1
|
Daniel M, Smith EL. Promising Roles of Phytocompounds and Nutrients in Interventions to Mitigate Chemotherapy-Induced Peripheral Neuropathy. Semin Oncol Nurs 2024; 40:151713. [PMID: 39147680 DOI: 10.1016/j.soncn.2024.151713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/17/2024]
Abstract
OBJECTIVES Provide an overview of scientific reports and literature related to the role(s) of phytocompounds and nutrients in neuroprotection. Discuss how these properties may inform nutrition- and dietary interventions to mitigate chemotherapy-induced peripheral neuropathy (CIPN), for which there are no effective treatments. METHODS A literature search (2010-2023) was conducted in PubMed and Google Scholar where search terms-diet, nutrition, neuroprotection, neurodegenerative diseases, and social determinants of health-were used to narrow articles. From this search, manuscripts were reviewed to provide an overview of the neuroprotective properties of various phytocompounds and nutrients and their observed effects in neurodegenerative conditions and CIPN. Social determinant of health factors (SDOH) related to economic stability and access to nutritious foods were also reviewed as potential barriers to dietary interventions. RESULTS Twenty-eight publications were included in this literature review. Phytocompounds found in green tea (EGCG), turmeric (curcumin), cruciferous vegetables (sulforaphane), as well as certain vitamins, are promising, targeted interventions to mitigate CIPN. SDOH factors such as economic instability and limited access to nutritious foods may act as barriers to dietary interventions and limit their generalizability. CONCLUSION Dietary interventions focused on the use of phytocompounds and vitamins with known antioxidant, anti-inflammatory, and neuroprotective properties, hold promise and may provide patients with natural, non-pharmacological therapeutics for the management and/or prevention of CIPN. However, rigorous clinical trial research is needed to explore these effects in humans. IMPLICATIONS FOR NURSING PRACTICE Nurses support cancer survivors at the point-of-care, particularly during and after neurotoxic chemotherapy treatments. If future research supports dietary interventions to mitigate CIPN, nurses will ultimately be positioned to help translate this knowledge into clinical practice through educating patients on how to infuse nutrient-rich foods into their diets. Further, nurses will need to be conscious of SDOH factors that may impede access to these foods.
Collapse
Affiliation(s)
- Michael Daniel
- School of Nursing, University of Alabama, Birmingham, Alabama, USA
| | | |
Collapse
|
2
|
Chen J, Chen L, Zhang X, Yao W, Xue Z. Exploring causal associations of antioxidants from supplements and diet with attention deficit/hyperactivity disorder in European populations: a Mendelian randomization analysis. Front Nutr 2024; 11:1415793. [PMID: 39381354 PMCID: PMC11459460 DOI: 10.3389/fnut.2024.1415793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/10/2024] [Indexed: 10/10/2024] Open
Abstract
Background Antioxidants from both supplements and diet have been suggested to potentially reduce oxidative stress in individuals with ADHD. However, there is a lack of studies utilizing the Mendelian randomization (MR) method to explore the relationship between dietary and supplemental antioxidants with ADHD. Methods This study employed two-sample mendelian randomization. Various specific antioxidant dietary supplements (such as coffee, green tea, herbal tea, standard tea, and red wine intake per week), along with diet-derived circulating antioxidants including Vitamin C (ascorbate), Vitamin E (α-tocopherol), Vitamin E (γ-tocopherol), carotene, Vitamin A (retinol), zinc, and selenium (N = 2,603-428,860), were linked to independent single nucleotide polymorphisms (SNPs). Data on ADHD was gathered from six sources, comprising 246,888 participants. The primary analytical method utilized was inverse variance weighting (IVW), with sensitivity analysis conducted to assess the robustness of the main findings. Results In different diagnostic periods for ADHD, we found that only green tea intake among the antioxidants was significantly associated with a reduced risk of ADHD in males (OR: 0.977, CI: 0.963-0.990, p < 0.001, FDR = 0.065), with no evidence of pleiotropy or heterogeneity observed in the results. Additionally, a nominal causal association was found between green tea intake and childhood ADHD (OR: 0.989, 95% CI: 0.979-0.998, p = 0.023, FDR = 0.843). No causal relationships were detected between the intake of other antioxidant-rich diets and ADHD. Conclusion Our study found a significant inverse association between green tea intake and male ADHD, suggesting that higher green tea consumption may reduce ADHD risk in males. Further research is needed to explore optimal doses and underlying mechanisms.
Collapse
Affiliation(s)
- Jing Chen
- Department of Pediatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lifei Chen
- Department of Pediatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinguang Zhang
- Department of Pediatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenbo Yao
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zheng Xue
- Department of Pediatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Mashayekhi-Sardoo H, Rezaee R, Yarmohammadi F, Karimi G. Targeting Endoplasmic Reticulum Stress by Natural and Chemical Compounds Ameliorates Cisplatin-Induced Nephrotoxicity: A Review. Biol Trace Elem Res 2024:10.1007/s12011-024-04351-w. [PMID: 39212819 DOI: 10.1007/s12011-024-04351-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Cisplatin is a chemotherapeutic that dose-dependently causes renal complications such as decreased kidney function and acute kidney injury. The endoplasmic reticulum (ER) is responsible for calcium homeostasis and protein folding and plays a major part in cisplatin's nephrotoxicity. The current article reviews how chemical and natural compounds modulate cisplatin-induced apoptosis, autophagy, and inflammation by inhibiting ER stress signaling pathways. The available evidence indicates that natural compounds (Achyranthes aspera water-soluble extract, morin hydrate, fucoidan, isoliquiritigenin, leonurine, epigallocatechin-3-gallate, grape seed proanthocyanidin, and ginseng polysaccharide) and chemicals (Sal003, NSC228155, TUG891, dorsomorphin (compound C), HC-030031, dexmedetomidine, and recombinant human erythropoietin (rHuEpo)) can alleviate cisplatin nephrotoxicity by suppression of ER stress signaling pathways including IRE1α/ASK1/JNK, PERK-eIF2α-ATF4, and ATF6, as well as PI3K/AKT signaling pathway. Since ER and related signaling pathways are important in cisplatin nephrotoxicity, agents that can inhibit the abovementioned signaling pathways may hold promise in alleviating this untoward adverse effect.
Collapse
Affiliation(s)
- Habibeh Mashayekhi-Sardoo
- Bio Environmental Health Hazards Research Center, Jiroft University of Medical Sciences, Jiroft, Iran
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Ramin Rezaee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Yarmohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical, P. O. Box, Sciences, Mashhad, 1365-91775, Iran.
| |
Collapse
|
4
|
Galindo AN, Frey Rubio DA, Hettiaratchi MH. Biomaterial strategies for regulating the neuroinflammatory response. MATERIALS ADVANCES 2024; 5:4025-4054. [PMID: 38774837 PMCID: PMC11103561 DOI: 10.1039/d3ma00736g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/07/2024] [Indexed: 05/24/2024]
Abstract
Injury and disease in the central nervous system (CNS) can result in a dysregulated inflammatory environment that inhibits the repair of functional tissue. Biomaterials present a promising approach to tackle this complex inhibitory environment and modulate the mechanisms involved in neuroinflammation to halt the progression of secondary injury and promote the repair of functional tissue. In this review, we will cover recent advances in biomaterial strategies, including nanoparticles, hydrogels, implantable scaffolds, and neural probe coatings, that have been used to modulate the innate immune response to injury and disease within the CNS. The stages of inflammation following CNS injury and the main inflammatory contributors involved in common neurodegenerative diseases will be discussed, as understanding the inflammatory response to injury and disease is critical for identifying therapeutic targets and designing effective biomaterial-based treatment strategies. Biomaterials and novel composites will then be discussed with an emphasis on strategies that deliver immunomodulatory agents or utilize cell-material interactions to modulate inflammation and promote functional tissue repair. We will explore the application of these biomaterial-based strategies in the context of nanoparticle- and hydrogel-mediated delivery of small molecule drugs and therapeutic proteins to inflamed nervous tissue, implantation of hydrogels and scaffolds to modulate immune cell behavior and guide axon elongation, and neural probe coatings to mitigate glial scarring and enhance signaling at the tissue-device interface. Finally, we will present a future outlook on the growing role of biomaterial-based strategies for immunomodulation in regenerative medicine and neuroengineering applications in the CNS.
Collapse
Affiliation(s)
- Alycia N Galindo
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon Eugene OR USA
| | - David A Frey Rubio
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon Eugene OR USA
| | - Marian H Hettiaratchi
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon Eugene OR USA
- Department of Chemistry and Biochemistry, University of Oregon Eugene OR USA
| |
Collapse
|
5
|
Siddiqui S, Ahmad R, Ahmad Y, Faizy AF, Moin S. Biophysical insight into the binding mechanism of epigallocatechin-3-gallate and cholecalciferol to albumin and its preventive effect against AGEs formation: An in vitro and in silico approach. Int J Biol Macromol 2024; 267:131474. [PMID: 38599429 DOI: 10.1016/j.ijbiomac.2024.131474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/24/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
Advanced glycation end products (AGEs) are produced non-enzymatically through the process of glycation. Increased AGEs production has been linked to several diseases including polycystic ovary syndrome (PCOS). PCOS contributes to the development of secondary comorbidities, such as diabetes, cardiovascular complications, infertility, etc. Consequently, research is going on AGEs-inhibiting phytochemicals for their potential to remediate and impede the progression of hyperglycaemia associated disorders. In this study human serum albumin is used as a model protein, as albumin is predominantly present in follicular fluid. This article focusses on the interaction and antiglycating potential of (-)-Epigallocatechin-3-gallate (EGCG) and vitamin D in combination using various techniques. The formation of the HSA-EGCG and HSA-vitamin D complex was confirmed by UV and fluorescence spectroscopy. Thermodynamic analysis verified the spontaneity of reaction, and presence of hydrogen bonds and van der Waals interactions. FRET confirms high possibility of energy transfer. Cumulative antiglycation resulted in almost 60 % prevention in AGEs formation, decreased alterations at lysine and arginine, and reduced protein carbonylation. Secondary and tertiary structural changes were analysed by circular dichroism, Raman spectroscopy and ANS binding assay. Type and size of aggregates were confirmed by Rayleigh and dynamic light scattering, ThT fluorescence, SEM and SDS-PAGE. Effect on cellular redox status, DNA integrity and cytotoxicity was analysed in lymphocytes using dichlorofluorescein (DCFH-DA), DAPI and MTT assay which depicted an enhancement in antioxidant level by cumulative treatment. These findings indicate that EGCG and vitamin D binds strongly to HSA and have antiglycation ability which enhances upon synergism.
Collapse
Affiliation(s)
- Sana Siddiqui
- Department of Biochemistry, J.N.M.C., Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Rizwan Ahmad
- Department of Biochemistry, J.N.M.C., Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Yusra Ahmad
- Department of Biochemistry, J.N.M.C., Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Abul Faiz Faizy
- Department of Biochemistry, J.N.M.C., Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Shagufta Moin
- Department of Biochemistry, J.N.M.C., Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, U.P., India.
| |
Collapse
|
6
|
Islam MR, Jony MH, Thufa GK, Akash S, Dhar PS, Rahman MM, Afroz T, Ahmed M, Hemeg HA, Rauf A, Thiruvengadam M, Venkidasamy B. A clinical study and future prospects for bioactive compounds and semi-synthetic molecules in the therapies for Huntington's disease. Mol Neurobiol 2024; 61:1237-1270. [PMID: 37698833 DOI: 10.1007/s12035-023-03604-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/21/2023] [Indexed: 09/13/2023]
Abstract
A neurodegenerative disorder (ND) refers to Huntington's disease (HD) which affects memory loss, weight loss, and movement dysfunctions such as chorea and dystonia. In the striatum and brain, HD most typically impacts medium-spiny neurons. Molecular genetics, excitotoxicity, oxidative stress (OS), mitochondrial, and metabolic dysfunction are a few of the theories advanced to explicit the pathophysiology of neuronal damage and cell death. Numerous in-depth studies of the literature have supported the therapeutic advantages of natural products in HD experimental models and other treatment approaches. This article briefly discusses the neuroprotective impacts of natural compounds against HD models. The ability of the discovered natural compounds to suppress HD was tested using either in vitro or in vivo models. Many bioactive compounds considerably lessened the memory loss and motor coordination brought on by 3-nitropropionic acid (3-NP). Reduced lipid peroxidation, increased endogenous enzymatic antioxidants, reduced acetylcholinesterase activity, and enhanced mitochondrial energy generation have profoundly decreased the biochemical change. It is significant since histology showed that therapy with particular natural compounds lessened damage to the striatum caused by 3-NP. Moreover, natural products displayed varying degrees of neuroprotection in preclinical HD studies because of their antioxidant and anti-inflammatory properties, maintenance of mitochondrial function, activation of autophagy, and inhibition of apoptosis. This study highlighted about the importance of bioactive compounds and their semi-synthetic molecules in the treatment and prevention of HD.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Maruf Hossain Jony
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Gazi Kaifeara Thufa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Puja Sutra Dhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Tahmina Afroz
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Hassan A Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Al-Medinah Al-Monawara, Saudi Arabia
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Khyber Pukhtanukha, Pakistan.
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Science, Konkuk University, Seoul, 05029, South Korea.
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India.
| |
Collapse
|
7
|
Dacoreggio MV, Santetti GS, Inácio HP, Baranzelli J, Emanuelli T, Hoff RB, Moroni LS, Fritzen Freire CB, Kempka AP, Amboni RDDMC. Phenolic compounds profile of optimised green and eco-friendly extracts of Eugenia pyriformis leaves: an alternative for antioxidant and antibacterial applications. Nat Prod Res 2023:1-6. [PMID: 38146231 DOI: 10.1080/14786419.2023.2297403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/12/2023] [Indexed: 12/27/2023]
Abstract
The Eugenia pyriformis Cambess (uvaia) is a well-known source of bioactive compounds. This study investigated the efficiency of Ultrasound-Assisted Extraction (UAE) and Enzyme-Assisted Extraction (EAE) in obtaining uvaia leaf extracts with high antioxidant and antibacterial activity. In a first step, different variables of the leaves were employed to define the best conditions for obtaining the extract with the highest total phenolic content. In a second step, the optimised extracts were characterised. In total, twenty-four phenolic compounds were identified through LC-ESI-MS/MS. The EAE in optimised conditions showed a higher amount of total phenolic compounds and antioxidant potential. It was possible to note an analogous potential of antibacterial activity of the extracts, which showed action mainly against Gram-positive bacteria. These findings suggest that the aqueous extracts of uvaia leaves are feasible, economic, and sustainable alternatives for adding value to uvaia leaves, which are an agricultural residue that is generally underutilised.
Collapse
Affiliation(s)
- Marina Volpato Dacoreggio
- Departamento de Ciência e Tecnologia de Alimentos, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brasil
| | - Gabriela Soster Santetti
- Departamento de Ciência e Tecnologia de Alimentos, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brasil
| | - Heloísa Patrício Inácio
- Departamento de Ciência e Tecnologia de Alimentos, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brasil
| | - Julia Baranzelli
- Departamento de Tecnologia e Ciência dos Alimentos, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Tatiana Emanuelli
- Departamento de Tecnologia e Ciência dos Alimentos, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Rodrigo Barcellos Hoff
- Seção Laboratorial Avançada, Ministério da Agricultura, Pecuária e Abastecimento, Laboratório Federal de Defesa Agropecuária, São José, Santa Catarina, Brasil
| | - Liziane Schittler Moroni
- Departamento de Engenharia de Alimentos e Engenharia Química, Universidade do Estado de Santa Catarina, Rua Fernando de Noronha, Pinhalzinho, Brasil
| | - Carlise Beddin Fritzen Freire
- Departamento de Ciência e Tecnologia de Alimentos, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brasil
| | - Aniela Pinto Kempka
- Departamento de Engenharia de Alimentos e Engenharia Química, Universidade do Estado de Santa Catarina, Rua Fernando de Noronha, Pinhalzinho, Brasil
| | | |
Collapse
|
8
|
Sharma P, Kishore A, De I, Negi S, Kumar G, Bhardwaj S, Singh M. Mitigating neuroinflammation in Parkinson's disease: Exploring the role of proinflammatory cytokines and the potential of phytochemicals as natural therapeutics. Neurochem Int 2023; 170:105604. [PMID: 37683836 DOI: 10.1016/j.neuint.2023.105604] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Parkinson's disease (PD) is one of the most prevalent neuroinflammatory illnesses, characterized by the progressive loss of neurons in the brain. Proinflammatory cytokines play a key role in initiating and perpetuating neuroinflammation, which can lead to the activation of glial cells and the deregulation of inflammatory pathways, ultimately leading to permanent brain damage. Currently, available drugs for PD mostly alleviate symptoms but do not target underlying inflammatory processes. There is a growing interest in exploring the potential of phytochemicals to mitigate neuroinflammation. Phytochemicals such as resveratrol, apigenin, catechin, anthocyanins, amentoflavone, quercetin, berberine, and genistein have been studied for their ability to scavenge free radicals and reduce proinflammatory cytokine levels in the brain. These plant-derived compounds offer a natural and potentially safe alternative to conventional drugs for managing neuroinflammation in PD and other neurodegenerative diseases. However, further research is necessary to elucidate their underlying mechanisms of action and clinical effectiveness. So, this review delves into the pathophysiology of PD and its intricate relationship with proinflammatory cytokines, and explores how their insidious contributions fuel the disease's initiation and progression via cytokine-dependent signaling pathways. Additionally, we tried to give an account of PD management using existing drugs along with their limitations. Furthermore, our aim is to provide a thorough overview of the diverse groups of phytochemicals, their plentiful sources, and the current understanding of their anti-neuroinflammatory properties. Through this exploration, we posit the innovative idea that consuming nutrient-rich phytochemicals could be an effective approach to preventing and treating PD.
Collapse
Affiliation(s)
- Prashant Sharma
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Abhinoy Kishore
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Indranil De
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Swarnima Negi
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Gulshan Kumar
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Sahil Bhardwaj
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Manish Singh
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India.
| |
Collapse
|
9
|
Yang X, Yang Y, Liu K, Zhang C. Traditional Chinese medicine monomers: Targeting pulmonary artery smooth muscle cells proliferation to treat pulmonary hypertension. Heliyon 2023; 9:e14916. [PMID: 37128338 PMCID: PMC10147991 DOI: 10.1016/j.heliyon.2023.e14916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 02/01/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Pulmonary hypertension (PH) is a complex multifactorial disease characterized by increased pulmonary vascular resistance and pulmonary vascular remodeling (PVR), with high morbidity, disability, and mortality. The abnormal proliferation of pulmonary artery smooth muscle cells (PASMCs) is the main pathological change causing PVR. At present, clinical treatment drugs for PH are limited, which can only improve symptoms and reduce hospitalization but cannot delay disease progression and reduce survival rate. In recent years, numerous studies have shown that traditional Chinese medicine monomers (TCMs) inhibit excessive proliferation of PASMCs resulting in alleviating PVR through multiple channels and multiple targets, which has attracted more and more attention in the treatment of PH. In this paper, the experimental evidence of inhibiting PASMCs proliferation by TCMs was summarized to provide some directions for the future development of these mentioned TCMs as anti-PH drugs in clinical.
Collapse
|
10
|
Chen J, Ma W, Yu J, Wang X, Qian H, Li P, Ye H, Han Y, Su Z, Gao M, Huang Y. (-)-Epigallocatechin-3-gallate, a Polyphenol from Green Tea, Regulates the Liquid-Liquid Phase Separation of Alzheimer's-Related Protein Tau. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1982-1993. [PMID: 36688583 DOI: 10.1021/acs.jafc.2c07799] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The microtubule-associated protein tau is involved in Alzheimer's disease and other tauopathies. Recently, tau has been shown to undergo liquid-liquid phase separation (LLPS), which is implicated in the physiological function and pathological aggregation of tau. In this report, we demonstrate that the green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) promotes the formation of liquid tau droplets at neutral pH by creating a network of hydrophobic interactions and hydrogen bonds, mainly with the proline-rich domain of tau. We further show that EGCG oxidation, tau phosphorylation, and the chemical structure of the polyphenol influence the efficacy of EGCG in facilitating tau LLPS. Complementary to the inhibitory activity of EGCG in tau fibrillization, our findings provide novel insights into the biological activity of EGCG and offer new clues for future studies on the molecular mechanism by which EGCG alleviates neurodegenerative diseases.
Collapse
Affiliation(s)
- Jingxin Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Industrial Fermentation (Ministry of Education), and Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Wanyao Ma
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Industrial Fermentation (Ministry of Education), and Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Jiangchuan Yu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Industrial Fermentation (Ministry of Education), and Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Xi Wang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Industrial Fermentation (Ministry of Education), and Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Hongling Qian
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Industrial Fermentation (Ministry of Education), and Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Ping Li
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Industrial Fermentation (Ministry of Education), and Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Haiqiong Ye
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Industrial Fermentation (Ministry of Education), and Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Yue Han
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Industrial Fermentation (Ministry of Education), and Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Zhengding Su
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Industrial Fermentation (Ministry of Education), and Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Meng Gao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Industrial Fermentation (Ministry of Education), and Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Yongqi Huang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Industrial Fermentation (Ministry of Education), and Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
11
|
Yang L, Lu Z, Lu J, Wu D. Evaluation of the antioxidant characteristics of craft beer with green tea. J Food Sci 2023; 88:625-637. [PMID: 36576119 DOI: 10.1111/1750-3841.16441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/16/2022] [Accepted: 12/08/2022] [Indexed: 12/29/2022]
Abstract
The addition of green tea as antioxidants to beer can improve the beer's flavor stability by protecting against staling during storage. To analyze the effect of different green teas on the flavor stability of beer, we developed an approach to rapidly evaluate their antioxidant activity. Ten types of craft beer were produced by adding different kinds of green tea during brewing, and their antioxidant activity and phenolic profiles were evaluated. The results showed remarkable variations in antioxidant activity and antioxidative compound contents, which were considerably higher in green tea beers than in non-tea beer (p < 0.05). A comprehensive evaluation function was developed to evaluate the total antioxidant activity of beers using principal component analysis. The highest total antioxidant activity was observed in Taiping Houkui beer, with a comprehensive evaluation score of 2.53. Pearson correlation analysis suggested that (-)-epigallocatechin gallate, (-)-epicatechin gallate, and (-)-epigallocatechin were strongly correlated with the total antioxidant activity of green tea beers (p < 0.01). The summation of their contents represented more than 60% of the total phenolic content of the teas, which can be used to predict the total antioxidant activity of green tea beers. PRACTICAL APPLICATION: Flavor stability is of prime concern for brewers, and flavor aging is increasingly becoming the limiting factor in beer shelf life. The application of green tea as antioxidants in beer can improve the flavor stability by protecting against beer staling during storage. The analytical method developed in this study will contribute to the rapid comparison of the effect of different green teas on the flavor stability of beer. Furthermore, the research findings demonstrate the potential benefits of green teas to beer flavor stability, which is of considerable importance in promoting the development and consumption of green teas.
Collapse
Affiliation(s)
- Lixia Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China.,School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhendong Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China.,School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jian Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China.,School of Biotechnology, Jiangnan University, Wuxi, China
| | - Dianhui Wu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China.,School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
12
|
Chen F, Zhong Z, Zhang C, Lu Y, Chan YT, Wang N, Zhao D, Feng Y. Potential Focal Adhesion Kinase Inhibitors in Management of Cancer: Therapeutic Opportunities from Herbal Medicine. Int J Mol Sci 2022; 23:13334. [PMID: 36362132 PMCID: PMC9659249 DOI: 10.3390/ijms232113334] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 08/15/2024] Open
Abstract
Focal adhesion kinase (FAK) is a multifunctional protein involved in cellular communication, integrating and transducing extracellular signals from cell-surface membrane receptors. It plays a central role intracellularly and extracellularly within the tumor microenvironment. Perturbations in FAK signaling promote tumor occurrence and development, and studies have revealed its biological behavior in tumor cell proliferation, migration, and adhesion. Herein we provide an overview of the complex biology of the FAK family members and their context-dependent nature. Next, with a focus on cancer, we highlight the activities of FAK signaling in different types of cancer and how knowledge of them is being used for screening natural compounds used in herbal medicine to fight tumor development.
Collapse
Affiliation(s)
- Feiyu Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Zhangfeng Zhong
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yuanjun Lu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yau-Tuen Chan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Di Zhao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
13
|
Sarkar J, Das M, Howlader MSI, Prateeksha P, Barthels D, Das H. Epigallocatechin-3-gallate inhibits osteoclastic differentiation by modulating mitophagy and mitochondrial functions. Cell Death Dis 2022; 13:908. [PMID: 36307395 PMCID: PMC9616829 DOI: 10.1038/s41419-022-05343-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 01/23/2023]
Abstract
A natural plant product, epigallocatechin-3-gallate (EGCG), was evaluated for its effectiveness in the regulation of osteoclastogenesis. We found that EGCG inhibited the osteoclast (OC) differentiation in vitro, and in primary bone marrow cells in a dose-dependent manner. Quantitative RT-PCR studies showed that the EGCG reduced the expression of OC differentiation markers. DCFDA, MitoSOX, and JC-1 staining revealed that the EGCG attenuated the reactive oxygen species (ROS), and mitochondrial membrane potential; and flux analysis corroborated the effect of EGCG. We further found that the EGCG inhibited mRNA and protein expressions of mitophagy-related molecules. We confirmed that the OC differentiation was inhibited by EGCG by modulating mitophagy through AKT and p38MAPK pathways. Furthermore, in silico analysis revealed that the binding of RANK and RANKL was blocked by EGCG. Overall, we defined the mechanisms of osteoclastogenesis during arthritis for developing a new therapy using a natural compound besides the existing therapeutics.
Collapse
Affiliation(s)
- Jaganmay Sarkar
- grid.416992.10000 0001 2179 3554Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX USA
| | - Manjusri Das
- grid.416992.10000 0001 2179 3554Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX USA
| | - Md Sariful Islam Howlader
- grid.416992.10000 0001 2179 3554Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX USA
| | - Prateeksha Prateeksha
- grid.416992.10000 0001 2179 3554Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX USA
| | - Derek Barthels
- grid.416992.10000 0001 2179 3554Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX USA
| | - Hiranmoy Das
- grid.416992.10000 0001 2179 3554Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX USA
| |
Collapse
|
14
|
Morphological and Quantitative Evidence for Altered Mesenchymal Stem Cell Remodeling of Collagen in an Oxidative Environment—Peculiar Effect of Epigallocatechin-3-Gallate. Polymers (Basel) 2022; 14:polym14193957. [PMID: 36235908 PMCID: PMC9571090 DOI: 10.3390/polym14193957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/09/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are involved in the process of extracellular matrix (ECM) remodeling where collagens play a pivotal role. We recently demonstrated that the remodeling of adsorbed collagen type I might be disordered upon oxidation following its fate in the presence of human adipose-derived MSC (ADMSCs). With the present study we intended to learn more about the effect of polyphenolic antioxidant Epigallocatechin-3-gallate (EGCG), attempting to mimic the conditions of oxidative stress in vivo and its putative prevention by antioxidants. Collagen Type I was isolated from mouse tail tendon (MTC) and labelled with FITC before being oxidized according to Fe2+/H2O2 protocol. FITC-collagen remodeling by ADMSC was assessed morphologically before and after EGCG pretreatment and confirmed via detailed morphometric analysis measuring the anisotropy index (AI) and fluorescence intensity (FI) in selected regions of interest (ROI), namely: outside the cells, over the cells, and central (nuclear/perinuclear) region, whereas the pericellular proteolytic activity was measured by de-quenching fluorescent collagen probes (FRET effect). Here we provide morphological evidence that MTC undergoes significant reorganization by the adhering ADMSC and is accompanied by a substantial activation of pericellular proteolysis, and further confirm that both processes are suppressed upon collagen oxidation. An important observation was that this abrogated remodeling cannot be prevented by the EGCG pretreatment. Conversely, the detailed morphometric analysis showed that oxidized FITC-collagen tends to accumulate beneath cells and around cell nuclei, suggesting the activation of alternative routes for its removal, such as internalization and/or transcytosis. Morphometric analysis also revealed that both processes are supported by EGCG pretreatment.
Collapse
|
15
|
Poddar NK, Agarwal D, Agrawal Y, Wijayasinghe YS, Mukherjee A, Khan S. Deciphering the enigmatic crosstalk between prostate cancer and Alzheimer's disease: A current update on molecular mechanisms and combination therapy. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166524. [PMID: 35985445 DOI: 10.1016/j.bbadis.2022.166524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD) and prostate cancer (PCa) are considered the leading causes of death in elderly people worldwide. Although both these diseases have striking differences in their pathologies, a few underlying mechanisms are similar when cell survival is considered. In the current study, we employed an in-silico approach to decipher the possible role of bacterial proteins in the initiation and progression of AD and PCa. We further analyzed the molecular connections between these two life-threatening diseases. The androgen deprivation therapy used against PCa has been shown to promote castrate resistant PCa as well as AD. In addition, cell signaling pathways, such as Akt, IGF, and Wnt contribute to the progression of both AD and PCa. Besides, various proteins and genes are also common in disease progression. One such similarity is mTOR signaling. mTOR is the common downstream target for many signaling pathways and plays a vital role in both PCa and AD. Targeting mTOR can be a favorable line of treatment for both AD and PCa. However, drug resistance is one of the challenges in effective drug therapy. A few drugs that target mTOR have now become ineffective due to the development of resistance. In that regard, phytochemicals can be a rich source of novel drug candidates as they can act via multiple mechanisms. This review also presents mTOR targeting phytochemicals with promising anti-PCa, anti-AD activities, and approaches to overcome the issues associated with phytochemical-based therapies in clinical trials.
Collapse
Affiliation(s)
- Nitesh Kumar Poddar
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur-Ajmer Expressway, Jaipur, Rajasthan 303007, India.
| | - Disha Agarwal
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur-Ajmer Expressway, Jaipur, Rajasthan 303007, India
| | - Yamini Agrawal
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur-Ajmer Expressway, Jaipur, Rajasthan 303007, India
| | | | - Arunima Mukherjee
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur-Ajmer Expressway, Jaipur, Rajasthan 303007, India
| | - Shahanavaj Khan
- Department of Health Sciences, Novel Global Community Educational Foundation, NSW, Australia; Department of Pharmaceutics, College of Pharmacy, PO Box 2457, King Saud University, Riyadh 11451, Saudi Arabia; Department of Medical Lab Technology, Indian Institute of health and Technology (IIHT), Deoband, 247554 Saharanpur, UP, India.
| |
Collapse
|
16
|
Li Y, Ge J, Ma K, Kong J. Epigallocatechin-3-gallate exerts protective effect on epithelial function via PI3K/AKT signaling in thrombosis. Microvasc Res 2022; 144:104408. [PMID: 35878868 DOI: 10.1016/j.mvr.2022.104408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/27/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Venous thrombosis (VT) is one of the most frequent cardiovascular diseases, which seriously endangers people's health. Recently, the protective role of epigallocatechin-3-gallate (EGCG) against multiple cardiovascular diseases has been well studied. Nevertheless, whether EGCG is implicated in the progression of VT is still unclear. METHODS Rat models of VT were established by inferior vena cava (IVC) ligation. Histological characterization of the IVC tissues was examined by hematoxylin-eosin (H&E) staining. TUNEL assay was utilized to detect cell apoptosis in IVC tissues. The concentrations of the oxidative stress biomarkers, malondialdehyde (MDA) and superoxide dismutase (SOD), were estimated by corresponding kits. In addition, the levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-8 in rat plasma were estimated by ELISA. Further, the expression levels of apoptosis markers (Bax, Bcl-2, and Cleaved-caspase 3) as well as key molecules p-PI3K and p-AKT in phosphoinositide 3-kinase (PI3K)/AKT signaling pathway were assessed by western blot. RESULTS Compared to the sham group, the model group showed obvious thrombus formation in IVC tissues, while the EGCG treatment significantly repressed thrombosis. EGCG inhibited cell apoptosis in IVC tissues of VT rat models. The decreased SOD concentration and increased MDA concentration in the plasma of VT rats were reversed by EGCG treatment. Additionally, the elevated levels of TNF-α, IL-6 and IL-8 in the plasma of VT rats can be partially reduced by the treatment of EGCG. Finally, we also found that EGCG reduced the levels of phosphorylated (p)-PI3K and p-AKT in IVC tissues of VT rat models, indicating that the hyperactivation of the PI3K/AKT signaling pathway was inhibited by EGCG. CONCLUSION This study proves that EGCG alleviates thrombosis, cell apoptosis, inflammatory response, and oxidative stress injury in VT by inactivating PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Yan Li
- Department of Vascular and Interventional Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Jingping Ge
- Department of Vascular and Interventional Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Ke Ma
- Department of Acupuncture, Qinhuai District Hospital of Traditional Chinese Medicine, Nanjing 210000, Jiangsu, China
| | - Jie Kong
- Department of Vascular and Interventional Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China.
| |
Collapse
|
17
|
Hong M, Yu J, Wang X, Liu Y, Zhan S, Wu Z, Zhang X. Tea Polyphenols as Prospective Natural Attenuators of Brain Aging. Nutrients 2022; 14:3012. [PMID: 35893865 PMCID: PMC9332553 DOI: 10.3390/nu14153012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 12/26/2022] Open
Abstract
No organism can avoid the process of aging, which is often accompanied by chronic disease. The process of biological aging is driven by a series of interrelated mechanisms through different signal pathways, including oxidative stress, inflammatory states, autophagy and others. In addition, the intestinal microbiota play a key role in regulating oxidative stress of microglia, maintaining homeostasis of microglia and alleviating age-related diseases. Tea polyphenols can effectively regulate the composition of the intestinal microbiota. In recent years, the potential anti-aging benefits of tea polyphenols have attracted increasing attention because they can inhibit neuroinflammation and prevent degenerative effects in the brain. The interaction between human neurological function and the gut microbiota suggests that intervention with tea polyphenols is a possible way to alleviate brain-aging. Studies have been undertaken into the possible mechanisms underpinning the preventative effect of tea polyphenols on brain-aging mediated by the intestinal microbiota. Tea polyphenols may be regarded as potential neuroprotective substances which can act with high efficiency and low toxicity.
Collapse
Affiliation(s)
- Mengyu Hong
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (M.H.); (Y.L.); (S.Z.); (Z.W.)
| | - Jing Yu
- Guangdong Qingyunshan Pharmaceutical Co., Ltd., Shaoguan 512699, China;
| | - Xuanpeng Wang
- Guangdong Qingyunshan Pharmaceutical Co., Ltd., Shaoguan 512699, China;
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (M.H.); (Y.L.); (S.Z.); (Z.W.)
| | - Shengnan Zhan
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (M.H.); (Y.L.); (S.Z.); (Z.W.)
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (M.H.); (Y.L.); (S.Z.); (Z.W.)
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (M.H.); (Y.L.); (S.Z.); (Z.W.)
| |
Collapse
|
18
|
Méndez-Líter JA, Pozo-Rodríguez A, Madruga E, Rubert M, Santana AG, de Eugenio LI, Sánchez C, Martínez A, Prieto A, Martínez MJ. Glycosylation of Epigallocatechin Gallate by Engineered Glycoside Hydrolases from Talaromyces amestolkiae: Potential Antiproliferative and Neuroprotective Effect of These Molecules. Antioxidants (Basel) 2022; 11:antiox11071325. [PMID: 35883816 PMCID: PMC9312355 DOI: 10.3390/antiox11071325] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 02/04/2023] Open
Abstract
Glycoside hydrolases (GHs) are enzymes that hydrolyze glycosidic bonds, but some of them can also catalyze the synthesis of glycosides by transglycosylation. However, the yields of this reaction are generally low since the glycosides formed end up being hydrolyzed by these same enzymes. For this reason, mutagenic variants with null or drastically reduced hydrolytic activity have been developed, thus enhancing their synthetic ability. Two mutagenic variants, a glycosynthase engineered from a β-glucosidase (BGL-1-E521G) and a thioglycoligase from a β-xylosidase (BxTW1-E495A), both from the ascomycete Talaromyces amestolkiae, were used to synthesize three novel epigallocatechin gallate (EGCG) glycosides. EGCG is a phenolic compound from green tea known for its antioxidant effects and therapeutic benefits, whose glycosylation could increase its bioavailability and improve its bioactive properties. The glycosynthase BGL-1-E521G produced a β-glucoside and a β-sophoroside of EGCG, while the thioglycoligase BxTW1-E495A formed the β-xyloside of EGCG. Glycosylation occurred in the 5″ and 4″ positions of EGCG, respectively. In this work, the reaction conditions for glycosides’ production were optimized, achieving around 90% conversion of EGCG with BGL-1-E521G and 60% with BxTW1-E495A. The glycosylation of EGCG caused a slight loss of its antioxidant capacity but notably increased its solubility (between 23 and 44 times) and, in the case of glucoside, also improved its thermal stability. All three glycosides showed better antiproliferative properties on breast adenocarcinoma cell line MDA-MB-231 than EGCG, and the glucosylated and sophorylated derivatives induced higher neuroprotection, increasing the viability of SH-S5Y5 neurons exposed to okadaic acid.
Collapse
Affiliation(s)
- Juan A. Méndez-Líter
- Centro de Investigaciones Biológicas Margarita Salas, Department of Microbial and Plant Biotechnology, Spanish National Research Council (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain; (J.A.M.-L.); (A.P.-R.); (L.I.d.E.); (A.P.)
| | - Ana Pozo-Rodríguez
- Centro de Investigaciones Biológicas Margarita Salas, Department of Microbial and Plant Biotechnology, Spanish National Research Council (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain; (J.A.M.-L.); (A.P.-R.); (L.I.d.E.); (A.P.)
| | - Enrique Madruga
- Centro de Investigaciones Biológicas Margarita Salas, Department of Structural and Chemical Biology, Spanish National Research Council (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain; (E.M.); (A.M.)
| | - María Rubert
- Department of Biochemistry and Molecular Biology, School of Biology, Instituto de Investigación Hospital 12 de Octubre, Universidad Complutense de Madrid, C/de José Antonio Nováis 12, 28040 Madrid, Spain; (M.R.); (C.S.)
| | - Andrés G. Santana
- Department of Bioorganic Chemistry, Instituto de Química Orgánica General, Spanish National Research Council (CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain;
| | - Laura I. de Eugenio
- Centro de Investigaciones Biológicas Margarita Salas, Department of Microbial and Plant Biotechnology, Spanish National Research Council (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain; (J.A.M.-L.); (A.P.-R.); (L.I.d.E.); (A.P.)
| | - Cristina Sánchez
- Department of Biochemistry and Molecular Biology, School of Biology, Instituto de Investigación Hospital 12 de Octubre, Universidad Complutense de Madrid, C/de José Antonio Nováis 12, 28040 Madrid, Spain; (M.R.); (C.S.)
| | - Ana Martínez
- Centro de Investigaciones Biológicas Margarita Salas, Department of Structural and Chemical Biology, Spanish National Research Council (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain; (E.M.); (A.M.)
| | - Alicia Prieto
- Centro de Investigaciones Biológicas Margarita Salas, Department of Microbial and Plant Biotechnology, Spanish National Research Council (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain; (J.A.M.-L.); (A.P.-R.); (L.I.d.E.); (A.P.)
| | - María Jesús Martínez
- Centro de Investigaciones Biológicas Margarita Salas, Department of Microbial and Plant Biotechnology, Spanish National Research Council (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain; (J.A.M.-L.); (A.P.-R.); (L.I.d.E.); (A.P.)
- Correspondence:
| |
Collapse
|
19
|
Zhao L, Xiong X, Liu L, Liang Q, Tong R, Feng X, Bai L, Shi J. Recent research and development of DYRK1A inhibitors. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Bai X, Zhang L, Kang C, Quan B, Zheng Y, Zhang X, Song J, Xia T, Wang M. Near-infrared spectroscopy and machine learning-based technique to predict quality-related parameters in instant tea. Sci Rep 2022; 12:3833. [PMID: 35264637 PMCID: PMC8907319 DOI: 10.1038/s41598-022-07652-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/23/2022] [Indexed: 12/02/2022] Open
Abstract
The traditional method for analyzing the content of instant tea has disadvantages such as complicated operation and being time-consuming. In this study, a method for the rapid determination of instant tea components by near-infrared (NIR) spectroscopy was established and optimized. The NIR spectra of 118 instant tea samples were used to evaluate the modeling and prediction performance of a combination of binary particle swarm optimization (BPSO) with support vector regression (SVR), BPSO with partial least squares (PLS), and SVR and PLS without BPSO. Under optimal conditions, Rp for moisture, caffeine, tea polyphenols, and tea polysaccharides were 0.9678, 0.9757, 0.7569, and 0.8185, respectively. The values of SEP were less than 0.9302, and absolute values of Bias were less than 0.3667. These findings indicate that machine learning can be used to optimize the detection model of instant tea components based on NIR methods to improve prediction accuracy.
Collapse
Affiliation(s)
- Xiaoli Bai
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China
| | - Lei Zhang
- Jiangxi Discipline Inspection and Supervision Technical Support Center, Nanchang, 330036, China
| | - Chaoyan Kang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Bingyan Quan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yu Zheng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Xianglong Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jia Song
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Ting Xia
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Min Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
21
|
Payne A, Nahashon S, Taka E, Adinew GM, Soliman KFA. Epigallocatechin-3-Gallate (EGCG): New Therapeutic Perspectives for Neuroprotection, Aging, and Neuroinflammation for the Modern Age. Biomolecules 2022; 12:biom12030371. [PMID: 35327563 PMCID: PMC8945730 DOI: 10.3390/biom12030371] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/28/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s and Parkinson’s diseases are the two most common forms of neurodegenerative diseases. The exact etiology of these disorders is not well known; however, environmental, molecular, and genetic influences play a major role in the pathogenesis of these diseases. Using Alzheimer’s disease (AD) as the archetype, the pathological findings include the aggregation of Amyloid Beta (Aβ) peptides, mitochondrial dysfunction, synaptic degradation caused by inflammation, elevated reactive oxygen species (ROS), and cerebrovascular dysregulation. This review highlights the neuroinflammatory and neuroprotective role of epigallocatechin-3-gallate (EGCG): the medicinal component of green tea, a known nutraceutical that has shown promise in modulating AD progression due to its antioxidant, anti-inflammatory, and anti-aging abilities. This report also re-examines the current literature and provides innovative approaches for EGCG to be used as a preventive measure to alleviate AD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Ashley Payne
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (A.P.); (E.T.); (G.M.A.)
| | - Samuel Nahashon
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN 37209, USA;
| | - Equar Taka
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (A.P.); (E.T.); (G.M.A.)
| | - Getinet M. Adinew
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (A.P.); (E.T.); (G.M.A.)
| | - Karam F. A. Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (A.P.); (E.T.); (G.M.A.)
- Correspondence: ; Tel.: +1850-322-8788
| |
Collapse
|
22
|
Chen Y, Luo R, Li J, Wang S, Ding J, Zhao K, Lu B, Zhou W. Intrinsic Radical Species Scavenging Activities of Tea Polyphenols Nanoparticles Block Pyroptosis in Endotoxin-Induced Sepsis. ACS NANO 2022; 16:2429-2441. [PMID: 35133795 DOI: 10.1021/acsnano.1c08913] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sepsis, a life-threating illness caused by deregulated host immune responses to infections, is characterized by overproduction of multiple reactive oxygen and nitrogen species (RONS) and excessive pyroptosis, leading to high mortality. However, there is still no approved specific molecular therapy to treat sepsis. Here we reported drug-free tea polyphenols nanoparticles (TPNs) with intrinsic broad-spectrum RONS scavenging and pyroptosis-blocking activities to treat endotoxin (LPS)-induced sepsis in mice. The RONS scavenging activities originated from the polyphenols-derived structure, while the pyroptosis blockage was achieved by inhibiting gasdermin D (GSDMD) mediating the pore formation and membrane rupture, showing multifunctionalities for sepsis therapy. Notably, TPNs suppress GSDMD by inhibiting the oligomerization of GSDMD rather than the cleavage of GSDMD, thus displaying high pyroptosis-inhibition efficiency. As a result, TPNs showed an excellent therapeutic efficacy in sepsis mice model, as evidenced by survival rate improvement, hypothermia amelioration, and the organ damage protection. Collectively, TPNs present biocompatible candidates for the treatment of sepsis.
Collapse
Affiliation(s)
- Yuan Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
- Department of Pharmacy, The First People's Hospital of Changde City, Changde, Hunan 415003, China
| | - Ruiheng Luo
- Hematology and Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Jing Li
- Hematology and Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Shengfeng Wang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Jinsong Ding
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Kai Zhao
- Hematology and Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Ben Lu
- Hematology and Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410000, P. R. China
- Key Laboratory of Sepsis and Translational Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan 410000, P. R. China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
23
|
Anti-Inflammatory and Protective Effects of Juncus effusus L. Water Extract on Oral Keratinocytes. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9770899. [PMID: 35028318 PMCID: PMC8752227 DOI: 10.1155/2022/9770899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/07/2021] [Indexed: 11/18/2022]
Abstract
Periodontitis is a chronic inflammatory disease caused by periodontopathogenic bacteria that form biofilms in periodontal pockets. The gingival epithelium acts as the first physical barrier in fighting attacks by periodontopathogenic pathogens, such as the primary etiological agent Porphyromonas gingivalis, and various exogenous chemicals, as well as regulates the local innate immune responses. Therefore, the development of novel oral care products to inhibit inflammatory reactions caused by bacterial infection and protect the gingival epithelium is necessary. Juncus effusus L. has generally been used as an indigenous medicine, such as a diuretic, an antipyretic, and an analgesic, in ancient practice. In this study, we examined the effects of a water extract from J. effusus L. on the inhibition of the inflammatory reaction elicited by bacterial infection and protection of the oral epithelium by chemical irritation. Pretreatment of oral epithelial cells with the water extract from J. effusus L. significantly reduced P. gingivalis or its lipopolysaccharide- (LPS-) mediated production of chemokines (interleukin-8 and C-C-chemokine ligand20) in a concentration-dependent manner with comparable to or greater effects than epigallocatechin gallate and protected oral epithelial cells from injury by chemical irritants, cetylpyridinium chloride, and benzethonium chloride. Moreover, the water extract from J. effusus L. in the presence of antimicrobial agents or antifibrinolytics already used as ingredients in mouthwash could significantly reduce the production of chemokines from P. gingivalis LPS-stimulated oral epithelial cells in a concentration-dependent manner. These findings suggest that the water extract from J. effusus L. is potentially useful for oral care to prevent oral infections, such as periodontal infections, and maintain oral epithelial function.
Collapse
|
24
|
Wang X, He J, Jiang S, Gao Y, Zhang LK, Yin L, You R, Guan YQ. Multi-ligand modified PC@DOX-PA/EGCG micelles effectively inhibit the growth of ER +, PR + or HER 2+ breast cancer. J Mater Chem B 2022; 10:418-429. [PMID: 34940773 DOI: 10.1039/d1tb02056k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Breast cancer is one of the most common cancers in the world with tumor heterogeneity. Currently, cancer treatment mainly relies on surgical intervention, chemotherapy, and radiotherapy, for which the side effects, drug resistance and cost need to be resolved. In this study, we develop a natural medicine targeted therapy system. Phosphatidylcholine (PC), doxorubicin (DOX), procyanidin (PA), and epigallocatechin gallate (EGCG) are assembled and PC@DOX-PA/EGCG nanoparticles (NPs) are obtained. In addition, the HER2, ER and PR ligands were grafted on the surface of the NPs to acquire the targeted nanoparticles NP-ER, NP-ER-HER2, and NP-ER-HER2-PR. The physicochemical properties of the nanoparticles were detected and it was found that the nanoparticles are spherical and less than 200 nm in diameter. Furthermore, in vitro and in vivo results indicate that the nanoparticles can target BT-474, MCF-7, EMT-6, and MDA-MB-231 breast cancer cells, effectively inhibiting the growth of the breast cancer cells. In short, this research will provide some strategies for the treatment of heterogeneous breast cancer.
Collapse
Affiliation(s)
- Xiaozhen Wang
- School of Life Science, South China Normal University, Guangzhou, 510631, China.
| | - Jiecheng He
- School of Life Science, South China Normal University, Guangzhou, 510631, China.
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, 511400, China
| | - Siyuan Jiang
- School of Life Science, South China Normal University, Guangzhou, 510631, China.
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, 511400, China
| | - Yifei Gao
- School of Life Science, South China Normal University, Guangzhou, 510631, China.
| | - Ling-Kun Zhang
- School of Life Science, South China Normal University, Guangzhou, 510631, China.
| | - Liang Yin
- School of Life Science, South China Normal University, Guangzhou, 510631, China.
| | - Rong You
- School of Life Science, South China Normal University, Guangzhou, 510631, China.
| | - Yan-Qing Guan
- School of Life Science, South China Normal University, Guangzhou, 510631, China.
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, 511400, China
| |
Collapse
|
25
|
Multiple Risk Factors for Heart Disease: A Challenge to the Ethnopharmacological Use of Croton urucurana Baill. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6580458. [PMID: 34819983 PMCID: PMC8608512 DOI: 10.1155/2021/6580458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/15/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022]
Abstract
Croton urucurana Baill. is a native Brazilian tree, popularly known as "sangra-d'água" or "sangue-de-dragão," based on the red resinous sap of the trunk. Its use has been transmitted through generations based on popular tradition that attributes analgesic, anti-inflammatory, and cardioprotective properties to the tree. However, its cardioprotective effects have not yet been scientifically investigated. Thus, the present study investigated the pharmacological response to an ethanol-soluble fraction from the leaves of C. urucurana in Wistar rats exposed to smoking and dyslipidemia, two important cardiovascular risk factors. The extract was evaluated by high-performance liquid chromatography. Wistar rats received a 0.5% cholesterol-enriched diet and were exposed to cigarette smoke (9 cigarettes/day for 10 weeks). During the last 5 weeks, the animals were orally treated with vehicle (negative control group), C. urucurana extract (30, 100, and 300 mg/kg), or simvastatin (2.5 mg/kg) + enalapril (15 mg/kg). One group of rats that was not exposed to these risk factors was also evaluated (basal group). Electrocardiograms and systolic, diastolic, and mean blood pressure were measured. Blood was collected to measure total cholesterol, triglycerides, urea, and creatinine. The heart and kidneys were collected and processed for oxidative status and histopathological evaluation. The phytochemical analysis revealed different classes of flavonoids and condensed tannins. The model induced dyslipidemia and cardiac and renal oxidative stress and increased levels of urea and creatinine in the negative control group. Treatment with the C. urucurana extract (300 mg/kg) and simvastatin + enalapril decreased cholesterol and triglyceride levels. In contrast to simvastatin + enalapril treatment, the C. urucurana extract exerted cardiac and renal antioxidant effects. No alterations of electrocardiograms, blood pressure, or histopathology were observed between groups. These findings indicate that C. urucurana exerts lipid-lowering, renal, and cardioprotective effects against oxidative stress in a preclinical model of multiple risk factors for heart disease.
Collapse
|
26
|
Zhou J, Lin H, Xu P, Yao L, Xie Q, Mao L, Wang Y. Matcha green tea prevents obesity-induced hypothalamic inflammation via suppressing the JAK2/STAT3 signaling pathway. Food Funct 2021; 11:8987-8995. [PMID: 33001081 DOI: 10.1039/d0fo01500h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Obesity is an increasingly severe global health problem, leading to chronic inflammation and metabolic disorders in both peripheral tissues and the central nervous system. Matcha is a powdered green tea, and it is very popular in recent years as a beverage and food additive. Matcha green tea has been reported to have outstanding potential in regulating obesity-related metabolic syndrome. However, there are few studies on the regulation mechanism of matcha green tea on the central nervous system. In this study, we established a high-fat diet-induced obese mouse model. The results showed that dietary supplementation with matcha could effectively inhibit the weight gain, fat accumulation, glycemia and lipidemia increase, and excessive activation of microglia in the arcuate nucleus of the hypothalamus. Furthermore, we used different concentrations (100%, 80%, 60%, 40%, and 20%, v/v) of ethanol solution to prepare matcha ethanol extracts, and investigated their effects on palmitic acid-induced inflammation of microglial BV-2 cells. The results showed that matcha ethanol extracts could significantly reduce the release of inflammatory cytokines and the expression and phosphorylation of JAK2 and STAT3.
Collapse
Affiliation(s)
- Jihong Zhou
- Tea Research Institute, Zhejiang University, Zijingang Campus, Hangzhou 310058, P. R. China.
| | - Haiyu Lin
- Tea Research Institute, Zhejiang University, Zijingang Campus, Hangzhou 310058, P. R. China.
| | - Ping Xu
- Tea Research Institute, Zhejiang University, Zijingang Campus, Hangzhou 310058, P. R. China.
| | - Liyun Yao
- Tea Research Institute, Zhejiang University, Zijingang Campus, Hangzhou 310058, P. R. China.
| | - Qingyi Xie
- Tea Research Institute, Zhejiang University, Zijingang Campus, Hangzhou 310058, P. R. China.
| | - Limin Mao
- Tea Research Institute, Zhejiang University, Zijingang Campus, Hangzhou 310058, P. R. China. and Zhejiang Tea Group Co., Ltd, Hangzhou 310058, P. R. China
| | - Yuefei Wang
- Tea Research Institute, Zhejiang University, Zijingang Campus, Hangzhou 310058, P. R. China.
| |
Collapse
|
27
|
Gonçalves PB, Sodero ACR, Cordeiro Y. Green Tea Epigallocatechin-3-gallate (EGCG) Targeting Protein Misfolding in Drug Discovery for Neurodegenerative Diseases. Biomolecules 2021; 11:767. [PMID: 34065606 PMCID: PMC8160836 DOI: 10.3390/biom11050767] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 12/15/2022] Open
Abstract
The potential to treat neurodegenerative diseases (NDs) of the major bioactive compound of green tea, epigallocatechin-3-gallate (EGCG), is well documented. Numerous findings now suggest that EGCG targets protein misfolding and aggregation, a common cause and pathological mechanism in many NDs. Several studies have shown that EGCG interacts with misfolded proteins such as amyloid beta-peptide (Aβ), linked to Alzheimer's disease (AD), and α-synuclein, linked to Parkinson's disease (PD). To date, NDs constitute a serious public health problem, causing a financial burden for health care systems worldwide. Although current treatments provide symptomatic relief, they do not stop or even slow the progression of these devastating disorders. Therefore, there is an urgent need to develop effective drugs for these incurable ailments. It is expected that targeting protein misfolding can serve as a therapeutic strategy for many NDs since protein misfolding is a common cause of neurodegeneration. In this context, EGCG may offer great potential opportunities in drug discovery for NDs. Therefore, this review critically discusses the role of EGCG in NDs drug discovery and provides updated information on the scientific evidence that EGCG can potentially be used to treat many of these fatal brain disorders.
Collapse
Affiliation(s)
| | | | - Yraima Cordeiro
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro 21949-900, Brazil; (P.B.G.); (A.C.R.S.)
| |
Collapse
|
28
|
Cano A, Turowski P, Ettcheto M, Duskey JT, Tosi G, Sánchez-López E, García ML, Camins A, Souto EB, Ruiz A, Marquié M, Boada M. Nanomedicine-based technologies and novel biomarkers for the diagnosis and treatment of Alzheimer's disease: from current to future challenges. J Nanobiotechnology 2021; 19:122. [PMID: 33926475 PMCID: PMC8086346 DOI: 10.1186/s12951-021-00864-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/17/2021] [Indexed: 02/07/2023] Open
Abstract
Increasing life expectancy has led to an aging population, which has consequently increased the prevalence of dementia. Alzheimer's disease (AD), the most common form of dementia worldwide, is estimated to make up 50-80% of all cases. AD cases are expected to reach 131 million by 2050, and this increasing prevalence will critically burden economies and health systems in the next decades. There is currently no treatment that can stop or reverse disease progression. In addition, the late diagnosis of AD constitutes a major obstacle to effective disease management. Therefore, improved diagnostic tools and new treatments for AD are urgently needed. In this review, we investigate and describe both well-established and recently discovered AD biomarkers that could potentially be used to detect AD at early stages and allow the monitoring of disease progression. Proteins such as NfL, MMPs, p-tau217, YKL-40, SNAP-25, VCAM-1, and Ng / BACE are some of the most promising biomarkers because of their successful use as diagnostic tools. In addition, we explore the most recent molecular strategies for an AD therapeutic approach and nanomedicine-based technologies, used to both target drugs to the brain and serve as devices for tracking disease progression diagnostic biomarkers. State-of-the-art nanoparticles, such as polymeric, lipid, and metal-based, are being widely investigated for their potential to improve the effectiveness of both conventional drugs and novel compounds for treating AD. The most recent studies on these nanodevices are deeply explained and discussed in this review.
Collapse
Affiliation(s)
- Amanda Cano
- Research Center and Memory Clinic, Fundació ACE. Institut Català de Neurociències Aplicades, International University of Catalunya (UIC), C/Marquès de Sentmenat, 57, 08029, Barcelona, Spain.
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
- Institute of Nanoscience and Nanotechnology (IN2UB), Barcelona, Spain.
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.
| | - Patric Turowski
- UCL Institute of Ophthalmology, University College of London, London, UK
| | - Miren Ettcheto
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Jason Thomas Duskey
- Nanotech Lab, Te.Far.T.I, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Umberto Veronesi Foundation, 20121, Milano, Italy
| | - Giovanni Tosi
- Nanotech Lab, Te.Far.T.I, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Elena Sánchez-López
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Barcelona, Spain
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Maria Luisa García
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Barcelona, Spain
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Antonio Camins
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Agustín Ruiz
- Research Center and Memory Clinic, Fundació ACE. Institut Català de Neurociències Aplicades, International University of Catalunya (UIC), C/Marquès de Sentmenat, 57, 08029, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Marta Marquié
- Research Center and Memory Clinic, Fundació ACE. Institut Català de Neurociències Aplicades, International University of Catalunya (UIC), C/Marquès de Sentmenat, 57, 08029, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Mercè Boada
- Research Center and Memory Clinic, Fundació ACE. Institut Català de Neurociències Aplicades, International University of Catalunya (UIC), C/Marquès de Sentmenat, 57, 08029, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| |
Collapse
|
29
|
Zheng K, Dong Y, Yang R, Liang Y, Wu H, He Z. Regulation of ferroptosis by bioactive phytochemicals: Implications for medical nutritional therapy. Pharmacol Res 2021; 168:105580. [PMID: 33781874 DOI: 10.1016/j.phrs.2021.105580] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/15/2021] [Accepted: 03/23/2021] [Indexed: 12/16/2022]
Abstract
Ferroptosis is an iron- and lipotoxicity-dependent regulated cell death that has been implicated in various diseases, such as cancer, neurodegeneration and stroke. The biosynthesis of phospholipids, coenzyme Q10, and glutathione, and the metabolism of iron, amino acids and polyunsaturated fatty acid, are tightly associated with cellular sensitivity to ferroptosis. Up to now, only limited drugs targeting ferroptosis have been documented and exploring novel effective ferroptosis-modulating compound is needed. Natural bioactive products are conventional resources for drug discovery, and some of them have been clinically used against cancers and neurodegenerative diseases as dietary supplements or pharmaceutic agents. Notably, increasing evidence demonstrates that natural compounds, such as saponins, flavonoids and isothiocyanates, can either induce or inhibit ferroptosis, further expanding their therapeutic potentials. In this review, we highlight current advances of the emerging molecular mechanisms and disease relevance of ferroptosis. We also systematically summarize the regulatory effects of natural phytochemicals on ferroptosis, and clearly indicate that saponins, terpenoids and alkaloids induce ROS- and ferritinophagy-dependent ferroptosis, whereas flavonoids and polyphenols modulate iron metabolism and nuclear factor erythroid 2-related factor 2 (NRF2) signaling to inhibit ferroptosis. Finally, we explore their clinical applications in ferroptosis-related diseases, which may facilitate the development of their dietary usages as nutraceuticals.
Collapse
Affiliation(s)
- Kai Zheng
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, PR China.
| | - Yun Dong
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, PR China
| | - Rong Yang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, PR China
| | - Youfang Liang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, PR China
| | - Haiqiang Wu
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, PR China
| | - Zhendan He
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, PR China
| |
Collapse
|
30
|
Liu Z, Lin Y, Fang X, Yang J, Chen Z. Epigallocatechin-3-Gallate Promotes Osteo-/Odontogenic Differentiation of Stem Cells from the Apical Papilla through Activating the BMP-Smad Signaling Pathway. Molecules 2021; 26:molecules26061580. [PMID: 33809391 PMCID: PMC8001198 DOI: 10.3390/molecules26061580] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 12/20/2022] Open
Abstract
Stem cells from apical papilla (SCAPs) are desirable sources of dentin regeneration. Epigallocatechin-3-gallate (EGCG), a natural component of green tea, shows potential in promoting the osteogenic differentiation of bone mesenchymal stem cells. However, whether EGCG regulates the odontogenic differentiation of SCAPs and how this occurs remain unknown. SCAPs from immature human third molars (16–20 years, n = 5) were treated with a medium containing different concentrations of EGCG or bone morphogenic protein 2 (BMP2), with or without LDN193189 (an inhibitor of the canonical BMP pathway). Cell proliferation and migration were analyzed using a CCK-8 assay and wound-healing assay, respectively. Osteo-/odontogenic differentiation was evaluated via alkaline phosphatase staining, alizarin red S staining, and the expression of osteo-/odontogenic markers using qPCR and Western blotting. We found that EGCG (1 or 10 μM) promoted the proliferation of SCAPs, increased alkaline phosphatase activity and mineral deposition, and upregulated the expression of osteo-/odontogenic markers including dentin sialophosphoprotein (Dspp), dentin matrix protein-1 (Dmp-1), bone sialoprotein (Bsp), and Type I collagen (Col1), along with the elevated expression of BMP2 and phosphorylation level of Smad1/5/9 (p < 0.01). EGCG at concentrations below 10 μM had no significant influence on cell migration. Moreover, EGCG-induced osteo-/odontogenic differentiation was significantly attenuated via LDN193189 treatment (p < 0.01). Furthermore, EGCG showed the ability to promote mineralization comparable with that of recombinant BMP2. Our study demonstrated that EGCG promotes the osteo-/odontogenic differentiation of SCAPs through the BMP–Smad signaling pathway.
Collapse
|
31
|
Cano A, Ettcheto M, Espina M, Auladell C, Folch J, Kühne BA, Barenys M, Sánchez-López E, Souto EB, García ML, Turowski P, Camins A. Epigallocatechin-3-gallate PEGylated poly(lactic-co-glycolic) acid nanoparticles mitigate striatal pathology and motor deficits in 3-nitropropionic acid intoxicated mice. Nanomedicine (Lond) 2021; 16:19-35. [PMID: 33410329 DOI: 10.2217/nnm-2020-0239] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aim: To compare free and nanoparticle (NP)-encapsulated epigallocatechin-3-gallate (EGCG) for the treatment of Huntington's disease (HD)-like symptoms in mice. Materials & methods: EGCG was incorporated into PEGylated poly(lactic-co-glycolic) acid NPs with ascorbic acid (AA). HD-like striatal lesions and motor deficit were induced in mice by 3-nitropropionic acid-intoxication. EGCG and EGCG/AA NPs were co-administered and behavioral motor assessments and striatal histology performed after 5 days. Results: EGCG/AA NPs were significantly more effective than free EGCG in reducing motor disturbances and depression-like behavior associated with 3-nitropropionic acid toxicity. EGCG/AA NPs treatment also mitigated neuroinflammation and prevented neuronal loss. Conclusion: NP encapsulation enhances therapeutic robustness of EGCG in this model of HD symptomatology. Together with our previous findings, this highlights the potential of EGCG/AA NPs in the symptomatic treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Amanda Cano
- Department of Pharmacy, Pharmaceutical Technology & Physical Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Nanoscience & Nanotechnology (IN2UB), Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Miren Ettcheto
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Department of Pharmacology, Toxicology & Therapeutic Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Spain.,Unit of Biochemistry & Pharmacology, Faculty of Medicine & Health Sciences, University of Rovira i Virgili, Reus (Tarragona), Spain
| | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology & Physical Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Nanoscience & Nanotechnology (IN2UB), Barcelona, Spain
| | - Carmen Auladell
- Department of Cellular Biology, Physiology & Immunology, Faculty of Biology, University of Barcelona, Spain
| | - Jaume Folch
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Unit of Biochemistry & Pharmacology, Faculty of Medicine & Health Sciences, University of Rovira i Virgili, Reus (Tarragona), Spain
| | - Britta A Kühne
- Department of Pharmacology, Toxicology & Therapeutic Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Spain
| | - Marta Barenys
- Department of Pharmacology, Toxicology & Therapeutic Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Spain
| | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology & Physical Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Nanoscience & Nanotechnology (IN2UB), Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
| | - Maria Luisa García
- Department of Pharmacy, Pharmaceutical Technology & Physical Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Nanoscience & Nanotechnology (IN2UB), Barcelona, Spain
| | - Patric Turowski
- UCL Institute of Ophthalmology, University College of London, London, UK
| | - Antonio Camins
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Department of Pharmacology, Toxicology & Therapeutic Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Spain
| |
Collapse
|
32
|
Yan Q, Hao S, Shi F, Zou Y, Song X, Li L, Li Y, Guo H, He R, Zhao L, Ye G, Tang H. Epigallocatechin-3-gallate reduces liver and immune system damage in Acinetobacter baumannii-loaded mice with restraint stress. Int Immunopharmacol 2021; 92:107346. [PMID: 33412390 DOI: 10.1016/j.intimp.2020.107346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/08/2020] [Accepted: 12/25/2020] [Indexed: 11/28/2022]
Abstract
AIM Due to the significant increase in the antimicrobial resistance of Acinetobacter baumannii (A. baumannii), new drugs to block the progression of infection are strongly needed. Epigallocatechin-3-gallate (EGCG), a major component of green tea, has exhibited potential activity against A. baumannii in vitro. The aim of this study was to determine if EGCG could be used for pretreating stress-related effects, liver damage, and immune dysfunction caused by A. baumannii infection in vivo. METHODS Levels of stress hormones, oxidative stress, liver damage, and immune components were analyzed in a murine infection model in which the mice were pretreated with EGCG for one week then intranasally inoculated with A. baumannii. The mice were restrained for 12 h to promote infection because A. baumannii is an opportunistic pathogen. The pretreatment efficacy of EGCG against A. baumannii in mice was assessed for 24 h after the bacterial infection. RESULTS Restraint stress strengthened the damage from the A. baumannii infection. Pretreatment with EGCG in the murine pneumonia model markedly reduced stress hormones, oxidative metabolites, and proinflammatory cytokine production. EGCG also increased the immune function by increasing the levels of sIgA, T cells and neutrophils after infection. Moreover, pretreatment with EGCG significantly decreased the liver damage by inhibiting the levels of transaminases, oxidative stress metabolites, and cytokines, while maintaining the normal activity of CYP450 enzymes in the liver. CONCLUSION EGCG was efficacious as a preventative treatment for the damage seen in an experimental model of A. baumannii infection.
Collapse
Affiliation(s)
- Qiaohua Yan
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Suqi Hao
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Fei Shi
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuanfeng Zou
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xu Song
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Lixia Li
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yinglun Li
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongrui Guo
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Ran He
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Ling Zhao
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Gang Ye
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Huaqiao Tang
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
33
|
Effects of epigallocatechin gallate-enriched green tea extract capsules in uterine myomas: results of an observational study. Arch Gynecol Obstet 2021; 303:1235-1243. [PMID: 33386959 DOI: 10.1007/s00404-020-05907-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/17/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE The daily ingestion of green tea extract (GTE) capsules in women with oligo- or asymptomatic uterine myomas was monitored over 6 months with regard to their quality of life, myoma-associated complaints and side effects. METHODS The participants were interviewed and examined at the beginning of the study (T1) and then again after 6 months (T3). Quality of life was assessed using a SF-12 questionnaire while their myoma-associated complaints were ascertained by using a self-developed myoma symptom questionnaire. Changes in the size of the myomas were evaluated by vaginal sonography. Side effects after 3 months (T2) and 6 months were documented by systematic interviews. RESULTS Overall; 25 participants (median 45 years) have been enrolled. The analysis of the SF-12 questionnaire showed a significant improvement of the physical cumulative score of the SF-12 during the 6 month GTE capsule ingestion (T1: mean value (M) = 52.731; 95% confidence interval (KI95%): 49.791-55.671; T3: M = 55.862; KI95%%: 55.038-56.685; p = 0.019). However, the mental cumulative score of the SF-12 did not change significantly (p = 0.674). No significant correlation could be established between the capsule ingestion and changes in the symptom questionnaire, the laboratory parameters nor the myoma size. No relevant adverse side effects were reported. CONCLUSION Women who took GTE capsules showed a significant improvement in their physical cumulative score on the SF-12, but not in the global QoL score. Myoma size or other objective parameters did not change.
Collapse
|
34
|
Liu X, Zhao K, Jing N, Zhao Y, Yang X. EGCG regulates fatty acid metabolism of high-fat diet-fed mice in association with enrichment of gut Akkermansia muciniphila. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104261] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
35
|
Zhang M, Chen X, Radacsi N. New tricks of old drugs: Repurposing non-chemo drugs and dietary phytochemicals as adjuvants in anti-tumor therapies. J Control Release 2020; 329:96-120. [PMID: 33259852 DOI: 10.1016/j.jconrel.2020.11.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022]
Abstract
Combination therapy has long been applied to enhance therapeutic effect and deal with the occurrence of multi-drug resistance in cancer treatment. However, the overlapping toxicity of multiple anticancer drugs to healthy tissues and increasing financial burden on patients emerged as major concerns. As promising alternatives to chemo agents, repurposed non-chemo drugs and dietary phytochemicals have been investigated as adjuvants to conventional anti-tumor therapeutics, offering a safe and economic strategy for combination therapy. In this review, we aim to highlight the advances in research about combination therapy using conventional therapeutics and repurposed drugs or phytochemicals for an enhanced anti-tumor efficacy, along with the mechanisms involved in the synergism. Beyond these, we outlined the potential challenges and solutions for clinical translation of the proposed combination therapy, providing a safe and affordable strategy to improve the reach of cancer therapy to low income regions with such new tricks of old drugs.
Collapse
Affiliation(s)
- Mei Zhang
- School of Engineering, Institute for Materials and Processes, University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, United Kingdom; School of Engineering, Institute for Bioengineering, University of Edinburgh, The King's Buildings, Edinburgh EH9 3JL, United Kingdom.
| | - Xianfeng Chen
- School of Engineering, Institute for Bioengineering, University of Edinburgh, The King's Buildings, Edinburgh EH9 3JL, United Kingdom.
| | - Norbert Radacsi
- School of Engineering, Institute for Materials and Processes, University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, United Kingdom.
| |
Collapse
|
36
|
Blockade of RANKL/RANK signaling pathway by epigallocatechin gallate alleviates mast cell-mediated inflammatory reactions. Int Immunopharmacol 2020; 88:106872. [DOI: 10.1016/j.intimp.2020.106872] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/29/2020] [Accepted: 08/01/2020] [Indexed: 12/29/2022]
|
37
|
The tea catechin epigallocatechin gallate inhibits NF-κB-mediated transcriptional activation by covalent modification. Arch Biochem Biophys 2020; 695:108620. [DOI: 10.1016/j.abb.2020.108620] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023]
|
38
|
Lv L, Yang F, Li H, Yuan J. Brain‐targeted co‐delivery of β‐amyloid converting enzyme 1
shRNA
and epigallocatechin‐3‐gallate by multifunctional nanocarriers for Alzheimer's disease treatment. IUBMB Life 2020; 72:1819-1829. [PMID: 32668504 DOI: 10.1002/iub.2330] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/24/2020] [Accepted: 05/24/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Lijie Lv
- Department of Medical and NursingThe First Hospital of Jilin University Changchun China
| | - Fan Yang
- Department of Pediatric SurgeryThe First Hospital of Jilin University Changchun China
| | - He Li
- Department of Pain MedicineThe First Hospital of Jilin University Changchun China
| | - Jiuli Yuan
- Department of Medical and NursingThe First Hospital of Jilin University Changchun China
| |
Collapse
|
39
|
Liao S, Tang Y, Chu C, Lu W, Baligen B, Man Y, Qu Y. Application of green tea extracts epigallocatechin‐3‐gallate in dental materials: Recent progress and perspectives. J Biomed Mater Res A 2020; 108:2395-2408. [PMID: 32379385 DOI: 10.1002/jbm.a.36991] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 03/26/2020] [Accepted: 04/04/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Shengnan Liao
- Department of Oral Implantology, West China Hospital of Stomatology; State Key Laboratory of Oral Diseases Sichuan University Chengdu Sichuan China
| | - Yu Tang
- Stomatology College & the Affiliated Stomatology Hospital of Southwest Medical University Luzhou Sichuan China
| | - Chenyu Chu
- Department of Oral Implantology, West China Hospital of Stomatology; State Key Laboratory of Oral Diseases Sichuan University Chengdu Sichuan China
| | - Weitong Lu
- Department of Oral Implantology, West China Hospital of Stomatology; State Key Laboratory of Oral Diseases Sichuan University Chengdu Sichuan China
| | - Bolatihan Baligen
- Department of Oral Implantology, West China Hospital of Stomatology; State Key Laboratory of Oral Diseases Sichuan University Chengdu Sichuan China
| | - Yi Man
- Department of Oral Implantology, West China Hospital of Stomatology; State Key Laboratory of Oral Diseases Sichuan University Chengdu Sichuan China
| | - Yili Qu
- Department of Oral Implantology, West China Hospital of Stomatology; State Key Laboratory of Oral Diseases Sichuan University Chengdu Sichuan China
| |
Collapse
|
40
|
Goodlett CR, Stringer M, LaCombe J, Patel R, Wallace JM, Roper RJ. Evaluation of the therapeutic potential of Epigallocatechin-3-gallate (EGCG) via oral gavage in young adult Down syndrome mice. Sci Rep 2020; 10:10426. [PMID: 32591597 PMCID: PMC7319987 DOI: 10.1038/s41598-020-67133-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/29/2020] [Indexed: 01/09/2023] Open
Abstract
Epigallocatechin-3-gallate (EGCG) is a candidate therapeutic for Down syndrome (DS) phenotypes based on in vitro inhibition of DYRK1A, a triplicated gene product of Trisomy 21 (Ts21). Consumption of green tea extracts containing EGCG improved some cognitive and behavioral outcomes in DS mouse models and in humans with Ts21. In contrast, treatment with pure EGCG in DS mouse models did not improve neurobehavioral phenotypes. This study tested the hypothesis that 200 mg/kg/day of pure EGCG, given via oral gavage, would improve neurobehavioral and skeletal phenotypes in the Ts65Dn DS mouse model. Serum EGCG levels post-gavage were significantly higher in trisomic mice than in euploid mice. Daily EGCG gavage treatments over three weeks resulted in growth deficits in both euploid and trisomic mice. Compared to vehicle treatment, EGCG did not significantly improve behavioral performance of Ts65Dn mice in the multivariate concentric square field, balance beam, or Morris water maze tasks, but reduced swimming speed. Furthermore, EGCG resulted in reduced cortical bone structure and strength in Ts65Dn mice. These outcomes failed to support the therapeutic potential of EGCG, and the deleterious effects on growth and skeletal phenotypes underscore the need for caution in high-dose EGCG supplements as an intervention in DS.
Collapse
Affiliation(s)
- Charles R Goodlett
- IUPUI Department of Psychology, 402 North Blackford Street, LD 124, Indianapolis, IN, 46202-3275, USA
| | - Megan Stringer
- IUPUI Department of Psychology, 402 North Blackford Street, LD 124, Indianapolis, IN, 46202-3275, USA
| | - Jonathan LaCombe
- IUPUI Department of Biology, 723 West Michigan Street; SL 306, Indianapolis, IN, 46202-3275, USA
| | - Roshni Patel
- IUPUI Department of Biology, 723 West Michigan Street; SL 306, Indianapolis, IN, 46202-3275, USA
| | - Joseph M Wallace
- IUPUI Department of Biomedical Engineering, 723 West Michigan Street; SL 220B, Indianapolis, IN, 46202-3275, USA
| | - Randall J Roper
- IUPUI Department of Biology, 723 West Michigan Street; SL 306, Indianapolis, IN, 46202-3275, USA.
| |
Collapse
|
41
|
Sharifi-Rad J, Rajabi S, Martorell M, López MD, Toro MT, Barollo S, Armanini D, Fokou PVT, Zagotto G, Ribaudo G, Pezzani R. Plant natural products with anti-thyroid cancer activity. Fitoterapia 2020; 146:104640. [PMID: 32474055 DOI: 10.1016/j.fitote.2020.104640] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022]
Abstract
Thyroid cancer is the most frequent endocrine malignancy, with more than 500,000 cases per year worldwide. Differentiated thyroid cancers are the most common forms with best prognosis, while poorly/undifferentiated ones are rare (2% of all thyroid cancer), aggressive, frequently metastasize and have a worse prognosis. For aggressive, metastatic and advanced thyroid cancer novel antitumor molecules are urgently needed and phytochemical products can be a rational and extensive source, since secondary plant metabolites can guarantee the necessary biochemical variability for therapeutic purpose. Among bioactive molecules that present biological activity on thyroid cancer, resveratrol, curcumin, isoflavones, glucosinolates are the most common and used in experimental model. Most of them have been studied both in vitro and in vivo on this cancer, but rarely in clinical trial. This review summarizes phytochemicals, phytotherapeutics and plant derived compounds used in thyroid cancer.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sadegh Rajabi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile; Centre for Healthy Living, University of Concepción, Concepción, Chile; Unidad de Desarrollo Tecnológico, Universidad de Concepción UDT, Concepcion, Chile.
| | - Maria Dolores López
- Department of Plant Production, Faculty of Agronomy, Universidad de Concepción, Avenida Vicente Mendez, 595, Chillán 3812120, Chile
| | - María Trinidad Toro
- Department of Plant Production, Faculty of Agronomy, Universidad de Concepción, Avenida Vicente Mendez, 595, Chillán 3812120, Chile.
| | - Susi Barollo
- Endocrinology Unit, Department of Medicine (DIMED), University of Padova, via Ospedale 105, 35128 Padova, Italy
| | - Decio Armanini
- Endocrinology Unit, Department of Medicine (DIMED), University of Padova, via Ospedale 105, 35128 Padova, Italy
| | | | - Giuseppe Zagotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy.
| | - Giovanni Ribaudo
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Raffaele Pezzani
- Endocrinology Unit, Department of Medicine (DIMED), University of Padova, via Ospedale 105, 35128 Padova, Italy; AIROB, Associazione Italiana per la Ricerca Oncologica di Base, Padova, Italy.
| |
Collapse
|
42
|
Chang Y, Yang Y, Xu N, Mu H, Zhang H, Duan J. Improved viability of Akkermansia muciniphila by encapsulation in spray dried succinate-grafted alginate doped with epigallocatechin-3-gallate. Int J Biol Macromol 2020; 159:373-382. [PMID: 32422255 DOI: 10.1016/j.ijbiomac.2020.05.055] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/04/2020] [Accepted: 05/08/2020] [Indexed: 01/03/2023]
Abstract
We explored the possibility of improving the viability of Akkermansia muciniphila by encapsulating it in succinate-grafted alginate doped with epigallocatechin-3-gallate (EGCG). In this study, the determined surface properties of microcapsules and modified materials and the measured viability of probiotics after spray drying showed that the modified sodium alginate made the surfaces of microcapsules smoother and denser during the spray drying, thus preventing damages. EGCG enhanced the antioxidant capacity of probiotics by filling the pores inside microgels. Moreover, we analyzed the long-term storage vitality changes, oxidation resistance, uniformity, particle size and Zeta potential of microcapsules and found that spray-dried modified sodium alginate microcapsules with EGCG showed the better storability and stability. In addition, we experimentally analyzed the resistances of different microcapsules to the gastrointestinal fluid and found that EGCG-modified sodium alginate microcapsules better protected the probiotic activity from gastrointestinal fluid. This study provides a slimming product with industrial application potential.
Collapse
Affiliation(s)
- Yifan Chang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yu Yang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ningning Xu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Haibo Mu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hongli Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Xianyang, Shaanxi, China..
| | - Jinyou Duan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China..
| |
Collapse
|
43
|
Cano A, Sánchez-López E, Ettcheto M, López-Machado A, Espina M, Souto EB, Galindo R, Camins A, García ML, Turowski P. Current advances in the development of novel polymeric nanoparticles for the treatment of neurodegenerative diseases. Nanomedicine (Lond) 2020; 15:1239-1261. [PMID: 32370600 DOI: 10.2217/nnm-2019-0443] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Effective intervention is essential to combat the coming epidemic of neurodegenerative (ND) diseases. Nanomedicine can overcome restrictions of CNS delivery imposed by the blood-brain barrier, and thus be instrumental in preclinical discovery and therapeutic intervention of ND diseases. Polymeric nanoparticles (PNPs) have shown great potential and versatility to encapsulate several compounds simultaneously in controlled drug-delivery systems and target them to the deepest brain regions. Here, we critically review recent advances in the development of drugs incorporated into PNPs and summarize the molecular changes and functional effects achieved in preclinical models of the most common ND disorders. We also briefly discuss the many challenges remaining to translate these findings and technological advances successfully to current clinical settings.
Collapse
Affiliation(s)
- Amanda Cano
- Department of Pharmacy, Pharmaceutical Technology & Physical Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Nanoscience & Nanotechnology (IN2UB), Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology & Physical Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Nanoscience & Nanotechnology (IN2UB), Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Miren Ettcheto
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Department of Pharmacology, Toxicology & Therapeutic Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Barcelona, Spain.,Unit of Biochemistry & Pharmacology, Faculty of Medicine & Health Sciences, University of Rovira i Virgili, Reus (Tarragona), Spain
| | - Ana López-Machado
- Department of Pharmacy, Pharmaceutical Technology & Physical Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Nanoscience & Nanotechnology (IN2UB), Barcelona, Spain
| | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology & Physical Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Nanoscience & Nanotechnology (IN2UB), Barcelona, Spain
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,CEB, Centre of Biological Engineering, University of Minho, Campus de Gualtar 4710-057, Braga, Portugal
| | - Ruth Galindo
- Department of Pharmacy, Pharmaceutical Technology & Physical Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Nanoscience & Nanotechnology (IN2UB), Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Unit of Synthesis & Biomedical Applications of Peptides, Department of Biomedical Chemistry, Institute for Advanced Chemistry of Catalonia, Consejo Superior de Investigaciones Científicas (IQAC-CSIC), Barcelona, Spain
| | - Antonio Camins
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Department of Pharmacology, Toxicology & Therapeutic Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Barcelona, Spain
| | - Maria Luisa García
- Department of Pharmacy, Pharmaceutical Technology & Physical Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Nanoscience & Nanotechnology (IN2UB), Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Patric Turowski
- UCL Institute of Ophthalmology, University College of London, London, UK
| |
Collapse
|
44
|
Sarma H, Jahan T, Sharma HK. Progress in Drug and Formulation Development for the Chemoprevention of Oral Squamous Cell Carcinoma: A Review. ACTA ACUST UNITED AC 2020; 13:16-36. [PMID: 30806332 DOI: 10.2174/1872211313666190222182824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Cancer is a life-threatening global problem with high incidence rates. Prioritizing the prevention of cancer, chemopreventive agents have drawn much attention from the researchers. OBJECTIVE This review focuses on the discussion of the progress in the development of chemopreventive agents and formulations related to the prevention of oral cancer. METHODS In this perspective, an extensive literature survey was carried out to understand the mechanism, control and chemoprevention of oral cancer. Different patented agents and formulations have also exhibited cancer preventive efficacy in experimental studies. This review summarizes the etiology of oral cancer and developments in prevention strategies. RESULTS The growth of oral cancer is a multistep activity necessitating the accumulation of genetic as well as epigenetic alterations in key regulatory genes. Many risk factors are associated with oral cancer. Genomic technique for sequencing all tumor specimens has been made available to help detect mutations. The recent development of molecular pathway and genetic tools has made the process of diagnosis easier, better forecast and efficient therapeutic management. Different chemical agents have been studied for their efficacy to prevent oral cancer and some of them have shown promising results. CONCLUSION Use of chemopreventive agents, either synthetic or natural origin, to prevent carcinogenesis is a worthy concept in the management of cancers. Preventive measures are helpful in controlling the occurrence or severity of the disease. The demonstrated results of preventive agents have opened an arena for the development of promising chemopreventive agents in the management of oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Himangshu Sarma
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Taslima Jahan
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Hemanta K Sharma
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, Assam, India
| |
Collapse
|
45
|
Ettcheto M, Cano A, Manzine PR, Busquets O, Verdaguer E, Castro-Torres RD, García ML, Beas-Zarate C, Olloquequi J, Auladell C, Folch J, Camins A. Epigallocatechin-3-Gallate (EGCG) Improves Cognitive Deficits Aggravated by an Obesogenic Diet Through Modulation of Unfolded Protein Response in APPswe/PS1dE9 Mice. Mol Neurobiol 2019; 57:1814-1827. [PMID: 31838720 DOI: 10.1007/s12035-019-01849-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/27/2019] [Indexed: 12/31/2022]
Abstract
Epigallocatechin-3-gallate (EGCG), a catechin found in green tea, has been previously investigated for its neuroprotective effects in vitro and in vivo. In the present study, we aimed to evaluate its possible beneficial effects in a well-established preclinical mixed model of familial Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) based on the use of transgenic APPswe/PS1dE9 (APP/PS1) mice fed with a high fat diet (HFD). C57BL/6 wild-type (WT) and APP/PS1 mice were used in this study. APP/PS1 mice were fed with a palmitic acid-enriched HFD (APP/PS1 HFD) containing 45% of fat mainly from hydrogenated coconut oil. Intraperitoneal glucose tolerance tests (IP-GTT) and insulin tolerance tests (IP-ITT) were performed. Western blot analyses were performed to analyse protein expression, and water maze and novel object recognition test were done to evaluate the cognitive process. EGCG treatment improves peripheral parameters such as insulin sensitivity or liver insulin pathway signalling, as well as central memory deficits. It also markedly increased synaptic markers and cAMP response element binding (CREB) phosphorylation rates, as a consequence of a decrease in the unfolded protein response (UPR) activation through the reduction in the activation factor 4 (ATF4) levels and posterior downregulation of protein tyrosine phosphatase 1B (PTP1B). Moreover, EGCG significantly decreased brain amyloid β (Aβ) production and plaque burden by increasing the levels of α-secretase (ADAM10). Also, it led to a reduction in neuroinflammation, as suggested by the decrease in astrocyte reactivity and toll-like receptor 4 (TLR4) levels. Collectively, evidence suggests that chronic EGCG prevents distinct neuropathological AD-related hallmarks. This study also provides novel insights into the metabolic and neurobiological mechanisms of EGCG against cognitive loss through its effects on UPR function, suggesting that this compound may be a promising disease-modifying treatment for neurodegenerative diseases.
Collapse
Affiliation(s)
- Miren Ettcheto
- Departament of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain.,Department of Biochemistry and Biotechnology, Faculty of Medicine and Life Science, University Rovira i Virgili, Reus, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Amanda Cano
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain.,Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
| | - Patricia R Manzine
- Department of Gerontology, Federal University of São Carlos (UFSCar), São Carlos, 13565-905, Brazil
| | - Oriol Busquets
- Departament of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain.,Department of Biochemistry and Biotechnology, Faculty of Medicine and Life Science, University Rovira i Virgili, Reus, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Ester Verdaguer
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain.,Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Rubén Dario Castro-Torres
- Departament of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain.,Department of Biochemistry and Biotechnology, Faculty of Medicine and Life Science, University Rovira i Virgili, Reus, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain.,Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Department of Cellular and Molecular Biology, Neuroscience Division, C.U.C.B.A., University of Guadalajara, Sierra Mojada, Col. Independencia, Guadalajara, Jalisco, México
| | - Maria Luisa García
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain.,Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
| | - Carlos Beas-Zarate
- Department of Cellular and Molecular Biology, Neuroscience Division, C.U.C.B.A., University of Guadalajara, Sierra Mojada, Col. Independencia, Guadalajara, Jalisco, México
| | - Jordi Olloquequi
- Laboratory of Cellular and Molecular Pathology, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile
| | - Carme Auladell
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain.,Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Jaume Folch
- Department of Biochemistry and Biotechnology, Faculty of Medicine and Life Science, University Rovira i Virgili, Reus, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Antoni Camins
- Departament of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain. .,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain. .,Institute of Neuroscience, University of Barcelona, Barcelona, Spain. .,Laboratory of Cellular and Molecular Pathology, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile. .,Unitat de Farmacologia i Farmacognòsia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Av. Joan XXIII 27/31, E-08028, Barcelona, Spain.
| |
Collapse
|
46
|
Teixeira J, Chavarria D, Borges F, Wojtczak L, Wieckowski MR, Karkucinska-Wieckowska A, Oliveira PJ. Dietary Polyphenols and Mitochondrial Function: Role in Health and Disease. Curr Med Chem 2019; 26:3376-3406. [PMID: 28554320 DOI: 10.2174/0929867324666170529101810] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 04/23/2017] [Accepted: 04/23/2017] [Indexed: 12/12/2022]
Abstract
Mitochondria are cytoplasmic double-membraned organelles that are involved in a myriad of key cellular regulatory processes. The loss of mitochondrial function is related to the pathogenesis of several human diseases. Over the last decades, an increasing number of studies have shown that dietary polyphenols can regulate mitochondrial redox status, and in some cases, prevent or delay disease progression. This paper aims to review the role of four dietary polyphenols - resveratrol, curcumin, epigallocatechin-3-gallate nd quercetin - in molecular pathways regulated by mitochondria and their potential impact on human health. Cumulative evidence showed that the aforementioned polyphenols improve mitochondrial functions in different in vitro and in vivo experiments. The mechanisms underlying the polyphenols' beneficial effects include, among others, the attenuation of oxidative stress, the regulation of mitochondrial metabolism and biogenesis and the modulation of cell-death signaling cascades, among other mitochondrial-independent effects. The understanding of the chemicalbiological interactions of dietary polyphenols, namely with mitochondria, may have a huge impact on the treatment of mitochondrial dysfunction-related disorders.
Collapse
Affiliation(s)
- José Teixeira
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169- 007, Portugal.,CNC - Center for Neuroscience and Cell Biology, UC-Biotech, Biocant Park - Cantanhede, University of Coimbra, Portugal
| | - Daniel Chavarria
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169- 007, Portugal
| | - Fernanda Borges
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169- 007, Portugal
| | - Lech Wojtczak
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, UC-Biotech, Biocant Park - Cantanhede, University of Coimbra, Portugal
| |
Collapse
|
47
|
|
48
|
Baek CH, Kim H, Moon SY, Park SK, Yang WS. Epigallocatechin-3-gallate downregulates lipopolysaccharide signaling in human aortic endothelial cells by inducing ectodomain shedding of TLR4. Eur J Pharmacol 2019; 863:172692. [PMID: 31557474 DOI: 10.1016/j.ejphar.2019.172692] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 01/28/2023]
Abstract
Epigallocatechin-3-gallate (EGCG), the most abundant polyphenol in green tea leaves, has anti-inflammatory effects. In this study, we investigated the mechanism by which EGCG attenuates the effects of lipopolysaccharide (LPS), an agonist of toll-like receptor 4 (TLR4), in cultured human aortic endothelial cells (HAECs). The increase in the expression of intercellular adhesion molecule-1 (ICAM-1) induced by LPS (100 ng/ml) was effectively attenuated by pretreatment with EGCG (50 μM). Importantly, EGCG treatment resulted in a rapid reduction of cellular TLR4, which was accompanied by an increase in the N-terminal fragment of TLR4 in the culture supernatant, indicating that EGCG induces ectodomain shedding of TLR4. EGCG increased cytosolic Ca2+ by inducing the release of intracellular stored Ca2+ and the influx of extracellular Ca2+; accordingly, EGCG-induced ectodomain shedding of TLR4 was nullified by pretreatment with BAPTA-AM (10 μM), an intracellular Ca2+ chelator. EGCG induced translocation of a disintegrin and metalloprotease 10 (ADAM10) to the cell surface, which was also blocked by BAPTA-AM. Treatment with ADAM10 inhibitor (GI254023X, 2 μM) and siRNA-mediated depletion of ADAM10 prevented EGCG-induced ectodomain shedding of TLR4 and abolished the inhibitory effect of EGCG on LPS-induced ICAM-1 expression. Collectively, these findings suggest that EGCG decreases cell surface TLR4 in HAECs by inducing ADAM10-mediated ectodomain shedding, and thereby attenuates the effects of LPS. This is a new mechanism of the suppressive effect of EGCG on LPS signaling.
Collapse
Affiliation(s)
- Chung Hee Baek
- Division of Nephrology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyosang Kim
- Division of Nephrology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Soo Young Moon
- Asan Institute for Life Sciences, Seoul, Republic of Korea
| | - Su-Kil Park
- Division of Nephrology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Won Seok Yang
- Division of Nephrology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
49
|
Badimon L, Chagas P, Chiva-Blanch G. Diet and Cardiovascular Disease: Effects of Foods and Nutrients in Classical and Emerging Cardiovascular Risk Factors. Curr Med Chem 2019; 26:3639-3651. [DOI: 10.2174/0929867324666170428103206] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/15/2017] [Accepted: 03/15/2017] [Indexed: 01/01/2023]
Abstract
Cardiovascular diseases (CVD) are the leading cause of mortality worldwide. Diet comprises a mixture of food compounds that has an influence on human health. The relationship between diet and health is extremely complex and strategies to delay or prevent chronic diseases such as CVD are of utmost interest because chronic diseases and more concretely CVD are still the leading cause of death and disability worldwide. In this mini-review, we aimed to summarize the current knowledge about the principal diet components that potentially influence CVD initiation and progression. Current research refers to the Mediterranean dietary pattern, rich in fruits and vegetables, as the most cardioprotective, because of its high concentration of bioactive compounds such as unsaturated fatty acids, polyphenols, fiber, phytosterols, vitamins and minerals, which exert antioxidant, anti-inflammatory and antithrombotic effects contributing to the delay of CVD initiation and progression.
Collapse
Affiliation(s)
- Lina Badimon
- Cardiovascular Program-ICCC, Research Institute-Hospital Santa Creu i Sant Pau, Barcelona, Spain
| | - Patricia Chagas
- Cardiovascular Program-ICCC, Research Institute-Hospital Santa Creu i Sant Pau, Barcelona, Spain
| | - Gemma Chiva-Blanch
- Cardiovascular Program-ICCC, Research Institute-Hospital Santa Creu i Sant Pau, Barcelona, Spain
| |
Collapse
|
50
|
Kanlaya R, Thongboonkerd V. Molecular Mechanisms of Epigallocatechin-3-Gallate for Prevention of Chronic Kidney Disease and Renal Fibrosis: Preclinical Evidence. Curr Dev Nutr 2019; 3:nzz101. [PMID: 31555758 PMCID: PMC6752729 DOI: 10.1093/cdn/nzz101] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/28/2019] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) is a common public health problem worldwide characterized by gradual decline of renal function over months/years accompanied by renal fibrosis and failure in tissue wound healing after sustained injury. Patients with CKD frequently present with profound signs/symptoms that require medical treatment, mostly culminating in hemodialysis and renal transplantation. To prevent CKD more efficiently, there is an urgent need for better understanding of the pathogenic mechanisms and molecular pathways of the disease pathogenesis and progression, and for developing novel therapeutic targets. Recently, several lines of evidence have shown that epigallocatechin-3-gallate (EGCG), an abundant phytochemical polyphenol derived from Camellia sinensis, might be a promising bioactive compound for prevention of CKD development/progression. This review summarizes current knowledge of molecular mechanisms underlying renoprotective roles of EGCG in CKD based on available preclinical evidence (from both in vitro and in vivo animal studies), particularly its antioxidant property through preservation of mitochondrial function and activation of Nrf2 (nuclear factor erythroid 2-related factor 2)/HO-1 (heme oxygenase-1) signaling, anti-inflammatory activity, and protective effect against epithelial mesenchymal transition. Finally, future perspectives, challenges, and concerns regarding its clinical use in CKD and renal fibrosis are discussed.
Collapse
Affiliation(s)
- Rattiyaporn Kanlaya
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|