1
|
Cheng C, Lei Y, Min T, Zhang Y, Yue J. Encapsulation of 4-terpineol with β-cyclodextrin: Inclusion mechanism, characterization and relative humidity-triggered release. Food Chem 2024; 447:138926. [PMID: 38471278 DOI: 10.1016/j.foodchem.2024.138926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/04/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024]
Abstract
4-Terpineol (4-TA), a typical monocyclic monoterpene essential oil compound with important biological activities, poor stability and solubility severely hamper its biological activities. To date, β-cyclodextrin (β-CD) encapsulating essential oil to form inclusion complexes (ICs) is considered as a satisfactory treatment. Nevertheless, the detailed inclusion mechanism of β-CD for 4-TA especially the behavior of 4-TA during inclusion formation have not available yet. Herein, 4-TA/β-CD ICs were successfully synthesized by the co-precipitation method, and hydrogen bonds and hydrophobic interactions played a key role in the formation of ICs, and the isopropyl of 4-TA entered the cavity through the wide rim of β-CD. Moreover, the release profile demonstrated that high RH (85 % and 99 %) triggered the release of TA from ICs. This study suggests the great potential of cyclodextrin inclusion strategy for improving the stability and sustained release of 4-TA in food preservation application.
Collapse
Affiliation(s)
- Chuanxiang Cheng
- School of Agriculture and Biology & Bor S. Luh Food Safety Research Center & Shanghai Food Safety Engineering Center & Key Laboratory of Urban Agriculture, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yujie Lei
- School of Agriculture and Biology & Bor S. Luh Food Safety Research Center & Shanghai Food Safety Engineering Center & Key Laboratory of Urban Agriculture, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tiantian Min
- School of Agriculture and Biology & Bor S. Luh Food Safety Research Center & Shanghai Food Safety Engineering Center & Key Laboratory of Urban Agriculture, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yushan Zhang
- School of Agriculture and Biology & Bor S. Luh Food Safety Research Center & Shanghai Food Safety Engineering Center & Key Laboratory of Urban Agriculture, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jin Yue
- School of Agriculture and Biology & Bor S. Luh Food Safety Research Center & Shanghai Food Safety Engineering Center & Key Laboratory of Urban Agriculture, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Jiao Tong University Sichuan Research Institute, China.
| |
Collapse
|
2
|
Wasim M, Bergonzi MC. Unlocking the Potential of Oleanolic Acid: Integrating Pharmacological Insights and Advancements in Delivery Systems. Pharmaceutics 2024; 16:692. [PMID: 38931816 PMCID: PMC11206505 DOI: 10.3390/pharmaceutics16060692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 06/28/2024] Open
Abstract
The growing interest in oleanolic acid (OA) as a triterpenoid with remarkable health benefits prompts an emphasis on its efficient use in pharmaceutical research. OA exhibits a range of pharmacological effects, including antidiabetic, anti-inflammatory, immune-enhancing, gastroprotective, hepatoprotective, antitumor, and antiviral properties. While OA demonstrates diverse pharmacological effects, optimizing its therapeutic potential requires overcoming significant challenges. In the field of pharmaceutical research, the exploration of efficient drug delivery systems is essential to maximizing the therapeutic potential of bioactive compounds. Efficiently delivering OA faces challenges, such as poor aqueous solubility and restricted bioavailability, and to unlock its full therapeutic efficacy, novel formulation strategies are imperative. This discussion thoroughly investigates different approaches and advancements in OA drug delivery systems with the aim of enhancing the biopharmaceutical features and overall efficacy in diverse therapeutic contexts.
Collapse
Affiliation(s)
| | - Maria Camilla Bergonzi
- Department of Chemistry, University of Florence, Via U. Schiff 6, 50019 Sesto Fiorentino, Italy;
| |
Collapse
|
3
|
Khwaza V, Oselusi SO, Morifi E, Nwamadi M, Hlope KS, Ndinteh DT, Matsebatlela TM, Oyedeji OO, Aderibigbe BA. Synthesis of Ursolic Acid-based Hybrids: In Vitro Antibacterial, Cytotoxicity Studies, In Silico Physicochemical and Pharmacokinetic Properties. RECENT ADVANCES IN ANTI-INFECTIVE DRUG DISCOVERY 2024; 19:232-253. [PMID: 38317466 DOI: 10.2174/0127724344272444231114103144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND There is a critical need for the discovery of novel and effective antibacterial or anticancer molecules. OBJECTIVES Amine-linked ursolic acid-based hybrid compounds were prepared in good yields in the range of 60-68%. METHODS Their molecular structures were successfully confirmed using different spectroscopic methods including 1H/13C NMR, UHPLC-HRMS and FTIR spectroscopy. The in vitro cytotoxicity of some of these hybrid molecules against three human tumour cells, such as MDA-MB23, MCF7, and HeLa was evaluated using the MTT colorimetric method. RESULT Their antibacterial efficacy was evaluated against eleven bacterial pathogens using a serial dilution assay. Majority of the bacterial strains were inhibited significantly by compounds 17 and 24, with the lowest MIC values in the range of 15.3-31.25 μg/mL. Compound 16 exhibited higher cytotoxicity against HeLa cells than ursolic acid, with an IC50 value of 43.64 g/mL. CONCLUSION The in vitro antibacterial activity and cytotoxicity of these hybrid compounds demonstrated that ursolic acid-based hybrid molecules are promising compounds. Further research into ursolic acid-based hybrid compounds is required.
Collapse
Affiliation(s)
- Vuyolwethu Khwaza
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice, Eastern Cape, South Africa
| | - Samson Olaitan Oselusi
- School of Pharmacy, University of the Western Cape, Bellville, Cape Town 7535, South Africa
| | - Eric Morifi
- School of Chemistry, Mass Spectrometry Division, University of Witwatersrand, Johannesburg, South Africa
| | - Mutshinyalo Nwamadi
- Department of Chemistry, University of Johannesburg, Auckland Park Campus, Johannesburg, South Africa
| | - Kamogelo S Hlope
- Department of Biochemistry, Microbiology and Biotechnology, Faculty of Science and Agriculture, University of Limpopo, South Africa
| | - Derek Tantoh Ndinteh
- Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa
| | - Thabe Moses Matsebatlela
- Department of Biochemistry, Microbiology and Biotechnology, Faculty of Science and Agriculture, University of Limpopo, South Africa
| | - Opeoluwa Oyehan Oyedeji
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice, Eastern Cape, South Africa
| | - Blessing Atim Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice, Eastern Cape, South Africa
| |
Collapse
|
4
|
Grudzińska M, Stachnik B, Galanty A, Sołtys A, Podolak I. Progress in Antimelanoma Research of Natural Triterpenoids and Their Derivatives: Mechanisms of Action, Bioavailability Enhancement and Structure Modifications. Molecules 2023; 28:7763. [PMID: 38067491 PMCID: PMC10707933 DOI: 10.3390/molecules28237763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Melanoma is one of the most dangerous forms of skin cancer, characterized by early metastasis and rapid development. In search for effective treatment options, much attention is given to triterpenoids of plant origin, which are considered promising drug candidates due to their well described anticancer properties and relatively low toxicity. This paper comprehensively summarizes the antimelanoma potential of natural triterpenoids, that are also used as scaffolds for the development of more effective derivatives. These include betulin, betulinic acid, ursolic acid, maslinic acid, oleanolic acid, celastrol and lupeol. Some lesser-known triterpenoids that deserve attention in this context are 22β-hydroxytingenone, cucurbitacins, geoditin A and ganoderic acids. Recently described mechanisms of action are presented, together with the results of preclinical in vitro and in vivo studies, as well as the use of drug delivery systems and pharmaceutical technologies to improve the bioavailability of triterpenoids. This paper also reviews the most promising structural modifications, based on structure-activity observations. In conclusion, triterpenoids of plant origin and some of their semi-synthetic derivatives exert significant cytotoxic, antiproliferative and chemopreventive effects that can be beneficial for melanoma treatment. Recent data indicate that their poor solubility in water, and thus low bioavailability, can be overcome by complexing with cyclodextrins, or the use of nanoparticles and ethosomes, thus making these compounds promising antimelanoma drug candidates for further development.
Collapse
Affiliation(s)
- Marta Grudzińska
- Department of Pharmacognosy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (M.G.); (B.S.); (A.S.); (I.P.)
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, Łazarza 16, 31-530 Kraków, Poland
| | - Bogna Stachnik
- Department of Pharmacognosy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (M.G.); (B.S.); (A.S.); (I.P.)
| | - Agnieszka Galanty
- Department of Pharmacognosy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (M.G.); (B.S.); (A.S.); (I.P.)
| | - Agnieszka Sołtys
- Department of Pharmacognosy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (M.G.); (B.S.); (A.S.); (I.P.)
| | - Irma Podolak
- Department of Pharmacognosy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (M.G.); (B.S.); (A.S.); (I.P.)
| |
Collapse
|
5
|
Christaki S, Spanidi E, Panagiotidou E, Athanasopoulou S, Kyriakoudi A, Mourtzinos I, Gardikis K. Cyclodextrins for the Delivery of Bioactive Compounds from Natural Sources: Medicinal, Food and Cosmetics Applications. Pharmaceuticals (Basel) 2023; 16:1274. [PMID: 37765082 PMCID: PMC10535610 DOI: 10.3390/ph16091274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Cyclodextrins have gained significant and established attention as versatile carriers for the delivery of bioactive compounds derived from natural sources in various applications, including medicine, food and cosmetics. Their toroidal structure and hydrophobic cavity render them ideal candidates for encapsulating and solubilizing hydrophobic and poorly soluble compounds. Most medicinal, food and cosmetic ingredients share the challenges of hydrophobicity and degradation that can be effectively addressed by various cyclodextrin types. Though not new or novel-their first applications appeared in the market in the 1970s-their versatility has inspired numerous developments, either on the academic or industrial level. This review article provides an overview of the ever-growing applications of cyclodextrins in the delivery of bioactive compounds from natural sources and their potential application benefits.
Collapse
Affiliation(s)
- Stamatia Christaki
- Laboratory of Food Chemistry and Biochemistry, School of Agriculture, Aristotle University of Thessaloniki (AUTH), 54124 Thessaloniki, Greece; (S.C.); (A.K.); (I.M.)
| | - Eleni Spanidi
- APIVITA SA, Industrial Park, Markopoulo, 19003 Athens, Greece; (E.S.); (E.P.); (S.A.)
| | - Eleni Panagiotidou
- APIVITA SA, Industrial Park, Markopoulo, 19003 Athens, Greece; (E.S.); (E.P.); (S.A.)
| | - Sophia Athanasopoulou
- APIVITA SA, Industrial Park, Markopoulo, 19003 Athens, Greece; (E.S.); (E.P.); (S.A.)
| | - Anastasia Kyriakoudi
- Laboratory of Food Chemistry and Biochemistry, School of Agriculture, Aristotle University of Thessaloniki (AUTH), 54124 Thessaloniki, Greece; (S.C.); (A.K.); (I.M.)
| | - Ioannis Mourtzinos
- Laboratory of Food Chemistry and Biochemistry, School of Agriculture, Aristotle University of Thessaloniki (AUTH), 54124 Thessaloniki, Greece; (S.C.); (A.K.); (I.M.)
| | - Konstantinos Gardikis
- APIVITA SA, Industrial Park, Markopoulo, 19003 Athens, Greece; (E.S.); (E.P.); (S.A.)
| |
Collapse
|
6
|
Bednarczyk-Cwynar B, Leśków A, Szczuka I, Zaprutko L, Diakowska D. The Effect of Oleanolic Acid and Its Four New Semisynthetic Derivatives on Human MeWo and A375 Melanoma Cell Lines. Pharmaceuticals (Basel) 2023; 16:ph16050746. [PMID: 37242529 DOI: 10.3390/ph16050746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
This study aimed to synthesize four new semisynthetic derivatives of natural oleanolic acid (OA) and, based on an analysis of their cytotoxic and anti-proliferative effects against human MeWo and A375 melanoma cell lines, select those with anti-cancer potential. We also screened the treatment time with the concentration of all four derivatives. We synthesized oxime 2 and performed its acylation with carboxylic acids into new derivatives 3a, 3b, 3c and 3d according to the methods previously described. Colorimetric MTT and SRB assays were used to measure the anti-proliferative and cytotoxic activity of OA and its derivatives 3a, 3b, 3c and 3d against melanoma cells. Selected concentrations of OA, the derivatives, and different time periods of incubation were used in the study. The data were analyzed statistically. The present results revealed the possible anti-proliferative and cytotoxic potential of two selected OA derivatives 3a and 3b, on A375 and MeWo melanoma cells, especially at concentrations of 50 μM and 100 μM at 48 h of incubation (p < 0.05). Further studies will be necessary to analyze the proapoptotic and anti-cancer activities of 3a and 3b against skin and other cancer cells. The bromoacetoxyimine derivative (3b) of OA morpholide turned out to be the most effective against the tested cancer cells.
Collapse
Affiliation(s)
- Barbara Bednarczyk-Cwynar
- Department of Organic Chemistry, Poznan University of Medical Science, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Anna Leśków
- Department of Basic Sciences, Wroclaw Medical University, Chalubinskiego 3, 50-368 Wroclaw, Poland
| | - Izabela Szczuka
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, Chalubinskiego 10, 50-368 Wroclaw, Poland
| | - Lucjusz Zaprutko
- Department of Organic Chemistry, Poznan University of Medical Science, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Dorota Diakowska
- Department of Basic Sciences, Wroclaw Medical University, Chalubinskiego 3, 50-368 Wroclaw, Poland
| |
Collapse
|
7
|
Guilhon-Simplicio F, Serrão CKR, Pinto ACDS, Pacheco PAF, Faria RX, da Rocha DR, Ferreira VF, Pereira-Junior RC, Matheeussen A, Baán A, Kiekens F, de Meneses Pereira M, Lima ES, Winter HD, Cos P. Semisynthetic triterpenes led to the generation of selective antitrypanosomal lead compounds. Chem Biol Drug Des 2022; 99:868-883. [PMID: 35313075 DOI: 10.1111/cbdd.14040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 12/25/2020] [Accepted: 03/05/2022] [Indexed: 11/26/2022]
Abstract
Triterpenes α,β-amyrin are naturally occurring molecules that can serve as building blocks for synthesizing new chemical entities. This study synthesized acyl, carboxyesther, NSAID, and nitrogenous derivatives and evaluated their antimicrobial activity. A cyclodextrin complexation method was developed to improve the solubility of the derivatives. Of the 17 derivatives tested, five exhibited activity against Trypanosoma cruzi, T. brucei, Leishmania infantum, Candida albicans, Staphylococcus aureus, and Escherichia coli. The 9a/9b mixture showed weak activity against the parasites (IC50 24.45-40.32 μM). However, it showed no activity for the other microorganisms. Derivatives 14a/14b exhibited potent activity against T. cruzi (IC50 2.0 nM) in this tested concentration did not show activity to the other microorganisms and were not cytotoxic. Derivatives 15a/15b and 16a/16b demonstrated relevant activity against the parasites (IC50 2.24-5.44 μM), but were also cytotoxic. Derivatives 17a/17b showed low activity against the tested parasites (IC50 21.70-22.79 μM), but they were selective since they did not show activity against other microorganisms. In docking studies, in general, all derivatives showed complementarity with the CYP51 binding site of the trypanosomatid mainly by hydrophobic interactions; thus, it is not conclusive that the molecules act by inhibiting this enzyme. Our results showed that triterpenes derivatives with antitrypanosomal activity could be synthesized by an inexpensive and rapid method.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - An Matheeussen
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Adrienn Baán
- Laboratory of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Filip Kiekens
- Laboratory of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | | | - Emerson Silva Lima
- Faculty of Pharmaceutical Sciences, Federal University of Amazonas, Manaus, Brazil
| | - Hans De Winter
- Laboratory of Medicinal Chemistry, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Paul Cos
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
8
|
Suvarna V, Bore B, Bhawar C, Mallya R. Complexation of phytochemicals with cyclodextrins and their derivatives- an update. Biomed Pharmacother 2022; 149:112862. [PMID: 35339826 DOI: 10.1016/j.biopha.2022.112862] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/13/2022] [Accepted: 03/22/2022] [Indexed: 11/02/2022] Open
Abstract
Bioactive phytochemicals from natural source have gained tremendous interest over several decades due to their wide and diverse therapeutic activities playing key role as functional food supplements, pharmaceutical and nutraceutical products. Nevertheless, their application as therapeutically active moieties and formulation into novel drug delivery systems are hindered due to major drawbacks such as poor solubility, bioavailability and dissolution rate and instability contributing to reduction in bioactivity. These drawbacks can be effectively overcome by their complexation with different cyclodextrins. Present article discusses complexation of phytochemicals varying from flavonoids, phenolics, triterpenes, and tropolone with different natural and synthetic cyclodextrins. Moreover, the article summarizes complexation methods, complexation efficiency, stability, stability constants and enhancement in rate and extent of dissolution, bioavailability, solubility, in vivo and in vitro activities of reported complexed phytochemicals. Additionally, the article presents update of published patent details comprising of complexed phytochemicals of therapeutic significance. Thus, phytochemical cyclodextrin complexes have tremendous potential for transformation into drug delivery systems as substantiated by significant outcome of research findings.
Collapse
Affiliation(s)
- Vasanti Suvarna
- Department of Pharmaceutical Chemistry and Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.L. Mehta Road, Vile Parle (West), Mumbai 400056, Maharashtra, India.
| | - Bhunesh Bore
- Department of Pharmaceutical Chemistry and Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.L. Mehta Road, Vile Parle (West), Mumbai 400056, Maharashtra, India
| | - Chaitanya Bhawar
- Department of Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.L. Mehta Road, Vile Parle (West), Mumbai 400056, Maharashtra, India
| | - Rashmi Mallya
- Department of Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.L. Mehta Road, Vile Parle (West), Mumbai 400056, Maharashtra, India
| |
Collapse
|
9
|
Devi S, Kumar A, Kapoor A, Verma V, Yadav S, Bhatia M. Ketoprofen-FA Co-crystal: In Vitro and In Vivo Investigation for the Solubility Enhancement of Drug by Design of Expert. AAPS PharmSciTech 2022; 23:101. [PMID: 35348937 DOI: 10.1208/s12249-022-02253-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/14/2022] [Indexed: 11/30/2022] Open
Abstract
The present piece of research work is framed for improving the solubility of ketoprofen by forming co-crystal using fumaric acid as a coformer. Co-crystal of ketoprofen and fumaric acid was prepared by simple solvent-assisted grinding method, containing drug and coformer as independent variables and solubility and % drug release were assumed to be dependent variables. Differential scanning calorimetry, Fourier transform infrared spectroscopy, X-ray diffraction, nuclear magnetic resonance and scanning electron microscopy techniques were used to characterize the preparation of optimized batch of co-crystal and further, evaluated for in vitro and in vivo anti-inflammatory and analgesic activities. Based on results of solubility and dissolution rate studies the formulation showed magnified improvement in both the properties on co-crystallization. The values of Gibbs free energy are negative at all levels of carrier demonstrating spontaneity of the drug solubilization process. The IC50 value of optimized batch of co-crystal formulation and the pure drug was observed as 327.33 μg/ml and 556.11 μg/ml, respectively, demonstrating that co-crystal formulation possesses more percentage protection against protein denaturation than the drug ketoprofen. In vivo (anti-inflammatory and analgesic) activities revealed that optimized batch of co-crystal formulation delivered a rapid pharmacological response in Wistar rats and albino mice when compared with standard drug.
Collapse
|
10
|
Ding B, Yu Y, Geng S, Liu B, Hao Y, Liang G. Computational Methods for the Interaction between Cyclodextrins and Natural Compounds: Technology, Benefits, Limitations, and Trends. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2466-2482. [PMID: 35170315 DOI: 10.1021/acs.jafc.1c07018] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cyclodextrins (CDs) have a hollow structure with a hydrophobic interior and hydrophilic exterior. Forming inclusion complexes with CDs will maximize the bioavailability of natural compounds and enable active components to be processed into functional foods, medicines, additives, and so forth. However, experimental methods cannot explain CD-guest binding at the atomic level. Different models have been recently developed to simulate the interaction between CDs and guests to study the binding conformation and analyze noncovalent forces. This review paper summarizes modeling methods of CD-natural compound complexes. The methods include quantitative structure-activity relationships, molecular docking, molecular dynamics simulations, and quantum-chemical calculations. The applications of these methods to enhance the solubility and bioactivities of guest molecules, assist material transportation, and promote compound extraction are also discussed. The purpose of this review is to explore interaction mechanisms of CDs and guests and to help expand new applications of CDs.
Collapse
Affiliation(s)
- Botian Ding
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Yuandong Yu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Sheng Geng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Benguo Liu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Youjin Hao
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Guizhao Liang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| |
Collapse
|
11
|
Prodea A, Mioc A, Banciu C, Trandafirescu C, Milan A, Racoviceanu R, Ghiulai R, Mioc M, Soica C. The Role of Cyclodextrins in the Design and Development of Triterpene-Based Therapeutic Agents. Int J Mol Sci 2022; 23:ijms23020736. [PMID: 35054925 PMCID: PMC8775686 DOI: 10.3390/ijms23020736] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 12/25/2022] Open
Abstract
Triterpenic compounds stand as a widely investigated class of natural compounds due to their remarkable therapeutic potential. However, their use is currently being hampered by their low solubility and, subsequently, bioavailability. In order to overcome this drawback and increase the therapeutic use of triterpenes, cyclodextrins have been introduced as water solubility enhancers; cyclodextrins are starch derivatives that possess hydrophobic internal cavities that can incorporate lipophilic molecules and exterior surfaces that can be subjected to various derivatizations in order to improve their biological behavior. This review aims to summarize the most recent achievements in terms of triterpene:cyclodextrin inclusion complexes and bioconjugates, emphasizing their practical applications including the development of new isolation and bioproduction protocols, the elucidation of their underlying mechanism of action, the optimization of triterpenes’ therapeutic effects and the development of new topical formulations.
Collapse
Affiliation(s)
- Alexandra Prodea
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.P.); (A.M.); (R.R.); (R.G.); (M.M.); (C.S.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania;
| | - Alexandra Mioc
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania;
- Department of Anatomy, Physiology, Pathophysiology, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Christian Banciu
- Department of Internal Medicine IV, Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania
- Correspondence: (C.B.); (C.T.); Tel.: +40-256-494-604 (C.B. & C.T.)
| | - Cristina Trandafirescu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.P.); (A.M.); (R.R.); (R.G.); (M.M.); (C.S.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania;
- Correspondence: (C.B.); (C.T.); Tel.: +40-256-494-604 (C.B. & C.T.)
| | - Andreea Milan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.P.); (A.M.); (R.R.); (R.G.); (M.M.); (C.S.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania;
| | - Roxana Racoviceanu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.P.); (A.M.); (R.R.); (R.G.); (M.M.); (C.S.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania;
| | - Roxana Ghiulai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.P.); (A.M.); (R.R.); (R.G.); (M.M.); (C.S.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania;
| | - Marius Mioc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.P.); (A.M.); (R.R.); (R.G.); (M.M.); (C.S.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania;
| | - Codruta Soica
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.P.); (A.M.); (R.R.); (R.G.); (M.M.); (C.S.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania;
| |
Collapse
|
12
|
Khwaza V, Oyedeji OO, Aderibigbe BA, Morifi E, Fonkui YT, Ndinteh DT, Nell M, Steenkamp V. Design of Oleanolic Acid-based Hybrid Compounds as Potential Pharmaceutical Scaffolds. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180818666210604112451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Infectious diseases, as well as cancer, are the leading causes of death
worldwide. Drug resistance usually results in their treatment requiring a combination of two or more
drugs.
Objective:
Oleanolic-based hybrid compounds were prepared via esterification and characterized
using FTIR, NMR and LC-MS. In vitro antibacterial and in vitro cytotoxicity studies were performed.
Method:
Oleanolic acid was hybridized with selected known pharmaceutical scaffolds via the carboxylic
acid functionality in order to develop therapeutics with increased biological activity. Antibacterial
activity was determined using the micro-dilution assay against selected Gram-positive and
Gram-negative bacteria and cytotoxicity using the sulforhodamine B assay.
Results:
Compound 8 displayed potent antibacterial effect against five strains of bacteria, such as
Bacillus subtilis, Staphylococcus aureus, Proteus vulgaris, Klebsiella oxytoca, and Escherichia coli,
with MIC values of 1.25, 0.078, 0.078, 1.25, 1.25 mg/mL when compared to the control, oleanolic
acid (MIC = 2.5 mg/mL). Furthermore, in vitro cytotoxicity, as determined using the SRB assay,
against selected cancer cells revealed that compound 7 was the most cytotoxic on MDA, DU145, and
MCF-7 cell lines with IC50 values of 69.87 ± 1.04, 73.2 ± 1.08, and 85.27 ± 1.02 μg/mL, respectively,
compared to oleanolic acid with an IC50 > 200 μg/mL.
Conclusion:
Hybridization of oleanolic acid was successful, and further development of these potential
antibacterial compounds with reduced cytotoxicity is therefore warranted.
Collapse
Affiliation(s)
- Vuyolwethu Khwaza
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Alice Campus, Alice, Eastern
Cape, South Africa
| | - Opeoluwa Oyehan Oyedeji
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Alice Campus, Alice, Eastern
Cape, South Africa
| | - Blessing Atim Aderibigbe
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Alice Campus, Alice, Eastern
Cape, South Africa
| | - Eric Morifi
- School of Chemistry, Mass Spectrometry division, University of the Witwatersrand, Johannesburg
Private Bag X3, WITS, 2050, South Africa
| | - Youmbi Thierry Fonkui
- Department of Biotechnology and Food Technology, Faculty of Science,
University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa
| | - Derek Tantoh Ndinteh
- Department of Applied Chemistry,
Faculty of Science, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa
| | - Margo Nell
- Department of
Pharmacology, Faculty of Health Sciences, University of Pretoria, South Africa
| | - Vanessa Steenkamp
- Department of
Pharmacology, Faculty of Health Sciences, University of Pretoria, South Africa
| |
Collapse
|
13
|
Kazakova O, Racoviceanu R, Petrova A, Mioc M, Militaru A, Udrescu L, Udrescu M, Voicu A, Cummings J, Robertson G, Ordway DJ, Slayden RA, Șoica C. New Investigations with Lupane Type A-Ring Azepane Triterpenoids for Antimycobacterial Drug Candidate Design. Int J Mol Sci 2021; 22:12542. [PMID: 34830423 PMCID: PMC8621456 DOI: 10.3390/ijms222212542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/02/2022] Open
Abstract
Twenty lupane type A-ring azepano-triterpenoids were synthesized from betulin and its related derivatives and their antitubercular activity against Mycobacterium tuberculosis, mono-resistant MTB strains, and nontuberculous strains Mycobacterium abscessus and Mycobacterium avium were investigated in the framework of AToMIc (Anti-mycobacterial Target or Mechanism Identification Contract) realized by the Division of Microbiology and Infectious Diseases, NIAID, National Institute of Health. Of all the tested triterpenoids, 17 compounds showed antitubercular activity and 6 compounds were highly active on the H37Rv wild strain (with MIC 0.5 µM for compound 7), out of which 4 derivatives also emerged as highly active compounds on the three mono-resistant MTB strains. Molecular docking corroborated with a machine learning drug-drug similarity algorithm revealed that azepano-triterpenoids have a rifampicin-like antitubercular activity, with compound 7 scoring the highest as a potential M. tuberculosis RNAP potential inhibitor. FIC testing demonstrated an additive effect of compound 7 when combined with rifampin, isoniazid and ethambutol. Most compounds were highly active against M. avium with compound 14 recording the same MIC value as the control rifampicin (0.0625 µM). The antitubercular ex vivo effectiveness of the tested compounds on THP-1 infected macrophages is correlated with their increased cell permeability. The tested triterpenoids also exhibit low cytotoxicity and do not induce antibacterial resistance in MTB strains.
Collapse
Affiliation(s)
- Oxana Kazakova
- Ufa Institute of Chemistry, The Ufa Federal Research Centre, The Russian Academy of Sciences, 71, Pr. Oktyabrya, 450054 Ufa, Russia;
| | - Roxana Racoviceanu
- Department II-Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timişoara, 2 Eftimie Murgu Sq., 300041 Timişoara, Romania; (R.R.); (M.M.); (C.Ș.)
- Res Ctr Pharmacotoxicol Evaluat, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq. 2, 300041 Timisoara, Romania
| | - Anastasiya Petrova
- Ufa Institute of Chemistry, The Ufa Federal Research Centre, The Russian Academy of Sciences, 71, Pr. Oktyabrya, 450054 Ufa, Russia;
| | - Marius Mioc
- Department II-Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timişoara, 2 Eftimie Murgu Sq., 300041 Timişoara, Romania; (R.R.); (M.M.); (C.Ș.)
- Res Ctr Pharmacotoxicol Evaluat, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq. 2, 300041 Timisoara, Romania
| | - Adrian Militaru
- Department of Computer and Information Technology, University Politehnica of Timişoara, 2 Vasile Pârvan Blvd., 300223 Timişoara, Romania; (A.M.); (M.U.)
| | - Lucreția Udrescu
- Department I-Drug Analysis, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timişoara, 2 Eftimie Murgu Sq., 300041 Timişoara, Romania;
| | - Mihai Udrescu
- Department of Computer and Information Technology, University Politehnica of Timişoara, 2 Vasile Pârvan Blvd., 300223 Timişoara, Romania; (A.M.); (M.U.)
| | - Adrian Voicu
- Department III-Informatics and Medical Biostatistics, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timişoara, 2 Eftimie Murgu Sq., 300041 Timişoara, Romania
| | - Jason Cummings
- Department of Microbiology, Immunology & Pathology, Colorado State University, 1619 Campus Delivery, Fort Collins, CO 80523, USA; (J.C.); (G.R.); (D.J.O.); (R.A.S.)
| | - Gregory Robertson
- Department of Microbiology, Immunology & Pathology, Colorado State University, 1619 Campus Delivery, Fort Collins, CO 80523, USA; (J.C.); (G.R.); (D.J.O.); (R.A.S.)
| | - Diane J. Ordway
- Department of Microbiology, Immunology & Pathology, Colorado State University, 1619 Campus Delivery, Fort Collins, CO 80523, USA; (J.C.); (G.R.); (D.J.O.); (R.A.S.)
| | - Richard A. Slayden
- Department of Microbiology, Immunology & Pathology, Colorado State University, 1619 Campus Delivery, Fort Collins, CO 80523, USA; (J.C.); (G.R.); (D.J.O.); (R.A.S.)
| | - Codruța Șoica
- Department II-Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timişoara, 2 Eftimie Murgu Sq., 300041 Timişoara, Romania; (R.R.); (M.M.); (C.Ș.)
- Res Ctr Pharmacotoxicol Evaluat, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq. 2, 300041 Timisoara, Romania
| |
Collapse
|
14
|
Oleanolic Acid's Semisynthetic Derivatives HIMOXOL and Br-HIMOLID Show Proautophagic Potential and Inhibit Migration of HER2-Positive Breast Cancer Cells In Vitro. Int J Mol Sci 2021; 22:ijms222011273. [PMID: 34681931 PMCID: PMC8538366 DOI: 10.3390/ijms222011273] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 01/23/2023] Open
Abstract
Approximately 20–30% of the diagnosed breast cancers overexpress the human epidermal growth factor receptor 2 (HER2). This type of cancer is associated with a more aggressive phenotype; thus, there is a need for the discovery of new compounds that would improve the survival in HER2-positive breast cancer patients. It seems that one of the most promising therapeutic cancer strategies could be based on the biological activity of pentacyclic triterpenes’ derivatives and the best-known representative of this group, oleanolic acid (OA). The biological activity of oleanolic acid and its two semisynthetic derivatives, methyl 3-hydroxyimino-11-oxoolean-12-en-28-oate (HIMOXOL) and 12α-bromo-3-hydroxyimonoolean-28→13-olide (Br-HIMOLID), was assessed in SK-BR-3 breast cancer cells (HER2-positive). Viability tests, cell cycle assessment, evaluation of apoptosis, autophagy, and adhesion/migration processes were performed using MTT, clonogenic, cytofluorometry, Western blot, and qPCR. Both derivatives revealed higher cytotoxicity in studied breast cancer cells than the maternal compound, OA. They also decreased cell viability, induced autophagy, and (when applied in sub-cytotoxic concentrations) decreased the migration of SK-BR-3 cells.This study is the first to report the cytostatic, proautophagic (mTOR/LC3/SQSTM/BECN1 pathway), and anti-migratory (integrin β1/FAK/paxillin pathway) activities of HIMOXOL and Br-HIMOLID in HER2-positive breast cancer cells.
Collapse
|
15
|
Shelley H, Annaji M, Smith FT, Babu RJ. Difluprednate-Hydroxypropyl- β-Cyclodextrin-Based Ophthalmic Solution for Improved Delivery in a Porcine Eye Model. J Ocul Pharmacol Ther 2021; 38:92-101. [PMID: 34665027 DOI: 10.1089/jop.2021.0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Purpose: Difluprednate (DFP) is an approved corticosteroid, available as an ophthalmic emulsion (Durezol®), used to treat pain and inflammation of the eye following ocular surgeries. This study utilized hydroxypropyl-β-cyclodextrin (HPBCD)-based DFP ophthalmic solution for improved ocular delivery. Methods: The DFP-HPBCD complex formation was studied in the liquid and solid states. Phase solubility, molecular docking studies, differential scanning calorimetry, and Fourier transform infrared spectroscopy suggested inclusion complexation of DFP and HPBCD. Results: DFP-HPBCD-based eye drops (solution) provided 16 and 26 times higher transcorneal permeation when compared to the suspension (no HPBCD, control) and Durezol, respectively (P < 0.001). In addition, ocular drug distribution studies conducted in continuously perfused whole porcine eyes showed DFP permeated into all of the ocular tissues in significantly higher amounts than Durezol. Conclusions: The solution-based eye drops in this study is iso-osmotic, safe, and more permeable in porcine eyes compared to Durezol.
Collapse
Affiliation(s)
- Haley Shelley
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA
| | - Manjusha Annaji
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA
| | - Forrest T Smith
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA
| | - R Jayachandra Babu
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
16
|
Novel Synthesized N-Ethyl-Piperazinyl-Amides of C2-Substituted Oleanonic and Ursonic Acids Exhibit Cytotoxic Effects through Apoptotic Cell Death Regulation. Int J Mol Sci 2021; 22:ijms222010967. [PMID: 34681629 PMCID: PMC8536124 DOI: 10.3390/ijms222010967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 02/07/2023] Open
Abstract
A series of novel hybrid chalcone N-ethyl-piperazinyl amide derivatives of oleanonic and ursonic acids were synthesized, and their cytotoxic potential was evaluated in vitro against the NCI-60 cancer cell line panel. Compounds 4 and 6 exhibited the highest overall anticancer activity, with GI50 values in some cases reaching nanomolar values. Thus, the two compounds were further assessed in detail in order to identify a possible apoptosis- and antiangiogenic-based mechanism of action induced by the assessed compounds. DAPI staining revealed that both compounds induced nuclei condensation and overall cell morphological changes consistent with apoptotic cell death. rtPCR analysis showed that up-regulation of pro-apoptotic Bak gene combined with the down-regulation of the pro-survival Bcl-XL and Bcl-2 genes caused altered ratios between the pro-apoptotic and anti-apoptotic proteins’ levels, leading to overall induced apoptosis. Molecular docking analysis revealed that both compounds exhibited high scores for Bcl-XL inhibition, suggesting that compounds may induce apoptotic cell death through targeted anti-apoptotic protein inhibition, as well. Ex vivo determinations showed that both compounds did not significantly alter the angiogenesis process on the tested cell lines.
Collapse
|
17
|
Kazakova O, Șoica C, Babaev M, Petrova A, Khusnutdinova E, Poptsov A, Macașoi I, Drăghici G, Avram Ș, Vlaia L, Mioc A, Mioc M, Dehelean C, Voicu A. 3-Pyridinylidene Derivatives of Chemically Modified Lupane and Ursane Triterpenes as Promising Anticancer Agents by Targeting Apoptosis. Int J Mol Sci 2021; 22:ijms221910695. [PMID: 34639035 PMCID: PMC8509773 DOI: 10.3390/ijms221910695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/17/2022] Open
Abstract
Cancer persists as a global challenge due to the extent to which conventional anticancer therapies pose high risks counterbalanced with their therapeutic benefit. Naturally occurring substances stand as an important safer alternative source for anticancer drug development. In the current study, a series of modified lupane and ursane derivatives was subjected to in vitro screening on the NCI-60 cancer cell line panel. Compounds 6 and 7 have been identified as highly active with GI50 values ranging from 0.03 µM to 5.9 µM (compound 6) and 0.18–1.53 µM (compound 7). Thus, these two compounds were further assessed in detail in order to identify a possible antiproliferative mechanism of action. DAPI (4′,6-diamidino-2-phenylindole) staining revealed that both compounds induced nuclei condensation and overall cell morphological changes consistent with apoptotic cell death. rtPCR analysis showed that both compounds induced upregulation of proapoptotic Bak and Bad genes while downregulating Bcl-XL and Bcl-2 antiapoptotic genes. Molecular docking analysis revealed that both compounds exhibited high scores for Bcl-XL inhibition, while compound 7 showed higher in silico Bcl-XL inhibition potential as compared to the native inhibitor ATB-737, suggesting that compounds may induce apoptotic cell death through targeted antiapoptotic protein inhibition, as well.
Collapse
Affiliation(s)
- Oxana Kazakova
- Ufa Institute of Chemistry UFRC, Russian Academy of Science RAS, pr. Oktyabrya 71, 450054 Ufa, Russia; (M.B.); (A.P.); (E.K.); (A.P.)
- Correspondence: (O.K.); (M.M.)
| | - Codruța Șoica
- Formulation and Technology of Drugs Research Center, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.Ș.); (I.M.); (G.D.); (Ș.A.); (L.V.); (A.M.); (C.D.)
- Research Centre Pharmacotoxicol Evaluat, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Marat Babaev
- Ufa Institute of Chemistry UFRC, Russian Academy of Science RAS, pr. Oktyabrya 71, 450054 Ufa, Russia; (M.B.); (A.P.); (E.K.); (A.P.)
| | - Anastasiya Petrova
- Ufa Institute of Chemistry UFRC, Russian Academy of Science RAS, pr. Oktyabrya 71, 450054 Ufa, Russia; (M.B.); (A.P.); (E.K.); (A.P.)
| | - Elmira Khusnutdinova
- Ufa Institute of Chemistry UFRC, Russian Academy of Science RAS, pr. Oktyabrya 71, 450054 Ufa, Russia; (M.B.); (A.P.); (E.K.); (A.P.)
| | - Alexander Poptsov
- Ufa Institute of Chemistry UFRC, Russian Academy of Science RAS, pr. Oktyabrya 71, 450054 Ufa, Russia; (M.B.); (A.P.); (E.K.); (A.P.)
| | - Ioana Macașoi
- Formulation and Technology of Drugs Research Center, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.Ș.); (I.M.); (G.D.); (Ș.A.); (L.V.); (A.M.); (C.D.)
- Research Centre Pharmacotoxicol Evaluat, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - George Drăghici
- Formulation and Technology of Drugs Research Center, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.Ș.); (I.M.); (G.D.); (Ș.A.); (L.V.); (A.M.); (C.D.)
- Research Centre Pharmacotoxicol Evaluat, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Ștefana Avram
- Formulation and Technology of Drugs Research Center, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.Ș.); (I.M.); (G.D.); (Ș.A.); (L.V.); (A.M.); (C.D.)
- Research Centre Pharmacotoxicol Evaluat, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Lavinia Vlaia
- Formulation and Technology of Drugs Research Center, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.Ș.); (I.M.); (G.D.); (Ș.A.); (L.V.); (A.M.); (C.D.)
- Formulation and Technology of Drugs Research Center, “Victor Babeș” University of Medicine and Pharmacy, Faculty of Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Alexandra Mioc
- Formulation and Technology of Drugs Research Center, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.Ș.); (I.M.); (G.D.); (Ș.A.); (L.V.); (A.M.); (C.D.)
- Research Centre Pharmacotoxicol Evaluat, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Marius Mioc
- Formulation and Technology of Drugs Research Center, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.Ș.); (I.M.); (G.D.); (Ș.A.); (L.V.); (A.M.); (C.D.)
- Research Centre Pharmacotoxicol Evaluat, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania
- Correspondence: (O.K.); (M.M.)
| | - Cristina Dehelean
- Formulation and Technology of Drugs Research Center, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.Ș.); (I.M.); (G.D.); (Ș.A.); (L.V.); (A.M.); (C.D.)
- Research Centre Pharmacotoxicol Evaluat, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Adrian Voicu
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania;
| |
Collapse
|
18
|
Huang J, Zang X, Yang W, Yin X, Huang J, Wu S, Hong Y. Pentacyclic triterpene carboxylic acids derivatives integrated piperazine-amino acid complexes for α-glucosidase inhibition in vitro. Bioorg Chem 2021; 115:105212. [PMID: 34333423 DOI: 10.1016/j.bioorg.2021.105212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 11/30/2022]
Abstract
Eighteen derivatives of pentacyclic triterpene carboxylic acids (Maslinic acid, Corosolic acid and Asiatic acid) have been prepared by coupling the piperazine complex of l-amino acids at the C-28 site of the parent compounds. The α-glucosidase inhibitory activities of the pristine derivatives were evaluated in vitro. The results indicated that the inhibitory activity of some compounds (15e IC50 = 591 μM, 16e IC50 = 423 μM) was closed to that of the reference acarbose (IC50 = 347 μM) in ethanol-water system. In addition, compound 16e (IC50 = 380 μM) showed superior inhibitory activity than acarbose (IC50 = 493 μM) in the measurement system with DMSO as solvent. The comparison of two different solvent systems showed that the derivatives had better α-glucosidase inhibitory activity in the DMSO system than that of in ethanol-water system. Regrettably, all of the as-synthesized derivatives exhibited inferior α-glucosidase inhibitory activities than those of the parent compounds in both test solvent systems. Furthermore, the result of enzyme kinetics demonstrated that the inhibition mechanism of compound 16e was noncompetitive inhibition with the inhibition constant Ki = 552 μM.
Collapse
Affiliation(s)
- Jinxiang Huang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xufeng Zang
- Department of Applied Physics, Huzhou University, Huzhou 313000, China
| | - Wuying Yang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaoli Yin
- Library of Jiangxi Agricultural University, Nanchang 330045, China
| | - Jianping Huang
- College of Science, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Shumin Wu
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yanping Hong
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
19
|
Xin C, Liu S, Qu H, Wang Z. The novel nanocomplexes containing deoxycholic acid-grafted chitosan and oleanolic acid displays the hepatoprotective effect against CCl 4-induced liver injury in vivo. Int J Biol Macromol 2021; 185:338-349. [PMID: 34171250 DOI: 10.1016/j.ijbiomac.2021.06.109] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023]
Abstract
Chemical liver injury threatens seriously human health, along with the shortage of efficiency and low-toxicity drugs. Herein, the novel oral nanocomplexes composed of deoxycholic acid-grafted chitosan and oleanolic acid were constructed to reverse the CCl4-induced acute liver damage in mice. Results indicated core-shell nanocomplexes, maintained by the hydrophobic interaction between deoxycholic acid and oleanolic acid, could be dissociated in the intestine. Notably, the nanocomplexes possessed superior hepatoprotective effect in vivo, possibly due to the synergistic effect between grafted chitosan and oleanolic acid. Mechanism investigations suggested that nanocomplexes reversed CCl4-induced liver injury through improving hepatic antioxidant capacity via NrF2/Keap1 pathway and regulating inflammation response via NF-κB signaling pathway. The novel oral nanocomplexes represent an effective strategy for chemical liver injury therapy.
Collapse
Affiliation(s)
- Chao Xin
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Shuang Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Hang Qu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Zhenyu Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
20
|
Fan JP, Lai XH, Zhang XH, Yang L, Yuan TT, Chen HP, Liang X. Synthesis and evaluation of the cancer cell growth inhibitory activity of the ionic derivatives of oleanolic acid and ursolic acid with improved solubility. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115837] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
21
|
Wüpper S, Lüersen K, Rimbach G. Cyclodextrins, Natural Compounds, and Plant Bioactives-A Nutritional Perspective. Biomolecules 2021; 11:biom11030401. [PMID: 33803150 PMCID: PMC7998733 DOI: 10.3390/biom11030401] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 02/08/2023] Open
Abstract
Cyclodextrins (CDs) are a group of cyclic oligosaccharides produced from starch or starch derivatives. They contain six (αCD), seven (βCD), eight (γCD), or more glucopyranose monomers linked via α-1,4-glycosidic bonds. CDs have a truncated cone shape with a hydrophilic outer wall and a less hydrophilic inner wall, the latter forming a more apolar internal cavity. Because of this special architecture, CDs are soluble in water and can simultaneously host lipophilic guest molecules. The major advantage of inclusion into CDs is increased aqueous solubility of such lipophilic substances. Accordingly, we present studies where the complexation of natural compounds such as propolis and dietary plant bioactives (e.g., tocotrienol, pentacyclic triterpenoids, curcumin) with γCD resulted in improved stability, bioavailability, and bioactivity in various laboratory model organisms and in humans. We also address safety aspects that may arise from increased bioavailability of plant extracts or natural compounds owing to CD complexation. When orally administered, α- and βCD—which are inert to intestinal digestion—are fermented by the human intestinal flora, while γCD is almost completely degraded to glucose units by α-amylase. Hence, recent reports indicate that empty γCD supplementation exhibits metabolic activity on its own, which may provide opportunities for new applications.
Collapse
|
22
|
Hisham Shady N, Youssif KA, Sayed AM, Belbahri L, Oszako T, Hassan HM, Abdelmohsen UR. Sterols and Triterpenes: Antiviral Potential Supported by In-Silico Analysis. PLANTS (BASEL, SWITZERLAND) 2020; 10:E41. [PMID: 33375282 PMCID: PMC7823815 DOI: 10.3390/plants10010041] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 02/07/2023]
Abstract
The acute respiratory syndrome caused by the novel coronavirus (SARS-CoV-2) caused severe panic all over the world. The coronavirus (COVID-19) outbreak has already brought massive human suffering and major economic disruption and unfortunately, there is no specific treatment for COVID-19 so far. Herbal medicines and purified natural products can provide a rich resource for novel antiviral drugs. Therefore, in this review, we focused on the sterols and triterpenes as potential candidates derived from natural sources with well-reported in vitro efficacy against numerous types of viruses. Moreover, we compiled from these reviewed compounds a library of 162 sterols and triterpenes that was subjected to a computer-aided virtual screening against the active sites of the recently reported SARS-CoV-2 protein targets. Interestingly, the results suggested some compounds as potential drug candidates for the development of anti-SARS-CoV-2 therapeutics.
Collapse
Affiliation(s)
- Nourhan Hisham Shady
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Universities Zone, P.O. Box 61111, New Minia City, Minia 61519, Egypt;
| | - Khayrya A. Youssif
- Department of Pharmacognosy, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 11865, Egypt;
| | - Ahmed M. Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt; (A.M.S.); (H.M.H.)
| | - Lassaad Belbahri
- Laboratory of Soil Biology, University of Neuchatel, 2000 Neuchatel, Switzerland;
| | - Tomasz Oszako
- Departement of Forest Protection, Forest Research Institute, 05-090 Sękocin Stary, Poland;
| | - Hossam M. Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt; (A.M.S.); (H.M.H.)
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Universities Zone, P.O. Box 61111, New Minia City, Minia 61519, Egypt;
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| |
Collapse
|
23
|
Development and Evaluation of Oleanolic Acid Dosage Forms and Its Derivatives. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1308749. [PMID: 33299854 PMCID: PMC7710427 DOI: 10.1155/2020/1308749] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/18/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022]
Abstract
Oleanolic acid is a pentacyclic triterpenoid compound that exists widely in medicinal herbs and other plants. Because of the extensive pharmacological activity, oleanolic acid has attracted more and more attention. However, the structural characteristics of oleanolic acid prevent it from being directly made into new drugs, which limits the application of oleanolic acid. Through the application of modern preparation techniques and methods, different oleanolic acid dosage forms and derivatives have been designed and synthesized. These techniques can improve the water solubility and bioavailability of oleanolic acid and lay a foundation for the new drug development. In this review, the recent progress in understanding the oleanolic acid dosage forms and its derivatives are discussed. Furthermore, these products were evaluated comprehensively from the perspective of characterization and pharmacokinetics, and this work may provide ideas and references for the development of oleanolic acid preparations.
Collapse
|
24
|
Sen A. Prophylactic and therapeutic roles of oleanolic acid and its derivatives in several diseases. World J Clin Cases 2020; 8:1767-1792. [PMID: 32518769 PMCID: PMC7262697 DOI: 10.12998/wjcc.v8.i10.1767] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/27/2020] [Accepted: 04/30/2020] [Indexed: 02/05/2023] Open
Abstract
Oleanolic acid (OA) and its derivatives are widely found in diverse plants and are naturally effective pentacyclic triterpenoid compounds with broad prophylactic and therapeutic roles in various diseases such as ulcerative colitis, multiple sclerosis, metabolic disorders, diabetes, hepatitis and different cancers. This review assembles and presents the latest in vivo reports on the impacts of OA and OA derivatives from various plant sources and the biological mechanisms of OA activities. Thus, this review presents sufficient data proposing that OA and its derivatives are potential alternative and complementary therapies for the treatment and management of several diseases.
Collapse
Affiliation(s)
- Alaattin Sen
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri 38080, Turkey
| |
Collapse
|
25
|
Wang W, Zhang W, Jiang Y, Wang X, Zhang X, Liu H, Zhang T. Preparation of ursolic acid-phospholipid complex by solvent-assisted grinding method to improve dissolution and oral bioavailability. Pharm Dev Technol 2020; 25:68-75. [PMID: 31544585 DOI: 10.1080/10837450.2019.1671864] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/20/2019] [Accepted: 09/20/2019] [Indexed: 12/21/2022]
Abstract
To improve the aqueous solubility and the oral bioavailability of a poorly water-soluble biologically active pentacyclic triterpenoid, ursolic acid (UA), ursolic acid-phospholipid complex (UA-PC) was prepared using solvent-assisted grinding method which is green and simple. The phospholipid complex was characterized by differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), scanning electron microscope (SEM), and transmission electron microscope (TEM), which confirmed the formation of the phospholipid complex. Specifically, compared with free UA, the formulation demonstrated over 276-fold higher aqueous solubility of UA and exhibited faster dissolution rate and higher cumulative dissolution percentages. Finally, the oral bioavailability of the prepared UA-PC was evaluated using Sprague-Dawley (SD) rats. Compared with free UA, the UA-PC exhibited considerable enhancement in the bioavailability with an increase in Cmax (183.80 vs 68.26 μg/l) and AUC 0-24 h (878.0 vs 212.1 μg·h/l), which was consistent with the in vitro results. This enhancement was attributed to the improvement of solubility and dissolution in vitro. Therefore, the method of solvent-assisted grinding appears to be an efficient approach for the preparation of UA-PC, and the prepared UA-PC showed a promising potential to overcome the limitation of poor oral bioavailability associated with low water solubility.
Collapse
Affiliation(s)
- Weiping Wang
- Department of Pharmaceutical Analysis, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Wenshuang Zhang
- Department of Pharmaceutical Analysis, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Yunxiao Jiang
- Department of Pharmaceutical Analysis, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Xianglin Wang
- Department of Pharmaceutical Analysis, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Xingxing Zhang
- Department of Pharmaceutical Analysis, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Hongzhuo Liu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Tianhong Zhang
- Department of Pharmaceutical Analysis, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, PR China
| |
Collapse
|
26
|
Wüpper S, Fischer A, Lüersen K, Lucius R, Okamoto H, Ishida Y, Terao K, Rimbach G. High Dietary Kuding Tea Extract Supplementation Induces Hepatic Xenobiotic-Metabolizing Enzymes-A 6-Week Feeding Study in Mice. Nutrients 2019; 12:E40. [PMID: 31877869 PMCID: PMC7019617 DOI: 10.3390/nu12010040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 12/20/2022] Open
Abstract
Kuding tea (KT) is a traditional Chinese beverage rich in plant bioactives that may exhibit various health benefits. However, little is known about the safety of KT extract (KTE) when consumed long term at high doses as a dietary supplement. Therefore, in this study, we investigated aspects of the safety of KTE. Male C57BL/6 mice were fed a high-fat, high-fructose, Western-type diet (control) supplemented with either 12.88% γ-cyclodextrin (γCD), 7.12% KTE (comprising 0.15% ursolic acid, UA) encapsulated in 12.88% γCD (KTE-γCD), or 0.15% UA over a 6-week experimental period. The dietary treatments did not affect food intake, body weight or body composition. However, treatment with KTE-γCD, but not γCD and UA, increased liver weight and hepatic fat accumulation, which was accompanied by increased hepatic PPARγ and CD36 mRNA levels. KTE-γCD treatment elevated plasma cholesterol and CYP7A1 mRNA and protein levels compared to those in control mice. KTE-γCD substantially increased the mRNA and protein levels of hepatic CYP3A and GSTA1, which are central to the detoxification of drugs and xenobiotics. Furthermore, we observed a moderate elevation in hepatic CYP3A (5-fold change) and GSTA1 (1.7-fold change) mRNA levels in UA-fed mice. In vitro data collected in HepG2 cells indicated a dose-dependent increase in hepatic cytotoxicity in response to KTE treatment, which may have been partly mediated by UA. Overall, the present data may contribute to the safety assessment of KTE and suggest that KTE encapsulated in γCD affects liver fat storage and the hepatic phase I and phase II responses in mice.
Collapse
Affiliation(s)
- Svenja Wüpper
- Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, 24118 Kiel, Germany; (A.F.); (K.L.); (G.R.)
| | - Alexandra Fischer
- Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, 24118 Kiel, Germany; (A.F.); (K.L.); (G.R.)
| | - Kai Lüersen
- Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, 24118 Kiel, Germany; (A.F.); (K.L.); (G.R.)
| | - Ralph Lucius
- Anatomical Institute, University of Kiel, Otto-Hahn Platz 8, 24118 Kiel, Germany;
| | - Hinako Okamoto
- CycloChem Bio Co., Ltd., 7-4-5 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan; (H.O.); (Y.I.); (K.T.)
| | - Yoshiyuki Ishida
- CycloChem Bio Co., Ltd., 7-4-5 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan; (H.O.); (Y.I.); (K.T.)
| | - Keiji Terao
- CycloChem Bio Co., Ltd., 7-4-5 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan; (H.O.); (Y.I.); (K.T.)
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, 24118 Kiel, Germany; (A.F.); (K.L.); (G.R.)
| |
Collapse
|
27
|
Unraveling the molecular mechanisms and the potential chemopreventive/therapeutic properties of natural compounds in melanoma. Semin Cancer Biol 2019; 59:266-282. [PMID: 31233829 DOI: 10.1016/j.semcancer.2019.06.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 12/12/2022]
Abstract
Melanoma is the most fatal form of skin cancer. Current therapeutic approaches include surgical resection, chemotherapy, targeted therapy and immunotherapy. However, these treatment strategies are associated with development of drug resistance and severe side effects. In recent years, natural compounds have also been extensively studied for their anti-melanoma effects, including tumor growth inhibition, apoptosis induction, angiogenesis and metastasis suppression and cancer stem cell elimination. Moreover, a considerable number of studies reported the synergistic activity of phytochemicals and standard anti-melanoma agents, as well as the enhanced effectiveness of their synthetic derivatives and novel formulations. However, clinical data confirming these promising effects in patients are still scanty. This review emphasizes the anti-tumor mechanisms and potential application of the most studied natural products for melanoma prevention and treatment.
Collapse
|
28
|
Pięt M, Paduch R. Ursolic and Oleanolic Acids as Potential Anticancer Agents Acting in the Gastrointestinal Tract. MINI-REV ORG CHEM 2018. [DOI: 10.2174/1570193x15666180612090816] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background:Cancer is one of the main causes of death worldwide. Contemporary therapies, including chemo- and radiotherapy, are burdened with severe side effects. Thus, there exists an urgent need to develop therapies that would be less devastating to the patient’s body. Such novel approaches can be based on the anti-tumorigenic activity of particular compounds or may involve sensitizing cells to chemotherapy and radiotherapy or reducing the side-effects of regular treatment.Objective:Natural-derived compounds are becoming more and more popular in cancer research. Examples of such substances are Ursolic Acid (UA) and Oleanolic Acid (OA), plant-derived pentacyclic triterpenoids which possess numerous beneficial properties, including anti-tumorigenic activity.Results:In recent years, ursolic and oleanolic acids have been demonstrated to exert a range of anticancer effects on various types of tumors. These compounds inhibit the viability and proliferation of cancer cells, prevent their migration and metastasis and induce their apoptosis. Both in vitro and in vivo studies indicate that UA and OA are promising anti-cancer agents that can prevent carcinogenesis at each step. Furthermore, cancers at all stages are susceptible to the activity of these compounds. </P><P> Neoplasms that are formed in the gastrointestinal tract, i.e. gastric, colorectal, pancreatic, and liver cancers, are among the most common and most lethal malignancies. Their localization in the digestive system, however, facilitates the action of orally-administered (potential) anti-cancer agents, making chemopreventive drugs more accessible.In this paper, the anti-tumorigenic effect of ursolic and oleanolic acids on gastric, colon, pancreatic, and liver cancers, as well as the mechanisms underlying this process, are presented.
Collapse
Affiliation(s)
- Mateusz Pięt
- Department of Virology and Immunology, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Roman Paduch
- Department of Virology and Immunology, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| |
Collapse
|
29
|
Khwaza V, Oyedeji OO, Aderibigbe BA. Antiviral Activities of Oleanolic Acid and Its Analogues. Molecules 2018; 23:molecules23092300. [PMID: 30205592 PMCID: PMC6225463 DOI: 10.3390/molecules23092300] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/30/2018] [Accepted: 09/05/2018] [Indexed: 12/13/2022] Open
Abstract
Viral diseases, such as human immune deficiency virus (HIV), influenza, hepatitis, and herpes, are the leading causes of human death in the world. The shortage of effective vaccines or therapeutics for the prevention and treatment of the numerous viral infections, and the great increase in the number of new drug-resistant viruses, indicate that there is a great need for the development of novel and potent antiviral drugs. Natural products are one of the most valuable sources for drug discovery. Most natural triterpenoids, such as oleanolic acid (OA), possess notable antiviral activity. Therefore, it is important to validate how plant isolates, such as OA and its analogues, can improve and produce potent drugs for the treatment of viral disease. This article reports a review of the analogues of oleanolic acid and their selected pathogenic antiviral activities, which include HIV, the influenza virus, hepatitis B and C viruses, and herpes viruses.
Collapse
Affiliation(s)
- Vuyolwethu Khwaza
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa.
| | - Opeoluwa O Oyedeji
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa.
| | - Blessing A Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa.
| |
Collapse
|
30
|
Zhang X, Teng G, Zhang J. Deep eutectic solvents aqueous two-phase system based ultrasonically assisted extraction of ursolic acid (UA) from Cynomorium songaricum Rupr. CHEM ENG COMMUN 2018. [DOI: 10.1080/00986445.2018.1494583] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Xifeng Zhang
- School of Life Science, Northwest Normal University, Lanzhou, Gansu, People’s Republic of China
- The College of Agriculture and Biotechnology (CAB), Hexi University, Zhangye, Gansu, People’s Republic of China
| | - Guixiang Teng
- School of Life Science, Northwest Normal University, Lanzhou, Gansu, People’s Republic of China
| | - Ji Zhang
- School of Life Science, Northwest Normal University, Lanzhou, Gansu, People’s Republic of China
| |
Collapse
|
31
|
Shelley H, Grant M, Smith FT, Abarca EM, Jayachandra Babu R. Improved Ocular Delivery of Nepafenac by Cyclodextrin Complexation. AAPS PharmSciTech 2018; 19:2554-2563. [PMID: 29948988 DOI: 10.1208/s12249-018-1094-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/29/2018] [Indexed: 02/07/2023] Open
Abstract
Nepafenac is a nonsteroidal anti-inflammatory drug (NSAID), currently only available as 0.1% ophthalmic suspension (Nevanac®). This study utilized hydroxypropyl-β-cyclodextrin (HPBCD) to increase the water solubility and trans-corneal permeation of nepafenac. The nepafenac-HPBCD complexation in the liquid and solid states were confirmed by phase solubility, differential scanning calorimetry (DSC), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and nuclear magnetic resonance spectroscopy (NMR) analyses. Nepafenac 0.1% ophthalmic solution was formulated using HPBCD (same pH and osmolality as that of Nevanac®) and pig eye trans-corneal permeation was studied versus Nevanac®. Furthermore, nepafenac content in cornea, sclera, iris, lens, aqueous humor, choroid, ciliary body, retina, and vitreous humor was studied in a continuous isolated pig eye perfusion model in comparison to the suspension and Nevanac®. Permeation studies using porcine corneas revealed that the solution formulation had a permeation rate 18 times higher than Nevanac®. Furthermore, the solution had 11 times higher corneal retention than Nevanac®. Drug distribution studies using porcine eyes revealed that the solution formulation enables detectable levels in various ocular tissues while the drug was undetectable by Nevanac®. The ocular solution formulation had a significantly higher drug concentration in the cornea compared to the suspension or Nevanac®.
Collapse
|
32
|
Tao R, Gao M, Liu F, Guo X, Fan A, Ding D, Kong D, Wang Z, Zhao Y. Alleviating the Liver Toxicity of Chemotherapy via pH-Responsive Hepatoprotective Prodrug Micelles. ACS APPLIED MATERIALS & INTERFACES 2018; 10:21836-21846. [PMID: 29897226 DOI: 10.1021/acsami.8b04192] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanocarriers have been extensively utilized to enhance the anti-tumor performance of chemotherapy, but it is very challenging to eliminate the associated hepatotoxicity. This was due to the significant liver accumulation of cytotoxic drug-loaded nanocarriers as a consequence of systemic biodistribution. To address this, we report a novel type of nanocarrier that was made of hepatoprotective compound (oleanolic acid/OA) with a model drug (methotrexate/MTX) being physically encapsulated. OA was covalently connected with methoxy poly(ethylene glycol) (mPEG) via a hydrazone linker, generating amphiphilic mPEG-OA prodrug conjugate that could self-assemble into pH-responsive micelles (ca. 100 nm), wherein the MTX loading was ca. 5.1% (w/w). The micelles were stable at pH 7.4 with a critical micelle concentration of 10.5 μM. At the acidic endosome/lysosome microenvironment, the breakdown of hydrazone induced the micelle collapse and fast release of payloads (OA and MTX). OA also showed adjunctive anti-tumor effect with a low potency, which was proved in 4T1 cells. In the mouse 4T1 breasttumor model, MTX-loaded mPEG-OA micelles demonstrated superior capability regarding in vivo tumorgrowth inhibition because of the passive tumor targeting of nanocarriers. Unsurprisingly, MTX induced significant liver toxicity, which was evidenced by the increased liver mass and increased levels of alanine transaminase, aspartate transaminase, and lactate dehydrogenase in serum as well as in liver homogenate. MTX-induced hepatotoxicity was also accompanied with augmented oxidative stress, for example, the increase of the malondialdehyde level and the reduction of glutathione peroxidase and superoxide dismutase concentration in the liver. As expected, mPEG-OA micelles significantly reduced the liver toxicity induced by MTX because of the hepatoprotective action of OA, which was supported by the reversal of all the above biomarkers and qualitative histological analysis of liver tissue. This work offers an efficient approach for reducing the liver toxicity associated with chemotherapy, which can be applied to various antitumor drugs and hepatoprotective materials.
Collapse
Affiliation(s)
- Ran Tao
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , China
| | - Min Gao
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , China
| | - Fang Liu
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , China
| | - Xuliang Guo
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , China
| | - Aiping Fan
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , China
| | | | | | - Zheng Wang
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , China
| | - Yanjun Zhao
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , China
| |
Collapse
|
33
|
Caunii A, Oprean C, Cristea M, Ivan A, Danciu C, Tatu C, Paunescu V, Marti D, Tzanakakis G, Spandidos DA, Tsatsakis A, Susan R, Soica C, Avram S, Dehelean C. Effects of ursolic and oleanolic on SK‑MEL‑2 melanoma cells: In vitro and in vivo assays. Int J Oncol 2017; 51:1651-1660. [PMID: 29039461 PMCID: PMC5673023 DOI: 10.3892/ijo.2017.4160] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/02/2017] [Indexed: 12/21/2022] Open
Abstract
Among the triterpenoids, oleanolic acid (OA) and its isomer, ursolic acid (UA) are promising therapeutic candidates, with potential benefits in the management of melanoma. In this study, we aimed to examine the in vitro and in vivo anti‑invasive and anti‑metastatic activity of OA and UA to determine their possible usefulness as chemopreventive or chemotherapeutic agents in melanoma. For the in vitro experiments, the anti‑proliferative activity of the triterpenic compounds on SK‑MEL‑2 melanoma cells was examined. The anti‑invasive potential was assessed by testing the effects of the active compound on vascular cell adhesion molecule (VCAM) and intercellular adhesion molecule (ICAM) adhesion to melanoma cells. Normal and tumor angiogenesis were evaluated in vivo by chicken embryo chorioallantoic membrane (CAM) assay. The two test triterpenoid acids, UA and OA, exerted differential effects in vitro and in vivo on the SK‑MEL‑2 melanoma cells. UA exerted a significant and dose‑dependent anti‑proliferative effect in vitro, compared to OA. The cytotoxic effects in vitro on the melanoma cells were determined by the examining alterations in the cell cycle phases induced by UA that lead to cell arrest in the S phase. Moreover, UA was found to affect SK‑MEL‑2 melanoma cell invasiveness by limiting the cell adhesion capacity to ICAM molecules, but not influencing their adhesion to VCAM molecules. On the whole, in this study, by assessing the effects of the two triterpenoids in vivo, our results revealed that OA had a greater potential to impair the invasive capacity and tumor angiogenesis compared with UA.
Collapse
Affiliation(s)
- Angela Caunii
- Faculty of Pharmacy, 'Victor Babeş' University of Medicine and Pharmacy, 300041 Timişoara
| | - Camelia Oprean
- Faculty of Pharmacy, 'Victor Babeş' University of Medicine and Pharmacy, 300041 Timişoara
- 'Pius Brinzeu' Timişoara County Emergency Clinical Hospital, Oncogen Institute, 300723 Timişoara
| | - Mirabela Cristea
- 'Pius Brinzeu' Timişoara County Emergency Clinical Hospital, Oncogen Institute, 300723 Timişoara
| | - Alexandra Ivan
- 'Pius Brinzeu' Timişoara County Emergency Clinical Hospital, Oncogen Institute, 300723 Timişoara
- Faculty of Medicine, 'Victor Babeş' University of Medicine and Pharmacy, 300041 Timişoara
| | - Corina Danciu
- Faculty of Pharmacy, 'Victor Babeş' University of Medicine and Pharmacy, 300041 Timişoara
| | - Calin Tatu
- 'Pius Brinzeu' Timişoara County Emergency Clinical Hospital, Oncogen Institute, 300723 Timişoara
- Faculty of Medicine, 'Victor Babeş' University of Medicine and Pharmacy, 300041 Timişoara
| | - Virgil Paunescu
- 'Pius Brinzeu' Timişoara County Emergency Clinical Hospital, Oncogen Institute, 300723 Timişoara
- Faculty of Medicine, 'Victor Babeş' University of Medicine and Pharmacy, 300041 Timişoara
| | - Daniela Marti
- Faculty of Medicine, Western University Vasile Goldis, Arad 310025, Romania
| | - George Tzanakakis
- Faculty of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | | | - Aristides Tsatsakis
- Faculty of Medicine, 'Victor Babeş' University of Medicine and Pharmacy, 300041 Timişoara
- Faculty of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Razvan Susan
- Faculty of Medicine, 'Victor Babeş' University of Medicine and Pharmacy, 300041 Timişoara
| | - Codruta Soica
- Faculty of Pharmacy, 'Victor Babeş' University of Medicine and Pharmacy, 300041 Timişoara
| | - Stefana Avram
- Faculty of Pharmacy, 'Victor Babeş' University of Medicine and Pharmacy, 300041 Timişoara
| | - Cristina Dehelean
- Faculty of Pharmacy, 'Victor Babeş' University of Medicine and Pharmacy, 300041 Timişoara
| |
Collapse
|
34
|
Silva JC, Almeida JR, Quintans JS, Gopalsamy RG, Shanmugam S, Serafini MR, Oliveira MR, Silva BA, Martins AO, Castro FF, Menezes IR, Coutinho HD, Oliveira RC, Thangaraj P, Araújo AA, Quintans-Júnior LJ. Enhancement of orofacial antinociceptive effect of carvacrol, a monoterpene present in oregano and thyme oils, by β-cyclodextrin inclusion complex in mice. Biomed Pharmacother 2016; 84:454-461. [DOI: 10.1016/j.biopha.2016.09.065] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/16/2016] [Accepted: 09/17/2016] [Indexed: 12/21/2022] Open
|