1
|
Pathak N, Negi AS. Plant based steroidal and triterpenoid sapogenins: Chemistry on diosgenin and biological aspects. Eur J Med Chem 2024; 279:116915. [PMID: 39366126 DOI: 10.1016/j.ejmech.2024.116915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/15/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024]
Abstract
Plants are rich in steroidal and triterpenoid saponins. Diosgenin is an important sapogenin obtained from various steroidal saponins and specially from dioscin. It possesses diverse pharmacological activities as it is capable of modulating various endogenous pathways. Diosgenin is the molecule of choice for the industrial synthesis of the steroid based clinical drugs namely progesterone, testosterone, dexamethasone, dehydroepiandrosterone, vitamin D3, steroidal contraceptive pills, norethindrone, norgestrel etc. Diosgenin has been a molecule of discussion due to its high demand in industry as well as for future research applications. Present review describes its chemistry and detailed pharmacological profile.
Collapse
Affiliation(s)
- Nandini Pathak
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP, P.O. CIMAP, Kukrail Picnic Spot Road, Lucknow, 226015, U.P., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P. 201002, India
| | - Arvind S Negi
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP, P.O. CIMAP, Kukrail Picnic Spot Road, Lucknow, 226015, U.P., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P. 201002, India.
| |
Collapse
|
2
|
Han N, Chang XY, Yuan ZL, Wang YZ. Expression and correlation analysis of silent information regulator 1 (SIRT1), sterol regulatory element-binding protein-1 (SREBP1), and pyroptosis factor in gestational diabetes mellitus. J Matern Fetal Neonatal Med 2024; 37:2311809. [PMID: 38326276 DOI: 10.1080/14767058.2024.2311809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/24/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND AND AIM Globally, the prevalence of gestational diabetes mellitus (GDM) is rising each year, yet its pathophysiology is still unclear. To shed new light on the pathogenesis of gestational diabetes mellitus and perhaps uncover new therapeutic targets, this study looked at the expression levels and correlations of SIRT1, SREBP1, and pyroptosis factors like NLRP3, Caspase-1, IL-1, and IL-18 in patients with GDM. METHODS This study involved a comparative analysis between two groups. The GDM group consisted of 50 GDM patients and the control group included 50 pregnant women with normal pregnancies. Detailed case data were collected for all participants. We utilized real-time quantitative PCR and Western Blot techniques to assess the expression levels of SIRT1 and SREBP1 in placental tissues from both groups. Additionally, we employed an enzyme-linked immunosorbent assay to measure the serum levels of SIRT1, SREBP1, and pyroptosis factors, namely NLRP3, Caspase-1, IL-1β, and IL-18, in the patients of both groups. Subsequently, we analyzed the correlations between these factors and clinical. RESULTS The results showed that there were significantly lower expression levels of SIRT1 in both GDM group placental tissue and serum compared to the control group (p < 0.01). In contrast, the expression of SREBP1 was significantly higher in the GDM group than in the control group (p < 0.05). Additionally, the serum levels of NLRP3, Caspase-1, IL-1β, and IL-18 were significantly elevated in the GDM group compared to the control group (p < 0.01). The expression of SIRT1 exhibited negative correlations with the expression of FPG, OGTT-1h, FINS, HOMA-IR, SREBP1, IL-1β, and IL-18. However, there was no significant correlation between SIRT1 expression and OGTT-2h, NLRP3, or Caspase-1. On the other hand, the expression of SREBP1 was positively correlated with the expression of IL-1β, Caspase-1, and IL-18, but has no apparent correlation with NLRP3. CONCLUSIONS Low SIRT1 levels and high SREBP1 levels in placental tissue and serum, coupled with elevated levels of pyroptosis factors NLRP3, Caspase-1, IL-1β, and IL-18 in serum, may be linked to the development of gestational diabetes mellitus. Furthermore, these three factors appear to correlate with each other in the pathogenesis of GDM, offering potential directions for future research and therapeutic strategies.
Collapse
Affiliation(s)
- Ning Han
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Xin-Yuan Chang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Zi-Li Yuan
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Yi-Zhan Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
He Q, Yao W, Wu J, Xia Y, Lei Y, Luo J. Unveiling Novel Mechanism of CIDEB in Fatty Acid Synthesis Through ChIP-Seq and Functional Analysis in Dairy Goat. Int J Mol Sci 2024; 25:11318. [PMID: 39457100 PMCID: PMC11508957 DOI: 10.3390/ijms252011318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024] Open
Abstract
Goat milk is abundant in nutrients, particularly in milk fats, which confer health benefits to humans. Exploring the regulatory mechanism of fatty acid synthesis is highly important to understand milk composition manipulation. In this study, we used chromatin immunoprecipitation sequencing (ChIP-seq) on goat mammary glands at different lactation stages which revealed a novel lactation regulatory factor: cell death-inducing DFFA-like effector B (CIDEB). RT-qPCR results revealed that CIDEB was significantly upregulated during lactation in dairy goats. CIDEB overexpression significantly increased the expression levels of genes involved in fatty acid synthesis (ACACA, SCD1, p < 0.05; ELOVL6, p < 0.01), lipid droplet formation (XDH, p < 0.05), and triacylglycerol (TAG) synthesis (DGAT1, p < 0.05; GPAM, p < 0.01) in goat mammary epithelial cells (GMECs). The contents of lipid droplets, TAG, and cholesterol were increased (p < 0.05) in CIDEB-overexpressing GMECs, and knockdown of CIDEB led to the opposite results. In addition, CIDEB knockdown significantly decreased the proportion of C16:0 and total C18:2. Luciferase reporter assays indicated that X-box binding protein 1 (XBP1) promoted CIDEB transcription via XBP1 binding sites located in the CIDEB promoter. Furthermore, CIDEB knockdown attenuated the stimulatory effect of XBP1 on lipid droplet accumulation. Collectively, these findings elucidate the critical regulatory roles of CIDEB in milk fat synthesis, thus providing new insights into improving the quality of goat milk.
Collapse
Affiliation(s)
| | | | | | | | | | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (Q.H.); (W.Y.); (J.W.); (Y.X.); (Y.L.)
| |
Collapse
|
4
|
Zhang L, He S, Liu L, Huang J. Saponin monomers: Potential candidates for the treatment of type 2 diabetes mellitus and its complications. Phytother Res 2024; 38:3564-3582. [PMID: 38715375 DOI: 10.1002/ptr.8229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 07/12/2024]
Abstract
Type 2 diabetes mellitus (T2DM), a metabolic disease with persistent hyperglycemia primarily caused by insulin resistance (IR), has become one of the most serious health challenges of the 21st century, with considerable economic and societal implications worldwide. Considering the inevitable side effects of conventional antidiabetic drugs, natural ingredients exhibit promising therapeutic efficacy and can serve as safer and more cost-effective alternatives for the management of T2DM. Saponins are a structurally diverse class of amphiphilic compounds widely distributed in many popular herbal medicinal plants, some animals, and marine organisms. There are many saponin monomers, such as ginsenoside compound K, ginsenoside Rb1, ginsenoside Rg1, astragaloside IV, glycyrrhizin, and diosgenin, showing great efficacy in the treatment of T2DM and its complications in vivo and in vitro. However, although the mechanisms of action of saponin monomers at the animal and cell levels have been gradually elucidated, there is a lack of clinical data, which hinders the development of saponin-based antidiabetic drugs. Herein, the main factors/pathways associated with T2DM and the comprehensive underlying mechanisms and potential applications of these saponin monomers in the management of T2DM and its complications are reviewed and discussed, aiming to provide fundamental data for future high-quality clinical studies and trials.
Collapse
Affiliation(s)
- Lvzhuo Zhang
- Department of Pharmacology, Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Qianjiang Central Hospital Affiliated to Yangtze University, Qianjiang, Hubei, China
| | - Shifeng He
- Department of Pharmacology, Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Jingzhou Hospital of Traditional Chinese Medicine, Jingzhou, Hubei, China
| | - Lian Liu
- Department of Pharmacology, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Jiangrong Huang
- Department of Pharmacology, Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Jingzhou Hospital of Traditional Chinese Medicine, Jingzhou, Hubei, China
| |
Collapse
|
5
|
Tak Y, Kaur M, Chitranashi A, Samota MK, Verma P, Bali M, Kumawat C. Fenugreek derived diosgenin as an emerging source for diabetic therapy. Front Nutr 2024; 11:1280100. [PMID: 38371502 PMCID: PMC10873921 DOI: 10.3389/fnut.2024.1280100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 01/08/2024] [Indexed: 02/20/2024] Open
Abstract
Diabetes is a chronic metabolic disease that endangers the entire body's tissues and organs. Diabetes impairs glucose and insulin regulation in the human body by causing pancreatic cell damage. Diabetes modifies pathways such as serine/threonine protein kinase (Akt) and Protein kinase C (PKC)/- glucose transporter 4 (GLUT4), peroxisome proliferator-activated receptor (PPAR) glucose absorption, and inhibits α-amylase and α-glucosidase, Sodium/glucose cotransporter 1 (SGLT-1), and Na+-K+-ATPase activity. Diabetes may also be caused by a decrease in the expression of sterol regulatory element binding protein 1 (SREBP-1) and its target genes, fatty acid synthase (FAS), stearoyl-CoA desaturase-1 (SCD-1), and acetyl-CoA carboxylase α (ACC), as well as a decrease in the levels of C/EBP homologous protein (CHOP), Caspase12, and Caspase3 proteins. Diabetes has long been linked to diseases of the cardiovascular, nervous, skeletal, reproductive, hepatic, ocular, and renal systems. Diosgenin, a steroidal compound derived from fenugreek, aids in the prevention of diabetes by altering cellular pathways in favor of healthy bodily functions. Diosgenin is a new nutraceutical on the market that claims to cure diabetes in particular. This article focuses on diosgenin extraction and purification, fenugreek bioactive compounds, pharmacological properties of diosgenin, mode of action of diosgenin to cure diabetes, and dosages.
Collapse
Affiliation(s)
- Yamini Tak
- Agricultural Research Station, Agriculture University, Kota, India
| | - Manpreet Kaur
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, India
| | - Abhishek Chitranashi
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Mahesh Kumar Samota
- ICAR-Central Institute of Post-Harvest Engineering & Technology, Ludhiana, India
| | - Preeti Verma
- Agricultural Research Station, Agriculture University, Kota, India
| | - Manoj Bali
- School of Sciences, Rayat Bahra University, Mohali, India
| | | |
Collapse
|
6
|
Wu C, Zhang R, Wang J, Chen Y, Zhu W, Yi X, Wang Y, Wang L, Liu P, Li P. Dioscorea nipponica Makino: A comprehensive review of its chemical composition and pharmacology on chronic kidney disease. Biomed Pharmacother 2023; 167:115508. [PMID: 37716118 DOI: 10.1016/j.biopha.2023.115508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023] Open
Abstract
Chronic kidney disease (CKD) is a widespread ailment that significantly impacts global health. It is characterized by high prevalence, poor prognosis, and substantial healthcare costs, making it a major public health concern. The current clinical treatments for CKD are not entirely satisfactory, leading to a high demand for alternative therapeutic options. Chinese herbal medicine, with its long history, diverse varieties, and proven efficacy, offers a promising avenue for exploration. One such Chinese herbal medicine, Dioscorea nipponica Makino (DNM), is frequently used to treat kidney diseases. In this review, we have compiled studies examining the mechanisms of action of DNM in the context of CKD, focusing on five primary areas: improvement of oxidative stress, inhibition of renal fibrosis, regulation of metabolism, reduction of inflammatory response, and regulation of autophagy.
Collapse
Affiliation(s)
- Chenguang Wu
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Rui Zhang
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Jingjing Wang
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Yao Chen
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Wenhui Zhu
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Xiang Yi
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Yan Wang
- Department of Nephrology, Peking University People's Hospital, Beijing, China
| | - Lifan Wang
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China.
| | - Peng Liu
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China.
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
7
|
Busso D, González A, Santander N, Saavedra F, Quiroz A, Rivera K, González J, Olmos P, Marette A, Bazinet L, Illanes S, Enrione J. A Quinoa Protein Hydrolysate Fractionated by Electrodialysis with Ultrafiltration Membranes Improves Maternal and Fetal Outcomes in a Mouse Model of Gestational Diabetes Mellitus. Mol Nutr Food Res 2023; 67:e2300047. [PMID: 37667444 DOI: 10.1002/mnfr.202300047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/08/2023] [Indexed: 09/06/2023]
Abstract
SCOPE Quinoa intake exerts hypoglycemic and hypolipidemic effects in animals and humans. Although peptides from quinoa inhibit key enzymes involved in glucose homeostasis in vitro, their in vivo antidiabetic properties have not been investigated. METHODS AND RESULTS This study evaluated the effect of oral administration of a quinoa protein hydrolysate (QH) produced through enzymatic hydrolysis and fractionation by electrodialysis with ultrafiltration membrane (EDUF) (FQH) on the metabolic and pregnancy outcomes of Lepdb/+ pregnant mice, a preclinical model of gestational diabetes mellitus. The 4-week pregestational consumption of 2.5 mg mL-1 of QH in water prevented glucose intolerance and improves hepatic insulin signaling in dams, also reducing fetal weights. Sequencing and bioinformatic analyses of the defatted FQH (FQHD) identified 11 peptides 6-10 amino acids long that aligned with the quinoa proteome and exhibited putative anti-dipeptidyl peptidase-4 (DPP-IV) activity, confirmed in vitro in QH, FQH, and FDQH fractions. Peptides homologous to mouse and human proteins enriched for biological processes related to glucose metabolism are also identified. CONCLUSION Processing of quinoa protein may be used to develop a safe and effective nutritional intervention to control glucose intolerance during pregnancy. Further studies are required to confirm if this nutritional intervention is applicable to pregnant women.
Collapse
Affiliation(s)
- Dolores Busso
- Program of Reproductive Biology, Research and Innovation Center, School of Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, 7550000, Chile
- Center of Interventional Medicine for Precision and Advanced Cellular Therapy (IMPACT), Universidad de los Andes, Santiago, 7550000, Chile
| | - Adrián González
- Biopolymer Research and Engineering Lab (BiopREL), Research and Innovation Center, School of Nutrition and Dietetics, Faculty of Medicine, Universidad de los Andes, Santiago, 7550000, Chile
| | - Nicolás Santander
- Health Science Institute, Universidad de O´Higgins, Rancagua, 2841959, Chile
| | - Fujiko Saavedra
- Program of Reproductive Biology, Research and Innovation Center, School of Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, 7550000, Chile
| | - Alonso Quiroz
- PhD Program in Medical Sciences, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8320000, Chile
| | - Katherine Rivera
- PhD Program in Medical Sciences, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8320000, Chile
| | - Javier González
- Immersion in Science Program, School of Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, 7550000, Chile
| | - Pablo Olmos
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8320000, Chile
| | - André Marette
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, Québec G1V 0A6, Canada
- Department of Anatomy and Physiology, Faculty of Medicine, Laval Hospital Research Center, Université Laval, Québec, Québec G1V 4G5, Canada
| | - Laurent Bazinet
- Department of Anatomy and Physiology, Faculty of Medicine, Laval Hospital Research Center, Université Laval, Québec, Québec G1V 4G5, Canada
- Department of Food Science and Nutrition, Laboratoire de Transformation Alimentaire et Procédés ÉlectroMembranaire (LTAPEM, Laboratory of Food Processing and Electro-Membrane Processes) Université Laval, Québec, Québec G1V 0A6, Canada
| | - Sebastián Illanes
- Program of Reproductive Biology, Research and Innovation Center, School of Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, 7550000, Chile
- Center of Interventional Medicine for Precision and Advanced Cellular Therapy (IMPACT), Universidad de los Andes, Santiago, 7550000, Chile
| | - Javier Enrione
- Center of Interventional Medicine for Precision and Advanced Cellular Therapy (IMPACT), Universidad de los Andes, Santiago, 7550000, Chile
- Biopolymer Research and Engineering Lab (BiopREL), Research and Innovation Center, School of Nutrition and Dietetics, Faculty of Medicine, Universidad de los Andes, Santiago, 7550000, Chile
| |
Collapse
|
8
|
Zhou Y, Xu B. New insights into anti-diabetes effects and molecular mechanisms of dietary saponins. Crit Rev Food Sci Nutr 2023; 63:12372-12397. [PMID: 35866515 DOI: 10.1080/10408398.2022.2101425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diabetes mellitus (DM) is a long-term metabolic disorder that manifests as chronic hyperglycemia and impaired insulin, bringing a heavy load on the global health care system. Considering the inevitable side effects of conventional anti-diabetic drugs, saponins-rich natural products exert promising therapeutic properties to serve as safer and more cost-effective alternatives for DM management. Herein, this review systematically summarized the research progress on the anti-diabetic properties of dietary saponins and their underlying molecular mechanisms in the past 20 years. Dietary saponins possessed the multidirectional anti-diabetic capabilities by concurrent regulation of various signaling pathways, such as IRS-1/PI3K/Akt, AMPK, Nrf2/ARE, NF-κB-NLRP3, SREBP-1c, and PPARγ, in liver, pancreas, gut, and skeletal muscle. However, the industrialization and commercialization of dietary saponin-based drugs are confronted with a significant challenge due to the low bioavailability and lack of the standardization. Hence, in-depth evaluations in pharmacological profile, function-structure interaction, drug-signal pathway interrelation are essential for developing dietary saponins-based anti-diabetic treatments in the future.
Collapse
Affiliation(s)
- Yifan Zhou
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, Guangdong, China
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Baojun Xu
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, Guangdong, China
| |
Collapse
|
9
|
Yuan H, Sui H, Li S. Diosgenin alleviates the inflammatory damage and insulin resistance in high glucose‑induced podocyte cells via the AMPK/SIRT1/NF‑κB signaling pathway. Exp Ther Med 2023; 25:259. [PMID: 37153902 PMCID: PMC10155255 DOI: 10.3892/etm.2023.11958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/22/2023] [Indexed: 05/10/2023] Open
Abstract
Diabetic nephropathy (DN) is the predominant cause of end-stage renal disease globally. Diosgenin (DSG) has been reported to play a protective role in podocyte injury in DN. The present study aimed to explore the role of DSG in DN, as well as its mechanism of action in a high glucose (HG)-induced in vitro model of DN in podocytes. Cell viability, apoptosis, inflammatory response and insulin-stimulated glucose uptake were evaluated using Cell Counting Kit-8, TUNEL, ELISA and 2-deoxy-D-glucose assay, respectively. In addition, the expression of AMP-activated protein kinase (AMPK)/sirtuin 1 (SIRT1)/NF-κB signaling-related proteins in podocyte cells was measured using western blotting. The results indicated that DSG enhanced the viability of podocytes after HG exposure, but inhibited inflammatory damage and attenuated insulin resistance. Moreover, DSG induced the activation of the AMPK/SIRT1/NF-κB signaling pathway. Furthermore, treatment with compound C, an inhibitor of AMPK, counteracted the protective effects of DSG on HG-induced podocyte cells. Therefore, DSG may be a potential therapeutic compound for the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Haoyu Yuan
- Department of Endocrinology, The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Huacheng Sui
- Department of Endocrinology, The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Saimei Li
- Department of Endocrinology, The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
- Correspondence to: Dr Saimei Li, Department of Endocrinology, The First Clinical College of Guangzhou University of Chinese Medicine, 12 Airport Road, Guangzhou, Guangdong 510405, P.R. China
| |
Collapse
|
10
|
Kumar P, Singh K, Lone JF, Bhushan A, Gupta P, Gairola S. Morpho-anatomical, Molecular, and Chemical Standardization of Trillium govanianum Wall. ex D. Don: An Endangered Medicinal Herb Native to the Himalayas. Pharmacogn Mag 2023. [DOI: 10.1177/09731296221145070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
Background Trillium govanianum Wall. ex D. Don occurring at high altitudes in the Himalayas and known by the common name ‘Nag Chhatri,’ has high medicinal value. Its rhizome samples have substantial therapeutic potential and possess anti-cancer and anti-aging properties. Due to similar common names and morphology, there is an issue with adulteration and misidentification of actual rhizome samples with rhizomes of other species. So, there is a need to develop valid scientific methods to identify raw herbal samples of authentic ‘Nagchatri’ ( T. govanianum). Objectives The present study focused on developing botanical, molecular, and chemical standards for identifying raw herbal samples of T. govanianum. Materials and Methods Samples were collected from four locations in the Northwestern Himalayas. Botanical characters were studied by stereomicroscope and compound microscope. Molecular identification was done by DNA barcoding and chemical identification by chemical fingerprinting (TLC and HPTLC), LC-MS profiling, and NMR studies. Results The botanical characters involved detailed morpho-anatomical characterization of herbal samples. The DNA barcoding exhibited a 100% identification match of generated barcode sequences with NCBI database sequences for all the selected markers. Chemical profiling revealed diosgenin, makisterone A, and 20-hydroxy ecdysone as major constituents in the rhizome sample, confirming the authenticity of the species. Conclusion The integrated authentication approach employing botanical standardization, DNA barcoding, and chemical profiling will be a promising tool for accurately identifying the genuine raw herbal material of T. govanianum.
Collapse
Affiliation(s)
- Pankaj Kumar
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Kanwaljeet Singh
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India
| | - Javaid Fayaz Lone
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Anil Bhushan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India
| | - Prasoon Gupta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India
| | - Sumeet Gairola
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
11
|
Arya P, Kumar P. Diosgenin: An ingress towards solving puzzle for diabetes treatment. J Food Biochem 2022; 46:e14390. [PMID: 36106684 DOI: 10.1111/jfbc.14390] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/16/2022] [Accepted: 08/26/2022] [Indexed: 01/13/2023]
Abstract
The consumption and composition of food in daily life predict our health in long run. The relation of diabetes to sweets is quite popular. Diabetes hampers the glucose and insulin regulation in the human body by damaging pancreatic β cells. Diabetes has a strong potential towards altering cellular mechanisms of organs causing unlawful performance. Diabetes alters pathways like TLR4, AChE, NF-ĸB, LPL, and PPAR at different sites that affect the normal cellular machinery and cause damage to the local tissue and organ. The long-lasting effect of diabetes was observed in vascular, cardia, nervous, skeletal, reproductive, hepatic, ocular, and renal systems. The increasing awareness of diabetes and its concern has awakened the common people more enthusiastically. Due to rising harm from diabetes, scientific researchers tend to have more eyes toward it. While searching for diabetes solutions, fenugreek diosgenin could pop up with some positive effects in curing the same. Diosgenin helps to lower the scathe of diabetes by modifying cellular pathways in favor of healthy bodily functions. Diosgenin altered the pathways for renewal of pancreatic β cells for better insulin secretion, initiate GLUT4, enhanced DHEA, modify ER-α-mediated PI3K/Akt pathways. Diosgenin can be an appropriate insult for diabetes in a much evolving way for a healthy lifestyle. PRACTICAL APPLICATIONS: Diabetes is one of the most death causing diseases in the medical world. Regrettably the cure of diabetes is yet to be found. Various scientific team working on the same to look after the most appropriate way for diabetes treatment. There is enormous growth of nutraceutical in the market claiming for cure of different metabolic disorders. Among various bioactive compound fenugreek's diosgenin could took a leap over other in curing and preventing the damage caused by diabetes to different organs. The role of diosgenin in curing various metabolic disorders is quite popular from some time. This article also emphasizes over beneficiary effect of diosgenin in curing the damages caused by diabetes by altering cellular metabolism processes. Hence diosgenin could be a better way for researchers to develop a method for diabetes treatment.
Collapse
Affiliation(s)
- Prajya Arya
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, India
| | - Pradyuman Kumar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, India
| |
Collapse
|
12
|
Zhang SZ, Liang PP, Feng YN, Yin GL, Sun FC, Ma CQ, Zhang FX. Therapeutic potential and research progress of diosgenin for lipid metabolism diseases. Drug Dev Res 2022; 83:1725-1738. [PMID: 36126194 DOI: 10.1002/ddr.21991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 11/07/2022]
Abstract
Diosgenin, a steroidal saponin, is a natural product found in many plants. Diosgenin has a wide range of pharmacological activities, and has been used to treat cancer, nervous system diseases, inflammation, and infections. Numerous studies have shown that diosgenin has potential therapeutic value for lipid metabolism diseases via various pathways and mechanisms, such as controlling lipid synthesis, absorption, and inhibition of oxidative stress. These mechanisms and pathways have provided ideas for researchers to develop related drugs. In this review, we focus on data from animal and clinical studies, summarizing the toxicity of diosgenin, its pharmacological mechanism, recent research advances, and the related mechanisms of diosgenin as a drug for the treatment of lipid metabolism, especially in obesity, hyperlipidemia, nonalcoholic fatty liver disease, atherosclerosis, and diabetes. This systematic review will briefly describe the advantages of diosgenin as a potential therapeutic drug and seek to enhance our understanding of the pharmacological mechanism, recipe-construction, and the development of novel therapeutics against lipid metabolism diseases.
Collapse
Affiliation(s)
- Shi-Zhao Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Peng-Peng Liang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ya-Nan Feng
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Guo-Liang Yin
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Feng-Cui Sun
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Chao-Qun Ma
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Feng-Xia Zhang
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
13
|
Dharani S, Kalaiarasi G, Ravi M, Sathan Raj N, Lynch VM, Prabhakaran R. Diosgenin derivatives developed from Pd(II) catalysed dehydrogenative coupling exert an effect on breast cancer cells by abrogating their growth and facilitating apoptosis via regulating the AKT1 pathway. Dalton Trans 2022; 51:6766-6777. [PMID: 35420095 DOI: 10.1039/d2dt00514j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Palladium metallates containing 4-oxo-4H-chromene-3-carbaldehyde derived ONS donor Schiff bases were synthesized and their efficacy was tested in the direct amination of diosgenin - a phyto steroid. Based on the pharmacological importance of diosgenin, the obtained derivatives were exposed to study their effect on breast cancer cells where they significantly reduced the growth of cancer cells and left non-malignant breast epithelial cells unaffected. Among the derivatives, D3, D4 and D6 showed a better anti-proliferative effect and further analysis revealed that the D3, D4 and D6 derivatives markedly promoted cell cycle arrest and apoptosis by attenuation of the AKT1 signalling pathway.
Collapse
Affiliation(s)
- S Dharani
- Department of Chemistry, Bharathiar University, Coimbatore 641046, India.
| | - G Kalaiarasi
- Department of Chemistry, Bharathiar University, Coimbatore 641046, India.
| | - M Ravi
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, India.
| | - N Sathan Raj
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, India.
| | - Vincent M Lynch
- Department of Chemistry, University of Texas, Austin, TX 78712-1224, USA
| | - R Prabhakaran
- Department of Chemistry, Bharathiar University, Coimbatore 641046, India.
| |
Collapse
|
14
|
Som S, Antony J, Dhanabal SP, Ponnusankar S. Neuroprotective role of Diosgenin, a NGF stimulator, against Aβ (1-42) induced neurotoxicity in animal model of Alzheimer's disease. Metab Brain Dis 2022; 37:359-372. [PMID: 35023028 DOI: 10.1007/s11011-021-00880-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 12/05/2021] [Indexed: 01/24/2023]
Abstract
Diosgenin is a neurosteroid derived from the plants and has been previously reported for its numerous health beneficial properties, such as anti-arrhythmic, hypolipidemic, and antiproliferative effects. Although several studies conducted earlier suggested cognition enhancement actions of diosgenin against neurodegenerative disorders, but the molecular mechanisms underlying are not clearly understood. In the present study, we investigated the neuroprotective effect of diosgenin in the Wistar rats that received an intracerebroventricular injection of Amyloid-β (1-42) peptides, representing a rodent model of Alzheimer's disease (AD). Animals were treated with 100 and 200 mg/kg/p.o of diosgenin for 28 days, followed by Amyloid-β (1-42) peptides infusion. Animals were assessed for the spatial learning and memory by using radial arm maze and passive avoidance task. Subsequently, animals were euthanized and brains were collected for biochemical estimations and histopathological studies. Our results revealed that, diosgenin administration dose dependently improved the spatial learning and memory and protected the animals from Amyloid-β (1-42) peptides induced disrupted cognitive functions. Further, biochemical analysis showed that diosgenin successfully attenuated Amyloid-β (1-42) mediated plaque load, oxidative stress, neuroinflammation and elevated acetylcholinesterase activity. In addition, histopathological evaluation also supported neuroprotective effects of diosgenin in hippocampus of rat brain when assessed using hematoxylin-eosin and Cresyl Violet staining. Thus, the aforementioned effects suggested protective action of diosgenin against Aβ (1-42) induced neuronal damage and thereby can serve as a potential therapeutic candidate for AD.
Collapse
Affiliation(s)
- Swati Som
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty-643001, Tamilnadu, India
| | - Justin Antony
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty-643001, Tamilnadu, India
| | - SPalanisamy Dhanabal
- Department of Pharmacognosy and Phytochemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty-643001, Tamilnadu, India
| | - Sivasankaran Ponnusankar
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty-643001, Tamilnadu, India.
| |
Collapse
|
15
|
Zhang X, Zheng S, Li H. Protective Effect of Diosmin Against Streptozotocin-Induced Gestational Diabetes Mellitus via AGEs-RAGE Signalling Pathway. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.363.373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Wu Q, Gai S, Zhang H. Asperulosidic Acid, a Bioactive Iridoid, Alleviates Placental Oxidative Stress and Inflammatory Responses in Gestational Diabetes Mellitus by Suppressing NF-κB and MAPK Signaling Pathways. Pharmacology 2022; 107:197-205. [PMID: 35008094 DOI: 10.1159/000521080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/15/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Asperulosidic acid (ASP) is a bioactive iridoid exerting broad pharmacological and medicinal properties. However, it is still unknown if ASP has therapeutical effects on gestational diabetes mellitus (GDM). This study aims to evaluate the effects of ASP on GDM as well as its underlying mechanism. METHODS A mouse model of GDM was established and orally administrated ASP (10, 20, and 40 mg/kg) on gestation day (GD) 0. The mice were sacrificed on GD 18. RESULTS Blood glucose and serum insulin were then determined. The inflammatory cytokines including IL-6 and TNF-α and oxidative stress biomarkers including MDA, SOD, GSH, and GPx were determined by using specific ELISAs. In addition, the expressions of NF-κB and MAPK signaling pathway-related proteins were determined by using Western blotting. Treatment with ASP decreased blood glucose in the mouse model of GDM. Besides, ASP also increased serum insulin and attenuated β-cell function. Treatment with ASP suppressed IL-6 and TNF-α and regulated oxidative stress-related biomarkers. Western blotting analysis showed that treatment with ASP suppressed phosphorylation of NF-κB p65, ERK1/2, and p38 in placental tissues. CONCLUSION ASP alleviates placental oxidative stress and inflammatory responses in GDM by the inhibition of the NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Qian Wu
- Department of Obstetrics and Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Shukun Gai
- Department of Obstetrics and Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Huijie Zhang
- Department of Obstetrics and Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| |
Collapse
|
17
|
Lim HM, Park SH. Regulation of reactive oxygen species by phytochemicals for the management of cancer and diabetes. Crit Rev Food Sci Nutr 2022; 63:5911-5936. [PMID: 34996316 DOI: 10.1080/10408398.2022.2025574] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cancer and diabetes mellitus are served as typical life-threatening diseases with common risk factors. Developing therapeutic measures in cancers and diabetes have aroused attention for a long time. However, the problems with conventional treatments are in challenge, including side effects, economic burdens, and patient compliance. It is essential to secure safe and efficient therapeutic methods to overcome these issues. As an alternative method, antioxidant and pro-oxidant properties of phytochemicals from edible plants have come to the fore. Phytochemicals are naturally occurring compounds, considered promising agent applicable in treatment of various diseases with beneficial effects. Either antioxidative or pro-oxidative activity of various phytochemicals were found to contribute to regulation of cell proliferation, differentiation, cell cycle arrest, and apoptosis, which can exert preventive and therapeutic effects against cancer and diabetes. In this article, the antioxidant or pro-oxidant effects and underlying mechanisms of flavonoids, alkaloids, and saponins in cancer or diabetic models demonstrated by the recent studies are summarized.
Collapse
Affiliation(s)
- Heui Min Lim
- Department of Biological Science, Gachon University, Seongnam, Republic of Korea
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong, Republic of Korea
| |
Collapse
|
18
|
LIN H, LI S, ZHANG J, LIN S, TAN BK, HU J. Functional food ingredients for control of gestational diabetes mellitus: a review. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.03621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Huiting LIN
- Fujian Agriculture and Forestry University, China
| | - Shiyang LI
- Fujian Agriculture and Forestry University, China
| | - Jiawen ZHANG
- Fujian Agriculture and Forestry University, China
| | - Shaoling LIN
- Fujian Agriculture and Forestry University, China
| | - Bee K. TAN
- University of Leicester, United Kingdom; University Hospitals Leicester NHS Trust, United Kingdom
| | - Jiamiao HU
- Fujian Agriculture and Forestry University, China; University of Leicester, United Kingdom
| |
Collapse
|
19
|
Semwal P, Painuli S, Abu-Izneid T, Rauf A, Sharma A, Daştan SD, Kumar M, Alshehri MM, Taheri Y, Das R, Mitra S, Emran TB, Sharifi-Rad J, Calina D, Cho WC. Diosgenin: An Updated Pharmacological Review and Therapeutic Perspectives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1035441. [PMID: 35677108 PMCID: PMC9168095 DOI: 10.1155/2022/1035441] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 05/09/2022] [Indexed: 02/07/2023]
Abstract
Plants including Rhizoma polgonati, Smilax china, and Trigonella foenum-graecum contain a lot of diosgenin, a steroidal sapogenin. This bioactive phytochemical has shown high potential and interest in the treatment of various disorders such as cancer, diabetes, arthritis, asthma, and cardiovascular disease, in addition to being an important starting material for the preparation of several steroidal drugs in the pharmaceutical industry. This review aims to provide an overview of the in vitro, in vivo, and clinical studies reporting the diosgenin's pharmacological effects and to discuss the safety issues. Preclinical studies have shown promising effects on cancer, neuroprotection, atherosclerosis, asthma, bone health, and other pathologies. Clinical investigations have demonstrated diosgenin's nontoxic nature and promising benefits on cognitive function and menopause. However, further well-designed clinical trials are needed to address the other effects seen in preclinical studies, as well as a better knowledge of the diosgenin's safety profile.
Collapse
Affiliation(s)
- Prabhakar Semwal
- 1Department of Biotechnology, Graphic Era University, Dehradun, 248002 Uttarakhand, India
| | - Sakshi Painuli
- 1Department of Biotechnology, Graphic Era University, Dehradun, 248002 Uttarakhand, India
| | - Tareq Abu-Izneid
- 2Pharmaceutical Sciences Department, College of Pharmacy, Al Ain University, Al Ain 64141, UAE
| | - Abdur Rauf
- 3Department of Chemistry, University of Swabi, Swabi, Anbar-23561, K.P .K, Pakistan
| | - Anshu Sharma
- 4Department of Food Science and Technology, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, 173230, India
| | - Sevgi Durna Daştan
- 5Department of Biology, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey
- 6Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Manoj Kumar
- 7Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Mohammed M. Alshehri
- 8Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Yasaman Taheri
- 9Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rajib Das
- 10Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Saikat Mitra
- 10Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Talha Bin Emran
- 11Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- 12Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Javad Sharifi-Rad
- 9Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- 13Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | - Daniela Calina
- 14Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - William C. Cho
- 15Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
20
|
Chauhan N, Porte S, Joshi V, Shah K. Plants' steroidal saponins - A review on its pharmacology properties and analytical techniques. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2022. [DOI: 10.4103/2311-8571.353503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
21
|
Khateeb S, Albalawi A, Alkhedaide A. Diosgenin Modulates Oxidative Stress and Inflammation in High-Fat Diet-Induced Obesity in Mice. Diabetes Metab Syndr Obes 2022; 15:1589-1596. [PMID: 35637860 PMCID: PMC9147404 DOI: 10.2147/dmso.s355677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 05/17/2022] [Indexed: 12/04/2022] Open
Abstract
INTRODUCTION Obesity is a chronic metabolic disorder that results in excessive energy accumulated in adipose tissue causing dysfunction of adipocytes, inflammation, and oxidative stress. Diosgenin (DG), a steroidal saponin produced by several plants, has been reported to have antioxidant activity. This study aimed to evaluate the effects of diosgenin on oxidative stress and inflammation in mice fed with a high-fat diet (HFD). METHODS Thirty adult male mice were divided into three groups including the control group, mice fed with a normal diet; the HFD group, mice fed with a high-fat diet for 6 weeks; and the HFD+DG group, mice fed with a high-fat diet and diosgenin daily for 6 weeks. Interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), malondialdehyde (MDA), and total antioxidant capacity (TAC) activities were evaluated. Histopathological changes in the adipose tissues have been investigated. RESULTS Data showed that diosgenin increased TAC activities with a concomitant decrease in MDA levels. As well, DG reduces the TNF and IL-6 levels. The histopathological changes in the adipose tissues due to high-fat consumption were restored upon DG supplementation. CONCLUSION Our results suggested that diosgenin is a promising agent for regulating obesity by increasing the levels of antioxidants, modifying oxidative stress and pro-inflammatory cytokines, which might prevent the onset of many diseases.
Collapse
Affiliation(s)
- Sahar Khateeb
- Biochemistry Division, Department of Chemistry, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Aishah Albalawi
- Biology Department, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Adel Alkhedaide
- Department of Medical Laboratory, Turabah University College, Taif University, Taif, 21944, Saudi Arabia
- Correspondence: Adel Alkhedaide, Department of Medical Laboratory, Turabah University College, Taif University, P. O. Box 11099, Taif, 21944, Saudi Arabia, Tel +966540490404, Fax +966128224366, Email
| |
Collapse
|
22
|
Xu P, Wang S, Pang D. A Novel Identified Peptide Hormone "Metabolitin" Attenuates Lipid Absorption in the Small Intestine of Diabetic Mice with Nonalcoholic Fatty Liver Disease by Regulating Neurotensin and AMPK Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:8386848. [PMID: 34621326 PMCID: PMC8492287 DOI: 10.1155/2021/8386848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/18/2021] [Indexed: 11/23/2022]
Abstract
AIM The purpose of this study was to explore the effect of a novel identified peptide hormone "metabolitin" on lipid absorption in the small intestine of mice with type 2 diabetes mellitus (T2DM) and nonalcoholic fatty liver disease (NAFLD) and potential mechanisms. METHODS T2DM was induced in mice by 4-6 weeks of high-fat diets followed by intraperitoneal injection of 35 mg/kg STZ. NAFLD was induced in diabetic mice by a month of high-fat diets. Oral administration of 4 pmol/g or 12 pmol/g metabolitin every two days was performed during one-month high-fat diets. Triglyceride (TG) and total cholesterol (TC) detection and Oil Red O staining were performed to evaluate lipid absorption. The neurotensin (NT) levels in the intestinal tissues and serum were determined by ELISA. Lipogenesis- and lipolysis-related proteins, AMP-activated protein kinase (AMPK), and p-AMPK were examined by Western blot analysis. RESULTS It was found that glucose tolerance test (GTT), insulin tolerance test (ITT), TG, and TC indicated lower levels in the serum of NAFLD/T2DM mice receiving 4 pmol/g and 12 pmol/g metabolitin compared to the mice receiving normal saline (P < 0.05). No significant difference was noted in the TC level of the feces among mice with different diets (P > 0.05), but compared to NAFLD/T2DM mice with normal saline, the mice administrated with 4 pmol/g and 12 pmol/g metabolitin revealed much higher TG levels in the feces (P < 0.05). The results of Oil Red O staining revealed that the intestinal epithelial cells of NAFLD/T2DM mice receiving 12 pmol/g metabolitin indicated resistance to lipid absorption and the area of staining was smaller than that of NAFLD/T2DM mice with normal saline (P < 0.05). The NAFLD/T2DM mice receiving 4 pmol/g and 12 pmol/g metabolitin showed a higher extent of p-AMPK concomitant with lower levels of NT in the serum and small intestine than the mice with normal saline (P < 0.05). Western blot analysis also suggested that NAFLD/T2DM mice receiving 4 pmol/g and 12 pmol/g metabolitin revealed lower expressions in fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), stearoyl-CoA desaturase-1 (SCD-1), and sterol regulatory element-binding transcription factor-1 (SREBP1) proteins and higher expressions in carnitine palmitoyltransferase 1 (CPT1), peroxisome proliferator-activated receptor alpha (PPARα), and fatty acid translocase (CD36) proteins than NAFLD/T2DM mice with normal saline (P < 0.05). CONCLUSION According to the data we observed, oral administration of metabolitin could attenuate lipid absorption in the small intestine of NAFLD/T2DM mice, which may be a novel therapeutic approach for NAFLD/T2DM.
Collapse
Affiliation(s)
- Peng Xu
- Gastroenterology Department, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Shanjuan Wang
- Gastroenterology Department, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Dongyue Pang
- Endocrine Department, Jiading Branch of Shanghai General Hospital, Shanghai, China
| |
Collapse
|
23
|
Metabolites from midtrimester plasma of pregnant patients at high risk for preterm birth. Am J Obstet Gynecol MFM 2021; 3:100393. [PMID: 33991707 DOI: 10.1016/j.ajogmf.2021.100393] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/26/2021] [Accepted: 05/03/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND There is an increased awareness regarding the association between exposure to environmental contaminants and adverse pregnancy outcomes including preterm birth. Whether an individual's metabolic profile can be utilized during pregnancy to differentiate the subset of patients who are ultimately destined to delivered preterm remains uncertain but could have MEANINGFUL clinical implications. OBJECTIVE We sought to objectively quantify metabolomic profiles of patients at high risk of preterm birth by evaluating midtrimester maternal plasma and to measure whether endogenous metabolites and exogenous environmental substances differ among those who ultimately deliver preterm compared with those who deliver at term. STUDY DESIGN This was a case-control analysis from a prospective cohort of patients carrying a singleton, nonanomalous gestation who were at high risk of spontaneous preterm birth. Subjects with a plasma blood sample drawn at <28 weeks' gestation and no evidence of preterm labor at the time of enrollment were included. Metabolites were extracted from frozen samples, and metabolomic analysis was performed using liquid chromatography/mass spectrometry. The primary outcome was preterm birth at 16.0 to 36.9 weeks' gestation. RESULTS A total of 42 patients met the inclusion criteria. Of these, 25 (59.5%) delivered preterm at <37 weeks' gestation, at a median of 30.14 weeks' gestation (interquartile range, 28.14-34.14). A total of 812 molecular features differed between preterm birth cases and term controls with a minimum fold change of 1.2 and P<.05. Of these, 570 of 812 (70.1%) were found in higher abundances in preterm birth cases; the other 242 of 812 (29.9%) were in higher abundance in term birth controls. The identity of the small molecule/compound represented by the molecular features differing statistically between preterm birth cases and term controls was identified as ranging from those involved with endogenous metabolic pathways (including lipid catabolism, steroids, and steroid-related molecules) to exogenous exposures (including avocadyne, diosgenin, polycyclic aromatic hydrocarbons, acetaminophen metabolites, aspartame, and caffeine). Random forest analyses evaluating the relative contribution of each of the top 30 compounds in differentiating preterm birth and term controls accurately classified 21 of 25 preterm birth cases (84%). CONCLUSION Both endogenous metabolites and exogenous exposures differ in maternal plasma in the midtrimester among patients who ultimately delivered preterm compared with those who deliver at term.
Collapse
|
24
|
Wang M, Wang B, Wang S, Lu H, Wu H, Ding M, Ying L, Mao Y, Li Y. Effect of Quercetin on Lipids Metabolism Through Modulating the Gut Microbial and AMPK/PPAR Signaling Pathway in Broilers. Front Cell Dev Biol 2021; 9:616219. [PMID: 33634119 PMCID: PMC7900412 DOI: 10.3389/fcell.2021.616219] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/18/2021] [Indexed: 11/13/2022] Open
Abstract
The present study was conducted to investigate effects and mechanism of quercetin on lipids metabolism in broilers. 480 AA broilers were randomly allotted to four treatments (0, 0.2, 0.4, and 0.6 g/kg quercetin) for 42 days. Compared with the control, 0.6 g/kg quercetin significantly decreased percentage of abdominal fat (P < 0.05); 0.2, 0.4, and 0.6 g/kg quercetin significantly decreased relative abundance of Lachnospiraceae and Desulfovibrionaceae (P < 0.05, P < 0.05, P < 0.01; P < 0.01, P < 0.01, P < 0.01); 0.2 g/kg quercetin significantly increased mRNA expression of PI3K, AMPKα1, AMPKα2, AMPKβ2, LKB1 (P < 0.01, P < 0.01, P < 0.05, P < 0.01, P < 0.05), and significantly reduced mRNA expression of SREBP1 and PPARγ (P < 0.01, P < 0.05); 0.4 g/kg quercetin significantly increased mRNA expression of LKB1 and PKB (P < 0.05, P < 0.01) and significantly reduced mRNA expression of ACC, HMGR, PPARγ, and SREBP1 (P < 0.05, P < 0.01, P < 0.01, P < 0.01); 0.6 g/kg quercetin significantly increased mRNA expression of AMPKγ, LKB1, CPT1, PPARα, PKB (P < 0.01, P < 0.01, P < 0.01, P < 0.05, P < 0.05), and significantly reduced the mRNA expression of PI3K, ACC, HMGR, PPARγ, SREBP1 (P < 0.05, P < 0.05, P < 0.01, P < 0.01, P < 0.01); 0.2 g/kg quercetin significantly increased protein expression of AMPK (P < 0.01); 0.6 g/kg quercetin significantly increased protein expression of LKB1 (P < 0.01), 0.2 and 0.6 g/kg quercetin significantly increased protein expression of PI3K, PKB, CPT1 (P < 0.05, P < 0.01, P < 0.05, P < 0.01, P < 0.01, P < 0.01), and significantly reduced protein expression of ACC and SREBP1 (P < 0.01, P < 0.01, P < 0.01, P < 0.01). In conclusion, quercetin improved lipid metabolism by modulating gut microbial and AMPK/PPAR signaling pathway in broilers.
Collapse
Affiliation(s)
- Mi Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China.,College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - Bo Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Shanshan Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Han Lu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Hao Wu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Manyi Ding
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Linlin Ying
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Yanjun Mao
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Yao Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| |
Collapse
|
25
|
Yu L, Lu H, Yang X, Li R, Shi J, Yu Y, Ma C, Sun F, Zhang S, Zhang F. Diosgenin alleviates hypercholesterolemia via SRB1/CES-1/CYP7A1/FXR pathway in high-fat diet-fed rats. Toxicol Appl Pharmacol 2021; 412:115388. [PMID: 33383043 DOI: 10.1016/j.taap.2020.115388] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022]
Abstract
Phytosterol diosgenin (DG) exhibits cholesterol-lowering properties. Few studies focused on the underlying mechanism of DG attenuation of hypercholesterolemia by promoting cholesterol metabolism. To investigate the roles of SRB1/CES-1/CYP7A1/FXR pathways in accelerating cholesterol elimination and alleviating hypercholesterolemia, a rat model of hypercholesterolemia was induced by providing a high-fat diet (HFD). Experimental rat models were randomly divided into a normal control (Con) group, HFD group, low-dose DG (LDG) group (150 mg/kg/d), high-dose DG (HDG) group (300 mg/kg) and Simvastatin (Sim) group (4 mg/kg/d). Body weights, serum and hepatic lipid parameters of rats were tested. The expression levels of scavenger receptor class B type I (SRB1), carboxylesterase-1 (CES-1), cholesterol7α- hydroxylase (CYP7A1), and farnesoid X receptor (FXR) were determined. The results showed that DG reduced weight and lowered lipid levels in HFD-fed rats. Pathological morphology analyses revealed that DG notably improved hepatic steatosis and intestinal structure. Further studies showed the increased hepatic SRB1, CES-1, CYP7A1 and inhibited FXR-mediated signaling in DG-fed rats, which contributing to the decrease of hepatic cholesterol. DG also increased intestinal SRB1 and CES-1, inhibiting cholesterol absorption and promoting RCT. The expression levels of these receptors in the HDG group were higher than LDG and Sim groups. These data suggested that DG accelerated reverse cholesterol transport (RCT) and enhanced cholesterol elimination via SRB1/CES-1/CYP7A1/FXR pathway, and DG might be a new candidate for the alleviation of hypercholesterolemia.
Collapse
Affiliation(s)
- Lu Yu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Haifei Lu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Xiufen Yang
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Ruoqi Li
- Zhejiang Chinese Medical University, Hangzhou 310058, China
| | - Jingjing Shi
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Yantong Yu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Chaoqun Ma
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Fengcui Sun
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Shizhao Zhang
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Fengxia Zhang
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China.
| |
Collapse
|
26
|
Sun F, Yang X, Ma C, Zhang S, Yu L, Lu H, Yin G, Liang P, Feng Y, Zhang F. The Effects of Diosgenin on Hypolipidemia and Its Underlying Mechanism: A Review. Diabetes Metab Syndr Obes 2021; 14:4015-4030. [PMID: 34552341 PMCID: PMC8450287 DOI: 10.2147/dmso.s326054] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022] Open
Abstract
Hyperlipidemia is a disorder of lipid metabolism, which is a major cause of coronary heart disease. Although there has been considerable progress in hyperlipidemia treatment, morbidity and risk associated with the condition continue to rise. The first-line treatment for hyperlipidemia, statins, has multiple side effects; therefore, development of safe and effective drugs from natural products to prevent and treat hyperlipidemia is necessary. Diosgenin is primarily derived from fenugreek (Trigonella foenum graecum) seeds, and is also abundant in medicinal herbs such as Dioscorea rhizome, Dioscorea septemloba, and Rhizoma polygonati, is a well-known steroidal sapogenin and the active ingredient in many drugs to treat cardiovascular conditions. There is abundant evidence that diosgenin has potential for application in correcting lipid metabolism disorders. In this review, we evaluated the latest evidence related to diosgenin and hyperlipidemia from clinical and animal studies. Additionally, we elaborate the pharmacological mechanism underlying the activity of diosgenin in treating hyperlipidemia in detail, including its role in inhibition of intestinal absorption of lipids, regulation of cholesterol transport, promotion of cholesterol conversion into bile acid and its excretion, inhibition of endogenous lipid biosynthesis, antioxidation and lipoprotein lipase activity, and regulation of transcription factors related to lipid metabolism. This review provides a deep exploration of the pharmacological mechanisms involved in diosgenin-hyperlipidemia interactions and suggests potential routes for the development of novel drug therapies for hyperlipidemia.
Collapse
Affiliation(s)
- Fengcui Sun
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Xiufen Yang
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Chaoqun Ma
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Shizhao Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Lu Yu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Haifei Lu
- Hubei University of Traditional Chinese Medicine, Wuhan, 430065, People's Republic of China
| | - Guoliang Yin
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Pengpeng Liang
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Yanan Feng
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Fengxia Zhang
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, People’s Republic of China
- Correspondence: Fengxia Zhang Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, People’s Republic of ChinaTel +8653168616011 Email
| |
Collapse
|
27
|
Li J, Ding X, Jian T, Lü H, Zhao L, Li J, Liu Y, Ren B, Chen J. Four sesquiterpene glycosides from loquat ( Eriobotrya japonica) leaf ameliorates palmitic acid-induced insulin resistance and lipid accumulation in HepG2 Cells via AMPK signaling pathway. PeerJ 2020; 8:e10413. [PMID: 33240683 PMCID: PMC7680621 DOI: 10.7717/peerj.10413] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Abstract
Insulin resistance (IR), caused by impaired insulin signal and decreased insulin sensitivity, is generally responsible for the pathophysiology of type 2 diabetes mellitus (T2DM). Sesquiterpene glycosides (SGs), the exclusive natural products from loquat leaf, have been regarded as potential lead compounds owing to their high efficacy in hypoglycemia and hypolipidemia. Here, we evaluated the beneficial effects of four single SGs isolated from loquat leaf, including SG1, SG2, SG3 and one novel compound SG4 against palmitic acid-induced insulin resistance in HepG2 cells. SG1, SG3 and SG4 could significantly enhance glucose uptake of insulin-resistant HepG2 cells at non-cytotoxic concentration. Meanwhile, Oil Red O staining showed the decrease of both total cholesterol and triglyceride content, suggesting the amelioration of lipid accumulation by SGs in insulin-resistant HepG2 cells. Further investigations found that the expression levels of phosphorylated AMPK, ACC, IRS-1, and Akt were significantly up-regulated after SGs treatment, on the contrary, the expression levels of SREBP-1 and FAS were significantly down-regulated. Notably, AMPK inhibitor Compound C (CC) blocked the regulative effects, while AMPK activator AICAR mimicked the effects of SGs in PA-treated insulin-resistant HepG2 cells. In conclusion, SGs (SG4>SG1≈SG3>SG2) improved lipid accumulation in insulin-resistant HepG2 cells through the AMPK signaling pathway.
Collapse
Affiliation(s)
- Jiawei Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Xiaoqin Ding
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Tunyu Jian
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Han Lü
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Lei Zhao
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Jing Li
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Yan Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Bingru Ren
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Jian Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China.,Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
28
|
Parama D, Boruah M, Yachna K, Rana V, Banik K, Harsha C, Thakur KK, Dutta U, Arya A, Mao X, Ahn KS, Kunnumakkara AB. Diosgenin, a steroidal saponin, and its analogs: Effective therapies against different chronic diseases. Life Sci 2020; 260:118182. [PMID: 32781063 DOI: 10.1016/j.lfs.2020.118182] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Chronic diseases are a major cause of mortality worldwide, and despite the recent development in treatment modalities, synthetic drugs have continued to show toxic side effects and development of chemoresistance, thereby limiting their application. The use of phytochemicals has gained attention as they show minimal side effects. Diosgenin is one such phytochemical which has gained importance for its efficacy against the life-threatening diseases, such as cardiovascular diseases, cancer, nervous system disorders, asthma, arthritis, diabetes, and many more. AIM To evaluate the literature available on the potential of diosgenin and its analogs in modulating different molecular targets leading to the prevention and treatment of chronic diseases. METHOD A detailed literature search has been carried out on PubMed for gathering information related to the sources, biosynthesis, physicochemical properties, biological activities, pharmacokinetics, bioavailability and toxicity of diosgenin and its analogs. KEY FINDINGS The literature search resulted in many in vitro, in vivo and clinical trials that reported the efficacy of diosgenin and its analogs in modulating important molecular targets and signaling pathways such as PI3K/AKT/mTOR, JAK/STAT, NF-κB, MAPK, etc., which play a crucial role in the development of most of the diseases. Reports have also revealed the safety of the compound and the adaptation of nanotechnological approaches for enhancing its bioavailability and pharmacokinetic properties. SIGNIFICANCE Thus, the review summarizes the efficacy of diosgenin and its analogs for developing as a potent drug against several chronic diseases.
Collapse
Affiliation(s)
- Dey Parama
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Monikongkona Boruah
- Cell and Molecular Biology Lab, Department of Zoology, Cotton University, Guwahati, Assam 781001, India
| | - Kumari Yachna
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Varsha Rana
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Choudhary Harsha
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Krishan Kumar Thakur
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Uma Dutta
- Cell and Molecular Biology Lab, Department of Zoology, Cotton University, Guwahati, Assam 781001, India
| | - Aditya Arya
- Department of Pharmacology and Therapeutics, School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Xinliang Mao
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, China; Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
29
|
Gan Q, Wang J, Hu J, Lou G, Xiong H, Peng C, Zheng S, Huang Q. The role of diosgenin in diabetes and diabetic complications. J Steroid Biochem Mol Biol 2020; 198:105575. [PMID: 31899316 DOI: 10.1016/j.jsbmb.2019.105575] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/10/2019] [Accepted: 12/25/2019] [Indexed: 01/23/2023]
Abstract
Diabetes mellitus is a chronic and common metabolic disease that seriously endangers human health. Hyperglycemia and long-term metabolic disorders in diabetes will cause damage to the whole body tissues and organs, resulting in serious complications. Nowadays, drugs for treating diabetes on the market has strong side effects, new treatments thus are urgently needed. Natural therapy of natural ingredients is a promising avenue, this is because natural ingredients are safer and they also show strong activity in the treatment of diabetes. Diosgenin is such a very biologically active natural steroidal sapogenin. The research of diosgenin in the treatment of diabetes and its complications has been widely reported. This article reviews the effects of diosgenin through multiple targets and multiple pathways in diabetes and its complications which including diabetic nephropathy, diabetic liver disease, diabetic neuropathy, diabetic vascular disease, diabetic cardiomyopathy, diabetic reproductive dysfunction, and diabetic eye disease.
Collapse
Affiliation(s)
- Qingxia Gan
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| | - Jin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| | - Ju Hu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| | - Guanhua Lou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| | - Haijun Xiong
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| | - Chengyi Peng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| | - Song Zheng
- Sichuan Kaimei Chinese Medicine Co., Ltd, No.155, Section 1, Fuxing Road, Longmatan District, Luzhou, 646000, China.
| | - Qinwan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China; State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| |
Collapse
|
30
|
Cai B, Zhang Y, Wang Z, Xu D, Jia Y, Guan Y, Liao A, Liu G, Chun C, Li J. Therapeutic Potential of Diosgenin and Its Major Derivatives against Neurological Diseases: Recent Advances. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3153082. [PMID: 32215172 PMCID: PMC7079249 DOI: 10.1155/2020/3153082] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/16/2019] [Accepted: 12/30/2019] [Indexed: 12/15/2022]
Abstract
Diosgenin (DG), a well-known steroidal sapogenin, is present abundantly in medicinal herbs such as Dioscorea rhizome, Dioscorea villosa, Trigonella foenum-graecum, Smilax China, and Rhizoma polgonati. DG is utilized as a major starting material for the production of steroidal drugs in the pharmaceutical industry. Due to its wide range of pharmacological activities and medicinal properties, it has been used in the treatment of cancers, hyperlipidemia, inflammation, and infections. Numerous studies have reported that DG is useful in the prevention and treatment of neurological diseases. Its therapeutic mechanisms are based on the mediation of different signaling pathways, and targeting these pathways might lead to the development of effective therapeutic agents for neurological diseases. The present review mainly summarizes recent progress using DG and its derivatives as therapeutic agents for multiple neurological disorders along with their various mechanisms in the central nervous system. In particular, those related to therapeutic efficacy for Parkinson's disease, Alzheimer's disease, brain injury, neuroinflammation, and ischemia are discussed. This review article also critically evaluates existing limitations associated with the solubility and bioavailability of DG and discusses imperatives for translational clinical research. It briefly recapitulates recent advances in structural modification and novel formulations to increase the therapeutic efficacy and brain levels of DG. In the present review, databases of PubMed, Web of Science, and Scopus were used for studies of DG and its derivatives in the treatment of central nervous system diseases published in English until December 10, 2019. Three independent researchers examined articles for eligibility. A total of 150 articles were screened from the above scientific literature databases. Finally, a total of 46 articles were extracted and included in this review. Keywords related to glioma, ischemia, memory, aging, cognitive impairment, Alzheimer, Parkinson, and neurodegenerative disorders were searched in the databases based on DG and its derivatives.
Collapse
Affiliation(s)
- Bangrong Cai
- Henan Research Center for Special Processing Technology of Chinese Medicine, School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Ying Zhang
- Department of Biochemistry, Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Zengtao Wang
- Department of Medicinal Chemistry, College of Pharmacy JiangXi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Dujuan Xu
- Henan Research Center for Special Processing Technology of Chinese Medicine, School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yongyan Jia
- Henan Research Center for Special Processing Technology of Chinese Medicine, School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yanbin Guan
- Henan Research Center for Special Processing Technology of Chinese Medicine, School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Aimei Liao
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Gaizhi Liu
- Henan Research Center for Special Processing Technology of Chinese Medicine, School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - ChangJu Chun
- Research Institute of Drug Development, College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Jiansheng Li
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment and Chinese Medicine Development of Henan Province, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, China
| |
Collapse
|
31
|
Huang H, Nie C, Qin X, Zhou J, Zhang L. Diosgenin inhibits the epithelial-mesenchymal transition initiation in osteosarcoma cells via the p38MAPK signaling pathway. Oncol Lett 2019; 18:4278-4287. [PMID: 31579425 DOI: 10.3892/ol.2019.10780] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 06/13/2019] [Indexed: 01/01/2023] Open
Abstract
Diosgenin is an important basic raw material for the production of steroid hormone drugs. It can be isolated and purified from a variety of traditional Chinese medicines or plants. Modern molecular biological studies have shown that diosgenin inhibits various tumor cells migration and invasion ability to varying degrees in vitro and in vivo. The aim of the present study was to observe the inhibitory effects of diosgenin on the invasive and metastatic capabilities of osteosarcoma cells and to determine the association between the effects of diosgenin on the epithelial-mesenchymal transition (EMT). Wound healing and Transwell assays were used to observe the inhibitory effects of diosgenin on the invasion and migration of two osteosarcoma cell lines. Immunofluorescence was used to observe changes in transforming growth factor β1 (TGF-β1) protein expression levels in the osteosarcoma cells following drug administration. EMT-associated proteins, including TGFβ1, E-cadherin and vimentin were detected by western blotting, which demonstrated that the drug may inhibit the initiation of EMT in osteosarcoma cells. Western blot analysis of the expression of all the proteins in the mitogen-activated protein kinase (MAPK) pathway demonstrated that the drug inhibited the MAPK signaling pathway. The primary mechanism of action of diosgenin was the inhibition of the phosphorylated p38 (pP38) protein. Through a combination of inhibitors of the p38MAPK signaling pathway and detection of the downstream EMT marker protein E-cadherin by quantitative PCR, pP38 was confirmed to be a target of diosgenin in the inhibition of EMT in the osteosarcoma cells via the MAPK molecular signaling pathway. Diosgenin may exhibit utility as an auxiliary drug for the clinical reduction of metastasis in patients with osteosarcoma.
Collapse
Affiliation(s)
- Huaming Huang
- Department of Research Office, Jiangsu Health Vocational College, Nanjing, Jiangsu 211800, P.R. China.,Department of Orthopedics, Xishan People's Hospital of Wuxi, Wuxi, Jiangsu 214015, P.R. China
| | - Chao Nie
- Department of Research Office, Jiangsu Health Vocational College, Nanjing, Jiangsu 211800, P.R. China
| | - Xiaokang Qin
- Jiangsu KeyGEN BioTECH Co., Ltd., Nanjing, Jiangsu 211100, P.R. China
| | - Jie Zhou
- Department of Research Office, Jiangsu Health Vocational College, Nanjing, Jiangsu 211800, P.R. China
| | - Lei Zhang
- Department of Research Office, Jiangsu Health Vocational College, Nanjing, Jiangsu 211800, P.R. China
| |
Collapse
|
32
|
Song H, Xu Y, Yang X, Rong X, Wang Y, Wei N. Tertiary butylhydroquinone alleviates gestational diabetes mellitus in C57BL/KsJ-Lep db/+ mice by suppression of oxidative stress. J Cell Biochem 2019; 120:15310-15319. [PMID: 31050362 DOI: 10.1002/jcb.28798] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/30/2019] [Accepted: 02/04/2019] [Indexed: 12/14/2022]
Abstract
Gestational diabetes mellitus (GDM) is a common disorder characterized by abnormal glucose metabolism during pregnancy, affecting 2% to 5% of pregnant women. Currently, clinical treatment for GDM is very limited. The present study was designed to investigate the effect and underlying molecular mechanism of tertiary butylhydroquinone (TBHQ) in a pregnant C57BL/KsJ-Lep db/+ (referred to as db+) GDM mouse model. The results showed that nonpregnant db/+ mice did not show a diabetic phenotype, and TBHQ had no effect on glucose and insulin tolerance in these mice. Moreover, in db/+ pregnant mice exhibiting typical diabetes symptoms, such as hyperglycemia and hypoinsulinemia, TBHQ could remarkably decrease the blood glucose level, increase insulin level, and improve glucose and insulin intolerance. The results also revealed that TBHQ could inhibit oxidative stress in pregnant db/+ mice. Furthermore, TBHQ greatly improved offspring survival rate, glucose metabolism, and insulin tolerance. In addition, TBHQ inhibited oxidative stress by reducing malondialdehyde (MDA) and reactive oxygen species (ROS) levels and increased superoxide dismutase (SOD), and glutathione peroxidase (GPx) activities. Moreover, we found that TBHQ activated the nuclear factor erythroid 2-related factor 2 (Nrf2), thereby increasing the levels of Nrf2, and ultimately upregulating the expression of heme oxygenase 1 (NO-1) and superoxide dismutase 2 (SOD2). In conclusion, our findings demonstrated that TBHQ alleviated GDM via Nrf2 activation.
Collapse
Affiliation(s)
- Hongbi Song
- Department of Obstetrics, Guizhou Provincial People's Hospital, Guiyang, People's Republic of China
| | - Yin Xu
- Department of Obstetrics, Guizhou Provincial People's Hospital, Guiyang, People's Republic of China
| | - Xiaowu Yang
- Department of Obstetrics, Guizhou Provincial People's Hospital, Guiyang, People's Republic of China
| | - Xiaoting Rong
- Department of Obstetrics, Guizhou Provincial People's Hospital, Guiyang, People's Republic of China
| | - Ying Wang
- Department of Obstetrics, Guizhou Provincial People's Hospital, Guiyang, People's Republic of China
| | - Na Wei
- Department of Obstetrics, Guizhou Provincial People's Hospital, Guiyang, People's Republic of China
| |
Collapse
|
33
|
Combined Effect of Diosgenin Along with Ezetimibe or Atorvastatin on the Fate of Labelled Bile Acid and Cholesterol in Hypercholesterolemic Rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16040627. [PMID: 30791676 PMCID: PMC6406618 DOI: 10.3390/ijerph16040627] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/08/2019] [Accepted: 02/14/2019] [Indexed: 12/19/2022]
Abstract
We analyzed the effect of diosgenin, administered with atorvastatin or ezetimibe, on the fate of 3H(G)-taurocholic acid or 26-14C-cholesterol in hypercholesterolemic rats. Male Wistar rats received a hypercholesterolemic diet (HD), HD + atorvastatin (HD+ATV), HD + ezetimibe (HD+EZT), HD + diosgenin (HD+DG), HD+ATV+EZT, or HD+ATV+DG for 40 days. We also included a control normal group (ND). The labelled compounds were administered on day 30. The animals were placed in metabolic cages for daily feces collection. At day 40 the rats were sacrificed. Lipid extracts from blood, liver, spinal cord, testicles, kidneys, epididymis, intestine, and feces were analyzed for radioactivity. Cholesterol activity was the highest in the liver in HD rats. DG diminished one half of this activity in HD+DG and HD+ATV+DG groups in comparison with the HD group. HD+ATV rats showed four to almost ten-fold cholesterol activity in the spinal cord compared with the ND or HD rats. Fecal elimination of neutral steroids was approximately two-fold higher in the HD+DG and HD+ATV+DG groups. Taurocholic acid activity was four to ten-fold higher in HD+DG intestine as compared to the other experimental groups. Taurocholic activity in the liver of HD and HD+DG groups was two and a half higher than in ND. Our results show that the combination of DG and ATV induced the highest cholesterol reduction in the liver and other tissues.
Collapse
|
34
|
Kim JK, Park SU. An update on the biological and pharmacological activities of diosgenin. EXCLI JOURNAL 2018; 17:24-28. [PMID: 29383016 PMCID: PMC5780621 DOI: 10.17179/excli2017-894] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/13/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Jae Kwang Kim
- Division of Life Sciences and Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Korea
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| |
Collapse
|
35
|
Nguyen TT, Nguyen DH, Zhao BT, Le DD, Min BS, Kim YH, Woo MH. Triterpenoids and sterols from the grains of Echinochloa utilis Ohwi & Yabuno and their cytotoxic activity. Biomed Pharmacother 2017. [DOI: 10.1016/j.biopha.2017.06.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
36
|
El Bairi K, Ouzir M, Agnieszka N, Khalki L. Anticancer potential of Trigonella foenum graecum: Cellular and molecular targets. Biomed Pharmacother 2017; 90:479-491. [PMID: 28391170 DOI: 10.1016/j.biopha.2017.03.071] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 02/08/2023] Open
Abstract
A growing body of evidence supported by numerous studies on tumorigenesis confirms that it is possible to target various hallmarks of cancer. Recent studies have shown that plant-derived molecules may be used in targeting different signaling pathways for cancer drug discovery. The present paper gives an insight into the anticancer potential of fenugreek and lists the existing studies that have been carried out to demonstrate the advantages of the use of fenugreek in cancer treatment and prevention. It also aims at opening up new perspectives in the development of new drugs of natural origins in the future clinical trials. This review article will discuss; (1) the chemical constituents and bioactive compounds of fenugreek; (2) effects on oxidative stress and inflammation; (3) effects on proliferation, apoptosis, and invasion; (4) toxicity of fenugreek; and 5) future directions in cancer drug development. All of the experimental studies discussed in this paper suggest that multiple signaling pathways (hallmarks) are involved in the anticancer activities of fenugreek, but their efficacy is still unclear, which requires further investigation.
Collapse
Affiliation(s)
- Khalid El Bairi
- Independent Research Team in Cancer Biology and Bioactive Compounds, Mohamed 1st University, Oujda, Morocco.
| | - Mounir Ouzir
- Laboratory of Biochemistry and Immunology, Faculty of Sciences, University Mohammed V, Rabat, Morocco
| | - Najda Agnieszka
- Quality Laboratory of Vegetable and Medicinal Materials, Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin,Leszczyńskiego Street 58, 20-068 Lublin, Poland
| | - Loubna Khalki
- Neuroscience Laboratory, UM6SS-Research Center, Mohammed VI University of Health Sciences, Casablanca, Morocco
| |
Collapse
|