1
|
Alqahtani LS, Alosaimi ME, Abdel-Rahman Mohamed A, Abd-Elhakim YM, Khamis T, Noreldin AE, El-Far AH, Alotaibi BS, Hakami MA, Dahran N, Babteen NA. Acrylamide-targeting renal miR-21a-5p/Fibrotic and miR122-5p/ inflammatory signaling pathways and the role of a green approach for nano-zinc detected via in silico and in vivo approaches. Front Pharmacol 2024; 15:1413844. [PMID: 39086388 PMCID: PMC11289894 DOI: 10.3389/fphar.2024.1413844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/26/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction: Any disruption in renal function can have cascading effects on overall health. Understanding how a heat-born toxicant like acrylamide (ACR) affects kidney tissue is vital for realizing its broader implications for systemic health. Methods: This study investigated the ACR-induced renal damage mechanisms, particularly focusing on the regulating role of miR-21a-5p/fibrotic and miR-122-5p/inflammatory signaling pathways via targeting Timp-3 and TP53 proteins in an In silico preliminary study. Besides, renal function assessment, oxidative status, protein profile, and the expression of renal biomarkers (Timp-1, Keap-1, Kim-1, P53, TNF-α, Bax, and Caspase3) were assessed in a 60-day experiment. The examination was additionally extended to explore the potential protective effects of green-synthesized zinc oxide nanoparticles (ZNO-MONPs). A four-group experiment including control, ZNO-MONPs (10 mg/kg b.wt.), ACR (20 mg/kg b.wt.), and ZNO-MONPs + ACR was established encompassing biochemical, histological, and molecular levels. The study further investigated the protein-binding ability of ZNO and MONPs to inactivate caspase-3, Keap-1, Kim-1, and TNFRS-1A. Results: ZNO-MONPs significantly reduced ACR-induced renal tissue damage as evidenced by increased serum creatinine, uric acid, albumin, and oxidative stress markers. ACR-induced oxidative stress, apoptosis, and inflammationare revealed by biochemical tests, gene expression, and the presence of apoptotic nuclei microscopically. Also, molecular docking revealed binding affinity between ACR-BCL-2 and glutathione-synthetase, elucidating the potential mechanisms through which ACR induces renal damage. Notably, ZNO-MONPs revealed a protective potential against ACR-induced damage. Zn levels in the renal tissues of ACR-exposed rats were significantly restored in those treated with ACR + ZNO-MONPs. In conclusion, this study establishes the efficacy of ZNO-MONPs in mitigating ACR-induced disturbances in renal tissue functions, oxidative stress, inflammation, and apoptosis. The findings shed light on the potential renoprotective activity of green-synthesized nanomaterials, offering insights into novel therapeutic approaches for countering ACR-induced renal damage.
Collapse
Affiliation(s)
- Leena S. Alqahtani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Manal E. Alosaimi
- Department of Basic Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Amany Abdel-Rahman Mohamed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Yasmina M. Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed E. Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Ali H. El-Far
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Badriyah S. Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Naief Dahran
- Department of Anatomy, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Nouf A. Babteen
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
2
|
Guo Y, Zhao T, Yao X, Ji H, Luo Y, Okeke ES, Mao G, Feng W, Chen Y, Ding Y, Wu X, Yang L. Acrylamide-Aggravated Liver Injury by Activating Endoplasmic Reticulum Stress in Female Mice with Diabetes. Chem Res Toxicol 2024; 37:731-743. [PMID: 38634348 DOI: 10.1021/acs.chemrestox.4c00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Acrylamide (ACR) is a common industrial contaminant with endocrine-disrupting toxicity. Numerous studies have indicated that females and diabetics are more sensitive to environmental contaminants. However, it remains unknown whether female diabetics are susceptible to ACR-induced toxicity and its potential mechanisms. Thus, the female ACR-exposure diabetic Balb/c mice model was established to address these issues. Results showed that ACR could induce liver injury in normal mice and cause more serious inflammatory cell infiltration, hepatocyte volume increase, and fusion in diabetic mice liver. Meanwhile, ACR could lead to exacerbation of diabetic symptoms in diabetic mice by disturbing the glucose and lipid metabolism in the liver, which mainly manifests as the accumulation of liver glycogen and liver lipids, the reduction of the activity/content of glycolytic and metabolizing enzyme as well as pentose phosphatase, upregulation of the gene expression in fatty acid transporter and gluconeogenesis, and downregulation of the gene expression in fatty acid synthesis and metabolism. Moreover, ACR exposure could induce oxidative stress, inflammation, and endoplasmic reticulum stress in the liver by a decrease in hepatic antioxidant enzyme activity and antioxidant content, an increase in inflammatory factor levels, and a change in the related protein expression of endoplasmic reticulum stress (ERS) and apoptosis-related pathways in diabetic mice. Statistical analysis results revealed that ACR-induced liver injury was highly correlated with inflammation and oxidative stress, and ERS and diabetic mice had a higher risk of liver injury than normal mice. Overall results suggested that female diabetic mice easily suffer from ACR-induced toxicity, and the reason was that ACR could induce further damage to the liver by worsening the condition of inflammation, oxidative stress, and ERS in the liver.
Collapse
Affiliation(s)
- Yuchao Guo
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Ting Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Xiongyi Yao
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Hongchen Ji
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Yingbiao Luo
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Emmanuel Sunday Okeke
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013 Jiangsu, China
- Department of Biochemistry, Faculty of Biological Sciences & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria
| | - Guanghua Mao
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013 Jiangsu, China
| | - Weiwei Feng
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013 Jiangsu, China
| | - Yao Chen
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013 Jiangsu, China
| | - Yangyang Ding
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013 Jiangsu, China
| | - Xiangyang Wu
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013 Jiangsu, China
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| |
Collapse
|
3
|
Demir M, Altinoz E, Cetinavci D, Elbe H, Bicer Y. The effects of pinealectomy and melatonin treatment in acrylamide-induced nephrotoxicity in rats: Antioxidant and anti-inflammatory mechanisms. Physiol Behav 2024; 275:114450. [PMID: 38145817 DOI: 10.1016/j.physbeh.2023.114450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 12/27/2023]
Abstract
OBJECTIVE Acrylamide (AA) is toxic and forms in food that undergoes high-temperature processing. This study aimed to investigate the effects of AA-induced toxicity on renal tissue in pinealectomized rats and the possible protective effect of exogenous Melatonin (ML) administration. MATERIALS AND METHODS Sixty rats were randomized into 6 groups (n = 10): Sham, Sham+AA, Sham+AA+ML, PX, PX+AA, and PX+AA+ML. Sham and pinealectomized rats received AA (25 mg/kg/day orally) and ML (0.5 ml volume at 10 mg/kg/day, intraperitoneal) for 21 days. RESULTS The results showed that malondialdehyde (MDA), total oxidant status (TOS), oxidative stress index (OSI), tumor necrosis factor-α (TNF-α), and interleukin 1β (IL-1β) levels of the kidney and urea and creatinine levels of serum in the PX (pinealectomy)+AA group were more increased than in the Sham+AA group. In addition, glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and total antioxidant status (TAS) levels decreased more in the PX+AA group than in the Sham+AA group. Also, we observed more histopathologic damage in the PX+AA group. On the other hand, up-regulation of kidney tissue antioxidants, down-regulation of tissue oxidants, and improvement in kidney function were achieved with ML treatment. Also, histopathological findings such as inflammatory cell infiltration, shrinkage of glomeruli, and dilatation of tubules caused by AA toxicity improved with ML treatment. CONCLUSION ML supplementation exhibited adequate nephroprotective effects against the nephrotoxicity of AA on pinealectomized rat kidney tissue function by balancing the oxidant/antioxidant status and suppressing the release of proinflammatory cytokines.
Collapse
Affiliation(s)
- Mehmet Demir
- Department of Physiology, Faculty of Medicine, Karabuk University, Karabuk, Turkey.
| | - Eyup Altinoz
- Department of Medical Biochemistry, Faculty of Medicine, Histology Embryology, Karabuk University, Karabuk, Turkey
| | | | - Hulya Elbe
- Department of Histology and Embryology, Faculty of Medicine, Mugla Sıtkı Kocman University, Mugla, Turkey
| | - Yasemin Bicer
- Department of Medical Biochemistry, Faculty of Medicine, Histology Embryology, Karabuk University, Karabuk, Turkey
| |
Collapse
|
4
|
El-Megharbel SM, Qahl SH, Albogami B, Hamza RZ. Chemical and spectroscopic characterization of (Artemisinin/Querctin/ Zinc) novel mixed ligand complex with assessment of its potent high antiviral activity against SARS-CoV-2 and antioxidant capacity against toxicity induced by acrylamide in male rats. PeerJ 2024; 12:e15638. [PMID: 38188145 PMCID: PMC10768679 DOI: 10.7717/peerj.15638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 11/03/2023] [Indexed: 01/09/2024] Open
Abstract
A novel Artemisinin/Quercetin/Zinc (Art/Q/Zn) mixed ligand complex was synthesized, tested for its antiviral activity against coronavirus (SARS-CoV-2), and investigated for its effect against toxicity and oxidative stress induced by acrylamide (Acy), which develops upon cooking starchy foods at high temperatures. The synthesized complex was chemically characterized by performing elemental analysis, conductance measurements, FT-IR, UV, magnetic measurements, and XRD. The morphological surface of the complex Art/Q/Zn was investigated using scanning and transmission electron microscopy (SEM and TEM) and energy dispersive X-ray analysis (XRD). The in vitro antiviral activity of the complex Art/Q/Zn against SARS-CoV-2 and its in vivo activity against Acy-induced toxicity in hepatic and pulmonary tissues were analyzed. An experimental model was used to evaluate the beneficial effects of the novel Art/Q/Zn novel complex on lung and liver toxicities of Acy. Forty male rats were randomly divided into four groups: control, Acy (500 mg/Kg), Art/Q/Zn (30 mg/kg), and a combination of Acy and Art/Q/Zn. The complex was orally administered for 30 days. Hepatic function and inflammation marker (CRP), tumor necrosis factor, interleukin-6 (IL-6), antioxidant enzyme (CAT, SOD, and GPx), marker of oxidative stress (MDA), and blood pressure levels were investigated. Histological and ultrastructure alterations and caspase-3 variations (immunological marker) were also investigated. FT-IR spectra revealed that Zn (II) is able to chelate through C=O and C-OH (Ring II) which are the carbonyl oxygen atoms of the quercetin ligand and carbonyl oxygen atom C=O of the Art ligand, forming Art/Q/Zn complex with the chemical formula [Zn(Q)(Art)(Cl)(H2O)2]⋅3H2O. The novel complex exhibited a potent anti-SARS-CoV-2 activity even at a low concentration (IC50 = 10.14 µg/ml) and was not cytotoxic to the cellular host (CC50 = 208.5 µg/ml). Art/Q/Zn may inhibit the viral replication and binding to the angiotensin-converting enzyme-2 (ACE2) receptor and the main protease inhibitor (MPro), thereby inhibiting the activity of SARS-CoV-2 and this proved by the molecular dynamics simulation. It alleviated Acy hepatic and pulmonary toxicity by improving all biochemical markers. Therefore, it can be concluded that the novel formula Art/Q/Zn complex is an effective antioxidant agent against the oxidative stress series, and it has high inhibitory effect against SARS-CoV-2.
Collapse
Affiliation(s)
- Samy M. El-Megharbel
- Department of Chemistry, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Safa H. Qahl
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Bander Albogami
- Biology Department, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Reham Z. Hamza
- Biology Department, College of Sciences, Taif University, Taif, Saudi Arabia
| |
Collapse
|
5
|
Xie L, Luo Z, Jia X, Mo C, Huang X, Suo Y, Cui S, Zang Y, Liao J, Ma X. Synthesis of Crocin I and Crocin II by Multigene Stacking in Nicotiana benthamiana. Int J Mol Sci 2023; 24:14139. [PMID: 37762441 PMCID: PMC10532124 DOI: 10.3390/ijms241814139] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Crocins are a group of highly valuable water-soluble carotenoids that are reported to have many pharmacological activities, such as anticancer properties, and the potential for treating neurodegenerative diseases including Alzheimer's disease. Crocins are mainly biosynthesized in the stigmas of food-medicine herbs Crocus sativus L. and Gardenia jasminoides fruits. The distribution is narrow in nature and deficient in resources, which are scarce and expensive. Recently, the synthesis of metabolites in the heterologous host has opened up the potential for large-scale and sustainable production of crocins, especially for the main active compounds crocin I and crocin II. In this study, GjCCD4a, GjALDH2C3, GjUGT74F8, and GjUGT94E13 from G. jasminoides fruits were expressed in Nicotiana benthamiana. The highest total content of crocins in T1 generation tobacco can reach 78,362 ng/g FW (fresh weight) and the dry weight is expected to reach 1,058,945 ng/g DW (dry weight). Surprisingly, the primary effective constituents crocin I and crocin II can account for 99% of the total crocins in transgenic plants. The strategy mentioned here provides an alternative platform for the scale-up production of crocin I and crocin II in tobacco.
Collapse
Affiliation(s)
- Lei Xie
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (L.X.); (Z.L.); (X.J.); (S.C.); (Y.Z.)
| | - Zuliang Luo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (L.X.); (Z.L.); (X.J.); (S.C.); (Y.Z.)
| | - Xunli Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (L.X.); (Z.L.); (X.J.); (S.C.); (Y.Z.)
| | - Changming Mo
- Guangxi Crop Genetic Improvement and Biotechnology Lab, Guangxi Academy of Agricultural Science, Nanning 530007, China;
| | - Xiyang Huang
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China;
| | - Yaran Suo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China;
| | - Shengrong Cui
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (L.X.); (Z.L.); (X.J.); (S.C.); (Y.Z.)
| | - Yimei Zang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (L.X.); (Z.L.); (X.J.); (S.C.); (Y.Z.)
| | - Jingjing Liao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China;
| | - Xiaojun Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (L.X.); (Z.L.); (X.J.); (S.C.); (Y.Z.)
| |
Collapse
|
6
|
Awad B, Hamza AA, Al-Maktoum A, Al-Salam S, Amin A. Combining Crocin and Sorafenib Improves Their Tumor-Inhibiting Effects in a Rat Model of Diethylnitrosamine-Induced Cirrhotic-Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:4063. [PMID: 37627094 PMCID: PMC10452334 DOI: 10.3390/cancers15164063] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most aggressive malignancies, with continuously increasing cases and fatalities. Diagnosis often occurs in the advanced stages, confining patients to systemic therapies such as sorafenib. Sorafenib (SB), a multi-kinase inhibitor, has not yet demonstrated sufficient efficacy against advanced HCC. There is a strong argument in favor of studying its use in combination with other medications to optimize the therapeutic results. According to our earlier work, crocin (CR), a key bioactive component of saffron, hinders HCC development and liver cancer stemness. In this study, we investigated the therapeutic use of CR or its combination with SB in a cirrhotic rat model of HCC and evaluated how effectively SB and CR inhibited tumor growth in this model. Diethylnitrosamine (DEN) was administered intraperitoneally to rats once a week for 15 weeks, leading to cirrhosis, and then 19 weeks later, leading to multifocal HCC. After 16 weeks of cancer induction, CR (200 mg/kg daily) and SB (10 mg/kg daily) were given orally to rats for three weeks, either separately or in combination. Consistently, the combination treatment considerably decreased the incidence of dyschromatic nodules, nodule multiplicity, and dysplastic nodules when compared to the HCC group of single therapies. Combined therapy also caused the highest degree of apoptosis, along with decreased proliferating and β-catenin levels in the tumor tissues. Additionally, when rats received combined therapy with CR, it showed anti-inflammatory characteristics where nuclear factor kappa B (NF-κB) and cyclooxygenase-2 (Cox-2) were considerably and additively lowered. As a result, CR potentiates the suppressive effects of SB on tumor growth and provides the opportunity to strengthen the therapeutic effects of SB in the treatment of HCC.
Collapse
Affiliation(s)
- Basma Awad
- Biology Department, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (B.A.); (A.A.-M.)
| | - Alaaeldin Ahmed Hamza
- National Organization for Drug Control and Research, Giza 12611, Egypt;
- National Committee for Biochemistry and Molecular Biology and Medical Research Council, Academy of Scientific Research, Cairo 11334, Egypt
| | - Amna Al-Maktoum
- Biology Department, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (B.A.); (A.A.-M.)
| | - Suhail Al-Salam
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Amr Amin
- Biology Department, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (B.A.); (A.A.-M.)
| |
Collapse
|
7
|
Gür FM, Bilgiç S. Silymarin, an antioxidant flavonoid, protects the liver from the toxicity of the anticancer drug paclitaxel. Tissue Cell 2023; 83:102158. [PMID: 37459721 DOI: 10.1016/j.tice.2023.102158] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023]
Abstract
One of the biggest factors that negatively affect the cancer treatment plan is the toxic effects of chemotherapeutics on non-target cells and tissues. This information prompted us to investigate the protective effects of silymarin (SL), a hepatoprotective agent, against the hepatotoxic effects of the anticancer drug paclitaxel (PAC). Four groups were formed from 28 rats as control, PAC (2 mg/kg), SL (100 mg/kg) and PAC + SL (combination of PAC with SL). After completing the experimental procedures, the tissues collected after anesthesia were analyzed by Western blot, qRT-PCR, biochemical, stereological, immunohistochemical, and histopathological techniques. Administration of PAC significantly increased the expression of tumor necrosis factor-alpha (TNF-α), Bax, cytochrome-c (cyt-c), and active caspase-3, as well as malondialdehyde (MDA) levels in liver tissue and decreased glutathione (GSH) levels compared with the control group. PAC also resulted in a significant increase in serum triglyceride (TG), cholesterol (CH), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels compared with the control group. Pathological changes such as microvesicular steatosis, the formation of Councilman bodies, an increase in total sinusoidal volume, and a decrease in the total number of hepatocytes were observed in the liver tissue of the PAC group. Almost all analysis results in the PAC + SL group were similar to those in the control group, and no significant pathological alterations were observed in this group. The data obtained show that SL protects the liver from the harmful effects of PAC, especially thanks to its TNF-α suppressor, anti-inflammatory, anti-apoptotic and antioxidant effects. Based on this result, in cases where PAC is used in cancer treatment, it can be recommended to be used together with SL to prevent harmful effects on healthy liver tissue and to continue treatment uninterruptedly and effectively.
Collapse
Affiliation(s)
- Fatih Mehmet Gür
- Department of Histology and Embryology, Faculty of Medicine, Niğde Ömer Halisdemir University, Niğde, Turkey.
| | - Sedat Bilgiç
- Department of Medical Biochemistry, Vocational School of Health Services, Adıyaman University, Adıyaman, Turkey.
| |
Collapse
|
8
|
Ozturk I, Elbe H, Bicer Y, Karayakali M, Onal MO, Altinoz E. Therapeutic role of melatonin on acrylamide-induced hepatotoxicity in pinealectomized rats: Effects on oxidative stress, NF-κB signaling pathway, and hepatocellular proliferation. Food Chem Toxicol 2023; 174:113658. [PMID: 36780936 DOI: 10.1016/j.fct.2023.113658] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/13/2023]
Abstract
Acrylamide (AA) is formed in some foods by the cooking process at high temperatures, and it could be a carcinogen in humans and rodents. The purpose of the current study was to reveal the possible protective effects of melatonin against AA-induced hepatic oxidative stress, hepatic inflammation, and hepatocellular proliferation in pinealectomized rats. Hence, the sham and pinealectomized rats were consecutively given AA alone (25 mg/kg) or with melatonin (10 mg/kg) for 21 days. Melatonin acts as an antioxidant, anti-inflammatory, and antiapoptotic agent and introduces as a therapeutic strategy for AA-induced hepatotoxicity. Melatonin supplementation reduced AA-caused liver damage by decreasing the serum AST, ALT, and ALP levels. Melatonin raised the activities of SOD and CAT and levels of GSH and suppressed hepatic inflammation (TNF-α) and hepatic oxidative stress in liver tissues. Moreover, histopathological alterations and the disturbances in immunohistochemical expression of NF-κB and Ki67 were improved after melatonin treatment in AA-induced hepatotoxicity. Overall, our results demonstrate that melatonin supplementation exhibits adequate hepatoprotective effects against hepatotoxicity of AA on pinealectomized rat liver architecture and the tissue function through the equilibration of oxidant/antioxidant status, the regulation of cell proliferation and the suppression of the release of proinflammatory cytokines.
Collapse
Affiliation(s)
- Ipek Ozturk
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Hulya Elbe
- Department of Histology and Embryology, Faculty of Medicine, Mugla Sıtkı Kocman University, Mugla, Turkey
| | - Yasemin Bicer
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Melike Karayakali
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Melike Ozgul Onal
- Department of Histology and Embryology, Faculty of Medicine, Mugla Sıtkı Kocman University, Mugla, Turkey
| | - Eyup Altinoz
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey.
| |
Collapse
|
9
|
Mahfouz H, Dahran N, Abdel-Rahman Mohamed A, Abd El-Hakim YM, Metwally MMM, Alqahtani LS, Abdelmawlla HA, Wahab HA, Shamlan G, Nassan MA, Gaber RA. Stabilization of glutathione redox dynamics and CYP2E1 by green synthesized Moringa oleifera-mediated zinc oxide nanoparticles against acrylamide induced hepatotoxicity in rat model: Morphometric and molecular perspectives. Food Chem Toxicol 2023; 176:113744. [PMID: 36965644 DOI: 10.1016/j.fct.2023.113744] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/11/2023] [Accepted: 03/22/2023] [Indexed: 03/27/2023]
Abstract
The terrible reality is that acrylamide (AA) is a common food contaminant found in a wide variety of commonly consumed foods. This research involves the advancement of a more dependable technique for the bio-fabrication of zinc oxide nanoparticles (ZNPs) through the green method using Moringa Oleifera extract (MO-ZNPs) as an efficient chelating agent for acrylamide (AA). The effects of AA on glutathione redox dynamics, liver function, lipid profile, and zinc residues in Sprague Dawley rats are investigated. Finally, the microarchitecture and immunohistochemical staining of Caspase-3 and CYP2E1 were determined in the liver tissue of rats. Four separate groups, including control, MO-ZNPs (10 mg/kg b.wt), AA (20 mg/kg b.wt), and AA + MO-ZNPs for 60 days. The results revealed a suppressed activity of glutathione redox enzymes (GSH, GPX,and GSR) on both molecular and biochemical levels. Also, AA caused elevated liver enzymes, hepatosomatic index, and immunohistochemical staining of caspase-3 and CYP2E1 expression. MO-ZNPs co-treatment, on the other hand, stabilized glutathione-related enzyme gene expression, normalized hepatocellular enzyme levels, and restored hepatic tissue microarchitectures. It could be assumed that MO-ZNPs is a promising hepatoprotective molecule for alleviating AA-induced hepatotoxicity. We witnessed changes in glutathione redox dynamics to be restorative. Glutathione and cytochrome P450 2E1 play crucial roles in AA detoxification, so maintaining a healthy glutathione redox cycle is necessary for disposing of AA toxicity.
Collapse
Affiliation(s)
- Hala Mahfouz
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Kafrelsheikh University, Egypt
| | - Naief Dahran
- Department of Anatomy, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | | | | | - Mohamed M M Metwally
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Leena S Alqahtani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, 23445, Saudi Arabia
| | - Hassan Abdelraheem Abdelmawlla
- Department of Anatomy, College of Medicine, Jouf University, Saudi Arabia; Anatomy and Embryology Department, College of Medicine, Beni-Suef University, Egypt
| | - Hazim A Wahab
- Histology Department, Faculty of Medicine, Menofiya University, Shebin El Kom, Egypt
| | - Ghalia Shamlan
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11362, Saudi Arabia
| | - Mohamed A Nassan
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, PO Box 11099,Taif, 21944, Saudi Arabia.
| | - Rasha A Gaber
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Egypt
| |
Collapse
|
10
|
Research Progress of Programmed Cell Death Induced by Acrylamide. J FOOD QUALITY 2023. [DOI: 10.1155/2023/3130174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Acrylamide exposure through environment pollution and diet is very common in daily life. With the deepening of the study on the toxicity of acrylamide, it has attracted widespread attention for the effects of acrylamide on multiple organs through affecting a variety of programmed cell death. Multiple studies have shown that acrylamide could exert its toxic effect by inducing programmed cell death, but its specific molecular mechanism is still unclear. In this review, the research on the main forms of programmed cell death (apoptosis, autophagy, and programmed necrosis) induced by acrylamide and their possible mechanisms are reviewed. This review may provide basic data for further research of acrylamide and prevention of its toxicity.
Collapse
|
11
|
Peng L, Chen HG, Zhou X. Lipidomic investigation of the protective effects of Polygonum perfoliatum against chemical liver injury in mice. JOURNAL OF INTEGRATIVE MEDICINE 2023; 21:289-301. [PMID: 36990846 DOI: 10.1016/j.joim.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 11/07/2022] [Indexed: 03/29/2023]
Abstract
OBJECTIVE Recent investigations have demonstrated that Polygonum perfoliatum L. can protect against chemical liver injury, but the mechanism behind its efficacy is still unclear. Therefore, we studied the pharmacological mechanism at work in P. perfoliatum protection against chemical liver injury. METHODS To evaluate the activity of P. perfoliatum against chemical liver injury, levels of alanine transaminase, lactic dehydrogenase, aspartate transaminase, superoxide dismutase, glutathione peroxidase and malondialdehyde were measured, alongside histological assessments of the liver, heart and kidney tissue. A nontargeted lipidomics strategy based on ultra-performance liquid chromatography quadrupole-orbitrap high-resolution mass spectrometry method was used to obtain the lipid profiles of mice with chemical liver injury and following treatment with P. perfoliatum; these profiles were used to understand the possible mechanisms behind P. perfoliatum's protective activity. RESULTS Lipidomic studies indicated that P. perfoliatum protected against chemical liver injury, and the results were consistent between histological and physiological analyses. By comparing the profiles of liver lipids in model and control mice, we found that the levels of 89 lipids were significantly changed. In animals receiving P. perfoliatum treatment, the levels of 8 lipids were significantly improved, relative to the model animals. The results showed that P. perfoliatum extract could effectively reverse the chemical liver injury and significantly improve the abnormal liver lipid metabolism of mice with chemical liver injury, especially glycerophospholipid metabolism. CONCLUSION Regulation of enzyme activity related to the glycerophospholipid metabolism pathway may be involved in the mechanism of P. perfoliatum's protection against liver injury. Please cite this article as: Peng L, Chen HG, Zhou X. Lipidomic investigation of the protective effects of Polygonum perfoliatum against chemical liver injury in mice. J Integr Med. 2023; Epub ahead of print.
Collapse
|
12
|
Karayakali M, Altinoz E, Elbe H, Koca O, Onal MO, Bicer Y, Demir M. Crocin treatment exerts anti-inflammatory and anti-oxidative effects in liver tissue damage of pinealectomized diabetic rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:47670-47684. [PMID: 36746856 DOI: 10.1007/s11356-023-25766-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/02/2023] [Indexed: 02/08/2023]
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder with an increasing global prevalence that leads to significant morbidity and mortality. The liver plays a vital role in glycemic regulation in physiological and pathological conditions such as DM. Free radical formation and inhibition of antioxidant defense systems play a role in the liver damage pathogenesis in diabetic patients The antioxidant, anti-diabetic, anti-inflammatory, and radical scavenging properties of crocin are known. This study was designed to determine the possible protective effects of crocin against liver tissue damage in pinealectomized diabetic rats. Sixty rats were divided into six groups: Control, Sham+streptozotocin (STZ), Pinealectomy (PINX), PINX+STZ, PINX+Crocin, and PINX+STZ+Crocin. PNX procedure was carried out on the first day of the experiment. Intraperitoneal (i.p.) injection of 50 mg/kg STZ was performed on the 30th day of the experiment to induce DM. Crocin (50 mg/kg; i.p.) was applied for 15 days after the pinealectomy procedure and induction of DM. Crocin decreased the markers (alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), interleukin-1β (IL-1β), and malondialdehyde (MDA)) of liver damage and increased antioxidant enzyme levels and tissue total antioxidant status. Histological results showed that the administration of crocin exhibited a protective effect against liver damage caused by STZ. These results indicate that crocin evidence protection against liver injury caused by STZ.
Collapse
Affiliation(s)
- Melike Karayakali
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Eyup Altinoz
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Hulya Elbe
- Department of Histology and Embryology, Faculty of Medicine, Mugla Sıtkı Kocman University, Mugla, Turkey
| | - Oguzhan Koca
- Department of Biochemistry, Karabuk University Education and Research Hospital, Karabuk, Turkey
| | - Melike Ozgul Onal
- Department of Histology and Embryology, Faculty of Medicine, Mugla Sıtkı Kocman University, Mugla, Turkey
| | - Yasemin Bicer
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Mehmet Demir
- Department of Physiology, Faculty of Medicine, Karabuk University, Karabuk, Turkey.
| |
Collapse
|
13
|
Chen M, Chen X, Wang K, Cai L, Liu N, Zhou D, Jia W, Gong P, Liu N, Sun Y. Effects of kiwi fruit ( Actinidia chinensis) polysaccharides on metabolites and gut microbiota of acrylamide-induced mice. Front Nutr 2023; 10:1080825. [PMID: 36814509 PMCID: PMC9939636 DOI: 10.3389/fnut.2023.1080825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023] Open
Abstract
Introduction Kiwifruit (Actinidia chinensis) has rich nutritious and medicinal properties. It is widely consumed worldwide for the intervention of metabolism disorders, however, the underlying mechanism remains unclear. Acrylamide, a well-known toxic ingredient, mainly forms in high-temperature processed carbohydrate-rich food and causes disorders of gut microbiota and systemic metabolism. Methods This study explored the protective effects and underlying mechanisms of kiwifruit polysaccharides against acrylamide-induced disorders of gut microbiota and systemic metabolism by measuring the changes of gut microbiota and serum metabolites in mice. Results The results showed that kiwifruit polysaccharides remarkably alleviated acrylamide-induced toxicity in mice by improving their body features, histopathologic morphology of the liver, and decreased activities of liver function enzymes. Furthermore, the treatment restored the healthy gut microbiota of mice by improving the microbial diversity and abundance of beneficial bacteria such as Lactobacillus. Metabolomics analysis revealed the positive effects of kiwifruit polysaccharides mainly occurred through amino and bile acid-related metabolism pathways including nicotinate and nicotinamide metabolism, primary bile acid biosynthesis, and alanine, aspartate and glutamate metabolism. Additionally, correlation analysis indicated that Lactobacillus exhibited a highly significant correlation with critical metabolites of bile acid metabolism. Discussion Concisely, kiwifruit polysaccharides may protect against acrylamide-induced toxicity by regulating gut microbiota and metabolism.
Collapse
Affiliation(s)
- Mengyin Chen
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Xuefeng Chen
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China,*Correspondence: Xuefeng Chen ✉
| | - Ketang Wang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Luyang Cai
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Nannan Liu
- College of Chemistry and Materials Science, Weinan Normal University, Weinan, China
| | - Duan Zhou
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Wei Jia
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Pin Gong
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Ning Liu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Yujiao Sun
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China,Yujiao Sun ✉
| |
Collapse
|
14
|
Cerrah S, Ozcicek F, Gundogdu B, Cicek B, Coban TA, Suleyman B, Altuner D, Bulut S, Suleyman H. Carvacrol prevents acrylamide-induced oxidative and inflammatory liver damage and dysfunction in rats. Front Pharmacol 2023; 14:1161448. [PMID: 37089925 PMCID: PMC10113504 DOI: 10.3389/fphar.2023.1161448] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/22/2023] [Indexed: 04/25/2023] Open
Abstract
Background: Acrylamide causes hepatotoxicity with the effect of oxidative stress and inflammatory processes. Carvacrol is a monoterpenic phenol with antioxidant and anti-inflammatory properties. Aims: To determine the effects of carvacrol on oxidative liver injury induced by acrylamide administration in rats. Methods: Rats were divided into three groups of six animals each: healthy group acrylamide group (ACR), and acrylamide + carvacrol group (TACR). First, carvacrol (50 mg/kg) was administered intraperitoneally to the CACR group. One hour later, acrylamide (20 mg/kg) was given orally to the ACR and CACR groups. This procedure was performed for 30 days, after which the animals were sacrificed. The malondialdehyde (MDA) and total glutathione (tGSH) levels, total oxidant (TOS) and total antioxidant status (TAS), tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β), and nuclear factor kappa b (NF-κB) were measured in the excised liver tissues. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were determined in blood serum samples. Liver tissues were also examined histopathologically. Results: In the ACR group, malondialdehyde, TOS, ALT, AST levels, and NF-κB, IL-1β, and TNF-α levels were found to be high, and tGSH and total antioxidant status levels were low. In addition, diffuse degenerative changes and necrosis in hepatocytes, and moderate inflammation in the portal region were detected in the liver tissues of the ACR group. While carvacrol prevented the biochemical changes induced by acrylamide, it also alleviated the damage in the histological structure. Conclusion: Carvacrol may be used for liver damage caused by acrylamide.
Collapse
Affiliation(s)
- Serkan Cerrah
- Division of Gastroenterology, Department of Internal Medicine, Erzurum Regional Training and Research Hospital, Erzurum, Türkiye
| | - Fatih Ozcicek
- Department of Internal Medicine, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Betul Gundogdu
- Department of Pathology, Faculty of Medicine, Ataturk University, Erzurum, Türkiye
| | - Betul Cicek
- Department of Physiology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Taha Abdulkadir Coban
- Department of Clinical Biochemistry, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Bahadir Suleyman
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Durdu Altuner
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Seval Bulut
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Halis Suleyman
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
- *Correspondence: Halis Suleyman,
| |
Collapse
|
15
|
Zhang L, Yang L, Luo Y, Dong L, Chen F. Acrylamide induced hepatotoxicity through oxidative stress: Mechanisms and interventions. Antioxid Redox Signal 2022; 38:1122-1137. [PMID: 36322716 DOI: 10.1089/ars.2022.0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
SIGNIFICANCE Acrylamide (AA) widely exists in the environment. Studies have demonstrated that AA has neurotoxicity and potential carcinogenicity in humans, and genotoxicity and severe hepatotoxicity in animals. As the critical metabolism organ for AA, the liver is the primary attacking target of AA. This review summarizes the recent advances in hepatotoxicity mechanism through AA-induced oxidative stress in rodent livers and hepatic cell lines, this is beneficial to assess risks of AA exposure and explore effective intervention methods for AA hepatotoxicity. RECENT ADVANCES Accumulating evidences have indicated that AA-induced oxidative stress is responsible for its hepatotoxicity. The changes in homological and biochemical indexes such as activities of hepatic antioxidant enzymes have been elucidated with the occurrence and development of oxidative stress. Also, the molecular mechanisms underlying AA-induced hepatotoxicity through oxidative stress have been mainly explained by apoptosis, inflammatory and autophagic pathways. CRITICAL ISSUES This review is focusing on the molecular mechanism of hepatotoxicity through AA-induced oxidative stress, this can provide a theoretical basis for the assessment of AA-induced health risk and finding potential intervention targets. FUTURE DIRECTIONS Epigenetic modifications like miRNAs and modulation of the gut microbiome involved in AA toxification pathway must be investigated, and will provide novel insights to unravel the toxification mechanism and intervention strategy for AA hepatotoxicity.
Collapse
Affiliation(s)
- Lujia Zhang
- China Agricultural University, 34752, Beijing, China;
| | - Liuqing Yang
- China Agricultural University, 34752, Beijing, China;
| | - Yinghua Luo
- China Agricultural University, 34752, Beijing, China;
| | - Li Dong
- China Agricultural University, 34752, Beijing, China;
| | - Fang Chen
- China Agricultural University, 34752, College of Food Science and Nutritional Engineering and Safety, Room 116, Food building, China Agricultural University, Haidian District, Beijing, China, 100094;
| |
Collapse
|
16
|
Cengiz M, Ayhanci A, Akkemik E, Şahin İK, Gür F, Bayrakdar A, Cengiz BP, Musmul A, Gür B. The role of Bax/Bcl-2 and Nrf2-Keap-1 signaling pathways in mediating the protective effect of boric acid on acrylamide-induced acute liver injury in rats. Life Sci 2022; 307:120864. [PMID: 35940215 DOI: 10.1016/j.lfs.2022.120864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 12/14/2022]
Abstract
INTRODUCTION This study aims to investigate whether boric acid (BA) can protect rats from acrylamide (AA)-induced acute liver injury. MATERIALS AND METHODS AA was used to induce acute liver injury. Thirty rats were divided into five group including Group 1 (saline), Group 2 (AA), Group 3 (20 mg/kg BA), Group 4 (10 mg/kg BA+AA) and Group 5 (20 mg/kg BA+AA). Their blood and liver were harvested to be kept for analysis. Liver function enzyme activities were performed by spectrophotometric method. Catalase (CAT), superoxide dismutase (SOD) activity, and malondialdehyde levels were determined by colorimetric method. The in-silico studies were performed using the "blind docking" method. RESULTS Administration AA to rats, biochemical parameters, liver histology, and expression levels of apoptotic markers were negatively affected. However, after the administration of BA, the altered biochemical parameters, liver histology, and expression levels of apoptotic markers were reversed. Moreover, the mechanisms of AA-induced deterioration in the levels of SOD, CAT, and Nrf2-Keap-1 and the mechanisms of the protective effect of BA against these deteriorations were explained by in silico studies. CONCLUSION Thus, the present study could explain the interactions between AA and thiol-containing amino acid residues of Keap-1, the effect of BA on these interactions, and the biochemical toxicity caused by the AA. In this sense, this work is the first of its kind in the literature. Based on the biochemical, histopathological, and in silico results, it can be suggested that BA has the potential to be used as a protective agent against AA-induced liver injury.
Collapse
Affiliation(s)
- Mustafa Cengiz
- Department of Elementary Education, Faculty of Education, Siirt University, Siirt, Turkey.
| | - Adnan Ayhanci
- Department of Biology, Faculty of Arts and Science, Eskişehir Osmangazi University, Eskisehir, Turkey
| | - Ebru Akkemik
- Department of Food Engineering, Faculty of Engineering, Siirt University, Siirt, Turkey
| | | | - Fatma Gür
- Department of Biochemistry, Vocational School of Health Services, Ataturk University, Erzurum, Turkey
| | - Alpaslan Bayrakdar
- Vocational School of Higher Education for Healthcare Services, Iğdır University, Iğdır, Turkey
| | - Betül Peker Cengiz
- Department of Pathology, Eskişehir Yunus Emre State Hospital, Eskişehir, Turkey
| | - Ahmet Musmul
- Faculty of Medicine, Department of Biostatistics, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Bahri Gür
- Department of Biochemistry, Faculty of Sciences and Arts, Iğdır University, Iğdır, Turkey.
| |
Collapse
|
17
|
Abdu S, Juaid N, Amin A, Moulay M, Miled N. Therapeutic Effects of Crocin Alone or in Combination with Sorafenib against Hepatocellular Carcinoma: In Vivo & In Vitro Insights. Antioxidants (Basel) 2022; 11:antiox11091645. [PMID: 36139719 PMCID: PMC9495549 DOI: 10.3390/antiox11091645] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/13/2022] [Accepted: 08/24/2022] [Indexed: 12/24/2022] Open
Abstract
This study investigated the therapeutic effects of the phytochemical crocin alone or in combination with sorafenib both in rats chemically induced with hepatocellular carcinoma (HCC) and in human liver cancer cell line (HepG2). Male rats were randomly divided into five groups, namely, control group, HCC induced group, and groups treated with sorafenib, crocin or both crocin and sorafenib. HCC was induced in rats with a single intraperitoneal injection of diethylnitrosamine (DEN), then 2-acetylaminofluorene (2-AAF). The HCC-induced rats showed a significant decrease in body weight compared to animals treated with either or both examined drugs. Serum inflammatory markers (C-reactive protein (CRP); interleukin-6 (IL-6); lactate dehydrogenase (LDH), and oxidative stress markers were significantly increased in the HCC group and were restored upon treatment with either or both of therapeutic molecules. Morphologically, the HCC-induced rats manifested most histopathological features of liver cancer. Treatment with either or both of crocin and sorafenib successfully restored normal liver architecture. The expression of key genes involved in carcinogenesis (TNFα, p53, VEGF and NF-κB) was highly augmented upon HCC induction and was attenuated post-treatment with either or both examined drugs. Treatment with both crocin and sorafenib improved the histopathological and inflammation parameters as compared to single treatments. The in vivo anti-cancer effects of crocin and/or sorafenib were supported by their respective cytotoxicity on HepG2 cells. Crocin and sorafenib displayed an anti-tumor synergetic effect on HepG2 cells. The present findings demonstrated that a treatment regimen with crocin and sorafenib reduced liver toxicity, impeded HCC development, and improved the liver functions.
Collapse
Affiliation(s)
- Suzan Abdu
- Department of Biological Sciences, University of Jeddah, Jeddah 23445, Saudi Arabia
| | - Nouf Juaid
- Department of Biological Sciences, University of Jeddah, Jeddah 23445, Saudi Arabia
- Correspondence: (N.J.); (N.M.)
| | - Amr Amin
- Biology Department, UAE University, Al Ain 15551, United Arab Emirates
- The College, The University of Chicago, Chicago, IL 60637, USA
| | - Mohamed Moulay
- Embryonic Stem Cell Research Unit, King Fahd Medical Research Center, King Abdul Aziz University, Jeddah 22252, Saudi Arabia
| | - Nabil Miled
- Department of Biological Sciences, University of Jeddah, Jeddah 23445, Saudi Arabia
- Functional Genomics and Plant Physiology Research Unit, Higher Institute of Biotechnology Sfax, University of Sfax, BP261 Road Soukra Km4, Sfax 3038, Tunisia
- Correspondence: (N.J.); (N.M.)
| |
Collapse
|
18
|
Bicer Y, Elbe H, Karayakali M, Yigitturk G, Yilmaz U, Cengil O, Al Gburi MRA, Altinoz E. Neuroprotection by melatonin against acrylamide-induced brain damage in pinealectomized rats. J Chem Neuroanat 2022; 125:102143. [PMID: 35952951 DOI: 10.1016/j.jchemneu.2022.102143] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022]
Abstract
The current study aimed to evaluate the neuroprotective effect of exogenous melatonin against acrylamide (ACR)-induced oxidative stress and inflammatory and apoptotic responses in the brain tissues in pinealectomized rats (PINX). ACR is a toxic chemical carcinogen that occurs owing to the preparation of carbohydrate-rich foods at high temperatures or other thermal processes. The rats who underwent pinealectomy and sham pinealectomy were exposed to ACR (25 mg/kg b.w., orally) alone or with exogenous melatonin (10 mg/kg b.w., i.p.) for 21 consecutive days. Alterations of brain oxidant/antioxidant status, dopamine (DA), Brain-Derived Neurotropic Factor (BDNF) inflammatory mediator and apoptosis during exposure to ACR in pinealectomized rats were more than without pinealectomized rats. Histopathological changes were more in brain tissue of pinealectomized rats after ACR administration. Exogenous melatonin treatment in ACR -exposed rats following pinealectomy increased the activities of antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT) and improved brain total antioxidant status (TAS) compared to PINX+ACR. Moreover, melatonin suppressed lipid peroxidation, inflammatory pathways and apoptosis in ACR-intoxicated brain tissues. In addition, after exposure to ACR on pinealectomized rats, melatonin treatment ameliorated BDNF and DA levels in brain tissues. Furthermore, exogenous melatonin intervention in ACR-intoxicated rats significantly rescued the architecture of neuronal tissues. In summary, the present study, for the first time, suggested that exogenous melatonin treatment could reduce oxidative damage by increasing the activities of antioxidant enzymes, inhibiting lipid peroxidation and inflammation, and improving histopathological alterations in the brain tissue of pinealectomized rats after ACR administration.
Collapse
Affiliation(s)
- Yasemin Bicer
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Hulya Elbe
- Department of Histology and Embryology, Faculty of Medicine, Mugla Sıtkı Kocman University, Mugla, Turkey
| | - Melike Karayakali
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Gurkan Yigitturk
- Department of Histology and Embryology, Faculty of Medicine, Mugla Sıtkı Kocman University, Mugla, Turkey
| | - Umit Yilmaz
- Department of Physiology, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Osman Cengil
- Faculty of Medicine, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | | | - Eyup Altinoz
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey.
| |
Collapse
|
19
|
Protective Mechanism of Leucine and Isoleucine against H2O2-Induced Oxidative Damage in Bovine Mammary Epithelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4013575. [PMID: 35360198 PMCID: PMC8964234 DOI: 10.1155/2022/4013575] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/20/2022] [Accepted: 03/02/2022] [Indexed: 12/14/2022]
Abstract
Leucine and isoleucine possess antioxidative and anti-inflammatory properties. However, their underlying protective mechanisms against oxidative damage remain unknown. Therefore, in this study, the protective mechanism of leucine and isoleucine against H2O2-induced oxidative damage in a bovine mammary epithelial cell lines (MAC-T cells) were investigated. Briefly, MAC-T cells exposed or free to H2O2 were incubated with different combinations of leucine and isoleucine. The cellular relative proliferation rate and viability, oxidative stress indicators, and inflammatory factors were determined by specific commercial kits. The genes related to barrier functions was measured by real-time quantitative PCR. The protein expression differences were explored by 4D label-free quantitative proteomic analyses and validated by parallel reaction monitoring. The results revealed that leucine and isoleucine increased cell proliferation, total antioxidant status (TAS), and the relative mRNA expression of occludin, as well as decreased malondialdehyde (MDA), total oxidant status (TOS)/TAS, IL-6, IL-1β, and TOS. When leucine and isoleucine were combined, MDA, TOS/TAS, and the relative mRNA expression levels of claudin-1, occludin, and zonula occludens-1 increased when compared to leucine or isoleucine alone. Proteomics analyses revealed that leucine significantly upregulated the propanoate metabolism; valine, leucine, and isoleucine degradation; and thermogenesis pathways, whereas isoleucine significantly upregulated the peroxisome and propanoate metabolism pathways. In conclusion, leucine protected MAC-T cells from H2O2-induced oxidative stress by generating more ATP to supplement energy demands, and isoleucine improved the deficit in peroxisome transport and promoted acetyl-CoA production. The findings of this study enhance our understanding of the protective mechanisms of leucine and isoleucine against oxidative damage.
Collapse
|
20
|
The Anti-Inflammatory, Anti-Apoptotic and Antioxidant Effects of a Pomegranate-Peel Extract against Acrylamide-Induced Hepatotoxicity in Rats. Life (Basel) 2022; 12:life12020224. [PMID: 35207511 PMCID: PMC8878900 DOI: 10.3390/life12020224] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/04/2022] Open
Abstract
The Acrylamide is a toxic compound generated under oxidative stress arising from intracellular ROS production and induced toxicity. It is frequently used in industry and generated through the heating of tobacco and foods high in carbohydrates. The exact mechanism of its toxicity is still unclear. In this study, an extract of the peels of pomegranate (Punica granatum L.), a nutritious and visually appealing fruit with a diverse bioactive profile, was examined for its potential anti-apoptotic, antioxidant, and anti-inflammatory effects. A total of 40 adult male Wistar rats were allocated into four groups of 10 rats each: Group 1 was a negative-control group (CNT) and received normal saline; Group 2 was a positive-control acrylamide group and received acrylamide orally at a dose of 20 mg/kg/bw; in Group 3, the rats were supplemented with pomegranate-peel extract (P.P; 150 mg/kg/bw) orally on a daily basis for 3 weeks, administered simultaneously with the acrylamide treatment described for Group 2; Group 4 was a protective group, and the animals received the pomegranate-peel extract and acrylamide as stated for Groups 2 and 3, with the pomegranate-peel extract (P.P. extract) administered 1 week earlier than the acrylamide. The results indicate that acrylamide exposure increased the serum levels of AST, ALT, creatinine, interleukin-1 beta, and interleukin-6 in an extraordinary manner. In addition, it increased the lipid peroxidation marker malondialdehyde (MDA) and simultaneously weakened antioxidant biomarker activities (SOD, GSH, and catalase) and reduced the levels of interleukin-10. The pomegranate-peel extract was shown to reduce the inflammatory blood markers of interleukin-1 beta and IL-6. Glutathione peroxidase, superoxide dismutase, catalase, and interleukin-10 were all significantly elevated in comparison to the acrylamide-treatment group as a result of the significant reduction in MDA levels induced by the P.P extract. In addition, the pomegranate-peel extract normalized the cyclooxygenase-2 (COX2), transforming growth factor-beta 1 (TGF-β1), and caspase-3 levels, with a significant upregulation of the mRNA expression of heme oxygenase-1 (HO-1), nuclear factor erythroid 2 (Nrf2), and Bcl-2. Therefore, these data reveal that pomegranate peel has anti-inflammatory, antiapoptotic, free-radical-scavenging, and powerful antioxidant activity that protects against acrylamide toxicity.
Collapse
|
21
|
Soliman MM, Alotaibi SS, Sayed S, Hassan MM, Althobaiti F, Aldhahrani A, Youssef GBA, El-Shehawi AM. The Protective Impact of Salsola imbricata Leaf Extract From Taif Against Acrylamide-Induced Hepatic Inflammation and Oxidative Damage: The Role of Antioxidants, Cytokines, and Apoptosis-Associated Genes. Front Vet Sci 2022; 8:817183. [PMID: 35155650 PMCID: PMC8835116 DOI: 10.3389/fvets.2021.817183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/21/2021] [Indexed: 12/22/2022] Open
Abstract
Salsola imbricata is a herbal plant native to Saudi Arabia, known for its antioxidative and anti-inflammatory properties. This study explored the protective effects of an ethanolic leaf extract of Salsola imbricata against the oxidative stress and hepatic injury caused by acrylamide. Rats received intragastric administrations of 20 mg/kg of body weight of acrylamide to induce hepatic injury, or 300 mg/kg of body weight of Salsola ethanolic extract orally for 7 days before acrylamide administration. The treatments were continued for 3 weeks. Blood and liver samples were collected from all the groups, and the following biochemical parameters were tested: serum ALT (alanine aminotransferase), AST (aspartate aminotransferase), GGT (gamma glutaryl transferase), urea, albumin, total proteins, catalase, SOD (superoxide dismutase), reduced glutathione (GSH), nitric oxide (NO), and MDA (malondialdehyde). Quantitative real-time PCR (qRT-PCR) was used to examine the expression of Nrf2 (Nuclear factor-erythroid factor 2-related factor 2), HO-1 (Hemoxygenase-1), COX-2 (Cyclooxgenase-2), TGF-β1 (transforming growth factor-beta1), Bax, and Bcl2 (B-cell lymphoma 2), which are associated with oxidative stress, fibrosis, apoptosis, and anti-apoptotic effects. The annexin and survivin immunoreactivity were examined at the immunohistochemical level. Pretreatment with the Salsola ethanolic extract reduced the negative impact of acrylamide on ALT, AST, GGT, urea, albumin, and total proteins. The Salsola ethanolic extract reversed acrylamide's effects on serum and tissue antioxidants. Nrf2/HO-1 expression was downregulated, while COX-2 and TGF-β1 were upregulated in the acrylamide-administered group and normalized by the pre-administration of Salsola ethanolic extract to the acrylamide experimental group. The immunoreactivity of annexin and survivin was restored in the experimental group administered Salsola ethanolic extract plus acrylamide. In conclusion, Salsola ethanolic extract inhibits and regulates the side effects induced in the liver by acrylamide. Salsola induced its impacts by regulating inflammation, oxidative stress, and apoptosis-/anti-apoptosis-associated genes at the biochemical, molecular, and cellular levels. Salsola is recommended as oxidative stress relievers against environmental toixicity at high altitude areas.
Collapse
Affiliation(s)
- Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif, Saudi Arabia
- *Correspondence: Mohamed Mohamed Soliman
| | - Saqer S. Alotaibi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Samy Sayed
- Department of Science and Technology, University College-Ranyah, Taif University, Taif, Saudi Arabia
| | - Mohamed M. Hassan
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Fayez Althobaiti
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Adil Aldhahrani
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif, Saudi Arabia
| | - Gehan B. A. Youssef
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Ahmed M. El-Shehawi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| |
Collapse
|
22
|
Quesada-Valverde M, Artavia G, Granados-Chinchilla F, Cortés-Herrera C. Acrylamide in foods: from regulation and registered levels to chromatographic analysis, nutritional relevance, exposure, mitigation approaches, and health effects. TOXIN REV 2022. [DOI: 10.1080/15569543.2021.2018611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mónica Quesada-Valverde
- Centro Nacional de Ciencia y Tecnología de Alimentos (CITA), Universidad de Costa Rica, San José, Costa Rica
| | - Graciela Artavia
- Centro Nacional de Ciencia y Tecnología de Alimentos (CITA), Universidad de Costa Rica, San José, Costa Rica
| | - Fabio Granados-Chinchilla
- Centro Nacional de Ciencia y Tecnología de Alimentos (CITA), Universidad de Costa Rica, San José, Costa Rica
| | - Carolina Cortés-Herrera
- Centro Nacional de Ciencia y Tecnología de Alimentos (CITA), Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
23
|
Anaeigoudari A. Hepato- and reno-protective effects of thymoquinone, crocin, and carvacrol: A comprehensive review. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.343386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
24
|
Cheang I, Liao S, Zhu X, Lu X, Zhu Q, Yao W, Zhou Y, Zhang H, Li X. Association of acrylamide hemoglobin biomarkers with serum lipid levels in general US population: NHANES 2013-2016. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 214:112111. [PMID: 33690009 DOI: 10.1016/j.ecoenv.2021.112111] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/13/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
The aim of present study was to investigate the association of acrylamide (AA) hemoglobin biomarkers and serum lipids level in a general population. Data set of our study were extracted from an open database - National Health and Nutrition Examination Surveys (NHANES) 2013-2016. In total 2899 participants were enrolled. The associations between AA hemoglobin parameters [hemoglobin adducts of AA (HbAA) and glycidamide (HbGA), total of HbAA and HbGA (HbAA+HbGA), and ratio of HbGA to HbAA (HbGA/HbAA)] and lipid levels [total cholesterol (TC), triglyceride (TG), low-density lipoprotein-cholesterol (LDL-C), high-density lipoprotein-cholesterol (HDL-C)] were analyzed. Generalized linear models and restricted cubic spline plots were conducted to address the relationship between lipid levels and acrylamide markers. Comparing the lowest quantiles, HbGA and HbGA/HbAA both remained a significant trend regardless of lipid types. Analyses using a generalized linear model with restricted cubic spline and validated with regression models, all 4 AA parameters demonstrated a linear association and positive correlation with TG. Furthermore, there were also opposite nonlinear association between HbGA/HbAA and LDL-C (positive correlation), and HbGA/HbAA and HDL-C (negative correlation). Further analysis with threshold effect analysis or regression analysis showed HbGA and HbGA/HbAA remained significant association with all TC, TG, LDL-C, and HDL-C. The hemoglobin adducts AA parameters as long-term exposure biomarkers are associated with the atherosclerotic lipid changes in a population of US adults.
Collapse
Affiliation(s)
- Iokfai Cheang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing 210029, China
| | - Shengen Liao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing 210029, China
| | - Xu Zhu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing 210029, China
| | - Xinyi Lu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing 210029, China
| | - Qingqing Zhu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing 210029, China
| | - Wenming Yao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing 210029, China
| | - Yanli Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing 210029, China
| | - Haifeng Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing 210029, China
| | - Xinli Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing 210029, China.
| |
Collapse
|
25
|
Reshmitha T, Nisha P. Lycopene mitigates acrylamide and glycidamide induced cellular toxicity via oxidative stress modulation in HepG2 cells. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
26
|
Exploring the possible neuroprotective and antioxidant potency of lycopene against acrylamide-induced neurotoxicity in rats' brain. Biomed Pharmacother 2021; 138:111458. [PMID: 33711552 DOI: 10.1016/j.biopha.2021.111458] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/20/2021] [Accepted: 02/27/2021] [Indexed: 12/16/2022] Open
Abstract
Acrylamide (Ac) is a carbonyl compound extracted from hydrated acrylonitrile with a significantly high chemical activity. It is widely existed and used in food processing, industrial manufacturing and laboratory personnel work. However, lycopene (Ly) is a most potent natural antioxidant among various common carotenoids extracted from red plants. Nevertheless, little is known about the relationship of Ac-induced neurotoxicity and the ameliorative role of Ly in the regulation of oxidative and antioxidant capacity during Ac exposure. Therefore, this work sought to investigate the neurotoxicity induced by Ac exposure and the potential modulatory role of Ly by reversing the brain dysfunctions during Ac exposure. For this purpose, forty male albino rats were assigned into four equal groups. Control group received distilled water, Ly group was given with a daily dose of 10 mg/kg bw, Ac group was given with a daily dose of 25 mg/kg bw, and Ac-Ly group was gavaged Ac plus Ly at the same doses as the former groups. All treatments were given orally for 21 consecutive days. The concentrations of antioxidants (reduced glutathione and glutathione peroxidase) and oxidative stress (malondialdehyde, nitric oxide and protein carbonyl) biomarkers, as well as neurotransmitters (serotonin and dopamine) and acetylcholinesterase (AChE) were measured in the brain homogenates. An immunohistochemical staining was applied with anti-GFPA antibody to determine the severity of astrocytosis. The in vivo study with rat model demonstrated that Ac exposure significantly decline the hematological parameters, brain neurotransmitters concentrations and AChE activity, as well as levels of antioxidant biomarkers but markedly elevate the levels of oxidative stress biomarkers. Moreover, marked histological alterations and astrocytosis were observed through the increased number of GFAP immunopositively cells in cerebral, cerebellar and hippocampal tissues compared with the other groups. Interestingly, almost all of the previously mentioned parameters were retrieved in Ac-Ly group compared to Ac group. These findings conclusively indicate that Ly oral administration provides adequate protection against the neurotoxic effects of Ac on rat brain tissue function and structure through modulations of oxidative and antioxidant activities.
Collapse
|
27
|
Erfan OS, Sonpol HMA, Abd El-Kader M. Protective effect of rapamycin against acrylamide-induced hepatotoxicity: The associations between autophagy, apoptosis, and necroptosis. Anat Rec (Hoboken) 2021; 304:1984-1998. [PMID: 33480149 DOI: 10.1002/ar.24587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 12/21/2020] [Accepted: 12/25/2020] [Indexed: 12/28/2022]
Abstract
Acrylamide (ACRL) was demonstrated to induce hepatotoxicity and programmed cell death (PCD). Rapamycin (RAPA)-induced autophagy had been reported to limit the progression of hepatocellular injury in experimental models. This research was designed to study two death pathways involved in ACRL-induced hepatotoxicity and the modulating effect of RAPA on the resulting hepatic injury. Thirty-six adult male rats were divided into three groups: control group, ACRL-treated group (20 mg kg/day), and the last group co-treated with ACRL plus RAPA (0.5 mg kg/day). Drugs were administered for 21 days via oral gavage. Blood samples were collected to assess alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Livers were dissected; parts were used for detection of superoxide dismutase (SOD) and malondialdehyde (MDA) tissue levels. Other parts were processed for hematoxylin and eosin, Masson's trichrome staining, immunostaining for microtubule-associated proteins 1A/1B light chain 3B (LC3), ubiquitin-binding protein (p62), caspase-3, and receptor-interacting protein kinase 1 (RIPK1). ACRL induced a significant elevation in ALT, AST, MDA levels, and reduction in the SOD level. ACRL also induced hepatocellular injury, fibrosis, and defective autophagy indicated by elevation of LC3 and p62 and increased p62/LC3 ratio. Moreover, it increased the apoptotic (caspase-3) and necroptotic (RIPK1) markers expression. RAPA significantly reduced liver enzymes, oxidative stress, fibrosis, and improved liver histology. Moreover, RAPA decreased p62/LC3 ratio indicated enhanced autophagy, and significantly reduced caspase-3 and RIPK1 expression. In conclusion, RAPA maintained autophagic activity which may save the hepatocytes from PCD and enhance cell viability.
Collapse
Affiliation(s)
- Omnia S Erfan
- Anatomy and embryology department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Hany M A Sonpol
- Anatomy and embryology department, Faculty of Medicine, Mansoura University, Mansoura, Egypt.,Basic medical sciences department, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | - Marwa Abd El-Kader
- Anatomy and embryology department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
28
|
Jiang G, Lei A, Chen Y, Yu Q, Xie J, Yang Y, Yuan T, Su D. The protective effects of the Ganoderma atrum polysaccharide against acrylamide-induced inflammation and oxidative damage in rats. Food Funct 2021; 12:397-407. [PMID: 33336655 DOI: 10.1039/d0fo01873b] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this study, the protective effects of the Ganoderma atrum polysaccharide (PSG-1) on selected tissue (liver, spleen, kidneys and intestine) toxicity induced by acrylamide (AA) in SD rats were investigated. The results showed that pretreatment with PSG-1 could prevent AA-induced damage to liver and kidney functions by increasing the activities of ALT, AST and ALP and the levels of TG, BUN and CR in the serum of AA-treated rats. PSG-1 could also maintain the intestinal barrier function and permeability by preventing the reduction of the serum d-Lac and ET-1 levels in the intestine of AA-treated rats. In addition, AA-induced DNA damage, as indicated by an increase of the 8-OHdG level, was alleviated by pretreatment with PSG-1. Histological observations of the tissues confirmed the protective effects of different doses of PSG-1. Moreover, PSG-1 supplementation reduced oxidative stress and inflammation in rats by upregulating the superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities and IL-10 levels, and preventing the overproduction of malondialdehyde (MDA), IL-1β, IL-6, and TNF-α. Thus, these findings suggest that PSG-1 effectively prevents AA-induced damage in the liver, spleen, kidneys, and intestine of rats, partially by alleviating the inflammatory response and oxidative stress and protecting the intestinal integrity and barrier function.
Collapse
Affiliation(s)
- Guoyong Jiang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Aitong Lei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Ying Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Tongji Yuan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Dan Su
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
29
|
Hashemzaei M, Mamoulakis C, Tsarouhas K, Georgiadis G, Lazopoulos G, Tsatsakis A, Shojaei Asrami E, Rezaee R. Crocin: A fighter against inflammation and pain. Food Chem Toxicol 2020; 143:111521. [DOI: 10.1016/j.fct.2020.111521] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023]
|
30
|
Foroutanfar A, Mehri S, Kamyar M, Tandisehpanah Z, Hosseinzadeh H. Protective effect of punicalagin, the main polyphenol compound of pomegranate, against acrylamide‐induced neurotoxicity and hepatotoxicity in rats. Phytother Res 2020; 34:3262-3272. [DOI: 10.1002/ptr.6774] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 05/20/2020] [Accepted: 05/24/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Amir Foroutanfar
- School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Soghra Mehri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Marzyeh Kamyar
- School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | | | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
31
|
Zhao S, Sun H, Liu Q, Shen Y, Jiang Y, Li Y, Liu T, Liu T, Xu H, Shao M. Protective effect of seabuckthorn berry juice against acrylamide-induced oxidative damage in rats. J Food Sci 2020; 85:2245-2254. [PMID: 32579735 DOI: 10.1111/1750-3841.15313] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 04/20/2020] [Accepted: 05/11/2020] [Indexed: 12/16/2022]
Abstract
Acrylamide (AA), classified as a probable carcinogen, can be neurotoxic, genotoxic, and can damage DNA. This study explored the ability of seabuckthorn berries juice (SBJ) to alleviate AA-induced toxic injury in rats. Twenty-four adult male Sprague-Dawley (SD) rats were randomly divided into four groups: control group, AA group (40 mg/kg), AA + SBJ (40 mg/kg AA and 5 mL/kg SBJ), and AA + vitamin C (VC) group (positive control group, 40 mg/kg AA and 100 mg/kg VC). At the end of the experiment, rats in AA group showed a marked decrease in the rate of weight gain, hind extremity abduction, and ataxia. Obvious anomalies were seen in plasma biochemical parameters (P < 0.05), and different degrees of injury were observed upon histological examination of five tissues (hippocampus, cerebellum, liver, small intestine, and kidney). Compared to the control group, levels of superoxide dismutase, catalase, and glutathione were significantly decreased, while malondialdehyde was elevated (P < 0.05). SBJ treatment reduced the abnormal of behavior, hematological index, antioxidant enzyme, and tissue damage caused by AA in rats. PRACTICAL APPLICATION: Seabuckthorn berries are wild berries rich in vitamin C and polyphenols, which have good antioxidant properties. In this experiment, SBJ has a significant alleviating effect on AA-induced oxidative damage in rats. Therefore, we speculate that SBJ may relieve the oxidative damage caused by diet or other forms of AA exposure in the general population. At the same time, this experiment also provides new ideas for alleviating AA-induced in vivo toxicity.
Collapse
Affiliation(s)
- Sijia Zhao
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.,Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Hongyang Sun
- Author, Sun, is, with, China Institute to Veterinary Drug Control, Beijing, 100081, China
| | - Qingbo Liu
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.,Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yu Shen
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.,Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yujun Jiang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.,Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yanhua Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Tong Liu
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.,Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Tianxu Liu
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.,Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Honghua Xu
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.,Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Meili Shao
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.,Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
32
|
Hamdy SM, El-Khayat Z, Farrag AR, Sayed ON, El-Sayed MM, Massoud D. Hepatoprotective effect of Raspberry ketone and white tea against acrylamide-induced toxicity in rats. Drug Chem Toxicol 2020; 45:722-730. [PMID: 32482111 DOI: 10.1080/01480545.2020.1772279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The current investigation was accomplished to evaluate the hepatoprotective effect of White tea and Raspberry Ketone against toxicity induced by acrylamide in rats. Sixty adult male rats were divided randomly into group (I) control; group (II) rats received RK with dose (6 mg/kg/day); Group III: rats received 5 ml of WT extract/kg/day; Group IV rats received AA (5 mg/kg/day); Group V: rats administrated with both AA (5 mg/kg/day) and RK (6 mg/kg/day) and Group VI: rats administrated AA (5 mg/kg/day) and 5 ml of WT extract/kg/day. The biochemical assays exhibited a significant increase in serum levels of Adiponectin, AST, ALT, ALP of the group treated with acrylamide if compared to the control group and an improvement in their levels of groups V and VI. The histopathological and immunohistochemical findings confirm the biochemical observations. In conclusion, the present investigation proved that the supplementation of WT and RK enhanced the liver histology, immunohistochemistry and biochemistry against the oxidative stress induced by acrylamide.
Collapse
Affiliation(s)
- Soha M Hamdy
- Chemistry Department, Biochemistry Division, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Zakaria El-Khayat
- Medical Biochemistry Department, Medical Division, National Research Centre Cairo, Cairo, Egypt
| | - Abdel Razik Farrag
- Pathology Department, Medical Division, National Research Centre, Cairo, Egypt
| | - Ola N Sayed
- Chemistry Department, Biochemistry Division, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Mervat M El-Sayed
- Chemistry Department, Biochemistry Division, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Diaa Massoud
- Department of Biology, College of Science, Jouf University, Sakakah, Saudi Arabia.,Department of Zoology, Faculty of Science, Fayoum University, Faiyum, Egypt
| |
Collapse
|
33
|
Hassan HA, El-Kholy WM, El-Sawi MRF, Galal NA, Ramadan MF. Myrtle (Myrtus communis) leaf extract suppresses hepatotoxicity induced by monosodium glutamate and acrylamide through obstructing apoptosis, DNA fragmentation, and cell cycle arrest. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:23188-23198. [PMID: 32333355 DOI: 10.1007/s11356-020-08780-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
A large number of plant extracts have demonstrated to provide health benefits and mitigate several disease conditions. However, at the molecular and cellular levels, few studies have been conducted. The present work was designed to study the effect of Myrtus communis leaf extract (ME) (300 mg/kg bw) against hepatotoxicity induced by monosodium glutamate (MSG) (100 mg/kg bw), and acrylamide (ACR) (20 mg/kg bw) in male rats and determining its molecular and cellular mechanisms. The data showed that the treatment with MSG and/or ACR induced significant changes in numerous biomarkers (Bcl-2 and the programmed cell death protein-1) related to liver damage, as recorded by genotoxicity, apoptosis, and histopathological changes. On the other side, the oral administration of ME (300 mg/kg bw) improved the hepatic conditions as confirmed by the improvement in cell viability, programmed cell death, and histopathological alterations. It can be concluded that the consumption of ME might be useful for minimizing the occurred hepatotoxicity through up-regulation of the key apoptotic regulators as well as the improvement of DNA content and cell cycle restoration. Graphical abstract.
Collapse
Affiliation(s)
- Hanaa A Hassan
- Department of Biology, Faculty of Science and Art, Taibah University, Al-Ula, Saudi Arabia.
- Physiology Division, Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt.
| | - Wafaa M El-Kholy
- Physiology Division, Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Mamdouh R F El-Sawi
- Physiology Division, Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Nadine A Galal
- Physiology Division, Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Mohamed Fawzy Ramadan
- Agricultural Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt.
- Deanship of Scientific Research, Umm Al-Qura University, P.O. Box 715, Makkah, Saudi Arabia.
| |
Collapse
|
34
|
Khedr LH, Rahmo RM, Farag DB, Schaalan MF, El Magdoub HM. Crocin attenuates cisplatin-induced hepatotoxicity via TLR4/NF-κBp50 signaling and BAMBI modulation of TGF-β activity: Involvement of miRNA-9 and miRNA-29. Food Chem Toxicol 2020; 140:111307. [PMID: 32259551 DOI: 10.1016/j.fct.2020.111307] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/16/2020] [Accepted: 03/24/2020] [Indexed: 01/22/2023]
Abstract
TLR4-induced mitigation of the BMP down-regulation and activin membrane bound inhibitor (BAMBI) and the consequent enhancement of the transforming growth factor-beta (TGF-β) profibrogenic signaling has not yet been studied in cisplatin (CIS)-induced hepatotoxicity. miRNA-9 and29 have been previously reported to modulate TLR4 signaling via either tempering the expression of nuclear factor kappa-B p50 (NF-κB p50) or downregulation of extracellular matrix genes respectively. Hence we aimed to investigate the involvement of TLR4-induced modulation of TGF-β receptor 1 (TGF-βR1) signaling as well as the implication of miRNA-9 and 29 in CIS-induced hepatotoxicity. Moreover, we examined the ability of the phytochemical; crocin (CROC); to interact with either TLR4 or TGF-βR1 through a molecular docking study and subsequently explore its capability to attenuate CIS-induced hepatotoxicity. CROC pretreatment ameliorated the CIS-induced enhancement of TLR4 and TGF-β signaling and enhanced the expression of BAMBI, miRNA-9 and 29. Accordingly, it may be assumed that the protective effect of CROC against CIS-induce hepatotoxicity is mediated via the crosstalk of TLR4/NF-κBp50 signaling and BAMBI modulation of TGF-β1 activity in addition to the up-regulation of miRNA-9 and 29. These findings came in alignment with our molecular docking results; emphasizing the molecular antagonistic activity of CROC in both TLR4 and TGF-βR1.
Collapse
Affiliation(s)
- L H Khedr
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt.
| | - Rania M Rahmo
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
| | - Doaa Boshra Farag
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
| | - Mona F Schaalan
- Pharmacy Practice & Clinical Pharmacy Department, Faculty of Pharmacy, Translational and Clinical Research Unit, Misr International University (MIU), Cairo, Egypt
| | - Hekmat M El Magdoub
- Biochemistry Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
| |
Collapse
|
35
|
Margaritis I, Angelopoulou K, Lavrentiadou S, Mavrovouniotis IC, Tsantarliotou M, Taitzoglou I, Theodoridis A, Veskoukis A, Kerasioti E, Kouretas D, Zervos I. Effect of crocin on antioxidant gene expression, fibrinolytic parameters, redox status and blood biochemistry in nicotinamide-streptozotocin-induced diabetic rats. ACTA ACUST UNITED AC 2020; 27:4. [PMID: 32161725 PMCID: PMC7053078 DOI: 10.1186/s40709-020-00114-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/18/2020] [Indexed: 12/24/2022]
Abstract
Background Diabetes is regarded as an epidemiological threat for the twenty-first century. Phytochemicals with known pharmaceutical properties have gained interest in the field of alleviating secondary complications of diseases. Such a substance is crocin, a basic constituent of saffron (Crocus sativus). The present study aimed at examining the beneficial effects of per os crocin administration on the antioxidant status, blood biochemical profile, hepatic gene expression and plasminogen activator inhibitor-1 activity (PAI-1) in the liver, kidney and plasma (an important marker of pre-diabetic status and major factor of thrombosis in diabetes) of healthy rats, as well as of rats with nicotinamide-streptozotocin-induced diabetes. Results Diabetes disrupted the oxidation-antioxidation balance, while crocin improved the antioxidant state in the liver by significantly affecting SOD1 gene expression and/or by restoring SOD and total antioxidant capacity (TAC) levels. In the kidney, crocin improved hydrogen peroxide decomposing activity and TAC. In blood, hepatic transaminases ALT and AST decreased significantly, while there was a trend of decrease regarding blood urea nitrogen (BUN) levels. The expression of PAI-1 gene was affected in the liver by the dose of 50 mg kg−1. Conclusions Crocin treatment contributed in restoring some parameters after diabetes induction, primarily by affecting significantly hepatic transaminases ALT and AST, SOD1 and PAI-1 gene expression and nephric H2O2 decomposing activity. In conclusion, crocin did contribute to the alleviation of some complications of diabetes.
Collapse
Affiliation(s)
- Ioannis Margaritis
- 1Laboratory of Physiology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Katerina Angelopoulou
- 2Laboratory of Biochemistry & Toxicology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Sophia Lavrentiadou
- 1Laboratory of Physiology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Maria Tsantarliotou
- 1Laboratory of Physiology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Taitzoglou
- 1Laboratory of Physiology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alexandros Theodoridis
- 4Laboratory of Animal Production Economics, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Aristidis Veskoukis
- 5Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Efthalia Kerasioti
- 5Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Dimitrios Kouretas
- 5Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Ioannis Zervos
- 1Laboratory of Physiology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
36
|
Sun R, Chen W, Cao X, Guo J, Wang J. Protective Effect of Curcumin on Acrylamide-Induced Hepatic and Renal Impairment in Rats: Involvement of CYP2E1. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20910548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
As a chemical extensively used in industrial areas and formed during heating of carbohydrate-rich foods and tobacco, acrylamide (ACR) has been demonstrated to exert a variety of systemic toxic effects including hepatotoxicity and nephrotoxicity. In the present study, we investigated the effect of curcumin, a natural polyphenolic compound in a popular spice known as turmeric, on the hepatic and renal impairment caused by ACR exposure to 40 mg/kg for 4 weeks in rats. The administration of curcumin at doses of 50 and 100 mg/kg to ACR-intoxicated rats significantly decreased the serum levels of alanine transaminase, aspartate transaminase, creatinine, and urea; improved the histological changes of liver and kidney caused by ACR; reduced the number of apoptotic cells; as well as relieved ACR-induced hepatic and renal oxidative stress. Moreover, curcumin inhibited the CYP2E1 overexpression induced by ACR in the liver and kidney tissues. Therefore, curcumin could be applied as a potential strategy for the intervention of ACR-induced systemic toxicity. The inhibition of CYP2E1 might be involved in the protection of curcumin against ACR-induced hepatotoxicity and nephrotoxicity.
Collapse
Affiliation(s)
- Rui Sun
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| | - Wenhui Chen
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| | - Xiaolu Cao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| | - Jie Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| | - Jun Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| |
Collapse
|
37
|
Protective effects of morin against acrylamide-induced hepatotoxicity and nephrotoxicity: A multi-biomarker approach. Food Chem Toxicol 2020; 138:111190. [PMID: 32068001 DOI: 10.1016/j.fct.2020.111190] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 01/02/2023]
Abstract
Acrylamide (ACR) is a heat-induced carcinogen substance that is found in some foods due to cooking or other thermal processes. The aim of present study was to assess the probable protective effects of morin against ACR-induced hepatorenal toxicity in rats. The rats were treated with ACR (38.27 mg/kg b.w., p.o.) alone or with morin (50 and 100 mg/kg b.w., p.o.) for 10 consecutive days. Morin treatment attenuated the ACR-induced liver and kidney tissue injury by diminishing the serum AST, ALP, ALT, urea and creatinine levels. Morin increased activities of SOD, CAT and GPx and levels of GSH, and suppressed lipid peroxidation in ACR induced tissues. Histopathological changes and immunohistochemical expressions of p53, EGFR, nephrin and AQP2 in the ACR-induced liver and kidney tissues were decreased after administration of morin. In addition, morin reversed the changes in levels of apoptotic, autophagic and inflammatory parameters such as caspase-3, bax, bcl-2, cytochrome c, beclin-1, LC3A, LC3B, p38α MAPK, NF-κB, IL-1β, IL-6, TNF-α and COX-2 in the ACR-induced toxicity. Morin also affected the protein levels by regulating the PI3K/Akt/mTOR signaling pathway and thus alleviated ACR-induced apoptosis and autophagy. Overall, these findings may shed some lights on new approaches for the treatment of ACR-induced hepatotoxicity and nephrotoxicity.
Collapse
|
38
|
Hamza RZ, Al-Motaan SE, Malik N. Protective and Antioxidant Role of Selenium Nanoparticles and Vitamin C Against Acrylamide Induced Hepatotoxicity in Male Mice. INT J PHARMACOL 2019. [DOI: 10.3923/ijp.2019.664.674] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
39
|
Karimi MY, Fatemi I, Kalantari H, Mombeini MA, Mehrzadi S, Goudarzi M. Ellagic Acid Prevents Oxidative Stress, Inflammation, and Histopathological Alterations in Acrylamide-Induced Hepatotoxicity in Wistar Rats. J Diet Suppl 2019; 17:651-662. [PMID: 31342809 DOI: 10.1080/19390211.2019.1634175] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The present study was designed to investigate the changes in rat liver tissue after administration of acrylamide (ACR) and ellagic acid (EA). The latter compound was applied for its strong antioxidant and anti-inflammatory properties. In the present study, 35 male Wistar rats were randomly divided into five equal groups. These groups were normal saline (NS), ACR (20 mg/kg), ACR + EA (10 and 30 mg/kg EA), and EA (30 mg/kg). At the end of the experiment, the rats were decapitated. Biochemical and histopathological studies were conducted on liver and serum samples. ACR administration significantly decreased hepatic GSH level, SOD, GPx, and CAT activity when compared to the NS group. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), nitric oxide (NO), protein carbonyl (PC), malondialdehyde (MDA), tumor necrosis factor alpha (TNF-α), and interleukin 1 beta (IL-1β) levels increased as a result of ACR administration. Administration of EA (more potently at a dose of 30 mg/kg) resulted in a significant reversal of biochemical, inflammatory, and hepatic markers in ACR-intoxicated rats. These biochemical and inflammatory disturbances were supported by histopathological observations of the liver. Our results indicate that EA might be useful for the treatment of the hepatotoxicity induced by ACR via ameliorative effects on biochemical, oxidative stress, and inflammatory indices.
Collapse
Affiliation(s)
| | - Iman Fatemi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Heibatullah Kalantari
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Amin Mombeini
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Goudarzi
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
40
|
Tawfik SS, Elkady AA, El Khouly WA. Crocin mitigates γ-rays-induced hepatic toxicity in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:15414-15419. [PMID: 30937741 DOI: 10.1007/s11356-019-04724-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
Crocin (C44H64O24) is an isolated bioactive molecule of saffron extract. It has different pharmacological effects such as antioxidant and anti-inflammatory activities. In the present study, radioprotective property of crocin was investigated in the rat liver. Thirty-two rats were equally divided into four groups: (1) control (normal saline), (2) crocin (200 mg/kg), (3) γ-rays (6Gy), and (4) crocin plus γ-rays-treated groups. The liver histopathology, serum transaminases (ALT and AST), alkaline phosphatase (ALP), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and hepatic lipid peroxidation, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) have been assessed. The histopathological result of hepatic tissue in group 3 showed hydropic degeneration and this progressed to focal or spotty necrosis through the lobule. Moreover, some sinusoids are distended with blood or with leukocytic infiltrations. Other cases in group 3 showed periportal leukocytic infiltrations and necrosis extended out from the portal tract to involve hepatic lobules with fibrinous necrosis in portal vessels, while the examination of hepatic tissues of group 4 showed reduced deformities, irregular arrangement, congested hepatic vessels, and necrosis in hepatocytes. The results also showed significant decreased level of liver function activities, inflammatory markers, lipid peroxidation, and increased levels of liver antioxidants enzymes in group 4. Crocin showed moderate protective effect against γ-rays-induced liver toxicity. The antioxidant effect of crocin may be a major reason for its positive impact on liver parameters. Graphical abstract .
Collapse
Affiliation(s)
- Sameh Soliman Tawfik
- Health Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), P. O. Box 29, Nasr City, Cairo, Egypt.
- Egyptian Atomic Energy Authority, P. O. Box 29, Nasr City, Cairo, Egypt.
| | - Ahmed Amer Elkady
- Health Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), P. O. Box 29, Nasr City, Cairo, Egypt
- Egyptian Atomic Energy Authority, P. O. Box 29, Nasr City, Cairo, Egypt
| | - Wael Aly El Khouly
- Egyptian Atomic Energy Authority, P. O. Box 29, Nasr City, Cairo, Egypt
- Radiation Protection Department, Nuclear and Radiological Regulatory Authority (NRRA), P. O. Box 7551, Nasr City, Egypt
| |
Collapse
|
41
|
Karimani A, Hosseinzadeh H, Mehri S, Jafarian AH, Kamali SA, Hooshang Mohammadpour A, Karimi G. Histopathological and biochemical alterations in non-diabetic and diabetic rats following acrylamide treatment. TOXIN REV 2019. [DOI: 10.1080/15569543.2019.1566263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Asieh Karimani
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hossein Jafarian
- Cancer Molecular Pathology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Amir Hooshang Mohammadpour
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
42
|
A.Al-Salmi F. Ameliorative and Synergistic Effect of Red Raspberry and Lycopene Against Hepatotoxicity Induced by Acrylamide in Male Mice. INT J PHARMACOL 2019. [DOI: 10.3923/ijp.2019.166.176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
43
|
Rivadeneyra-Domínguez E, Becerra-Contreras Y, Vázquez-Luna A, Díaz-Sobac R, Rodríguez-Landa JF. Alterations of blood chemistry, hepatic and renal function, and blood cytometry in acrylamide-treated rats. Toxicol Rep 2018; 5:1124-1128. [PMID: 30510905 PMCID: PMC6258226 DOI: 10.1016/j.toxrep.2018.11.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 10/12/2018] [Accepted: 11/01/2018] [Indexed: 11/24/2022] Open
Abstract
Acrylamide is a vinyl monomer that is widely used for the synthesis of polyacrylamides, the treatment of drinking water, and as an additive in cosmetics. Acrylamide is also produced during the thermal processing of carbohydrate-rich foods. Although the potential toxic effects of acrylamide have been reported, few studies have evaluated biochemical parameters in blood. The present study investigated alterations of blood chemistry, hepatic function, and blood cytometry in acrylamide-treated rats. Thirty-two male Wistar rats were assigned to four experimental groups (n = 8/group): one control group received 0.3 ml of vehicle (saline solution), and the other three groups received acrylamide (25, 50, and 75 mg/kg, i.p., for 14 days). At the end of treatment, blood samples were collected to obtain serum, which was then processed using a Vitros250 device. For blood cytometry, the samples were processed in a Sysmex analyzer. The blood chemistry results showed that urea nitrogen, urea, and creatinine were elevated in the acrylamide-treated groups. Tests of hepatic function showed that total and direct bilirubins, transaminases, and alkaline phosphatase were also elevated compared with vehicle, whereas the levels of total proteins and albumin decreased. Blood cytometry showed that the levels of erythrocytes, hemoglobin, hematocrit, leukocytes, and platelets and mean cell volume decreased in the acrylamide-treated groups compared with vehicle. Overall, the present findings indicate that acrylamide causes deleterious effects on renal and hepatic physiology, producing dose-dependent alterations of blood chemistry and cytometry parameters in male Wistar rats.
Collapse
Affiliation(s)
| | | | - Alma Vázquez-Luna
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Xalapa, Veracruz, Mexico
- Instituto de Ciencias Básicas, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Rafaél Díaz-Sobac
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Xalapa, Veracruz, Mexico
- Instituto de Ciencias Básicas, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Juan Francisco Rodríguez-Landa
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Xalapa, Veracruz, Mexico
- Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| |
Collapse
|
44
|
Acaroz U, Ince S, Arslan-Acaroz D, Gurler Z, Kucukkurt I, Demirel HH, Arslan HO, Varol N, Zhu K. The ameliorative effects of boron against acrylamide-induced oxidative stress, inflammatory response, and metabolic changes in rats. Food Chem Toxicol 2018; 118:745-752. [DOI: 10.1016/j.fct.2018.06.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/12/2018] [Accepted: 06/15/2018] [Indexed: 01/26/2023]
|
45
|
Kumar J, Das S, Teoh SL. Dietary Acrylamide and the Risks of Developing Cancer: Facts to Ponder. Front Nutr 2018; 5:14. [PMID: 29541638 PMCID: PMC5835509 DOI: 10.3389/fnut.2018.00014] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/12/2018] [Indexed: 12/18/2022] Open
Abstract
Acrylamide (AA) is a water soluble white crystalline solid commonly used in industries. It was listed as an industrial chemical with potential carcinogenic properties. However to date, AA was used to produce polyacrylamide polymer, which was widely used as a coagulant in water treatment; additives during papermaking; grouting material for dams, tunnels, and other underground building constructions. AA in food could be formed during high-temperature cooking via several mechanisms, i.e., formation via acrylic acid which may be derived from the degradation of lipid, carbohydrates, or free amino acids; formation via the dehydration/decarboxylation of organic acids (malic acid, lactic acid, and citric acid); and direct formation from amino acids. The big debate is whether this compound is toxic to human beings or not. In the present review, we discuss the formation of AA in food products, its consumption, and possible link to the development of any cancers. We discuss the body enzymatic influence on AA and mechanism of action of AA on hormone, calcium signaling pathways, and cytoskeletal filaments. We also highlight the deleterious effects of AA on nervous system, reproductive system, immune system, and the liver. The present and future mitigation strategies are also discussed. The present review on AA may be beneficial for researchers, food industry, and also medical personnel.
Collapse
Affiliation(s)
- Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Srijit Das
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
46
|
Erdemli ME, Gul M, Altinoz E, Zayman E, Aksungur Z, Bag HG. The protective role of crocin in tartrazine induced nephrotoxicity in Wistar rats. Biomed Pharmacother 2017; 96:930-935. [DOI: 10.1016/j.biopha.2017.11.150] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 01/04/2023] Open
|