- Ju Yeong NS Co., Ltd., Chuncheon, Kangwon-do, Republic of Korea
| | - Je-Hun Oh
- Ju Yeong NS Co., Ltd., Chuncheon, Kangwon-do, Republic of Korea
| | - Ja-June Jang
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin-Sung Park
- Department of Neurogenetics, Kolling Institute, Royal North Shore Hospital and University of Sydney, St. Leonards, Australia
| | - Jeong-Hwan Che
- Biomedical Center for Animal Resource and Development, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Byeong-Cheol Kang
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Biomedical Center for Animal Resource and Development, Seoul National University College of Medicine, Seoul, Republic of Korea; Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Designed Animal and Transplantation Research Institute, Institute of GreenBio Science Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, Republic of Korea.
| |
Collapse
|
17
|
Lee HA, Lee JH, Han JS. A phlorotannin constituent of Ecklonia cava alleviates postprandial hyperglycemia in diabetic mice. PHARMACEUTICAL BIOLOGY 2017; 55:1149-1154. [PMID: 28219252 PMCID: PMC6130562 DOI: 10.1080/13880209.2017.1291693] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 10/23/2016] [Accepted: 02/01/2017] [Indexed: 06/06/2023]
Abstract
CONTEXT 2,7″-Phloroglucinol-6,6'-bieckol is a type of phlorotannin isolated from brown algae, Ecklonia cava Kjellman (Phaeophyceae; Laminareaceae). 2,7″-Phloroglucinol-6,6'-bieckol mediates antioxidant activities. However, there has been no research on improving postprandial hyperglycaemia using 2,7″-phloroglucinol-6,6'-bieckol. OBJECTIVE This study investigated the inhibitory effects of 2,7″-phloroglucinol-6,6'-bieckol on activities of α-glucosidase and α-amylase as well as its alleviating effect on postprandial hyperglycaemia in streptozotocin-induced diabetic mice. MATERIALS AND METHODS α-Glucosidase and α-amylase inhibitory assays were carried out. The effect of 2,7″-phloroglucinol-6,6'-bieckol on hyperglycaemia after a meal was measured by postprandial blood glucose in streptozotocin-induced diabetic and normal mice. The mice were treated orally with soluble starch (2 g/kg BW) alone (control) or with 2,7″-phloroglucinol-6,6'-bieckol (10 mg/kg bw) or acarbose (10 mg/kg BW) dissolved in 0.2 mL water. Blood samples were taken from tail veins at 0, 30, 60, and 120 min and blood glucose was measured by a glucometer. RESULTS 2,7″-Phloroglucinol-6,6'-bieckol showed higher inhibitory activities than acarbose, a positive control against α-glucosidase and α-amylase. The IC50 values of 2,7″-phloroglucinol-6,6'-bieckol against α-glucosidase and α-amylase were 23.35 and 6.94 μM, respectively, which was found more effective than observed with acarbose (α-glucosidase IC50 of 130.04 μM; α-amylase IC50 of 165.12 μM). In normal mice, 2,7″-phloroglucinol-6,6'-bieckol significantly suppressed the postprandial hyperglycaemia caused by starch. The 2,7″-phloroglucinol-6,6'-bieckol administration group (2349.3 mmol·min/L) had a lower area under the curve (AUC) glucose response than the control group (2690.83 mmol·min/L) in diabetic mice. DISCUSSION AND CONCLUSION 2,7″-Phloroglucinol-6,6'-bieckol might be used as an inhibitor of α-glucosidase and α-amylase as well as to delay absorption of dietary carbohydrates.
Collapse
Affiliation(s)
- Hyun-Ah Lee
- Department of Food Science and Nutrition, Pusan National University, Busan, Republic of Korea
| | - Ji-Hyeok Lee
- Korea Mouse Metabolic Phenotyping Center, Jeju, Republic of Korea
| | - Ji-Sook Han
- Department of Food Science and Nutrition and Research, Pusan National University, Busan, Republic of Korea
- Institute of Ecology for the Elderly, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
18
|
Düzenli U, Olgun Y, Aktaş S, Pamukoğlu A, Altun Z. Effect of Ecklonia Cava Polyphenol Extract in House Ear Institute-Organ of Corti 1 Cells Against Cisplatin Ototoxicity: A Preliminary Study. Turk Arch Otorhinolaryngol 2016; 54:141-145. [PMID: 29392035 DOI: 10.5152/tao.2016.1974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 11/16/2016] [Indexed: 01/24/2023] Open
Abstract
Objective Cisplatin is a widely used agent for the treatment of adult and childhood malignancies. Side effects such as nephrotoxicity, neurotoxicity, and ototoxicity lead to dose limitations. Ecklonia cava polyphenol extract (ECP) is a molecule obtained from algae that live in seawater in the Far East. ECP has recently been shown to have protective effects against oxidative stress. The aim of this study was to evaluate the possible protective effects of ECP on cisplatin ototoxicity. Methods In this study, we investigated the protective effects of ECP against cisplatin-induced cell death in mouse-derived House Ear Institute Organ of Corti (HEI-OC1) cochlear cells. Cisplatin (100 μM) and 1, 10, and 25 μM doses of ECP were administered to the cells, and the protective effects of ECP at 24 and 72 hours were investigated. Cell viability was evaluated by the WST-1 (water soluble tetrazolium salt). Results Cisplatin (100 μM) reduced cell viability in both the 24th and 72nd hour evaluation. Although the 25 μM dose of ECP showed otoprotective effects in the 24th hour, in the 72nd hour this effect disappeared. Other doses of ECP showed no otoprotective effects in the 24th and 72nd hours. Conclusion Although ECP showed some protective effects in the 24th hour against cisplatin ototoxicity, these effects disappeared by the 72nd hour. Further studies using recurrent and higher doses of ECP are required.
Collapse
Affiliation(s)
- Ufuk Düzenli
- Clinic of Otorhinolaryngology, İzmir Bozyaka Training and Research Hospital, İzmir, Turkey
| | - Yüksel Olgun
- Department of Otorhinolaryngology, Dokuz Eylül University School of Medicine, İzmir, Turkey
| | - Safiye Aktaş
- Department of Basic Oncology, Institute of Oncology, Dokuz Eylül University School of Medicine, İzmir, Turkey
| | - Ayça Pamukoğlu
- Department of Basic Oncology, Institute of Oncology, Dokuz Eylül University School of Medicine, İzmir, Turkey
| | - Zekiye Altun
- Department of Basic Oncology, Institute of Oncology, Dokuz Eylül University School of Medicine, İzmir, Turkey
| |
Collapse
|
19
|
Anti-inflammatory activities of fenoterol through β-arrestin-2 and inhibition of AMPK and NF-κB activation in AICAR-induced THP-1 cells. Biomed Pharmacother 2016; 84:185-190. [PMID: 27657826 DOI: 10.1016/j.biopha.2016.09.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/22/2016] [Accepted: 09/12/2016] [Indexed: 02/03/2023] Open
Abstract
The AMP-activated protein kinase (AMPK) pathway has been shown to be able to regulate inflammation in several cell lines. We reported that fenoterol, a β2-adrenergic receptor (β2-AR) agonist, inhibited lipopolysaccharide (LPS)-induced AMPK activation and inflammatory cytokine production in THP-1 cells, a monocytic cell line in previous studies. 5-amino-1-β-d-ribofuranosyl-imidazole-4-carboxamide (AICAR) is an agonist of AMPK. Whether AICAR induced AMPK activation and inflammatory cytokine production in THP-1 cells can be inhibited by fenoterol is unknown. In this study, we explored the mechanism of β2-AR stimulation with fenoterol in AICAR-induced inflammatory cytokine secretion in THP-1 cells. We studied AMPK activation using p-AMPK and AMPK antibodies, nuclear factor-kappa B (NF-κB) activation and inflammatory cytokine secretion in THP-1 cells stimulated by β2-AR in the presence or absence of AICAR and small interfering RNA (siRNA)-mediated knockdown of β-arrestin-2 or AMPKα1 subunit. AICAR-induced AMPK activation, NF-κB activation and tumor necrosis factor (TNF)-α release were reduced by fenoterol. In addition, siRNA-mediated knockdown of β-arrestin-2 abolished fenoterol's inhibition of AICAR-induced AMPK activation and TNF-α release, thus β-arrestin-2 mediated the anti-inflammatory effects of fenoterol in AICAR-treated THP-1 cells. Furthermore, siRNA-mediated knockdown of AMPKα1 significantly attenuated AICAR-induced NF-κB activation and TNF-α release, so AMPKα1 was a key signaling molecule involved in AICAR-induced inflammatory cytokine production. These data suggested that fenoterol inhibited AICAR-induced AMPK activation and TNF-α release through β-arrestin-2 in THP-1 cells. Management especially inhibition of AMPK signaling may provide new approaches and strategies for the treatments of immune diseases including inflammatory diseases and other critical illness.
Collapse
|
20
|
Ahn BN, Karadeniz F, Kong CS, Nam KH, Jang MS, Seo Y, Kim HS. Dioxinodehydroeckol Enhances the Differentiation of Osteoblasts by Regulating the Expression of Phospho-Smad1/5/8. Mar Drugs 2016; 14:E168. [PMID: 27649211 PMCID: PMC5039539 DOI: 10.3390/md14090168] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/01/2016] [Accepted: 09/07/2016] [Indexed: 12/15/2022] Open
Abstract
Lack of bone formation-related health problems are a major problem for the aging population in the modern world. As a part of the ongoing trend of developing natural substances that attenuate osteoporotic bone loss conditions, dioxinodehydroeckol (DHE) from edible brown alga Ecklonia cava was tested for its effects on osteoblastogenic differentiation in MC3T3-E1 pre-osteoblasts. DHE was observed to successfully enhance osteoblast differentiation, as indicated by elevated cell proliferation, alkaline phosphatase activity, intracellular cell mineralization, along with raised levels of osteoblastogenesis indicators at the concentration of 20 μM. Results suggested a possible intervening of DHE on the bone morphogenetic protein (BMP) signaling pathway, according to elevated protein levels of BMP-2, collagen-I, and Smads. In addition, the presence of DHE was also able to raise the phosphorylated extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) levels which are also activated by the BMP signaling pathway. In conclusion, DHE is suggested to be a potential bioactive compound against bone loss that could enhance osteoblastogenesis with a suggested BMP pathway interaction.
Collapse
Affiliation(s)
- Byul-Nim Ahn
- Department of Organic Material Science and Engineering, Pusan National University, Busan 46241, Korea.
| | - Fatih Karadeniz
- Marine Biotechnology Center for Pharmaceuticals and Foods, Silla University, Busan 46958, Korea.
- Department of Food and Nutrition, College of Medical and Life Sciences, Silla University, Busan 46958, Korea.
| | - Chang-Suk Kong
- Marine Biotechnology Center for Pharmaceuticals and Foods, Silla University, Busan 46958, Korea.
- Department of Food and Nutrition, College of Medical and Life Sciences, Silla University, Busan 46958, Korea.
| | - Ki-Ho Nam
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan 46083, Korea.
| | - Mi-Soon Jang
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan 46083, Korea.
| | - Youngwan Seo
- Division of Marine Bioscience, College of Ocean Science and Technology, Korea Maritime and Ocean University, Busan 49112, Korea.
- Department of Convergence Study on the Ocean Science and Technology, Ocean Science and Technology School, Korea Maritime and Ocean University, Busan 49112, Korea.
| | - Han Seong Kim
- Department of Organic Material Science and Engineering, Pusan National University, Busan 46241, Korea.
| |
Collapse
|
21
|
Collins KG, Fitzgerald GF, Stanton C, Ross RP. Looking Beyond the Terrestrial: The Potential of Seaweed Derived Bioactives to Treat Non-Communicable Diseases. Mar Drugs 2016; 14:E60. [PMID: 26999166 PMCID: PMC4820313 DOI: 10.3390/md14030060] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/19/2016] [Accepted: 03/10/2016] [Indexed: 12/22/2022] Open
Abstract
Seaweeds are a large and diverse group of marine organisms that are commonly found in the maritime regions of the world. They are an excellent source of biologically active secondary metabolites and have been shown to exhibit a wide range of therapeutic properties, including anti-cancer, anti-oxidant, anti-inflammatory and anti-diabetic activities. Several Asian cultures have a strong tradition of using different varieties of seaweed extensively in cooking as well as in herbal medicines preparations. As such, seaweeds have been used to treat a wide variety of health conditions such as cancer, digestive problems, and renal disorders. Today, increasing numbers of people are adopting a "westernised lifestyle" characterised by low levels of physical exercise and excessive calorific and saturated fat intake. This has led to an increase in numbers of chronic Non-communicable diseases (NCDs) such as cancer, cardiovascular disease, and diabetes mellitus, being reported. Recently, NCDs have replaced communicable infectious diseases as the number one cause of human mortality. Current medical treatments for NCDs rely mainly on drugs that have been obtained from the terrestrial regions of the world, with the oceans and seas remaining largely an untapped reservoir for exploration. This review focuses on the potential of using seaweed derived bioactives including polysaccharides, antioxidants and fatty acids, amongst others, to treat chronic NCDs such as cancer, cardiovascular disease and diabetes mellitus.
Collapse
Affiliation(s)
| | | | - Catherine Stanton
- Teagasc Moorepark, Fermoy, Cork, Ireland.
- APC Microbiome Institute, University College Cork, Cork, Ireland.
| | - R Paul Ross
- Teagasc Moorepark, Fermoy, Cork, Ireland.
- APC Microbiome Institute, University College Cork, Cork, Ireland.
| |
Collapse
|
22
|
Abstract
SummaryWhile the Inuit diet was highly cardio-protective and consuming oily fish within a Western diet is to a lesser degree, the case for purified fish oil supplements is less convincing. Purification of fish oil removes lipophilic polyphenols which likely contribute to the health benefits of oily fish; leaving the ω3 highly unsaturated fatty acids exposed and prone to conferring oxidative and inflammatory stress. The authors believe that due to such issues as dietary shift, it may now be inadvisable to prescribe or sell purified ω3 highly unsaturated fatty acids supplements, unless the appropriate co-factors are included.
Collapse
Affiliation(s)
- Paul R Clayton
- Institute of Food, Brain & Behaviour, Oxford OX4 1JE, UK
| | - Szabolcs Ladi
- Deparment of Public Health, University of Pecs, Hungary
| |
Collapse
|
23
|
Liu X, Wang N, Wei G, Fan S, Lu Y, Zhu Y, Chen Q, Huang M, Zhou H, Zheng J. Consistency and pathophysiological characterization of a rat polymicrobial sepsis model via the improved cecal ligation and puncture surgery. Int Immunopharmacol 2016; 32:66-75. [PMID: 26802602 DOI: 10.1016/j.intimp.2015.12.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/24/2015] [Accepted: 12/29/2015] [Indexed: 12/29/2022]
Abstract
Sepsis is the leading cause of death for critical ill patients and an essential focus in immunopharmacological research. The cecal ligation and puncture (CLP) model is regarded as a golden standard model for sepsis study. However, this animal model is easily affected by variability problems and dramatically affects pharmacological evaluation of anti-sepsis therapies, which requires standardized procedures and stable outcomes. Herein, the traditional syringe needle based puncture method was used as the major unstable factor for CLP models. Syringe needles created varied mortality in parallel experimental groups of CLP rats; they were inconsistent for severity control as mortality in CLP rats was not correlated with change in punctures, ligation lengths, or needle sizes. Moreover, the use of drainage tubes or strips, which was supposed to strengthen drainage stability, also failed to improve consistency of traditional syringe needles. To solve the consistency problem, an improved design of CLP surgery by puncture with newly-developed three-edged needles was described herein. In contrast to traditional syringe needles, these three-edged needles ensured more stable outcomes in repetitive groups. Furthermore, increased severity was found to be consistent with the enlarged needle size, as shown by the elevated mortality, increased proinflammatory cytokines, abnormal coagulation, worsen acidosis and more severe acute lung injury. In conclusion, application of the newly-developed three-edged needles provides a simple and feasible method to improve stability when conducting CLP surgery, which is significant for pharmacological studies on sepsis.
Collapse
Affiliation(s)
- Xin Liu
- Medical Research Center, Southwest Hospital, the Third Military Medical University, Chongqing, 400038, PR China
| | - Ning Wang
- Medical Research Center, Southwest Hospital, the Third Military Medical University, Chongqing, 400038, PR China
| | - Guo Wei
- Medical Research Center, Southwest Hospital, the Third Military Medical University, Chongqing, 400038, PR China
| | - Shijun Fan
- Medical Research Center, Southwest Hospital, the Third Military Medical University, Chongqing, 400038, PR China
| | - Yongling Lu
- Medical Research Center, Southwest Hospital, the Third Military Medical University, Chongqing, 400038, PR China
| | - Yuanfeng Zhu
- Medical Research Center, Southwest Hospital, the Third Military Medical University, Chongqing, 400038, PR China
| | - Qian Chen
- Medical Research Center, Southwest Hospital, the Third Military Medical University, Chongqing, 400038, PR China
| | - Min Huang
- Medical Research Center, Southwest Hospital, the Third Military Medical University, Chongqing, 400038, PR China
| | - Hong Zhou
- Department of Pharmacology, College of Pharmacy, the Third Military Medical University, Chongqing, 400038, PR China.
| | - Jiang Zheng
- Medical Research Center, Southwest Hospital, the Third Military Medical University, Chongqing, 400038, PR China.
| |
Collapse
|
24
|
Ryu B, Li YX, Kang KH, Kim SK, Kim DG. Floridoside from Laurencia undulata promotes osteogenic differentiation in murine bone marrow mesenchymal cells. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.09.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
25
|
Karadeniz F, Ahn BN, Kim JA, Seo Y, Jang MS, Nam KH, Kim M, Lee SH, Kong CS. Phlorotannins suppress adipogenesis in pre-adipocytes while enhancing osteoblastogenesis in pre-osteoblasts. Arch Pharm Res 2015; 38:2172-82. [PMID: 26202444 DOI: 10.1007/s12272-015-0637-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 07/17/2015] [Indexed: 02/08/2023]
Abstract
Osteoporosis, a prevalent bone disease in an aging population, is considered to be closely related to osteoblastogenesis and adipogenesis. As a part of an ongoing trend to develop natural substances that attenuate osteoporotic conditions, edible brown algae E. cava and its bioactive constituents were tested for their effects on adipogenic differentiation in 3T3-L1 fibroblasts and osteoblast differentiation in MC3T3-E1 pre-osteoblasts. Following an activity-based isolation, three phlorotannin derivatives, triphlorethol-A (1), eckol (2) and dieckol (3), were isolated. Anti-adipogenesis effect of phlorotannins at the concentration of 20 µM was observed by reduced lipid accumulation and the suppressed expression of adipogenic differentiation markers. In addition, isolated phlorotannins successfully enhanced the osteoblast differentiation as indicated by increased alkaline phosphatase activity along with raised levels of osteoblastogenesis indicators and intracellular calcification at the concentration of 20 µM. In conclusion, E. cava is suggested as a source for functional food ingredients, especially phlorotannin derivatives that can be utilized for extenuating osteoporosis and obesity.
Collapse
Affiliation(s)
- Fatih Karadeniz
- Marine Biotechnology Center for Pharmaceuticals and Foods, Silla University, Pusan, 617-736, Republic of Korea
| | - Byul-Nim Ahn
- Department of Organic Material Science and Engineering, Pusan National University, Pusan, 609-735, Republic of Korea
| | - Jung-Ae Kim
- Marine Biotechnology Center for Pharmaceuticals and Foods, Silla University, Pusan, 617-736, Republic of Korea
- Department of Food and Nutrition, College of Medical and Life Science, Silla University, Pusan, 617-736, Republic of Korea
| | - Youngwan Seo
- Division of Marine Bioscience; Ocean Science & Technology School, Korea Maritime and Ocean University, Pusan, 606-791, Republic of Korea
| | - Mi-Soon Jang
- Food and Safety Research Center, National Fisheries Research and Development Institute, Pusan, 619-705, Republic of Korea
| | - Ki-Ho Nam
- Food and Safety Research Center, National Fisheries Research and Development Institute, Pusan, 619-705, Republic of Korea
| | - Mihyang Kim
- Department of Food and Nutrition, College of Medical and Life Science, Silla University, Pusan, 617-736, Republic of Korea
| | - Sang-Hyeon Lee
- Department of Bioscience, Graduate School, Silla University, Pusan, 617-736, Republic of Korea
| | - Chang-Suk Kong
- Department of Food and Nutrition, College of Medical and Life Science, Silla University, Pusan, 617-736, Republic of Korea.
| |
Collapse
|
26
|
Ahn JH, Yang YI, Lee KT, Choi JH. Dieckol, isolated from the edible brown algae Ecklonia cava, induces apoptosis of ovarian cancer cells and inhibits tumor xenograft growth. J Cancer Res Clin Oncol 2015; 141:255-68. [PMID: 25216701 DOI: 10.1007/s00432-014-1819-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 08/28/2014] [Indexed: 12/22/2022]
Abstract
PURPOSE Ecklonia cava is an abundant brown alga and has been reported to possess various bioactive compounds having anti-inflammatory effect. However, the anticancer effects of dieckol, a major active compound in E. cava, are poorly understood. In the present study, we investigated the anti-tumor activity of dieckol and its molecular mechanism in ovarian cancer cells and in a xenograft mouse model . METHODS MTT assay, PI staining, and PI and Annexin double staining were performed to study cell cytotoxicity, cell cycle distribution, and apoptosis. We also investigated reactive oxygen species (ROS) production and protein expression using flow cytometry and Western blot analysis, respectively. Anti-tumor effects of dieckol were evaluated in SKOV3 tumor xenograft model. RESULTS We found that the E. cava extract and its phlorotannins have cytotoxic effects on A2780 and SKOV3 ovarian cancer cells. Dieckol induced the apoptosis of SKOV3 cells and suppressed tumor growth without any significant adverse effect in the SKOV3-bearing mouse model. Dieckol triggered the activation of caspase-8, caspase-9, and caspase-3, and pretreatment with caspase inhibitors neutralized the pro-apoptotic activity of dieckol. Furthermore, treatment with dieckol caused mitochondrial dysfunction and suppressed the levels of anti-apoptotic proteins. We further demonstrated that dieckol induced an increase in intracellular ROS, and the antioxidant N-acetyl-L-cysteine (NAC) significantly reversed the caspase activation, cytochrome c release, Bcl-2 downregulation, and apoptosis that were caused by dieckol. Moreover, dieckol inhibited the activity of AKT and p38, and overexpression of AKT and p38, at least in part, reversed dieckol-induced apoptosis in SKOV3 cells. CONCLUSION These data suggest that dieckol suppresses ovarian cancer cell growth by inducing caspase-dependent apoptosis via ROS production and the regulation of AKT and p38 signaling.
Collapse
Affiliation(s)
- Ji-Hye Ahn
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
27
|
Yang YI, Jung SH, Lee KT, Choi JH. 8,8'-Bieckol, isolated from edible brown algae, exerts its anti-inflammatory effects through inhibition of NF-κB signaling and ROS production in LPS-stimulated macrophages. Int Immunopharmacol 2014; 23:460-8. [PMID: 25261704 DOI: 10.1016/j.intimp.2014.09.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 08/28/2014] [Accepted: 09/16/2014] [Indexed: 12/30/2022]
Abstract
Ecklonia cava (E. cava) is an abundant brown alga that contains high levels of phlorotannins, which are unique marine polyphenolic compounds. It has been suggested that E. cava phlorotannins exert anti-inflammatory effects. However, the anti-inflammatory effects and underlying molecular mechanism exerted by 8,8'-bieckol isolated from E. cava have not been reported. Thus, in this study, we examined the anti-inflammatory effects of 8,8'-bieckol on lipopolysaccharide (LPS)-stimulated primary macrophages and RAW 264.7 macrophages. We found that 8,8'-bieckol suppressed key inflammatory mediator [i.e., nitric oxide (NO) and prostaglandin E2 (PGE2)] production in both primary and RAW 264.7 macrophages. 8,8'-Bieckol inhibited NO by suppressing LPS-induced expression of inducible nitric oxide synthase (iNOS) at the mRNA and protein levels in primary macrophages and RAW 264.7 cells. In addition, 8,8'-bieckol decreased the production and mRNA expression of the inflammatory cytokine interleukin-6 (IL-6), but not tumor necrosis factor (TNF)-α, in RAW 264.7 cells. Moreover, 8,8'-bieckol treatment diminished transactivation of nuclear factor-kappa B (NF-κB) and nuclear translocation of the NF-κB p65 subunit and suppressed LPS-induced intracellular reactive oxygen species (ROS) production in macrophages. Furthermore, 8,8'-bieckol markedly reduced mortality in LPS-induced septic mice. Taken together, these data indicate that the anti-inflammatory properties of 8,8'-bieckol are associated with the suppression of NO, PGE2, and IL-6 via negative regulation of the NF-κB pathway and ROS production in LPS-stimulated RAW 264.7 cells. Moreover, 8,8'-bieckol protects mice from endotoxin shock.
Collapse
Affiliation(s)
- Yeong-In Yang
- Department of Life & Nanopharmaceutical Science, Kyung Hee University, Seoul, South Korea; Department of Oriental Pharmaceutical Science, Kyung Hee University, Seoul, South Korea
| | - Seung-Hyun Jung
- Department of Life & Nanopharmaceutical Science, Kyung Hee University, Seoul, South Korea; Department of Oriental Pharmaceutical Science, Kyung Hee University, Seoul, South Korea
| | - Kyung-Tae Lee
- Department of Life & Nanopharmaceutical Science, Kyung Hee University, Seoul, South Korea
| | - Jung-Hye Choi
- Department of Life & Nanopharmaceutical Science, Kyung Hee University, Seoul, South Korea; Department of Oriental Pharmaceutical Science, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
28
|
Kong CS, Kim H, Seo Y. Edible Brown Alga E
cklonia cava
Derived Phlorotannin-Induced Anti-Adipogenic Activity in Vitro. J Food Biochem 2014. [DOI: 10.1111/jfbc.12093] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Chang-Suk Kong
- Department of Food and Nutrition; College of Medical and Life Science; Silla University; Busan Korea
| | - Haejin Kim
- Division of Marine Environment and Bioscience; Korea Maritime University; Busan 606-791 Korea
| | - Youngwan Seo
- Division of Marine Environment and Bioscience; Korea Maritime University; Busan 606-791 Korea
- Ocean Science & Technology School; Korea Maritime University; Busan 606-791 Korea
| |
Collapse
|
29
|
Hwang PA, Hung YL, Chien SY. Inhibitory activity of Sargassum hemiphyllum sulfated polysaccharide in arachidonic acid-induced animal models of inflammation. J Food Drug Anal 2014; 23:49-56. [PMID: 28911445 PMCID: PMC9351741 DOI: 10.1016/j.jfda.2014.05.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 05/07/2014] [Accepted: 05/07/2014] [Indexed: 11/24/2022] Open
Abstract
Sargassum hemiphyllum is a common plant found on the coasts of Taiwan; it has been used as an anti-inflammatory agent in traditional herbal medicine. This study aimed to evaluate the anti-inflammatory effects of S. hemiphyllum sulfated polysaccharide (SHSP) using two different mouse models. In both arachidonic acid-induced ear inflammatory gavage and paint models, SHSP decreased ear swelling and erythema. In addition, SHSP decreased the production of myeloperoxidase, nitric oxide, interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α in a dose-dependent manner. Histological examination results showed that SHSP reduced the area of neutrophilic infiltration in inflamed ears. The anti-inflammatory activity of SHSP has already been demonstrated in vitro. In this study, SHSP extracted from the same species of brown seaweed exhibited anti-inflammatory activity in both oral and topical applications in vivo. Therefore, SHSP may play a role in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Pai-An Hwang
- Seafood Technology Division, Fisheries Research Institute, Council of Agriculture, Taiwan.
| | - Yu-Lan Hung
- Seafood Technology Division, Fisheries Research Institute, Council of Agriculture, Taiwan
| | - Shih-Yung Chien
- Institute of Food Science and Technology, National Taiwan University, Taiwan
| |
Collapse
|
30
|
Kim HK. Role of ERK/MAPK signalling pathway in anti-inflammatory effects of Ecklonia cava in activated human mast cell line-1 cells. ASIAN PAC J TROP MED 2014. [DOI: 10.1016/s1995-7645(14)60120-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
31
|
Kim H, Kong CS, Lee JI, Kim H, Baek S, Seo Y. Evaluation of inhibitory effect of phlorotannins from Ecklonia cava on triglyceride accumulation in adipocyte. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:8541-7. [PMID: 23957842 DOI: 10.1021/jf401454m] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In the present study, a methanolic extract of Ecklonia cava and its solvent-partitioned fractions were evaluated for their antiadipogenic effect in 3T3-L1 adipocytes. One of them, the n-BuOH fraction, effectively reduced lipid accumulation and glucose consumption. In addition, the presence of the n-BuOH fraction in adipocytes suppressed the regulations of adipogenic transcription factors, PPARγ and SREBP1c, and adipogenic specific genes, FABP4, FABP1, FAS, LPL, HSL, and ACS1. Further purification of n-BuOH fractions led to the isolation of six phlorotannins (1-6). The six phlorotannins effectively suppressed triglyceride accumulation. Comparative analysis showed that lipid accumulation in adipocytes was dramatically attenuated in the presence of eckstolonol (4).
Collapse
Affiliation(s)
- Haejin Kim
- Division of Marine Environment and Bioscience, College of Ocean Science and Technology, Korea Maritime University , Busan 606-791, Republic of Korea
| | | | | | | | | | | |
Collapse
|
32
|
Lee JC, Hou MF, Huang HW, Chang FR, Yeh CC, Tang JY, Chang HW. Marine algal natural products with anti-oxidative, anti-inflammatory, and anti-cancer properties. Cancer Cell Int 2013; 13:55. [PMID: 23724847 PMCID: PMC3674937 DOI: 10.1186/1475-2867-13-55] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 05/27/2013] [Indexed: 02/07/2023] Open
Abstract
For their various bioactivities, biomaterials derived from marine algae are important ingredients in many products, such as cosmetics and drugs for treating cancer and other diseases. This mini-review comprehensively compares the bioactivities and biological functions of biomaterials from red, green, brown, and blue-green algae. The anti-oxidative effects and bioactivities of several different crude extracts of algae have been evaluated both in vitro and in vivo. Natural products derived from marine algae protect cells by modulating the effects of oxidative stress. Because oxidative stress plays important roles in inflammatory reactions and in carcinogenesis, marine algal natural products have potential for use in anti-cancer and anti-inflammatory drugs.
Collapse
Affiliation(s)
- Jin-Ching Lee
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
33
|
Iacono F, Prezioso D, Illiano E, Ruffo A, Romeo G, Amato B. Observational study: daily treatment with a new compound "Tradamixina" plus serenoa repens for two months improved the lower urinary tract symptoms. BMC Surg 2012; 12 Suppl 1:S22. [PMID: 23173650 PMCID: PMC3499205 DOI: 10.1186/1471-2482-12-s1-s22] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lower urinary tract symptoms (LUTS) are associated with great emotional costs to individuals and substantial economic costs to society. This study seeks to evaluate the effect of a new natural compound "Tradamixina plus Serenoa Repens" in order to improve lower urinary tract symptoms. METHODS 100 patients (≥ 45 years) who had had LUTS/BPH for >6 mo at screening and with IPSS -The international Prostate symptom scores- ≥ 13 and maximum urinary flow rate (Qmax) ≥ 4 to ≤ 15 ml/s. were recruited. The compound "Tradamixina plus Serenoa Repens" (80 mg of Alga Ecklonia Bicyclis, 100 mg of Tribulus Terrestris and 100 mg of D-Glucosamine and N-Acetyl-D-Glucosamine plus 320 mg of Serenoa Repens) was administered daily for 2 months. At visit and after 60 days of treatment patients were evaluated by means of detailed medical urological history, clinical examination, laboratory investigations (total PSA), and instrumental examination like urolfowmetry. Efficacy measures included IPSS-International Prostate Sympto, BPH Impact Index (BII), Quality-of-Life (QoL) Index. Measures were assessed at baseline and end point (12 wk or end of therapy) and also at screening, 1 and 4 wk for IPSS, and 4 wk for BII. Statistical significance was interpreted only if the results of the preceding analysis were significant at the 0.05 level. RESULTS After 2 months of treatment the change from baseline to week 12 relative to "Tradamixina plus Seronea Repens" in total IPSS and Qol was statistically significant. Differences from baseline in BII were statistically significant for "Tradamixina plus Seronea Repens" above all differences in BII were also significant at 4 wk (LSmean ± SE: -0.8 ± 0.2). In the distribution of subjects over the PGI-I and CGI-I response categories were significant for"Tradamixina plus Seronea Repens" (PGI-I: p = 0.001; CGI-I). We also observed a decrease of total PSA. CONCLUSION The daily treatment with a new compound "Tradamixina plus Serenoa Repens" for 2 months improved the male sexual function , it improved the bother symptoms which affect the patient's quality of life , improved uroflowmetric parameters, and we also observed a decrease of serum PSA level.
Collapse
Affiliation(s)
- Fabrizio Iacono
- Department of Urology – University Federico II of Naples, Via S. Pansini, 5 – 80131 Naples – Italy
| | - Domenico Prezioso
- Department of Urology – University Federico II of Naples, Via S. Pansini, 5 – 80131 Naples – Italy
| | - Ester Illiano
- Department of Urology – University Federico II of Naples, Via S. Pansini, 5 – 80131 Naples – Italy
| | - Antonio Ruffo
- Department of Urology – University Federico II of Naples, Via S. Pansini, 5 – 80131 Naples – Italy
| | - Giuseppe Romeo
- Department of Urology – University Federico II of Naples, Via S. Pansini, 5 – 80131 Naples – Italy
| | - Bruno Amato
- Department of General, Geriatric, Oncologic Surgery and Advanced Technologies,-University “Federico II” of Naples. Via Pansini, 5 - 80131 – Naples, Italy
| |
Collapse
|
34
|
Antiallergic benefit of marine algae in medicinal foods. ADVANCES IN FOOD AND NUTRITION RESEARCH 2012; 64:267-75. [PMID: 22054954 DOI: 10.1016/b978-0-12-387669-0.00021-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The prevalence of allergic diseases such as asthma, atopic dermatitis, and allergic rhinitis has increased during the past two decades and contributed a great deal to morbidity and an appreciable mortality in the world. Until now, few novel efficacious drugs have been discovered to treat, control, or even cure these disorders with a low adverse-effect profile. Meanwhile, glucocorticoids are still the mainstay for the treatment of allergic disease. Therefore, it is essential to isolate novel antiallergic therapeutics from natural resources. Recently, marine algae have received much attention as they are a valuable source of chemically diverse bioactive compounds with numerous health benefit effects. This contribution focuses on antiallergic agents derived from marine algae and presents an overview of their potential application in medicinal foods for the treatment of allergic disorders.
Collapse
|
35
|
Senevirathne M, Kim SK. Marine macro- and microalgae as potential agents for the prevention of asthma: hyperresponsiveness and inflammatory subjects. ADVANCES IN FOOD AND NUTRITION RESEARCH 2012; 64:277-86. [PMID: 22054955 DOI: 10.1016/b978-0-12-387669-0.00022-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Asthma is a variable disease and various factors are affected to increase the asthmatic symptoms and level of asthma control. It is believed that the cause for this disease is a combination of genetic and environmental factors. Numerous medications are available at present to treat this disease but it has been failed to control number of incidences successfully. Hence, recently many researchers have paid their interest to identify potential drugs from marine-based resources such as marine algae. In vitro and in vivo experiments have been conducted with extracts or compounds from algae and found that they showed significant activities against asthma. Accordingly, many marine macro- and microalgae have been reported to have potential to ameliorate the effect of asthma. However, detailed studies are needed in relation to identify the molecular mechanism of this disease to apply those marine resources against asthma effectively. In this chapter, an attempt has been taken to discuss the potential antiasthmatic activity of marine macro- and microalgae.
Collapse
Affiliation(s)
- Mahinda Senevirathne
- Marine Bioprocess Research Center, Pukyong National University, Busan, Republic of Korea
| | | |
Collapse
|
36
|
|
37
|
Wijesinghe WAJP, Jeon YJ. Exploiting biological activities of brown seaweed Ecklonia cava for potential industrial applications: a review. Int J Food Sci Nutr 2012; 63:225-35. [PMID: 21942760 DOI: 10.3109/09637486.2011.619965] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Seaweeds are rich in vitamins, minerals, dietary fibres, proteins, polysaccharides and various functional polyphenols. Many researchers have focused on brown algae as a potential source of bioactive materials in the past few decades. Ecklonia cava is a brown seaweed that is abundant in the subtidal regions of Jeju Island in the Republic of Korea. This seaweed attracted extensive interest due to its multiple biological activities. E. cava has been identified as a potential producer of wide spectrum of natural substances such as carotenoids, fucoidans and phlorotannins showing different biological activities in vital industrial applications including pharmaceutical, nutraceutical, cosmeceutical and functional food. This review focuses on biological activities of the brown seaweed E. cava based on latest research results, including antioxidant, anticoagulative, antimicrobial, antihuman immunodeficiency virus, anti-inflammatory, immunomodulatory, antimutagenic, antitumour and anticancer effects. The facts summarized here may provide novel insights into the functions of E. cava and its derivatives and potentially enable their use as functional ingredients in potential industrial applications.
Collapse
Affiliation(s)
- W A J P Wijesinghe
- School of Marine Biomedical Sciences, Jeju National University, Jeju 690-756, South Korea.
| | | |
Collapse
|
38
|
Wijesinghe WAJP, Jeon YJ. Enzyme-assistant extraction (EAE) of bioactive components: a useful approach for recovery of industrially important metabolites from seaweeds: a review. Fitoterapia 2011; 83:6-12. [PMID: 22061659 DOI: 10.1016/j.fitote.2011.10.016] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 10/18/2011] [Accepted: 10/23/2011] [Indexed: 11/25/2022]
Abstract
Over the years, the biological activities of seaweeds could have gained a considerable research interest because of their specific functional compounds, which may not be available in land plants. Thus, efforts at discovery of novel metabolites from seaweeds over the past years have yielded a considerable amount of new active compounds. In addition, studies about the extraction of active compounds from natural products have attracted special attention in the last recent years. Potent biologically active compounds of seaweeds have been demonstrated to play a significant role in prevention of certain degenerative diseases such as cancer, inflammation, arthritis, diabetes and hypertension. Therefore, seaweed derived active components, whose immense biochemical diversity looks like to become a rich source of novel chemical entities for the use as functional ingredients in many industrial applications such as functional foods, pharmaceuticals and cosmeceuticals. Thus, the interest in the extraction of active compounds from seaweeds is obvious. However, the physical and chemical barriers of the plant material become the key drawbacks of such extraction process. Therefore, enhanced release and recovery of active compounds attached to the cells have been addressed. Taken together, the aim of this communication is to discuss the potential use of enzyme treatment as a tool to improve the extraction efficiency of bioactive compounds from seaweeds.
Collapse
Affiliation(s)
- W A J P Wijesinghe
- School of Marine Biomedical Sciences, Jeju National University, Jeju 690-756, Republic of Korea.
| | | |
Collapse
|
39
|
Effect of anticoagulative sulfated polysaccharide purified from enzyme-assistant extract of a brown seaweed Ecklonia cava on Wistar rats. Carbohydr Polym 2011. [DOI: 10.1016/j.carbpol.2011.05.047] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Hwang PA, Chien SY, Chan YL, Lu MK, Wu CH, Kong ZL, Wu CJ. Inhibition of Lipopolysaccharide (LPS)-induced inflammatory responses by Sargassum hemiphyllum sulfated polysaccharide extract in RAW 264.7 macrophage cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:2062-8. [PMID: 21322561 DOI: 10.1021/jf1043647] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Sargassum hemiphyllum , a kind of brown seaweed generally found along coastlines in East Asia, has long served as a traditional Chinese medicine. S. hemiphyllum has shown an anti-inflammatory effect; however, its mechanism has not been elucidated clearly. This study explored S. hemiphyllum for its biomedical effects. S. hemiphyllum sulfated polysaccharide extract (SHSP) was first prepared; the mouse macrophage cell line (RAW 264.7) activated by lipopolysaccharide (LPS) was used as a model system. The secretion profiles of pro-inflammatory cytokines, including IL-1β, IL-6, TNF-α, and NO, were found significantly to be reduced in 1-5 mg/mL dose ranges of SHSP treatments. RT-PCR analysis suggested SHSP inhibits the LPS-induced mRNA expressions of IL-β, iNOS, and COX-2 in a dose-dependent manner. At protein levels, Western blot analysis demonstrated a similar result for NF-κB (p65) in cytosol/nuclear. Taken together, the anti-inflammatory properties of SHSP may be attributed to the down-regulation of NF-κB in nucleus.
Collapse
Affiliation(s)
- Pai-An Hwang
- Seafood Technology Division, Fisheries Research Institute , Council of Agriculture, Keelung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
41
|
Antimetastatic activity of polyphenol-rich extract of Ecklonia cava through the inhibition of the Akt pathway in A549 human lung cancer cells. Food Chem 2011; 127:1229-36. [PMID: 25214119 DOI: 10.1016/j.foodchem.2011.02.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 12/26/2010] [Accepted: 02/01/2011] [Indexed: 11/23/2022]
Abstract
An ethyl acetate extract (ECE) of a brown alga, Ecklonia cava, was examined for its anti-metastatic effect, using A549 human lung carcinoma cells. ECE treatment significantly suppressed the migration and invasion of A549 cells in a concentration-dependent manner. It also strongly down-regulated the matrix metalloproteinase (MMP)-2 activity of the cancer cells by gelatin zymography assay. For elucidating its mechanism of action in cancer cell metastasis, ECE was further investigated for various cell signalling pathways, including JNK, ERK, p38, and Akt. In this, ECE showed an anti-metastatic effect in a concentration- and time-dependent manner by the mechanism of suppression of Akt and p38, but not JNK and ERK. These results, for the first time, suggest that ECE (a polyphenol-enriched, highly anti-oxidative fraction of brown alga, E. cava) may have therapeutic potential in metastatic lung cancer, based on its strong inhibitory effects on the migration and invasiveness of A549 human lung adenocarcinoma cells.
Collapse
|
42
|
Yang EJ, Moon JY, Kim MJ, Kim DS, Kim CS, Lee WJ, Lee NH, Hyun CG. Inhibitory effect of Jeju endemic seaweeds on the production of pro-inflammatory mediators in mouse macrophage cell line RAW 264.7. J Zhejiang Univ Sci B 2010; 11:315-22. [PMID: 20443209 DOI: 10.1631/jzus.b0900364] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Seaweed has been used in traditional cosmetics and as a herbal medicine in treatments for cough, boils, goiters, stomach ailments, and urinary diseases, and for reducing the incidence of tumors, ulcers, and headaches. Despite the fact that seaweeds are frequently used in the practice of human health, little is known about the role of seaweed in the context of inflammation. This study aimed to investigate the influence of Jeju endemic seaweed on a mouse macrophage cell line (RAW 264.7) under the stimulation of lipopolysaccharide (LPS). Ethyl acetate extracts obtained from 14 different kinds of Jeju seaweeds were screened for inhibitory effects on pro-inflammatory mediators. Our results revealed that extracts from five seaweeds, Laurencia okamurae, Grateloupia elliptica, Sargassum thunbergii, Gloiopeltis furcata, and Hizikia fusiformis, were potent inhibitors of the production of pro-inflammatory mediators such as nitric oxide (NO), prostaglandin E(2) (PGE(2)), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-alpha). Based on these results, the anti-inflammatory effects and low cell toxicity of these seaweed extracts suggest potential therapeutic applications in the regulation of the inflammatory response.
Collapse
Affiliation(s)
- Eun-Jin Yang
- Jeju Biodiversity Research Institute, Jeju High-Tech Development Institute, Jeju 699-943, Korea
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Kim SK, Kong CS. Anti-adipogenic effect of dioxinodehydroeckol via AMPK activation in 3T3-L1 adipocytes. Chem Biol Interact 2010; 186:24-9. [PMID: 20385110 DOI: 10.1016/j.cbi.2010.04.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 03/30/2010] [Accepted: 04/02/2010] [Indexed: 11/16/2022]
Abstract
Dioxinodehydroeckol (DHE) isolated from Ecklonia cava, has previously been investigated for its inhibition of the differentiation of 3T3-L1 preadipocytes into adipocytes. Levels of lipid accumulation were measured, along with changes in the expression of genes and proteins associated with adipogenesis and lipolysis. Confluent 3T3-L1 preadipocytes in medium with or without different concentrations of DHE for 7 days were differentiated into adipocytes. Lipid accumulation was quantified by measuring direct triglyceride contents and Oil-Red O staining. The expression of genes and proteins associated with adipogenesis and lipolysis was measured using RT-PCR, quantitative real-time RT-PCR and Western blotting analysis. It was found that the presence of DHE significantly reduced lipid accumulation and down-regulated the expression of peroxisome proliferator-activated receptor-gamma (PPARgamma), sterol regulatory element-binding protein 1 (SREBP1) and CCAAT/enhancer-binding proteins (C/EBPalpha) in a dose-dependent manner. Moreover, DHE suppressed regulation of the adipocyte-specific gene promoters such as fatty acid binding protein (FABP4), fatty acid transport protein (FATP1), fatty acid synthase (FAS), lipoprotein lipase (LPL), acyl-CoA synthetase 1 (ACS1), leptin, perilipin and HSL compared to control adipocytes. The specific mechanism mediating the effects of DHE was confirmed by activation of phosphorylated AMP-activated protein kinase (pAMPK). Therefore, these results suggest that DHE exerts anti-adipogenic effect on adipocyte differentiation through the activation and modulation of the AMPK signaling pathway.
Collapse
Affiliation(s)
- Se-Kwon Kim
- Marine Bioprocess Research Center, Pukyong National University, Busan, Republic of Korea.
| | | |
Collapse
|
44
|
Kong CS, Kim JA, Ahn BN, Vo TS, Yoon NY, Kim SK. 1-(3',5'-dihydroxyphenoxy)-7-(2'',4'',6-trihydroxyphenoxy)-2,4,9-trihydroxydibenzo-1,4-dioxin inhibits adipocyte differentiation of 3T3-L1 fibroblasts. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2010; 12:299-307. [PMID: 19680725 DOI: 10.1007/s10126-009-9224-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Accepted: 07/14/2009] [Indexed: 05/28/2023]
Abstract
In this study, we isolated the phloroglucinol derivative, 1-(3',5'-dihydroxyphenoxy)-7-(2'',4'',6-trihydroxyphenoxy)-2,4,9-trihydroxydibenzo-1,4-dioxin (1), from Ecklonia cava and evaluated its potential inhibition on adipocyte differentiation in 3T3-L1 cells. Lipid accumulation along with the expression of several genes associated with adipogenesis and lipolysis was examined at the end of differentiation. Lipid accumulation level was examined by measuring triglyceride content and Oil-Red O staining. The expression levels of several genes and proteins were examined using reverse-transcription polymerase chain reaction (RT-PCR), real-time RT-PCR, and Western blot analysis. Compound 1 significantly reduced lipid accumulation and downregulated peroxisome proliferator-activated receptor-gamma, sterol regulatory element-binding protein 1c, and CCAAT/enhancer-binding proteins alpha in a dose-dependent manner. Moreover, the presence of compound 1 induced downregulation of adipogenic target genes such as fatty acid binding protein 4, fatty acid transport protein 1, fatty acid synthase, acyl-CoA synthetase 1, lipoprotein lipase, and leptin. According to the lipolytic response, compound 1 downregulated perilipin and hormone-sensitive lipase while upregulating tumor necrosis factor alpha. Therefore, these results suggest that compound 1 might decrease lipid accumulation during adipocyte differentiation by modulating adipogenesis and lipogenesis. Furthermore, compound 1 could be developed as a functional agent effective in improving obesity.
Collapse
Affiliation(s)
- Chang-Suk Kong
- Marine Bioprocess Research Center, Pukyong National University, Busan, 608-737, South Korea
| | | | | | | | | | | |
Collapse
|
45
|
Kang C, Jin YB, Lee H, Cha M, Sohn ET, Moon J, Park C, Chun S, Jung ES, Hong JS, Kim SB, Kim JS, Kim E. Brown alga Ecklonia cava attenuates type 1 diabetes by activating AMPK and Akt signaling pathways. Food Chem Toxicol 2010; 48:509-16. [PMID: 19913068 DOI: 10.1016/j.fct.2009.11.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 10/06/2009] [Accepted: 11/04/2009] [Indexed: 12/18/2022]
Abstract
The antidiabetic therapeutic effect of Ecklonia cava, a brown alga, was investigated using streptozotocin-induced type 1 diabetes mellitus rats and C2C12 myoblasts. The methanol extract of E. cava (ECM), having a strong radical scavenging activity, significantly reduced plasma glucose level and increased insulin concentration in type 1 diabetes mellitus rats. Moreover, the elevation of plasma ALT in diabetic rats was dramatically restored near to normal range by the treatment of ECM, whereas AST level was not meaningfully altered in any group throughout the experiment. The characteristic indications of diabetes, such as polyphagia and polydipsia, were greatly improved by ECM treatment as well. The mechanism of action of ECM appears to be, at least partially, mediated by the activation of both AMP-activated protein kinase/ACC and PI-3 kinase/Akt signal pathways. Taken together, the present results suggest that E. cava has both in vivo and in vitro antidiabetic effects.
Collapse
Affiliation(s)
- Changkeun Kang
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
PURPOSE We established a T-helper Type 2 (Th2) clone-induced conjunctival eosinophilia model by injecting D10.G.4.1 (D10) cells, a murine Th2 clone, and conalbumin, its specific antigen, into conjunctiva of AKR/J mice. Using this model, we investigated the effect of a coinjection of D10 cells and conalbumin into conjunctiva on corneal damage. METHODS Corneal fluorescein staining scores and eosinophil peroxidase (EPO) activity in conjunctiva were measured after coinjection of D10 and conalbumin into conjunctiva, and the effects of cyclosporine A, betamethasone, and anti-interleukin-5 antibody on staining scores and EPO activity were examined. RESULTS Coinjection of D10 and conalbumin induced an increase of the corneal fluorescein staining score after 24, 48, and 96 hours and 10 days. EPO activity in conjunctiva increased time-dependently until 24 hours after coinjection. The increase in the staining score followed the time dependent increase in EPO activity. The instillation of cyclosporine A, an inhibitor of cytokine production from T-cells, and betamethasone significantly inhibited the increase in corneal fluorescein score and EPO activity. Intraperitoneal administration of anti-interleukin-5 monoclonal antibody, which inhibits the infiltration of eosinophils into the conjunctiva, completely inhibited the increase in staining score. CONCLUSION The transfer of the Th2 clone into the murine conjunctiva induced corneal damage, which may have been caused by Th2 cell-produced interleukin-5 that mediated the activation of eosinophils.
Collapse
|
47
|
Kong CS, Kim JA, Yoon NY, Kim SK. Induction of apoptosis by phloroglucinol derivative from Ecklonia Cava in MCF-7 human breast cancer cells. Food Chem Toxicol 2009; 47:1653-8. [PMID: 19393283 DOI: 10.1016/j.fct.2009.04.013] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 04/07/2009] [Accepted: 04/15/2009] [Indexed: 10/20/2022]
Abstract
Phloroglucinol derivatives, dioxinodehydroeckol (1) and 1-(3',5'-dihydroxyphenoxy)-7-(2'',4'',6-trihydroxyphenoxy)-2,4,9-trihydroxydibenzo-1,4-dioxin (2), were isolated from Ecklonia Cava. Their ability to inhibit the proliferation of human breast cancer cells were evaluated by measuring cell death via induction of apoptosis. Compound 1 exerted a higher anti-proliferative activity in human breast cancer cells compared with compound 2. Furthermore, compound 1 induced a significant proliferative inhibition and apoptosis in a dose-dependent manner on MCF-7 human cancer cells. Treatment with compound 1 also induced the increase in caspase (-3 and -9) activity, DNA repair enzyme poly-(ADP-ribose) polymerase (PARP) cleavage, and pro-apoptotic gene and the decrease in anti-apoptotic gene. In addition, NF-kappaB family and -dependent activated genes were down-regulated by compound 1. These results indicated that the potential inhibitory effect of compound 1 against growth of MCF-7 human breast cancer cells might be associated with induction of apoptosis through NF-kappaB family and NF-kappaB dependent pathway. The present results suggest that compound 1 has a promising potential to be used as a valuable chemopreventive agent.
Collapse
Affiliation(s)
- Chang-Suk Kong
- Marine Bioprocess Research Center, Pukyong National University, Busan 608-737, Republic of Korea
| | | | | | | |
Collapse
|
48
|
Matrix metalloproteinase inhibitors (MMPIs) from marine natural products: the current situation and future prospects. Mar Drugs 2009. [PMID: 19597572 DOI: 10.3390/md7020071.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of more than twenty five secreted and membrane-bound zinc-endopeptidases which can degrade extracellular matrix (ECM) components. They also play important roles in a variety of biological and pathological processes. Matrix metalloproteinase inhibitors (MMPIs) have been identified as potential therapeutic candidates for metastasis, arthritis, chronic inflammation and wrinkle formation. Up to present, more than 20,000 new compounds have been isolated from marine organisms, where considerable numbers of these naturally occurring derivatives are developed as potential candidates for pharmaceutical application. Eventhough the quantity of marine derived MMPIs is less when compare with the MMPIs derived from terrestrial materials, huge potential for bioactivity of these marine derived MMPIs has lead to large number of researches. Saccharoids, flavonoids and polyphones, fatty acids are the most important groups of MMPIs derived from marine natural products. In this review we focus on the progress of MMPIs from marine natural products.
Collapse
|
49
|
Zhang C, Kim SK. Matrix metalloproteinase inhibitors (MMPIs) from marine natural products: the current situation and future prospects. Mar Drugs 2009; 7:71-84. [PMID: 19597572 PMCID: PMC2707034 DOI: 10.3390/md7020071] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 03/25/2009] [Accepted: 03/25/2009] [Indexed: 12/12/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of more than twenty five secreted and membrane-bound zinc-endopeptidases which can degrade extracellular matrix (ECM) components. They also play important roles in a variety of biological and pathological processes. Matrix metalloproteinase inhibitors (MMPIs) have been identified as potential therapeutic candidates for metastasis, arthritis, chronic inflammation and wrinkle formation. Up to present, more than 20,000 new compounds have been isolated from marine organisms, where considerable numbers of these naturally occurring derivatives are developed as potential candidates for pharmaceutical application. Eventhough the quantity of marine derived MMPIs is less when compare with the MMPIs derived from terrestrial materials, huge potential for bioactivity of these marine derived MMPIs has lead to large number of researches. Saccharoids, flavonoids and polyphones, fatty acids are the most important groups of MMPIs derived from marine natural products. In this review we focus on the progress of MMPIs from marine natural products.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Chemistry, Pukyong National University, Busan, 608-737, Republic of Korea; E-mail:
;
| | - Se-Kwon Kim
- Department of Chemistry, Pukyong National University, Busan, 608-737, Republic of Korea; E-mail:
;
- Marine Bioprocess Research Center, Pukyong National University, Busan, 608-737, Republic of Korea; E-mail:
- *Author to whom corresponding author; E-mail:
; Tel: +82-51-629-7097, Fax: +82-51-629-7099
| |
Collapse
|
50
|
Le QT, Li Y, Qian ZJ, Kim MM, Kim SK. Inhibitory effects of polyphenols isolated from marine alga Ecklonia cava on histamine release. Process Biochem 2009. [DOI: 10.1016/j.procbio.2008.10.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|