1
|
Yasavoli‐Sharahi H, Shahbazi R, Alsadi N, Robichaud S, Kambli D, Izadpanah A, Mohsenifar Z, Matar C. Edodes Cultured Extract Regulates Immune Stress During Puberty and Modulates MicroRNAs Involved in Mammary Gland Development and Breast Cancer Suppression. Cancer Med 2024; 13:e70277. [PMID: 39382253 PMCID: PMC11462599 DOI: 10.1002/cam4.70277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/09/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Immune stressors, such as lipopolysaccharides (LPS), profoundly affect microbiota balance, leading to gut dysbiosis. This imbalance disrupts the metabolic phenotype and structural integrity of the gut, increasing intestinal permeability. During puberty, a critical surge in estrogen levels is crucial for mammary gland development. However, inflammation originating from the gut in this period may interfere with this development, potentially heightening breast cancer risk later. The long-term effects of pubertal inflammation on mammary development and breast cancer risk are underexplored. Such episodes can dysregulate cytokine levels and microRNA expression, altering mammary cell gene expression, and predisposing them to tumorigenesis. METHODS This study hypothesizes that prebiotics, specifically Lentinula edodes Cultured Extract (AHCC), can counteract LPS's adverse effects. Using BALB/c mice, an acute LPS dose was administered at puberty, and breast cancer predisposition was assessed at 13 weeks. Cytokine and tumor-related microRNA levels, tumor development, and cancer stem cells were explored through immunoassays and qRT-PCR. RESULTS Results show that LPS induces lasting effects on cytokine and microRNA expression in mammary glands and tumors. AHCC modulates cytokine expression, including IL-1β, IL-17A/F, and IL-23, and mitigates LPS-induced IL-6 in mammary glands. It also regulates microRNA expression linked to tumor progression and suppression, particularly counteracting the upregulation of oncogenic miR-21, miR-92, and miR-155. Although AHCC slightly alters some tumor-suppressive microRNAs, these changes are modest, highlighting a complex regulatory role that warrants further study. CONCLUSION These findings underscore the potential of dietary interventions like AHCC to mitigate pubertal LPS-induced inflammation on mammary gland development and tumor formation, suggesting a preventive strategy against breast cancer.
Collapse
Affiliation(s)
- Hamed Yasavoli‐Sharahi
- Cellular and Molecular Medicine Department, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
| | - Roghayeh Shahbazi
- Cellular and Molecular Medicine Department, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
| | - Nawal Alsadi
- Cellular and Molecular Medicine Department, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
| | - Samuel Robichaud
- Department of PathologyUniversity of MontrealMontrealQuebecCanada
| | - Darshan Babu Kambli
- Cellular and Molecular Medicine Department, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
| | - Amirhossein Izadpanah
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Zhaleh Mohsenifar
- Department of PathologySchool of Medicine, Shahid Beheshti University of Medical SciencesTehranIran
| | - Chantal Matar
- Cellular and Molecular Medicine Department, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
- School of Nutrition Sciences, Faculty of Health SciencesUniversity of OttawaOttawaOntarioCanada
| |
Collapse
|
2
|
Ramadan YN, Kamel AM, Medhat MA, Hetta HF. MicroRNA signatures in the pathogenesis and therapy of inflammatory bowel disease. Clin Exp Med 2024; 24:217. [PMID: 39259390 PMCID: PMC11390904 DOI: 10.1007/s10238-024-01476-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
Inflammatory bowel disease (IBD) is a persistent inflammatory illness of the gastrointestinal tract (GIT) triggered by an inappropriate immune response to environmental stimuli in genetically predisposed persons. Unfortunately, IBD patients' quality of life is negatively impacted by the symptoms associated with the disease. The exact etiology of IBD pathogenesis is not fully understood, but the emerging research indicated that the microRNA (miRNA) plays an important role. miRNAs have been documented to possess a significant role in regulating pro- and anti-inflammatory pathways, in addition to their roles in several physiological processes, including cell growth, proliferation, and apoptosis. Variations in the miRNA profiles might be a helpful prognostic indicator and a valuable tool in the differential diagnosis of IBD. Most interestingly, these miRNAs have a promising therapeutic target in several pre-clinical animal studies and phase 2 clinical studies to alleviate inflammation and improve patient's quality of life. This comprehensive review discusses the current knowledge about the significant physiological role of different miRNAs in the health of the intestinal immune system and addresses the role of the most relevant differentially expressed miRNAs in IBD, identify their potential targets, and emphasize their diagnostic and therapeutic potential for future research.
Collapse
Affiliation(s)
- Yasmin N Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut, 71515, Egypt.
| | - Ayat M Kamel
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut, 71515, Egypt
| | - Mohammed A Medhat
- Tropical Medicine and Gastroenterology Department, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Helal F Hetta
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, 71491, Tabuk, Saudi Arabia
| |
Collapse
|
3
|
Shen S, Wan A, Wang Y, Liu L, Yao Y, Weng J, Zhu T, Yang Q, Yan Q. Flexible microneedles incorporating gold nanorods and tacrolimus for effective synergistic photothermal-chemotherapy of rheumatoid arthritis. Int J Biol Macromol 2024; 276:133797. [PMID: 38992523 DOI: 10.1016/j.ijbiomac.2024.133797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 11/24/2023] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Transdermal drug delivery systems for rheumatoid arthritis (RA) have garnered substantial attention due to their great potential to overcome limitations observed in conventional oral or injection strategies, including limited selectivity and adverse effects on extra-articular tissues. Microneedles (MNs) appear to be highly desirable carriers for transdermal drug delivery of RA. However, microneedles typically are unable to keep up with the flexibility of joints, which decreases the effectiveness of administration. In this study, we developed a flexible microneedles (FMNs) delivery system. And gelatin was employed for the fabrication of flexible backings for microneedles owing to its excellent ductility and biocompatibility. We achieved synergisticphotothermal-chemotherapy of RA by incorporating the chemical drug Tacrolimus (TAC) and the photothermal agent gold nanorods (AuNRs) into dissolving microneedles. Results showed a high mechanical strength of the proposed FMNs. In the animal model of adjuvant-induced arthritis (AA), it is indicated that the prepared FMNs inhibited the expression of related inflammatory cytokines such as IL-1ß and TNF-α while enhancing bone repair and other related factors. Thus, the combination therapy of FMNs-mediated hyperthermia and chemotherapy can serve as a novel and synergistic treatment option for RA.
Collapse
Affiliation(s)
- Shulin Shen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China; Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Aiqun Wan
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China; Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yan Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China; Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Linxiao Liu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China; Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yao Yao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China; Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jiaqi Weng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China; Institute of Laser Advanced Manufacturing, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, PR China; College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, PR China
| | - Tong Zhu
- School of Education and English, Faculty of Humanities and Social Sciences, University of Nottingham, Ningbo, Zhejiang 315199, PR China
| | - Qingliang Yang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China; Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Qinying Yan
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China; Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
4
|
Bartels YL, van Lent PLEM, van der Kraan PM, Blom AB, Bonger KM, van den Bosch MHJ. Inhibition of TLR4 signalling to dampen joint inflammation in osteoarthritis. Rheumatology (Oxford) 2024; 63:608-618. [PMID: 37788083 PMCID: PMC10907820 DOI: 10.1093/rheumatology/kead493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 10/05/2023] Open
Abstract
Local and systemic low-grade inflammation, mainly involving the innate immune system, plays an important role in the development of OA. A receptor playing a key role in initiation of this inflammation is the pattern-recognition receptor Toll-like receptor 4 (TLR4). In the joint, various ligands for TLR4, many of which are damage-associated molecular patterns (DAMPs), are present that can activate TLR4 signalling. This leads to the production of pro-inflammatory and catabolic mediators that cause joint damage. In this narrative review, we will first discuss the involvement of TLR4 ligands and signalling in OA. Furthermore, we will provide an overview of methods for inhibit, TLR4 signalling by RNA interference, neutralizing anti-TLR4 antibodies, small molecules and inhibitors targeting the TLR4 co-receptor MD2. Finally, we will focus on possible applications and challenges of these strategies in the dampening of inflammation in OA.
Collapse
Affiliation(s)
- Yvonne L Bartels
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter L E M van Lent
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter M van der Kraan
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arjen B Blom
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kimberly M Bonger
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | | |
Collapse
|
5
|
Wei Z, Li H, Lv S, Yang J. Current situation and trend of non-coding RNA in rheumatoid arthritis: a review and bibliometric analysis. Front Immunol 2024; 14:1301545. [PMID: 38292492 PMCID: PMC10824985 DOI: 10.3389/fimmu.2023.1301545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/28/2023] [Indexed: 02/01/2024] Open
Abstract
Background Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease that affects multiple joints and has adverse effects on various organs throughout the body, often leading to a poor prognosis. Recent studies have shown significant progress in the research of non-coding RNAs (ncRNAs) in RA. Therefore, this study aims to comprehensively assess the current status and research trends of ncRNAs in RA through a bibliometric analysis. Methods This study retrieved articles relevant to ncRNAs and RA from the Science Citation Index Expanded Database of the Web of Science Core Collection between January 1st, 2003, and July 31st, 2023. The relevant articles were screened based on the inclusion criteria. VOSviewer and CiteSpace are utilized for bibliometric and visual analysis. Results A total of 1697 publications were included in this study, and there was a noticeable increase in annual publications from January 1st, 2003, to July 31st, 2023. China, the United States, and the United Kingdom were the most productive countries in this field, contributing to 43.81%, 13.09%, and 3.87% of the publications. Anhui Medical University and Lu Qianjin were identified as the most influential institution and author. Frontiers In Immunology stood out as the most prolific journal, while Arthritis & Rheumatology was the most co-cited journal. Additionally, the research related to "circular RNA", "oxidative stress", "proliferation", and "migration" have emerged as new hotspots in the field. Conclusion In this study, we have summarized the publication characteristics related to ncRNA and RA and identified the most productive countries, institutions, authors, journals, hot topics, and trends.
Collapse
Affiliation(s)
- Zehong Wei
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Huaiyu Li
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Senhao Lv
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Junping Yang
- Clinical Laboratory, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
6
|
Jian S, Luo D, Wang Y, Xu W, Zhang H, Zhang L, Zhou X. MiR-337-3p confers protective effect on facet joint osteoarthritis by targeting SKP2 to inhibit DUSP1 ubiquitination and inactivate MAPK pathway. Cell Biol Toxicol 2023; 39:1099-1118. [PMID: 34697729 DOI: 10.1007/s10565-021-09665-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/29/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To probe the performance of miR-337-3p on the facet joint osteoarthritis (FJOA) and its underlying mechanism. METHODS qRT-PCR and Western blot were utilized to analyze the levels of miR-337-3p and DUSP1 in the synovial tissues from 36 FJOA patients and 10 healthy controls. The human synovial fibroblasts of FJOA were isolated and cultured followed by cell transfection. Then, cells were exposed to 10 ng/mL of IL-1β to induce inflammatory response of synovial fibroblasts. The alternation on cell biological function in cell models was determined. The binding of miR-337-3p and SKP2 was predicted by StarBase, TargetScan, DIANA-microT and miRmap, and further verified by RIP assay and dual-luciferase reporter assay. Co-IP experiment and ubiquitination assay were used to display the binding of SKP2 and DUSP1 as well as the ubiquitination and degradation of DUSP1. After that, the FJOA rat model was established and miR-337-3p mimic or negative control was given to rats by tail vein injection. The pathological changes of synovial tissues, synovitis score, and inflammation level in rats were assessed. RESULTS The low expressions of miR-337-3p and DUSP1 were noticed in the synovial tissues of FJOA patients and in IL-1β-induced synovial fibroblasts, and highly expressed p-p38 MAPK was noticed. Upregulation of miR-337-3p/DUSP1 or downregulation of SKP2 inhibited IL-1β-induced proliferation and inflammatory response of synovial fibroblasts. SKP2 was the target gene of miR-337-3p, and SKP2 induced the ubiquitination and degradation of DUSP1. MiR-337-3p exerted a protective effect on FJOA rats by alleviating damage of rat synovial tissues, promoting cell apoptosis and repressing inflammatory response. CONCLUSION MiR-337-3p plays a protective role in FJOA by negatively targeting SKP2 to suppress DUSP1 ubiquitination and inactivate the p38 MAPK pathway.
Collapse
Affiliation(s)
- Shengsheng Jian
- Department of Orthopedics, the Third Affiliated Hospital (the Affiliated Luohu Hospital) of Shenzhen University, Shenzhen, Guangdong, 518001, People's Republic of China
| | - Dixin Luo
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, No. 466, Mid Xingang Road, Haizhu District, Guangzhou, Guangdong, 510317, People's Republic of China
| | - Yeyang Wang
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, No. 466, Mid Xingang Road, Haizhu District, Guangzhou, Guangdong, 510317, People's Republic of China
| | - Wangyang Xu
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, No. 466, Mid Xingang Road, Haizhu District, Guangzhou, Guangdong, 510317, People's Republic of China
| | - Hui Zhang
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, No. 466, Mid Xingang Road, Haizhu District, Guangzhou, Guangdong, 510317, People's Republic of China
| | - Li Zhang
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, No. 466, Mid Xingang Road, Haizhu District, Guangzhou, Guangdong, 510317, People's Republic of China
| | - Xiaozhong Zhou
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, No. 466, Mid Xingang Road, Haizhu District, Guangzhou, Guangdong, 510317, People's Republic of China.
| |
Collapse
|
7
|
Peng X, Wang Q, Li W, Ge G, Peng J, Xu Y, Yang H, Bai J, Geng D. Comprehensive overview of microRNA function in rheumatoid arthritis. Bone Res 2023; 11:8. [PMID: 36690624 PMCID: PMC9870909 DOI: 10.1038/s41413-023-00244-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/15/2022] [Accepted: 12/04/2022] [Indexed: 01/25/2023] Open
Abstract
MicroRNAs (miRNAs), a class of endogenous single-stranded short noncoding RNAs, have emerged as vital epigenetic regulators of both pathological and physiological processes in animals. They direct fundamental cellular pathways and processes by fine-tuning the expression of multiple genes at the posttranscriptional level. Growing evidence suggests that miRNAs are implicated in the onset and development of rheumatoid arthritis (RA). RA is a chronic inflammatory disease that mainly affects synovial joints. This common autoimmune disorder is characterized by a complex and multifaceted pathogenesis, and its morbidity, disability and mortality rates remain consistently high. More in-depth insights into the underlying mechanisms of RA are required to address unmet clinical needs and optimize treatment. Herein, we comprehensively review the deregulated miRNAs and impaired cellular functions in RA to shed light on several aspects of RA pathogenesis, with a focus on excessive inflammation, synovial hyperplasia and progressive joint damage. This review also provides promising targets for innovative therapies of RA. In addition, we discuss the regulatory roles and clinical potential of extracellular miRNAs in RA, highlighting their prospective applications as diagnostic and predictive biomarkers.
Collapse
Affiliation(s)
- Xiaole Peng
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Qing Wang
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Wenming Li
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Gaoran Ge
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Jiachen Peng
- grid.413390.c0000 0004 1757 6938Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, 563000 Zunyi, P. R. China
| | - Yaozeng Xu
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Huilin Yang
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Jiaxiang Bai
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Dechun Geng
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| |
Collapse
|
8
|
Application of Bioinformatics Tools for the Prediction of Helper MicroRNAs for Improvement of Oncolytic Virus Efficacy. Cell Microbiol 2022. [DOI: 10.1155/2022/5756131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Purpose. Oncolytic Reoviruses, as a self-limiting virus, can be used in cancer treatment, because they have the ability to replicate in tumor cells selectively and destroy them. Studies show that some immune response proteins may interfere with the virus life cycle. So, the main aim of this bioinformatic study is to check which microRNA is able to target some reovirus inhibitory proteins. Experimental Design. By use of online bioinformatics software, the microRNAs that could target inhibitory genes were selected. Then, other features like content ++ score and cell type were checked and finally the eligible microRNAs were determined. Results. After choosing 15 inhibitory proteins, analysis was performed and finally 37 microRNAs which could target inhibitory proteins in colorectal cell lines were selected. In the end, by investigation of web-based tools, just two microRNAs were finalized. Conclusions and Clinical Relevance. This bioinformatic study shows that microRNA-140 and microRNA-92a have the potential to target some inhibitory proteins which interfere with oncolytic Reovirus replication and it may help in the optimal use of this virus as a cancer treatment. Because selective reproduction of Reovirus in tumor cells, as a nonchemical therapy, can be a good way to overcome this disease with broad advantages.
Collapse
|
9
|
Xu Y, Wang Q, Wang XX, Xiang XN, Peng JL, He CQ, He HC. The Effect of Different Frequencies of Pulsed Electromagnetic Fields on Cartilage Repair of Adipose Mesenchymal Stem Cell-Derived Exosomes in Osteoarthritis. Cartilage 2022; 13:200-212. [PMID: 36377077 PMCID: PMC9924977 DOI: 10.1177/19476035221137726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The intra-articular injection of mesenchymal stem cell (MSC)-derived exosomes has already been proved to reverse osteoarthritic cartilage degeneration. Pulsed electromagnetic field (PEMF) has been found to regulate the biogenic function of MSCs. However, the effect of PEMF on MSC-derived exosomes has not yet been characterized. The aim of this study was to elucidate the regulatory role of different frequencies of PEMF in promoting the osteoarthritic cartilage regeneration of MSC-derived exosomes. METHODS The adipose tissue-derived MSCs (AMSCs) were extracted from the epididymal fat of healthy rats and further exposed to the PEMF at 1 mT amplitude and a frequency of 15, 45, and 75 Hz, respectively, in an incubator. The chondrocytes were treated with interlukin-1β (IL-1β) and the regenerative effect of co-culturing with PEMF-exposed AMSC-derived exosomes was assessed via Western blot, quantitative polymerase chain reaction, and ELISA assays. A rat model of osteoarthritis was established by anterior cruciate ligament transection (ACLT) surgery and received 4 times intra-articular injection of PEMF-exposed AMSC-derived exosomes once a week. After 8 weeks, the knee joint specimens of rats were collected for micro-computed tomography and histologic analyses. RESULTS PEMF-exposed AMSC-derived exosomes could be endocytosed with IL-1β-induced chondrocytes. Compared with the AMSC-derived exosomes alone, the PEMF-exposed AMSC-derived exosomes substantially suppressed the inflammation and extracellular matrix degeneration of IL-1β-induced chondrocytes as shown by higher expression of transcripts and proteins of COL2A1, SOX9, and ACAN and lower expression of MMP13 and caspase-1. Of these, the 75-Hz PEMF presented a more significant inhibitive effect than the 15-Hz and 45-Hz PEMFs. Furthermore, the intra-articular injection of 75-Hz PEMF-exposed exosomes could obviously increase the number of tibial epiphyseal trabeculae, lead to a remarkable decrease in Osteoarthritis Research Society International score, and upregulate the COL2A1 and ACAN protein level of the degenerated cartilage. CONCLUSION The present study demonstrated that PEMF stimulation could effectively promote the regeneration effects of AMSC-derived exosomes on osteoarthritic cartilage. Compared with other frequency parameters, the PEMF at a frequency of 75 Hz showed a superior positive effect on AMSC-derived exosomes in suppressing the IL-1β-induced chondrocyte inflammation and extracellular matrix catabolism, as well as the osteoarthritic cartilage degeneration.
Collapse
Affiliation(s)
- Yang Xu
- Rehabilitation Medicine Centre, West
China Hospital, Sichuan University, Chengdu, P.R. China,School of Rehabilitation Sciences, West
China School of Medicine, Sichuan University, Chengdu, P.R. China,Rehabilitation Medicine Key Laboratory
of Sichuan Province, Chengdu, P.R. China
| | - Qian Wang
- Rehabilitation Medicine Centre, West
China Hospital, Sichuan University, Chengdu, P.R. China,School of Rehabilitation Sciences, West
China School of Medicine, Sichuan University, Chengdu, P.R. China,Rehabilitation Medicine Key Laboratory
of Sichuan Province, Chengdu, P.R. China
| | - Xiang-Xiu Wang
- Rehabilitation Medicine Centre, West
China Hospital, Sichuan University, Chengdu, P.R. China,School of Rehabilitation Sciences, West
China School of Medicine, Sichuan University, Chengdu, P.R. China,Rehabilitation Medicine Key Laboratory
of Sichuan Province, Chengdu, P.R. China
| | - Xiao-Na Xiang
- Rehabilitation Medicine Centre, West
China Hospital, Sichuan University, Chengdu, P.R. China,School of Rehabilitation Sciences, West
China School of Medicine, Sichuan University, Chengdu, P.R. China,Rehabilitation Medicine Key Laboratory
of Sichuan Province, Chengdu, P.R. China
| | - Jia-Lei Peng
- Rehabilitation Medicine Centre, West
China Hospital, Sichuan University, Chengdu, P.R. China,School of Rehabilitation Sciences, West
China School of Medicine, Sichuan University, Chengdu, P.R. China,Rehabilitation Medicine Key Laboratory
of Sichuan Province, Chengdu, P.R. China
| | - Cheng-Qi He
- Rehabilitation Medicine Centre, West
China Hospital, Sichuan University, Chengdu, P.R. China,School of Rehabilitation Sciences, West
China School of Medicine, Sichuan University, Chengdu, P.R. China,Rehabilitation Medicine Key Laboratory
of Sichuan Province, Chengdu, P.R. China
| | - Hong-Chen He
- Rehabilitation Medicine Centre, West
China Hospital, Sichuan University, Chengdu, P.R. China,School of Rehabilitation Sciences, West
China School of Medicine, Sichuan University, Chengdu, P.R. China,Rehabilitation Medicine Key Laboratory
of Sichuan Province, Chengdu, P.R. China,Hong-Chen He, Rehabilitation Medicine
Centre, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, P.R.
China.
| |
Collapse
|
10
|
Liu K, Shi X. Magnolol Suppresses Breast Cancer Cells via Regulating miR-140-5p/TLR4 Signaling Pathway. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Objective: To discuss Mag effects and relative mechanisms in breast cancer treatment by vitro study. Materials and methods: In first step, using difference concentrations of Mag to treat breast cancer cell lines; In next step, the cell liens were divided into NC, Mag and
Mag+si-miRNA group. Using MTT to measure cell proliferation rates; using TUNEL and flow cytometry to evaluate apoptosis cell number and rate; measuring invasion cell number and wound healing rate using transwell or wound healing; evaluating relative gene expressions using RT-qPCR and WB assay.
Results: Cell proliferation rates, invasion cell number, Ki67 positive cell number, wound healing rates significant depressed (P < 0.05) and cell apoptosis rate and apoptosis cell number significantly increased (P <0.05, respectively), meanwhile, miR-140-5p, TLR4,
MyD88 and NF-κB(p65)gene significantly changed (P < 0.05) and TLR4, MyD88 and NF-κB(p65) protein significant down-regulation (P < 0.05). However, with si-miRNA which inhibited miR-140-5p supplement, the cell biological activities significantly
increased (P <0.001), with miR-140-5p significant down-regulation, TLR4, MyD88 and NF-κB(p65) significantly up-regulation (P < 0.001). Conclusion: Mag had anti-tumor effects to breast cancer via miR-140-5p/TLR4 axis by vitro cell experiment.
Collapse
Affiliation(s)
- Ke Liu
- Department of Oncology, Chaohu Hospital of Anhui Medical University, No.64, Chaohu North Road, Chaohu, 238001, Anhui, China
| | - Xianfeng Shi
- Department of Oncology, Chaohu Hospital of Anhui Medical University, No.64, Chaohu North Road, Chaohu, 238001, Anhui, China
| |
Collapse
|
11
|
Li X, Zhang H, Qiao S, Ma W, Cai J, Zhang X, Zhang Z. Melatonin administration alleviates 2,2,4,4-tetra-brominated diphenyl ether (PBDE-47)-induced necroptosis and secretion of inflammatory factors via miR-140-5p/TLR4/NF-κB axis in fish kidney cells. FISH & SHELLFISH IMMUNOLOGY 2022; 128:228-237. [PMID: 35940536 DOI: 10.1016/j.fsi.2022.08.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/23/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
2,2,4,4-tetra-brominated diphenyl ether (PBDE-47)-the dominant homologue of polybrominated diphenyl ethers-is a toxic environmental pollutant in the aquatic environment that continuously exists and bioaccumulates in the aquatic food chain. In experimental disease models, melatonin (MEL) has been reported to attenuate necroptosis and inflammatory responses. To further explore the mechanism underlying PBDE-47 toxicity and the mitigative impact of MEL detoxification, in this study, fish kidney cell models of PBDE-47 poisoning and/or MEL treatment were developed. The Ctenopharyngodon idellus kidney (CIK) cell line was treated with PBDE-47 (100 μM) and/or MEL (60 μM) for 24 h. Experimental data suggest that PBDE-47 exposure resulted in the enhancement of cytoplasmic Ca2+ concentration, induction of calcium dysmetabolism, decrease in the miR-140-5p miRNA level, upregulation of Toll-like Receptor 4 (TLR4) and nuclear factor-kappaB (NF-κB), triggering of receptor interacting serine/threonine kinase-induced necroptosis, and NF-κB pathway mediated secretion of inflammatory factors in CIK cells. PBDE-47-induced CIK cell damage could be mitigated by MEL through the regulation of calcium channels and the restoration of disorders of the miR-140-5p/TLR4/NF-κB axis. Overall, MEL relieved PBDE-47-induced necroptosis and the secretion of inflammatory factors through the miR-140-5p/TLR4/NF-κB axis. These findings enrich the current understanding of the toxicological molecular mechanisms of the PBDE-47 as well as the detoxification mechanisms of the MEL.
Collapse
Affiliation(s)
- Xueyu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Haoran Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Senqiu Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Wenxue Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Xintong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
12
|
Yarani R, Shojaeian A, Palasca O, Doncheva NT, Jensen LJ, Gorodkin J, Pociot F. Differentially Expressed miRNAs in Ulcerative Colitis and Crohn’s Disease. Front Immunol 2022; 13:865777. [PMID: 35734163 PMCID: PMC9208551 DOI: 10.3389/fimmu.2022.865777] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/13/2022] [Indexed: 12/14/2022] Open
Abstract
Differential microRNA (miRNA or miR) regulation is linked to the development and progress of many diseases, including inflammatory bowel disease (IBD). It is well-established that miRNAs are involved in the differentiation, maturation, and functional control of immune cells. miRNAs modulate inflammatory cascades and affect the extracellular matrix, tight junctions, cellular hemostasis, and microbiota. This review summarizes current knowledge of differentially expressed miRNAs in mucosal tissues and peripheral blood of patients with ulcerative colitis and Crohn’s disease. We combined comprehensive literature curation with computational meta-analysis of publicly available high-throughput datasets to obtain a consensus set of miRNAs consistently differentially expressed in mucosal tissues. We further describe the role of the most relevant differentially expressed miRNAs in IBD, extract their potential targets involved in IBD, and highlight their diagnostic and therapeutic potential for future investigations.
Collapse
Affiliation(s)
- Reza Yarani
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, United States
- *Correspondence: Reza Yarani, ; Flemming Pociot,
| | - Ali Shojaeian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Oana Palasca
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Center for Non-Coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nadezhda T. Doncheva
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Center for Non-Coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Juhl Jensen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Center for Non-Coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark
| | - Jan Gorodkin
- Center for Non-Coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Flemming Pociot
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Center for Non-Coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark
- Copenhagen Diabetes Research Center, Department of Pediatrics, Herlev University Hospital, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Reza Yarani, ; Flemming Pociot,
| |
Collapse
|
13
|
Ma S, Wang J, He F, Zuo D, Li F, Fan H, Yin Z, Liang H, Li Q. Sodium propionate improves rheumatoid arthritis by inhibiting survivin mediated proliferation of fibroblast like synoviocytes by promoting miR-140-5p. Autoimmunity 2022; 55:378-387. [PMID: 35549788 DOI: 10.1080/08916934.2022.2073589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
BACKGROUND Increased proliferation and impaired death of fibroblast-like synovial cells play an important role in the development of rheumatoid arthritis (RA). Survivin plays an important role in the prodromal stage and prognosis of RA and has been introduced as a biomarker of joint injury in RA patients. The purpose of this study was to explore whether propionate alleviates RA through miR-140-5p/survivin pathway. METHODS The synovial tissues of RA patients were collected to detect the expression levels of miR-140-5p and survivin; normal human fibroblast-like synovial cells (HLSs) and RA fibroblast-like synovial cells (RA-FLSs) were cultured and treated with 10 mM of sodium propionate (SP), then the expressions of miR-140-5p and survivin, cell viability and apoptosis were detected; collagen induced arthritis (CIA) rat model was constructed and treated with SP, then the tissue inflammation level and the expression levels of miR-140-5p and Survivin were detected. RESULTS The expression of miR-140-5p decreased in synovial tissues of RA patients and RA-FLSs cells, while the expression of survivin increased significantly in RA patients. SP promoted miR-140-5p expression and apoptosis in RA-FLSs cells and inhibited survivin expression and cell viability of RA-FLSs cells. In addition, miR-140-5p plays a protective role by targeting survivin. Importantly, in the CIA rat model, SP reduced joint inflammatory response, and the miR-140-5p inhibitor weakened the protective effect of SP. CONCLUSION SP can alleviate RA by promoting the expression of miR-140-5p and inhibiting the excessive proliferation and death impairment of RA-FLSs cells induced by survivin.
Collapse
Affiliation(s)
- Sha Ma
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, China.,Medical Faculty of Kunming University of Science and Technology, Kunming, Yunnan Province, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan Province, China.,Department of Rheumatology, the First People's Hospital of Yunnan Province, Kunming, China
| | - Jing Wang
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan Province, China.,Department of Rheumatology, the First People's Hospital of Yunnan Province, Kunming, China
| | - Fang He
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan Province, China.,Department of Rheumatology, the First People's Hospital of Yunnan Province, Kunming, China
| | - Dachen Zuo
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan Province, China.,Department of Rheumatology, the First People's Hospital of Yunnan Province, Kunming, China
| | - Fayou Li
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan Province, China.,Department of Rheumatology, the First People's Hospital of Yunnan Province, Kunming, China
| | - Hongtao Fan
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan Province, China.,Department of Rheumatology, the First People's Hospital of Yunnan Province, Kunming, China
| | - Zijing Yin
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan Province, China.,Department of Rheumatology, the First People's Hospital of Yunnan Province, Kunming, China
| | - Hui Liang
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan Province, China.,Department of Rheumatology, the First People's Hospital of Yunnan Province, Kunming, China
| | - Qin Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, China.,Medical Faculty of Kunming University of Science and Technology, Kunming, Yunnan Province, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan Province, China.,Department of Rheumatology, the First People's Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
14
|
Wan T, Huang Y, Gao X, Wu W, Guo W. Microglia Polarization: A Novel Target of Exosome for Stroke Treatment. Front Cell Dev Biol 2022; 10:842320. [PMID: 35356292 PMCID: PMC8959940 DOI: 10.3389/fcell.2022.842320] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/14/2022] [Indexed: 12/14/2022] Open
Abstract
The vast majority of cells in the human body are capable of secreting exosomes. Exosomes have become an important vehicle for signaling between cells. Exosomes secreted by different cells have some of the structural and functional properties of that cell and thus have different regulatory functions. A large number of recent experimental studies have shown that exosomes from different sources have different regulatory effects on stroke, and the mechanisms still need to be elucidated. Microglia are core members of central intrinsic immune regulatory cells, which play an important regulatory role in the pathogenesis and progression of stroke. M1 microglia cause neuroinflammation and induce neurotoxic effects, while M2 microglia inhibit neuroinflammation and promote neurogenesis, thus exerting a series of neuroprotective effects. It was found that there is a close link between exosomes and microglia polarization, and that exosome inclusions such as microRNAs play a regulatory role in the M1/M2 polarization of microglia. This research reviews the role of exosomes in the regulation of microglia polarization and reveals their potential value in stroke treatment.
Collapse
Affiliation(s)
- Teng Wan
- Hengyang Medical College, University of South China, Hengyang, China.,Sports Medicine Department, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Yunling Huang
- Hengyang Medical College, University of South China, Hengyang, China
| | - Xiaoyu Gao
- Hengyang Medical College, University of South China, Hengyang, China
| | - Wanpeng Wu
- Shenzhen Futian District Maternity & Child Healthcare Hospital, Shenzhen, China
| | - Weiming Guo
- Sports Medicine Department, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
15
|
Li L, Zhan M, Li M. Circular RNA circ_0130438 suppresses TNF-α-induced proliferation, migration, invasion and inflammation in human fibroblast-like MH7A synoviocytes by regulating miR-130a-3p/KLF9 axis. Transpl Immunol 2022; 72:101588. [PMID: 35358709 DOI: 10.1016/j.trim.2022.101588] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND Circular RNAs (circRNAs) can play a critical role in rheumatoid arthritis (RA) pathogenesis by involving gene regulation by competing for shared microRNAs (miRNAs), a family of small noncoding RNAs. MiR-130a-3p is a disease-related miRNA and Kruppel-like factor 9 (KLF9) is a zinc finger transcription factor, which are involved in RA pathogenesis. Here, we identified the action of circRNA circ_0130438 in regulating fibroblast-like synoviocytes (FLSs) stimulated by tumor necrosis factor α (TNF-α). METHODS The direct relationship between miR-130a-3p and circRNA circ_0130438 or KLF9 was predicted by bioinformatics analysis and examined by a dual-luciferase reporter or RNA immunoprecipitation (RIP) assay. CircRNA circ_0130438, miR-130a-3p and KLF9 factor expression levels were gauged by a quantitative real-time PCR (qRT-PCR) or a western blot method. Cell proliferation ability was analyzed by a 5-Ethynyl-2'-Deoxyuridine (EdU) staining assay. The transwell assay was used to evaluate cell migration and invasion capacities. The production levels of interleukin-1β (IL)-1β, IL-6 and IL-8 were assessed by enzyme-linked immunosorbent assay (ELISA). RESULTS The level of circRNA circ_0130438 was reduced in RA tissues (P = 0.0001) and FLSs isolated from RA tissues (P = 0.0001) compared with corresponding normal controls. Exposure of human fibroblast-like MH7A synoviocytes to TNF-α suppressed circRNA circ_0130438 expression (P < 0.0001). In contrast, the elevated expression of circRNA circ_0130438 suppressed the TNF-α-induced proliferation (P = 0.0047) and migration (P = 0.0023) of MH7A cells, as well as their pro-inflammatory cytokines (IL-1β, IL-6 and IL-8) production (P < 0.0001, P < 0.0001 and P < 0.0001). The circRNA circ_0130438 contained a miR-130a-3p binding site. Furthermore, the increase of miR-130-3p in TNF-α-stimulated MH7A cells reversed the effects of circRNA circ_0130438 elevation on cell proliferation (P = 0.0006), migration (P = 0.0406) and pro-inflammatory cytokines (IL-1β, IL-6 and IL-8) production (P = 0.0036, P < 0.0001 and P = 0.0004), indicating that miR-130a-3p was a functional mediator of circRNA circ_0130438 regulation. We also documented that KLF9 was a direct target and downstream effector of miR-130a-3p. Importantly, circRNA circ_0130438 enhanced KLF9 expression (P < 0.0001) in TNF-α-stimulated MH7A cells by functioning as a competing endogenous RNA (ceRNA) for miR-130a-3p (P = 0.0004). CONCLUSION Our findings demonstrate that the elevated expression of circRNA circ_0130438 suppresses TNF-α-induced migration, proliferation and pro-inflammatory cytokines (IL-1β, IL-6 and IL-8) production of human MH7A cells by enhancing KLF9 expression by operating as a ceRNA for miR-130a-3p.
Collapse
Affiliation(s)
- Lei Li
- Department of Joint Surgery Treatment Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi City, Hubei Province, China
| | - Minqing Zhan
- Department of Orthopedics, Weihaiwei People's Hospital, Weihai City, Shandong Province, China
| | - Mingwei Li
- Department of Traumatology, Zaozhuang Municipal Hospital Affiliated to Jining Medical College, Zaozhuang City, Shandong Province, China.
| |
Collapse
|
16
|
Huang Y, Chen L, Chen D, Fan P, Yu H. Exosomal microRNA-140-3p from human umbilical cord mesenchymal stem cells attenuates joint injury of rats with rheumatoid arthritis by silencing SGK1. Mol Med 2022; 28:36. [PMID: 35303795 PMCID: PMC8932126 DOI: 10.1186/s10020-022-00451-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 02/04/2022] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE Over the years, microRNAs (miRNAs) have been involved in the pathogenesis of rheumatoid arthritis (RA). We aim to investigate the role of human umbilical cord mesenchymal stem cells (HUCMSCs)-derived exosomal miR-140-3p in RA development. METHODS Exosomes(exo) were isolated from human umbilical cord-derived mesenchymal stem cells (HUCMSCs), and this isolation was followed by the transfer of miR-140-3p. RA rat models were constructed by collagen II adjuvant and respectively treated with HUCMSCs-exo or HUCMSCs-exo carrying miR-140-3p mimic/inhibitor, and expression of miR-140-3p and serum- and glucocorticoid-inducible kinase 1 (SGK1) was assessed. Then, RA score and inflammation scoring, fibrosis degree and apoptosis, serum inflammatory response and oxidative stress in joint tissues were determined. The RA synovial fibroblasts (RASFs) were extracted from rats and identified. Conducted with relative treatment, the migration, proliferation and apoptosis in RASFs were determined. RESULTS MiR-140-3p was decreased while SGK1 was increased in RA rats. HUCMSCs-exo or upregulated exosomal miR-140-3p improved pathological changes and suppressed inflammation, oxidative stress and fibrosis in RA rats, and also constrained and RASF growth. Overexpression of SGK1 reversed the inhibition of RASF growth caused by overexpression of miR-140-3p. CONCLUSION Upregulated exosomal miR-140-3p attenuated joint injury of RA rats by silencing SGK1. This research provided further understanding of the role of exosomal miR-140-3p in RA development.
Collapse
Affiliation(s)
- Yijiang Huang
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 West College Road, Wenzhou, 325000, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, China
| | - Liang Chen
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 West College Road, Wenzhou, 325000, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, China
| | - Daosen Chen
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 West College Road, Wenzhou, 325000, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, China
| | - Pei Fan
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 West College Road, Wenzhou, 325000, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, China
| | - Huachen Yu
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 West College Road, Wenzhou, 325000, China. .,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, China.
| |
Collapse
|
17
|
Zhang F, Li J, Gu C, Zhang H. MiR-140-5p upregulation suppressed β-glycerophosphate-induced vascular smooth muscle cell calcification via targeting TLR4. Immunopharmacol Immunotoxicol 2022; 44:295-305. [PMID: 35272550 DOI: 10.1080/08923973.2022.2043896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND The role and function of microRNA (miRNA, miR)-140-5p in the calcification of vascular smooth muscle cells (VSMCs) have been explored in this study. METHODS The calcium nodules formed in transfected and β-glycerophosphate (β-GP)-treated VSMCs were observed using Alizarin Red S staining, and alkaline phosphatase (ALP) activity was determined. VSMC apoptosis was detected with flow cytometry assay. The target gene of miR-140-5p was predicted and confirmed with dual-luciferase reporter assay. Relative expressions of miR-140-5p, toll like receptor 4 (TLR4) and vascular calcification-related proteins (α-smooth muscle actin, α-SMA; Msh Homeobox 2, MSX2; bone morphogenetic protein 2, BMP2; Kruppel-like factor 4, KLF4; Runt-related transcription factor 2, RUNX2) were measured through quantitative real time polymerase chain reaction (qRT-PCR) and western blot. RESULTS MiR-140-5p upregulation reversed the effects of β-GP on downregulating miR-140-5p and α-SMA expressions, enhancing ALP activity, calcium nodule formation and cell apoptosis, and upregulating levels of MSX2, BMP2, KLF4 and RUNX2. TLR4 was the target of miR-140-5p, and offset the effects of miR-140-5p on β-GP-induced VSMCs. CONCLUSIONS MiR-140-5p upregulation represses β-GP-induced calcification of VSMCs via targeting TLR4, providing a potential therapeutic method for vascular calcification.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jingxing Li
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Chengxiong Gu
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Haibo Zhang
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
18
|
Kmiołek T, Paradowska-Gorycka A. miRNAs as Biomarkers and Possible Therapeutic Strategies in Rheumatoid Arthritis. Cells 2022; 11:cells11030452. [PMID: 35159262 PMCID: PMC8834522 DOI: 10.3390/cells11030452] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/10/2022] [Accepted: 01/26/2022] [Indexed: 02/07/2023] Open
Abstract
Within the past years, more and more attention has been devoted to the epigenetic dysregulation that provides an additional window for understanding the possible mechanisms involved in the pathogenesis of autoimmune rheumatic diseases. Rheumatoid arthritis (RA) is a heterogeneous disease where a specific immunologic and genetic/epigenetic background is responsible for disease manifestations and course. In this field, microRNAs (miRNA; miR) are being identified as key regulators of immune cell development and function. The identification of disease-associated miRNAs will introduce us to the post-genomic era, providing the real probability of manipulating the genetic impact of autoimmune diseases. Thereby, different miRNAs may be good candidates for biomarkers in disease diagnosis, prognosis, treatment and other clinical applications. Here, we outline not only the role of miRNAs in immune and inflammatory responses in RA, but also present miRNAs as diagnostic/prognostic biomarkers. Research into miRNAs is still in its infancy; however, investigation into these novel biomarkers could progress the use of personalized medicine in RA treatment. Finally, we discussed the possibility of miRNA-based therapy in RA patients, which holds promise, given major advances in the therapy of patients with inflammatory arthritis.
Collapse
|
19
|
Aslani M, Mortazavi-Jahromi SS, Mirshafiey A. Cytokine storm in the pathophysiology of COVID-19: Possible functional disturbances of miRNAs. Int Immunopharmacol 2021; 101:108172. [PMID: 34601331 PMCID: PMC8452524 DOI: 10.1016/j.intimp.2021.108172] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2, as the causative agent of COVID-19, is an enveloped positives-sense single-stranded RNA virus that belongs to the Beta-CoVs sub-family. A sophisticated hyper-inflammatory reaction named cytokine storm is occurred in patients with severe/critical COVID-19, following an imbalance in immune-inflammatory processes and inhibition of antiviral responses by SARS-CoV-2, which leads to pulmonary failure, ARDS, and death. The miRNAs are small non-coding RNAs with an average length of 22 nucleotides which play various roles as one of the main modulators of genes expression and maintenance of immune system homeostasis. Recent evidence has shown that Homo sapiens (hsa)-miRNAs have the potential to work in three pivotal areas including targeting the virus genome, regulating the inflammatory signaling pathways, and reinforcing the production/signaling of IFNs-I. However, it seems that several SARS-CoV-2-induced interfering agents such as viral (v)-miRNAs, cytokine content, competing endogenous RNAs (ceRNAs), etc. preclude efficient function of hsa-miRNAs in severe/critical COVID-19. This subsequently leads to increased virus replication, intense inflammatory processes, and secondary complications development. In this review article, we provide an overview of hsa-miRNAs roles in viral genome targeting, inflammatory pathways modulation, and IFNs responses amplification in severe/critical COVID-19 accompanied by probable interventional factors and their function. Identification and monitoring of these interventional elements can help us in designing the miRNAs-based therapy for the reduction of complications/mortality rate in patients with severe/critical forms of the disease.
Collapse
Affiliation(s)
- Mona Aslani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Abbas Mirshafiey
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
José Alcaraz M. New potential therapeutic approaches targeting synovial fibroblasts in rheumatoid arthritis. Biochem Pharmacol 2021; 194:114815. [PMID: 34715065 DOI: 10.1016/j.bcp.2021.114815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/18/2022]
Abstract
Synovial cells play a key role in joint destruction during chronic inflammation. In particular, activated synovial fibroblasts (SFs) undergo intrinsic alterations leading to an aggressive phenotype mediating cartilage destruction and bone erosion in rheumatoid arthritis (RA). Recent research has revealed a number of targets to control arthritogenic changes in SFs. Therefore, identification of SF phenotypes, control of epigenetic changes, modulation of cellular functions, or regulation of the activity of cation channels and different signaling pathways has been investigated. Although many of these approaches have shown efficacy in vitro and in animal models of RA, further research is needed to select the most relevant targets for drug development. This review is focused on the role of SFs as a potential strategy to discover novel therapeutic targets in RA aimed at preserving joint architecture and function.
Collapse
Affiliation(s)
- María José Alcaraz
- Department of Pharmacology, University of Valencia, and Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), Polytechnic University of Valencia, University of Valencia, Av. Vicent A. Estellés s/n, 46100 Burjasot, Valencia, Spain.
| |
Collapse
|
21
|
Chen L, Lu Q, Chen J, Feng R, Yang C. Upregulating miR-27a-3p inhibits cell proliferation and inflammation of rheumatoid arthritis synovial fibroblasts through targeting toll-like receptor 5. Exp Ther Med 2021; 22:1227. [PMID: 34539823 PMCID: PMC8438689 DOI: 10.3892/etm.2021.10661] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/11/2021] [Indexed: 12/25/2022] Open
Abstract
Rheumatoid arthritis (RA) is a serious chronic inflammatory disease and synovial fibroblasts (SFs) serve a vital role in the pathogenesis and progression of RA. Current studies have demonstrated that dysregulation of microRNAs is involved in RA etiopathogenesis. The present study aimed to investigate the role of microRNA (miR)-27a-3p in RASFs, as well as its molecular mechanism. RASFs were isolated from synovial tissues from patients with RA. Expression of miR-27a-3p and toll-like receptor 5 (TLR5) was detected using reverse transcription-quantitative polymerase chain reaction and western blotting. Cell proliferation, apoptosis and inflammatory response were measured with MTT assay, flow cytometry and ELISA kits, respectively. The target binding between miR-27a-3p and TLR5 was predicted on DIANA TOOLS software, and confirmed by dual-luciferase reporter assay and Biotin-coupled miRNA pull-down assay. Expression of miR-27a-3p was downregulated and TLR5 was upregulated in synovial tissues and RASFs isolated from patients with RA. Functionally, upregulating miR-27a-3p may promote the apoptosis rate of RASFs and suppress cell proliferation and secretions of interleukin (IL)-1β, IL-6 and tumor necrosis factor-α. TLR5 was validated as a downstream target for miR-27a-3p in RASFs, and its expression was negatively regulated by miR-27a-3p. Silencing TLR5 in RASFs may exert similar effects to miR-27a-3p-overexpression; whereas, restoring TLR5 counteracted the suppression of miR-27a-3p-overexpression on RASF proliferation and inflammation, as well as the promotion on apoptosis. miR-27a-3p upregulation may suppress RA progression by inhibiting RASFs proliferation and inflammation through targeting TLR5.
Collapse
Affiliation(s)
- Lifeng Chen
- Department of Rheumatology and Immunology, General Hospital of Central Theater Command, Wuhan, Hubei 430070, P.R. China
| | - Qiping Lu
- Department of General Surgery, General Hospital of Central Theater Command, Wuhan, Hubei 430070, P.R. China
| | - Jianhua Chen
- Department of Rheumatology and Immunology, General Hospital of Central Theater Command, Wuhan, Hubei 430070, P.R. China
| | - Ruibing Feng
- Department of Orthopedics, Central People's Liberation Army Central Theater, Wuhan, Hubei 430070, P.R. China
| | - Chenxi Yang
- Department of Orthopedics, Graduate School of Hubei University of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China
| |
Collapse
|
22
|
Luo X, Cui J, Long X, Chen Z. TLRs Play Crucial Roles in Regulating RA Synoviocyte. Endocr Metab Immune Disord Drug Targets 2021; 20:1156-1165. [PMID: 32338225 DOI: 10.2174/1871530320666200427115225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/23/2020] [Accepted: 01/30/2020] [Indexed: 12/13/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune inflammatory disease comparing the inflammation of synovium. Macrophage-like synoviocytes and fibroblast-like synoviocytes (synoviocytes) are crucial ingredients of synovium. Therein, a lot of research has focused on synoviocytes. Researches demonstrated that TLR1, TLR2, TLR3, TLR4, TLR5, TLR6 TLR7 and TLR9 are expressed in synoviocyte. Additionally, the expression of TLR2, TLR3, TLR4 and TLR5 is increased in RA synoviocyte. In this paper, we review the exact role of TLR2, TLR3, TLR4 and TLR5 participate in regulating the production of inflammatory factors in RA synoviocyte. Furthermore, we discuss the role of vasoactive intestinal peptide (VIP), MicroRNA, Monome of Chinese herb and other cells (Monocyte and T cell) influence the function of synoviocyte by regulating TLRs. The activation of toll-like receptors (TLRs) in synoviocyte leads to the aggravation of arthritis, comparing with angiogenesis and bone destruction. Above all, TLRs are promising targets for managing RA.
Collapse
Affiliation(s)
- Xuling Luo
- Department of Orthopaedics, The First Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Juncheng Cui
- Department of Orthopaedics, The First Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Xin Long
- Department of Orthopaedics, The First Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Zhiwei Chen
- Department of Orthopaedics, The First Affiliated Hospital of University of South China, Hengyang 421001, China
| |
Collapse
|
23
|
Hajinejad M, Sahab-Negah S. Neuroinflammation: The next target of exosomal microRNAs derived from mesenchymal stem cells in the context of neurological disorders. J Cell Physiol 2021; 236:8070-8081. [PMID: 34189724 DOI: 10.1002/jcp.30495] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/28/2021] [Accepted: 06/17/2021] [Indexed: 12/16/2022]
Abstract
Among different types of mechanisms involved in neurological disorders, neuroinflammation links initial insults to secondary injuries and triggers some chronic outcomes, for example, neurodegenerative disorders. Thus, anti-inflammatory substances can be targeted as a novel therapeutic option for translational and clinical research to improve brain disease outcomes. In this review, we propose to introduce a new insight into the anti-inflammatory effects of mesenchymal stem cells (MSCs) as the most frequent source for stem cell therapy in neurological diseases. Our insight incorporates a bystander effect of these stem cells in modulating inflammation and microglia/macrophage polarization through exosomes. Exosomes are nano-sized membrane vesicles that carry cell-specific constituents, including protein, lipid, DNA, and RNA. microRNAs (miRNAs) have recently been detected in exosomes that can be taken up by other cells and affect the behavior of recipient cells. In this article, we outline and highlight the potential use of exosomal miRNAs derived from MSCs for inflammatory pathways in the context of neurological disorders. Furthermore, we suggest that focusing on exosomal miRNAs derived from MSCs in the course of neuroinflammatory pathways in the future could reveal their functions for diverse neurological diseases, including brain injuries and neurodegenerative diseases. It is hoped that this study will contribute to a deep understanding of stem cell bystander effects through exosomal miRNAs.
Collapse
Affiliation(s)
- Mehrdad Hajinejad
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Anatomy and Cell Biology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sajad Sahab-Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.,Department of Neuroscience, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
24
|
Feng J, Bian Q, He X, Zhang H, He J. A LncRNA-miRNA-mRNA ceRNA regulatory network based tuberculosis prediction model. Microb Pathog 2021; 158:105069. [PMID: 34175436 DOI: 10.1016/j.micpath.2021.105069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022]
Abstract
The high incidence of tuberculosis (TB) has brought serious social burdens and it is urgent to explore the mechanism of TB development. This study was conducted to analyze the role of lncRNA-miRNA-mRNA regulatory network and its contained nodes involved in TB to identify crucial biomarkers for early diagnosis of TB. Long-noncoding RNAs (lncRNAs), messenger RNA (mRNAs) and microRNAs (miRNAs) expression profiles of TB patients and healthy individuals were downloaded from the GSE34608 dataset. Weighted gene co-expression network analysis (WGCNA) was performed to identified the key modules related to TB and the highly related mRNA-lncRNA pair in the module. Based on highly related mRNAs and lncRNAs in greenyellow module, lncRNA-miRNA-mRNA competing endogenous RNA (ceRNA) network was constructed. The DE-mRNAs in the network were functionally enriched with Gene ontology (GO) and Gene set enrichment analysis (GSEA). Least absolute shrinkage and selection operator (LASSO) algorithm and receiver operating characteristic curve (ROC) were used to construct and evaluate the prediction model of TB. We identified 3267 DE-mRNAs, 484 DE-lncRNAs and 69 DE-miRNAs between the TB and healthy subjects, from which 8 DE-mRNAs, 14 DE-lncRNAs and 3 DE-miRNAs were used to construct the ceRNA network. The genes contained in the ceRNA network were mainly enriched in neutrophil mediated immune response, including neutrophil activation, degradation and signal transduction. ROC analysis revealed that has-miR-140-5p, has-miR-142-3p and the LASSO cox prediction model based on HMGA1 and CAPN1 have potential value for forecasting TB (AUC > 0.7). Hence, our study provides a new perspective from the lncRNA-miRNA-mRNA ceRNA regulatory network for TB diagnosis and treatment.
Collapse
Affiliation(s)
- Jinfang Feng
- Clinical Laboratory Department, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Qin Bian
- Clinical Laboratory Department, Guangyuan Central Hospital, Guangyuan, 628000, China.
| | - Xianwei He
- Clinical Laboratory Department, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Han Zhang
- Clinical Laboratory Department, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Jiujiang He
- Clinical Laboratory Department, Guangyuan Central Hospital, Guangyuan, 628000, China
| |
Collapse
|
25
|
Wang S, Xu J, Guo Y, Cai Y, Ren X, Zhu W, Geng M, Meng L, Jiang C, Lu S. MicroRNA-497 Reduction and Increase of Its Family Member MicroRNA-424 Lead to Dysregulation of Multiple Inflammation Related Genes in Synovial Fibroblasts With Rheumatoid Arthritis. Front Immunol 2021; 12:619392. [PMID: 33841401 PMCID: PMC8034293 DOI: 10.3389/fimmu.2021.619392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/10/2021] [Indexed: 01/26/2023] Open
Abstract
Objectives Mounting evidence has demonstrated that microRNAs (miRNAs) participate in rheumatoid arthritis (RA). The role of highly conserved miR-15/107 family in RA has not been clarified yet, and hence investigated in this study. Methods Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to evaluate the expression of miRNAs and genes. Cell counting kit 8 (CCK-8) and FACS were used to detect proliferation and apoptosis. Protein expression was detected by using Western blotting. mRNA deep sequencing and cytokine antibody array were used to analyze differentially expressed genes, signaling pathways and cytokines. Results The expression of miR-15a, miR-103, miR-497, and miR-646 was found decreased, while miR-424 increased in RA patients. MiR-424 and miR-497 were further investigated and the results showed that they could regulate the expression of multiple genes in rheumatoid arthritis synovial fibroblast (RASF) and affect signaling pathways. At the protein level, miR-497 mimic altered all the selected inflammation-related genes while miR-424 inhibitor only affected part of genes. MiR-497 mimic, rather than miR-424 inhibitor, had significant effects on proliferation and apoptosis of RASF. DICER1 was found to positively regulate the expression of miR-424 and miR-497, while DICER1 was also negatively regulated by miR-424. The increase of miR-424 could reduce miR-497 expression, thus forming a loop, which facilitated explaining the dysregulated miR-424 and miR-497 in RA. Conclusion The miR-424 and miR-497 of miR-15/107 family affect cell proliferation and apoptosis in RA, and the proposed miR-424-DICER1-miR-497 feedback loop provides a novel insight into regulating miRNA expression and a candidate target for controlling RA.
Collapse
Affiliation(s)
- Si Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Institute of Molecular and Translational Medicine (IMTM), Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
| | - Jing Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Institute of Molecular and Translational Medicine (IMTM), Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
| | - Yuanxu Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Institute of Molecular and Translational Medicine (IMTM), Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
| | - Yongsong Cai
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xiaoyu Ren
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Wenhua Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Institute of Molecular and Translational Medicine (IMTM), Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
| | - Manman Geng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Institute of Molecular and Translational Medicine (IMTM), Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
| | - Liesu Meng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Institute of Molecular and Translational Medicine (IMTM), Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
| | - Congshan Jiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Institute of Molecular and Translational Medicine (IMTM), Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
| | - Shemin Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Institute of Molecular and Translational Medicine (IMTM), Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
| |
Collapse
|
26
|
MicroRNA-140-5p ameliorates the high glucose-induced apoptosis and inflammation through suppressing TLR4/NF-κB signaling pathway in human renal tubular epithelial cells. Biosci Rep 2021; 40:222166. [PMID: 32073611 PMCID: PMC7056448 DOI: 10.1042/bsr20192384] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 02/05/2020] [Accepted: 02/12/2020] [Indexed: 12/11/2022] Open
Abstract
Hyperglycemia-induced renal tubular cell injury is thought to play a critical role in the pathogenesis of diabetic nephropathy (DN). However, the role of miRNAs in renal tubular cell injury remains to be fully elucidated. The aim of the present study was to investigate the role and mechanisms of miRNAs protecting against high glucose (HG)-induced apoptosis and inflammation in renal tubular cells. First, we analyzed microRNA (miRNA) expression profiles in kidney tissues from DN patients using miRNA microarray. It was observed that miRNA-140-5p (miR-140-5p) was significantly down-regulated in kidney tissues from patients with DN. An inverse correlation between miR-140-5p expression levels with serum proteinuria was observed in DN patients, suggesting miR-140-5p may be involved in the progression of DN. HG-induced injury in HK-2 cells was used to explore the potential role of miR-140-5p in DN. We found that miR-140-5p overexpression improved HG-induced cell injury, as evidenced by the enhancement of cell viability, and inhibition of the activity of caspase-3 and reactive oxygen species (ROS) generation. It was also observed that up-regulation of miR-140-5p suppressed HG induced the expressions of pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6 in HK-2 cells. In addition, TLR4, one of the upstream molecules of NF-κB signaling pathway, was found to be a direct target of miR-140-5p in the HK-2. Moreover, the HG-induced activation of NF-κB signaling pathway was inhibited by miR-140-5p overexpression. These results indicated that miR-140-5p protected HK-2 cells against HG-induced injury through blocking the TLR4/NF-κB pathway, and miR-140-5p may be considered as a potential prognostic biomarker and therapeutic target in the treatment of DN.
Collapse
|
27
|
Jiang C, Yang Q, Wang B, Yang J, Li L, Tian X, Liu Y. Mechanism of Long Non-Coding RNA Homeobox Transcript Antisense RNAs Regulates Rheumatoid Arthritis Synovial Fibroblasts Multiplication, Immigration, and Invasion. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Long non-coding RNA HOX transcript antisense RNAs (LncRNA HOTAIR) are aberrantly expressed in rheumatoid arthritis synovial fibroblasts (RASFs), the main cells in rheumatoid arthritis (RA). The inhibition, proliferation, and migrative ability of these cells offer one of the most important
therapies for RA. To investigate HOTAIR in RA, 72 patients with RA were selected along with 72 healthy volunteers. Serum HOTAIR and miRNA-526b-3p levels were measured in the study groups by qRT-PCR. Following the primary isolation and culture of RASFs, HOTAIR and miRNA-526b-3p expression was
detected in RASFs using qRT-PCR and the CCK-8 method was used to measure the cell proliferative capacity. The TNF-α and IL-1β levels were measured using enzyme-linked immunosorbent assay, while cell motility and invasive capacity were tested by the wound healing assay and transwell
chamber assay, respectively. The dual-luciferase reporter assay measured the target-relationship of HOTAIR and miRNA-526b-3p. Western blot detected MMP-2 and MMP-13 protein levels in the samples. We show that serum HOTAIR expression levels were dramatically augmented (P < 0.05) in
RA patients compared with the healthy individuals. However, the miRNA-526b-3p level was dramatically reduced (P < 0.05). Transfection of si-HOTAIR significantly reduced the OD value of RASFs, while the TNF-α level, IL-1β level, migration healing rate, MMP-2 protein expression,
MMP-13 protein expression (P < 0.05), and the invasive ability were all dramatically debased (P < 0.05). HOTAIR could be a competing endogenous RNAs for miRNA-526b-3p. Inhibiting miR-526b-3p expression could dramatically reduce silent HOTAIR on multiplication, immigration, invasion,
and inflammatory factor secretion of RASFs. These findings provide evidence that silent HOTAIR inhibits multiplication, immigration, invasion, and inflammatory factor secretion of RASFs by up-regulating the expression of miRNA-526b-3p.
Collapse
Affiliation(s)
- Chang Jiang
- Department of Bone Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, PR China
| | - Qun Yang
- Department of Bone Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, PR China
| | - Bo Wang
- Department of Bone Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, PR China
| | - Jun Yang
- Department of Bone Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, PR China
| | - Linan Li
- Department of Bone Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, PR China
| | - Xiliang Tian
- Department of Bone Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, PR China
| | - Yang Liu
- Department of Bone Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, PR China
| |
Collapse
|
28
|
Chen M, Li M, Zhang N, Sun W, Wang H, Wei W. Mechanism of miR-218-5p in autophagy, apoptosis and oxidative stress in rheumatoid arthritis synovial fibroblasts is mediated by KLF9 and JAK/STAT3 pathways. J Investig Med 2021; 69:jim-2020-001437. [PMID: 33558275 PMCID: PMC8020083 DOI: 10.1136/jim-2020-001437] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2021] [Indexed: 12/23/2022]
Abstract
This study was aimed to investigate the effects of miR-218-5p on the proliferation, apoptosis, autophagy, and oxidative stress of rheumatoid arthritis synovial fibroblasts (RASFs), and the related mechanisms. Quantitative reverse transcription-PCR showed that the expression of miR-218-5p in rheumatoid arthritis synovial tissue was significantly higher than that in healthy synovial tissue. Compared with healthy synovial fibroblasts, miR-218-5p expression was obviously upregulated in RASFs, while KLF9 protein expression was markedly downregulated. Mechanistically, miR-218-5p could directly bind to the 3' untranslated region of KLF9 to inhibit the expression of KLF9. Additionally, transfection of miR-218-5p small interfering RNA (siRNA) inhibited the proliferation but promoted apoptosis and autophagy of RASFs. Simultaneously, miR-218-5p silencing reduced reactive oxygen species and malondialdehyde levels and increased superoxide dismutase and glutathione peroxidase activity to improve oxidative stress in RASFs. More importantly, the introduction of KLF9 siRNA reversed the effects of miR-218-5p siRNA transfection on RASF proliferation, apoptosis, autophagy, and oxidative stress. What is more, silencing miR-218-5p inhibited the activation of JAK2/STAT3 signaling pathway by targeting KLF9. Collectively, knockdown of miR-218-5p could regulate the proliferation, apoptosis, autophagy and oxidative stress of RASFs by increasing the expression of KLF9 and inhibiting the activation of the JAK2/STAT3 signaling pathway, which may provide a potential target for the mechanism research of RA.
Collapse
Affiliation(s)
- Ming Chen
- Immunology and Rheumatology Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Minghui Li
- Immunology and Rheumatology Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Na Zhang
- Immunology and Rheumatology Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenwen Sun
- Immunology and Rheumatology Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Hui Wang
- Immunology and Rheumatology Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei Wei
- Immunology and Rheumatology Department, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
29
|
Zu B, Liu L, Wang J, Li M, Yang J. MiR-140-3p inhibits the cell viability and promotes apoptosis of synovial fibroblasts in rheumatoid arthritis through targeting sirtuin 3. J Orthop Surg Res 2021; 16:105. [PMID: 33530998 PMCID: PMC7856785 DOI: 10.1186/s13018-021-02236-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 01/15/2021] [Indexed: 02/07/2023] Open
Abstract
Background Synovial fibroblasts (SFs) with the abnormal expressions of miRNAs are the key regulator in rheumatoid arthritis (RA). Low-expressed miR-140-3p was found in RA tissues. Therefore, we attempted to investigate the effect of miR-140-3p on SFs of RA. Methods RA and normal synovial fibrous tissue were gathered. The targets of miR-140-3p were found by bioinformatics and luciferase analysis. Correlation between the expressions of miR-140-3p with sirtuin 3 (SIRT3) was analyzed by Pearson correlation analysis. After transfection, cell viability and apoptosis were detected by cell counting kit-8 and flow cytometry. The expressions of miR-140-3p, SIRT3, Ki67, Bcl-2, Bax, and cleaved Caspase-3 were detected by RT-qPCR or western blot. Results Low expression of miR-140-3p and high expression of SIRT3 were found in RA synovial fibrous tissues. SIRT3 was a target of miR-140-3p. SIRT3 expression was negatively correlated to the expression of miR-140-3p. MiR-140-3p mimic inhibited the MH7A cell viability and the expressions of SIRT3, Ki67, and Bcl-2 and promoted the cell apoptosis and the expressions of Bax and cleaved Caspase-3; miR-140-3p inhibitor showed an opposite effect to miR-140-3p mimic on MH7A cells. SIRT3 overexpression not only promoted the cell viability and inhibited cell apoptosis of MH7A cells but also reversed the effect of miR-140-3p mimic had on MH7A cells. Conclusions The results in this study revealed that miR-140-3p could inhibit cell viability and promote apoptosis of SFs in RA through targeting SIRT3.
Collapse
Affiliation(s)
- Beibei Zu
- Department of Rheumatology, Xuzhou Central Hospital, No.199, South Jiefang Road, Xuzhou, 221009, Jiangsu Province, China
| | - Lin Liu
- Department of Rheumatology, Xuzhou Central Hospital, No.199, South Jiefang Road, Xuzhou, 221009, Jiangsu Province, China.
| | - Jingya Wang
- Department of Rheumatology, Xuzhou Central Hospital, No.199, South Jiefang Road, Xuzhou, 221009, Jiangsu Province, China
| | - Meirong Li
- Department of Rheumatology, Xuzhou Central Hospital, No.199, South Jiefang Road, Xuzhou, 221009, Jiangsu Province, China
| | - Junxia Yang
- Department of Rheumatology, Xuzhou Central Hospital, No.199, South Jiefang Road, Xuzhou, 221009, Jiangsu Province, China
| |
Collapse
|
30
|
Ghafouri-Fard S, Bahroudi Z, Shoorei H, Abak A, Ahin M, Taheri M. microRNA-140: A miRNA with diverse roles in human diseases. Biomed Pharmacother 2021; 135:111256. [PMID: 33434855 DOI: 10.1016/j.biopha.2021.111256] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/27/2020] [Accepted: 01/03/2021] [Indexed: 02/07/2023] Open
Abstract
MicroRNA-140 (miR-140) has been shown to be associated with the pathogenesis of a wide range of pathologies including osteoarthritis, osteoporosis, renal fibrosis, ischemic conditions, and most importantly neoplasia. This miRNA has been shown to be down-regulated in a diversity of cancers namely breast cancer, gastrointestinal cancers, lung cancer, and prostate cancer. miR-140 has a lot of immune-related targets. Moreover, several miR-140 targets regulate cell proliferation, cell cycle transition, and apoptosis. This miRNA has been shown to be sponged by a number of lncRNAs and circ-RNAs. miR-140 has essential roles in the determination of the sensitivity of neoplastic cells to chemotherapeutic agents such as temozolomide, doxorubicin, and cisplatin. Besides, expression quantities of miR-140 in cancer tissues can be used for the prediction of clinical outcomes of patients with neoplasia. In the present paper, we describe the impact of miR-140 in neoplastic and non-neoplastic disorders.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Bahroudi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Atefe Abak
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maliheh Ahin
- Taleghani Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
31
|
Kim M, Shin DI, Choi BH, Min BH. Exosomes from IL-1β-Primed Mesenchymal Stem Cells Inhibited IL-1β- and TNF-α-Mediated Inflammatory Responses in Osteoarthritic SW982 Cells. Tissue Eng Regen Med 2021; 18:525-536. [PMID: 33495946 DOI: 10.1007/s13770-020-00324-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/11/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Exosomes from mesenchymal stem cells (MSCs) show anti-inflammatory effect on osteoarthritis (OA); however, their biological effect and mechanism are not yet clearly understood. This study investigated the anti-inflammatory effect and mechanism of MSC-derived exosomes (MSC-Exo) primed with IL-1β in osteoarthritic SW982 cells. METHODS SW982 cells were treated with interleukin (IL)-1β and tumor necrosis factor (TNF)-α to induce the OA phenotype. The effect of exosomes without priming (MSC-Exo) or with IL-1β priming (MSC-IL-Exo) was examined on the expression of pro- or anti-inflammatory factors, and the amount of IκBα was examined in SW982 cells. Exosomes were treated with RNase to remove RNA. The role of miR-147b was examined using a mimic and an inhibitor. RESULTS MSC-IL-Exo showed stronger inhibitory effects on the expression of pro-inflammatory cytokines (IL-1β, IL-6, and monocyte chemoattractant protein-1) than MSC-Exo. The expression of anti-inflammatory factors (SOCS3 and SOCS6) was enhanced by MSCs-IL-Exo. Priming with IL-1β increased RNA content in MSC-IL-Exo, and pretreatment with RNase abolished anti-inflammatory effect in SW982 cells. miR-147b was found in much larger amounts in MSC-IL-Exo than in MSC-Exo. The miR-147b mimic significantly inhibited the expression of inflammatory cytokines, while the miR-147b inhibitor only partially blocked the anti-inflammatory effect of MSC-IL-Exo. MSC-IL-Exo and miR-147b mimic inhibited the reduction of IκBα, an nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inhibitor, by IL-1β and TNF-α. CONCLUSION This study showed that MSC exosomes with IL-1β priming exhibit significantly enhanced anti-inflammatory activity in osteoarthritic SW982 cells. The effect of IL-1β-primed MSC exosomes is mediated by miRNAs such as miR-147b and involves inhibition of the NF-κB pathway.
Collapse
Affiliation(s)
- Mijin Kim
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea.,Cell Therapy Center, Ajou University School of Medicine, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea
| | - Dong Il Shin
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea.,Cell Therapy Center, Ajou University School of Medicine, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea
| | - Byung Hyune Choi
- Department of Biomedical Sciences, Inha University College of Medicine, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea.
| | - Byoung-Hyun Min
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea. .,Cell Therapy Center, Ajou University School of Medicine, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea. .,Department of Orthopedic Surgery, Ajou University School of Medicine, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea.
| |
Collapse
|
32
|
Zhu J, Wang J, Huang J, Du W, He Y, Pan H, Luo J. MicroRNA-140-5p regulates the proliferation, apoptosis and inflammation of RA FLSs by repressing STAT3. Exp Ther Med 2020; 21:171. [PMID: 33456538 PMCID: PMC7792473 DOI: 10.3892/etm.2020.9602] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 04/09/2020] [Indexed: 12/15/2022] Open
Abstract
Ectopic expression of microRNA (miRNA) in rheumatoid arthritis (RA) fibroblast-like synoviocyte (RA FLS) is associated with the development of rheumatoid arthritis. The present study aimed to evaluate the effects of miRNA-140-5p (miR-140) on the properties of RA FLSs. It was found that miR-140 expression was decreased in 33 RA patients and extracted RA FLS samples, when compared to the corresponding healthy controls. Abnormally increased miR-140 expression in RA FLSs attenuated cell proliferation and increased cell apoptosis. Additionally, reduced pro-inflammatory cytokine production was observed in RA FLSs transfected with a miR-140 precursor. Furthermore, the 3'-UTR of the signal transducer and activator of transcription (STAT) 3 gene was identified as a target of miR-140. Notably, restoration of STAT3 expression rescued the regulatory effect of miR-140 on the proliferation, apoptosis and inflammatory cytokine production of RA FLSs. Therefore, the current findings indicated that miR-140 is a crucial modulator of both proliferation and apoptosis, shedding light on the etiology behind RA FLS viability, which is modulated by an interplay between miR-140 and STAT3 in the context of RA.
Collapse
Affiliation(s)
- Jiehua Zhu
- Department of Laboratory Medicine, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Jianglin Wang
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Jialin Huang
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Wensheng Du
- Department of Laboratory Medicine, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Yingzhong He
- Department of Laboratory Medicine, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Hongfei Pan
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Junmin Luo
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
33
|
Arleevskaya MI, Larionova RV, Brooks WH, Bettacchioli E, Renaudineau Y. Toll-Like Receptors, Infections, and Rheumatoid Arthritis. Clin Rev Allergy Immunol 2020; 58:172-181. [PMID: 31144208 DOI: 10.1007/s12016-019-08742-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Toll-like receptors (TLR) that belong to the group of protein recognition receptor (PPR) provide an innate immune response following the sensing of conserved pathogen-associated microbial patterns (PAMPs) and changes in danger-associated molecular patterns (DAMPs) that are generated as a consequence of cellular injury. Analysis of the TLR pathway has moreover offered new insights into the pathogenesis of rheumatoid arthritis (RA). Indeed, a dysfunctional TLR-mediated response characterizes RA patients and participates in establishment of a chronic inflammatory state. Such an inappropriate TLR response has been attributed (i) to the report of important alterations in the microbiota and abnormal responses to infectious agents as part of RA; (ii) to the abnormal presence of TLR-ligands in the serum and synovial fluid of RA patients; (iii) to the overexpression of TLR molecules; (iv) to the production of a large panel of pro-inflammatory cytokines downstream of the TLR pathway; and (v) to genetic variants and epigenetic factors in susceptible RA patients promoting a hyper TLR response. As a consequence, the development of promising therapeutic strategies targeting TLRs for the treatment and prevention of RA is emerging.
Collapse
Affiliation(s)
| | - R V Larionova
- Central Research Laboratory, Kazan Federal University, Kazan, Russia
| | - Wesley H Brooks
- Department of Chemistry, University of South Florida, Tampa, FL, USA
| | - Eléonore Bettacchioli
- Laboratory of Immunology and Immunotherapy, INSERM U1227, Hôpital Morvan, Centre Hospitalier Regional Universitaire (CHU) de Brest, Brest, France
| | - Yves Renaudineau
- Central Research Laboratory, Kazan Federal University, Kazan, Russia. .,Laboratory of Immunology and Immunotherapy, INSERM U1227, Hôpital Morvan, Centre Hospitalier Regional Universitaire (CHU) de Brest, Brest, France.
| |
Collapse
|
34
|
Duan L, Liang Y, Xu X, Xiao Y, Wang D. Recent progress on the role of miR-140 in cartilage matrix remodelling and its implications for osteoarthritis treatment. Arthritis Res Ther 2020; 22:194. [PMID: 32811552 PMCID: PMC7437174 DOI: 10.1186/s13075-020-02290-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/07/2020] [Indexed: 01/15/2023] Open
Abstract
Cartilage matrix remodelling homeostasis is a crucial factor in maintaining cartilage integrity. Loss of cartilage integrity is a typical characteristic of osteoarthritis (OA). Strategies aimed at maintaining cartilage integrity have attracted considerable attention in the OA research field. Recently, a series of studies have suggested dual functions of microRNA-140 (miR-140) in cartilage matrix remodelling. Here, we discuss the significance of miR-140 in promoting cartilage formation and inhibiting degeneration. Additionally, we focused on the role of miR-140 in the chondrogenesis of mesenchymal stem cells (MSCs). Of note, we carefully reviewed recent advances in MSC exosomes for miRNA delivery in OA treatment.
Collapse
Affiliation(s)
- Li Duan
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| | - Yujie Liang
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China.,Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, 518003, China
| | - Xiao Xu
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Faculty of Science and Engineering, Queensland University of Technology, Kelvin Grove Campus, Brisbane, QLD, 4059, Australia
| | - Daping Wang
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China. .,Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
35
|
MicroRNA-345-5p acts as an anti-inflammatory regulator in experimental allergic rhinitis via the TLR4/NF-κB pathway. Int Immunopharmacol 2020; 86:106522. [PMID: 32585604 DOI: 10.1016/j.intimp.2020.106522] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 03/13/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
Abstract
Allergic rhinitis (AR) is a common chronic condition characterized by inflammation of the nasal mucosa. The correlation of microRNAs (miRNAs) in AR has been highlighted particularly due to their roles in regulating inflammatory responses. The aim of this study was to explore the anti-inflammatory mechanism by which miR-345-5p regulates the toll-like receptor 4/nuclear factor-κB (TLR4/NF-κB) pathway in mice with AR. Initially, the putative miR-345-5p binding sites on the 3'untranslated region of TLR4 was predicted and verified. AR models were established using ovalbumin, after which the functional role of miR-345-5p in AR was determined using gain- and loss-of-function approaches. We found that miR-345-5p was poorly expressed in nasal mucosal tissues of mice with AR. Meanwhile, TLR4 expression and the TLR4/NF-κB pathway were identified to be promoted, which were then suppressed in the presence of overexpressed miR-345-5p. In addition, nasal epithelial cell apoptosis and fibrosis were inhibited in response to miR-345-5p overexpression and TLR4 silencing. Furthermore, miR-345-5p overexpression and TLR4 silencing were observed to decrease Th2 cells, expression of pro-inflammatory factors, but to increase Th1 cells and expression of anti-inflammatory factors. This study demonstrates an important role of miR-345-5p in alleviating the inflammatory response in mice with AR by inhibiting the TLR4/NF-κB pathway. Therefore, a better understanding of this process may aid in the development of novel therapeutic agents of AR.
Collapse
|
36
|
Wang S, Cui Y, Xu J, Gao H. miR-140-5p Attenuates Neuroinflammation and Brain Injury in Rats Following Intracerebral Hemorrhage by Targeting TLR4. Inflammation 2020; 42:1869-1877. [PMID: 31376096 DOI: 10.1007/s10753-019-01049-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The Toll-like receptor 4 (TLR4)-mediated neuroinflammation plays a key role in inducing secondary brain injury after intracerebral hemorrhage (ICH). However, how TLR4 is regulated during this pathological process is not well understood. In the present study, by taking advantage of a rat ICH model, we show that miR-140-5p is reversely correlated with TLR4 expression in the peri-hematomal striatum following ICH. In vitro, miR-140-5p directly targets TLR4 and suppresses its expression in a rat neuronal PC12 cell line. Moreover, an intracerebral ventricular injection of miR-140-5p mimics improves neurological function and reduces apoptotic cell death and limits the production of inflammatory cytokines following ICH, indicating that miR-140-5p attenuates brain injury and neuroinflammation in vivo. Furthermore, miR-140-5p suppresses TLR4 expression and inhibits the downstream MyD88/TRIF inflammatory pathway and NF-κB activity following ICH, suggesting that the inhibition of TLR4-mediated neuroinflammation at least in part accounts for the neuroprotective role of miR-140-5 against ICH-induced brain injury in rats. Collectively, these results identify miR-140-5 as a negative regulator of TLR4 and downstream inflammatory pathway following ICH, implicating that miR-140-5 might represent as a potential therapeutic target for alleviating ICH-induced brain injury.
Collapse
Affiliation(s)
- Shunda Wang
- Department of Rehabilitation Medicine, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Yujie Cui
- Rheumatology Department, The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, 519000, China
| | - Jiaqi Xu
- Burn and Plastic Surgery, The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, 519000, China
| | - Heng Gao
- Department Emergency Medicine, Shaanxi Provincial People's Hospital, No. 256 Friendship West Road, Xi'an, 710068, Shaanxi, China.
| |
Collapse
|
37
|
Li W, Mao X, Wu H, Guo M, Su X, Lu J, Guo Q, Li T, Wang X, Su W, Zhang Y, Lin N. Deciphering the chemical profile and pharmacological mechanisms of Baihu-Guizhi decoction using ultra-fast liquid chromatography-quadrupole-time-of-flight tandem mass spectrometry coupled with network pharmacology-based investigation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 67:153156. [PMID: 31901568 DOI: 10.1016/j.phymed.2019.153156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/26/2019] [Accepted: 12/21/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND Baihu-Guizhi decoction (BHGZD) has been extensively used for the treatment of rheumatoid arthritis (RA) with a satisfying therapeutic effect. However, the material basis and the underlying mechanisms of BHGZD against RA have not been fully elucidated. PURPOSE To investigate the chemical profile and the pharmacological mechanisms of BHGZD against RA. METHODS The chemical constituents containing in BHGZD were identified using UFLC-Q-TOF-MS/MS system, and the corresponding putative targets were predicted. Then, the differentially expressed genes (DEGs) between adjuvant-induced arthritis (AIA) and normal control groups were identified using microarray analysis. After constructing the interaction network of "RA-related gene-BHGZD putative target", BHGZD candidate targets against RA were screened by topological analysis and further experimentally validated based on AIA rat model. RESULTS A total of 41 chemical constituents were identified in the water extract of BHGZD, which were predicted to hit 1312 putative targets. Additionally, 26 DEGs between the AIA and normal control groups were defined as "RA-related genes", which were functionally involved into the imbalance of "inflammation-immune" system during RA progression. On the basis of the topological importance in the network of "RA-related gene-BHGZD putative target", 177 BHGZD candidate targets against RA were identified. Among them, TLR4, c-Fos/AP-1, IL2 and TNF had direct interactions with each other and also function as crucial components of toll-like receptor and T cell receptor signaling pathways, which may play important roles in maintaining the balance of "inflammation-immune" system. Experimentally, we verified that BHGZD dose-dependently attenuated the severity, pathological changes, as well as mechanical, cold, and heat hypersensitivities during RA progression based on the AIA rat model. Further western blot analysis demonstrated that BHGZD significantly reduced the protein levels of TLR4, c-Fos/AP-1, IL2 and TNF, which were induced by RA modeling, in the inflamed joints of AIA rats (all p<0.05). CONCLUSION This study combining the chemical and transcriptomic profilings, target prediction, network calculation and experimental validations identifies the chemical constituents containing in BHGZD and offers the convincing evidence that BHGZD may ameliorate RA partially by restoring the balance of "inflammation-immune" system and subsequently reversing the pathological events during RA progression through regulating the TLR4-c-Fos-IL2-TNF axis.
Collapse
MESH Headings
- Animals
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/genetics
- Arthritis, Experimental/immunology
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/metabolism
- Chromatography, Liquid/methods
- Dose-Response Relationship, Drug
- Drugs, Chinese Herbal/analysis
- Drugs, Chinese Herbal/pharmacology
- Gene Expression Regulation/drug effects
- Inflammation/drug therapy
- Inflammation/genetics
- Inflammation/immunology
- Male
- Rats, Inbred Lew
- Tandem Mass Spectrometry/methods
Collapse
Affiliation(s)
- Weijie Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Xia Mao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hao Wu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Minqun Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaohui Su
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jianqiu Lu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Qiuyan Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Taixian Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaoyue Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Weiwei Su
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yanqiong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Na Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
38
|
Jin Z, Ren J, Qi S. RETRACTED: Human bone mesenchymal stem cells-derived exosomes overexpressing microRNA-26a-5p alleviate osteoarthritis via down-regulation of PTGS2. Int Immunopharmacol 2020; 78:105946. [PMID: 31784400 DOI: 10.1016/j.intimp.2019.105946] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 12/19/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Concern was raised about the reliability of the Western blot results in Figures 2E, 3D and F, 4B, E+G, 5D+I, and 6D+F, which appear to have a similar phenotype as contained in many other publications, detailed here: https://pubpeer.com/publications/73C0A79F5EDF9ECC9818CE2D9B2A09; and here: https://docs.google.com/spreadsheets/d/1r0MyIYpagBc58BRF9c3luWNlCX8VUvUuPyYYXzxWvgY/edit#gid=262337249. The provenance of the flow cytometry data in Figure 5A was also questioned, as it appeared to have histograms that were hand drawn. The journal requested the corresponding author comment on these concerns and provide the raw data. The authors did not respond to this request and therefore the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Zhe Jin
- Department of Orthopaedics, the First Hospital of China Medical University, Shenyang 110001, PR China.
| | - Jiaan Ren
- Department of Orthopaedics, the First Hospital of China Medical University, Shenyang 110001, PR China
| | - Shanlun Qi
- Department of Orthopaedics, Dashiqiao Central Hospital, Yingkou 115100, PR China
| |
Collapse
|
39
|
Wang Y, Feng T, Duan S, Shi Y, Li S, Zhang X, Zhang L. miR-155 promotes fibroblast-like synoviocyte proliferation and inflammatory cytokine secretion in rheumatoid arthritis by targeting FOXO3a. Exp Ther Med 2019; 19:1288-1296. [PMID: 32010301 PMCID: PMC6966213 DOI: 10.3892/etm.2019.8330] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 09/10/2019] [Indexed: 02/06/2023] Open
Abstract
The present study aimed to explore the expression and effects of microRNA (miR)-155 in synovial fibroblasts of patients with rheumatoid arthritis (RA). A total of 89 synovial tissues from RA patients and 49 control synovial tissues were collected, and the levels of miR-155 were measured by reverse transcription quantitative-PCR and western blotting. Fibroblast-like synoviocytes (FLS) were isolated from synovial tissues from the control group and were used to evaluate the roles of miR-155 and forkhead box protein O3a (FOXO3a). MTT assay was used to measure the proliferation of FLS. The expression of miR-155 in RA synovial tissues was significantly higher than that in the control group, but the expression of FOXO3a was significantly lower. In RA synovial tissues, miR-155 expression was negatively correlated with FOXO3a expression, but was positively correlated with the release of inflammatory cytokines interleukin (IL)-1β, IL-6 and tumor necrosis factor-α (TNF-α). A dual-luciferase reporter system showed that miR-155 inhibited the expression of FOXO3a in FLS cells. miR-155 also promoted secretion of the inflammatory cytokines IL-1β, IL-6 and TNF-α by FLS and proliferation of these cells by targeting FOXO3a.
Collapse
Affiliation(s)
- Yaxi Wang
- Department of Ultrasound, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Tianying Feng
- Department of Medical Ultrasound, Bao'an Central Hospital of Shenzhen, Shenzhen, Guangdong 518102, P.R. China
| | - Shasha Duan
- Department of Ultrasound, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Yilu Shi
- Department of Ultrasound, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Shuling Li
- Department of Ultrasound, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Xiaoshan Zhang
- Department of Ultrasound, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Lei Zhang
- Department of Ultrasound, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| |
Collapse
|
40
|
Gholami M, Larijani B, Zahedi Z, Mahmoudian F, Bahrami S, Omran SP, Saadatian Z, Hasani-Ranjbar S, Taslimi R, Bastami M, Amoli MM. Inflammation related miRNAs as an important player between obesity and cancers. J Diabetes Metab Disord 2019; 18:675-692. [PMID: 31890692 PMCID: PMC6915181 DOI: 10.1007/s40200-019-00459-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022]
Abstract
The growing trend in addition to their burden, prevalence, and death has made obesity and cancer two of the most concerning diseases worldwide. Obesity is an important risk factor for common types of cancers where the risk of some cancers is directly related to the obesity. Various inflammatory mechanisms and increased level of pro-inflammatory cytokines have been investigated in many previous studies, which play key roles in the pathophysiology and development of both of these conditions. On the other hand, in the recent years, many studies have individually focused on the biomarker's role and therapeutic targeting of microRNAs (miRNAs) in different types of cancers and obesity including newly discovered small noncoding RNAs (sncRNAs) which regulate gene expression and RNA silencing. This study is a comprehensive review of the main inflammation related miRNAs in obesity/obesity related traits. For the first time, the main roles of miRNAs in obesity related cancers have been discussed in response to the question raised in the following hypothesis; do the main inflammatory miRNAs link obesity with obesity-related cancers regarding their role as biomarkers? Graphical abstractConceptual design of inflammatory miRNAs which provide link between obesity and cancers.
Collapse
Affiliation(s)
- Morteza Gholami
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zhila Zahedi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mahmoudian
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Bahrami
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sima Parvizi Omran
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, 5th floor, Shariati Hospital, North Kargar Ave, Tehran, Iran
| | - Zahra Saadatian
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shirin Hasani-Ranjbar
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Taslimi
- Department of Gastroenterology, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Milad Bastami
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa M. Amoli
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, 5th floor, Shariati Hospital, North Kargar Ave, Tehran, Iran
| |
Collapse
|
41
|
Papathanasiou I, Balis C, Trachana V, Mourmoura E, Tsezou A. The synergistic function of miR-140-5p and miR-146a on TLR4-mediated cytokine secretion in osteoarthritic chondrocytes. Biochem Biophys Res Commun 2019; 522:783-791. [PMID: 31791577 DOI: 10.1016/j.bbrc.2019.11.168] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 11/25/2019] [Indexed: 12/11/2022]
Abstract
ΜiR-140-5p and miR-146a regulate inflammatory pathways including TLR4/NF-κB signaling and have been found to be involved in OA pathogenesis. In this study, we investigated the effect of the synergistic function of miR-140-5p and miR-146a on inflammation mediated by TLR4 in ΟΑ chondrocytes. Bioinformatics analysis revealed that TLR4 was the only common OA-related target gene of miR-140-5p and miR-146a, located in the sub-network with the highest MCODE score; it also showed that the target genes of miR-140-5p and miR-146a which located in MCODE sub-networks were enriched in OA-related biological processes and pathways. Overexpression of miR-140-5p or miR-146a and combined miR-140-5p/miR-146a overexpression in OA chondrocytes demonstrated that combined treatment had the strongest negative effect on TLR4 expression. Moreover, simultaneous overexpression of miR-140-5p and miR-146a resulted in the highest reduction of NF-κΒ phosphorylation levels, as well as IL-1b, IL-6 and TNFa expression levels in OA chondrocytes as compared to the reductions observed when either miR-140-5p or miR-146a was overexpressed. Our results, therefore, demonstrate for the first time, that the synergistic function of miR-140-5p and miR-146a have a strong protective effect against inflammatory mediators' production in OA chondrocytes through targeting the TLR4/NF-κB signaling.
Collapse
Affiliation(s)
- Ioanna Papathanasiou
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Charalambos Balis
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Varvara Trachana
- Department of Biology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Evanthia Mourmoura
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Aspasia Tsezou
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece; Department of Biology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece.
| |
Collapse
|
42
|
miR-138 activates NF-κB signaling and PGRN to promote rheumatoid arthritis via regulating HDAC4. Biochem Biophys Res Commun 2019; 519:166-171. [PMID: 31492495 DOI: 10.1016/j.bbrc.2019.08.092] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/16/2019] [Indexed: 11/23/2022]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a common immune-related disease worldwide, which is characterized by impaired fibroblast-like synoviocytes (FLS) proliferation and increased release of inflammatory cytokines. Unfortunately, the detailed mechanism by which miR-138-modulated rheumatoid arthritis has not been fully understood. METHODS RT-qPCR was used to examined mRNA level of various genes and western blot was utilized to probe protein level of acetylated H3, p-p62 and IκBα. For cytokines detection, we used ELISA method to measure the extracellular level of these cytokines. Bioinformatic tool and dual-luciferase reporter assay were employed to predict and confirm the downstream target of miR-138. RESULTS miR-138 was upregulated in serum and synovial tissues of RA patients. Moreover, Increased miR-138 was observed in LPS-treated FLS cells. HDAC4 was shown as the direct target of miR-138 and could be negatively regulated by miR-138. miR-138 and HDAC4 were involved in RA-related inflammatory cytokines release of FLS cells. Next, we revealed NF-κB and PGRN were significantly modulated by HDAC4 and miR-138 in an acetylation-dependent manner. More importantly, IκBα depletion and PGRN overexpression had the ability to rescue miR-138 inhibitor-attenuated inflammatory cytokines release of FLS cells. CONCLUSION Here, we reveal miR-138 regulates RA-related inflammatory cytokines in rheumatoid arthritis through HDAC4/PGRN or HDAC4/NF-κB. Our findings uncover a new molecular mechanism implicated in rheumatoid arthritis, which may accelerate development of therapeutical strategy by targeting this mechanism.
Collapse
|
43
|
Lu X, Chen X, Xing J, Lian M, Huang D, Lu Y, Feng G, Feng X. miR-140-5p regulates the odontoblastic differentiation of dental pulp stem cells via the Wnt1/β-catenin signaling pathway. Stem Cell Res Ther 2019; 10:226. [PMID: 31358066 PMCID: PMC6664499 DOI: 10.1186/s13287-019-1344-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 07/03/2019] [Accepted: 07/15/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) play a key role in regulating cell differentiation. In the present study, we aimed to explore the role of miR-140-5p in odontoblastic differentiation of dental pulp stem cells (DPSCs). METHODS DPSCs from normal human impacted third molars were isolated and cultured. After overexpression or silencing of miR-140-5p in DPSCs, activity, proliferation, and odontoblastic differentiation of DPSCs were evaluated. The possible target gene of miR-140-5p was verified by luciferase reporter gene assay. Using gene transfection technology, RT-CPR, and Western blot to confirm miR-140-5p regulates the odontoblastic differentiation of DPSCs through Wnt1/β-catenin signaling. RESULTS We found the expression of miR-140-5p decreased in the differentiated DPSCs for odontoblastic cells, and at the same time, the expressions of Wnt1 and β-catenin increased. Wnt1 was the target gene of miR-140-5p which was confirmed by luciferase reporter gene system. miR-140-5p overexpression suppressed the expression of Wnt1. miR-140-5p inhibitor could promote the odontoblastic differentiation of DPSCs. miR-140-5p mimic could weaken the odontoblastic differentiation of DPSCs, which could be reversed by the overexpression of Wnt1. CONCLUSION Our data demonstrated that miR-140-5p regulates the odontoblastic differentiation of DPSCs via targeting Wnt1/β-catenin signaling. Therefore, miR-140-5p might be a molecular target to regulate the odontoblastic differentiation for the therapeutic agents in dental medicine.
Collapse
Affiliation(s)
- Xiaohui Lu
- Department of Stomatology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Xi Chen
- Department of Stomatology, Stomatological Hospital of Zhenjiang, Zhenjiang, Jiangsu, China
| | - Jing Xing
- Department of Stomatology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Min Lian
- Department of Stomatology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Dan Huang
- Department of Stomatology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Yuanzhou Lu
- Department of Cardiology, The People's Hospital of Tongzhou, Nantong, Jiangsu, China
| | - Guijuan Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China.
| | - Xingmei Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
44
|
Papathanasiou I, Trachana V, Mourmoura E, Tsezou A. DNA methylation regulates miR-140-5p and miR-146a expression in osteoarthritis. Life Sci 2019; 228:274-284. [PMID: 31077718 DOI: 10.1016/j.lfs.2019.05.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/25/2019] [Accepted: 05/08/2019] [Indexed: 12/13/2022]
Abstract
AIMS Previous studies have demonstrated that transcriptional silencing of miRNAs due to DNA hypermethylation is associated with different pathologies. It has also been reported that abnormal expression of miR-140-5p and miR-146a is linked to osteoarthritis (OA) progression. In this study, we investigated the role of DNA methylation on miR-140-5p and miR-146a expression in OA. MAIN METHODS miR-140-5p and miR-146a expression was investigated by qRT-PCR. The methylation status of miR-140 and miR-146a regulatory regions was analyzed using qMSP and bisulfite sequencing analysis. SMAD-3 and NF-kB binding to miR-140 and miR-146a regulatory regions was assessed by ChIP assay and knockdown experiments. OA-related genes' expression was evaluated in 5-AzadC, miRNAs inhibitor and 5-AzadC/miRNAs inhibitor-treated cells. KEY FINDINGS Hypermethylation of specific CpG sites in miR-140 and miR-146a regulatory regions was associated with downregulation of miR-140-5p and miR-146a in OA chondrocytes and synoviocytes, respectively. 5-AzadC-induced miR-140-5p and miR-146a upregulation was observed in OA chondrocytes and synoviocytes. Moreover, we found decreased binding affinity of SMAD-3 and NF-kB transcription factors on the hypermethylated miR-140-5p and miR-146a regulatory regions, respectively. Downregulation of MMP-13 and ADAMTS-5 in 5-AzadC-treated OA chondrocytes was prevented by miR-140-5p inhibitor transfection. Similarly, 5-AzadC-treated OA synoviocytes showed decreased expression of IRAK-1, IL1Β and IL-6, which was reversed following 5-AzadC-/miR-146a inhibitor treatment. SIGNIFICANCE Our results strongly suggest the impact of DNA methylation on miR-140-5p and miR-146a suppression in OA chondrocytes and synoviocytes, contributing to OA pathogenesis.
Collapse
Affiliation(s)
- Ioanna Papathanasiou
- University of Thessaly, Faculty of Medicine, Laboratory of Cytogenetics and Molecular Genetics, Biopolis 41500, Larissa, Greece
| | - Varvara Trachana
- University of Thessaly, Faculty of Medicine, Department of Biology, Biopolis 41500, Larissa, Greece
| | - Evanthia Mourmoura
- University of Thessaly, Faculty of Medicine, Laboratory of Cytogenetics and Molecular Genetics, Biopolis 41500, Larissa, Greece
| | - Aspasia Tsezou
- University of Thessaly, Faculty of Medicine, Laboratory of Cytogenetics and Molecular Genetics, Biopolis 41500, Larissa, Greece; University of Thessaly, Faculty of Medicine, Department of Biology, Biopolis 41500, Larissa, Greece.
| |
Collapse
|
45
|
MiRNA-506 inhibits rheumatoid arthritis fibroblast-like synoviocytes proliferation and induces apoptosis by targetting TLR4. Biosci Rep 2019; 39:BSR20182500. [PMID: 30975731 PMCID: PMC6505192 DOI: 10.1042/bsr20182500] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/29/2019] [Accepted: 04/11/2019] [Indexed: 12/20/2022] Open
Abstract
Fibroblast-like synoviocytes (FLSs) play a crucial role in rheumatoid arthritis (RA) pathogenesis. While miRNA (miR)-506 has been implicated in the progression of multiple diseases, its role in RA remains to be explored. The present study evaluated the function of miR-506 in the regulation of RA-FLSs. FLSs were prepared from RA and healthy synovial tissues. The expression of miR-506 was measured by quantitative real time PCR (qRT-PCR). The effects of miR-506 on RA-FLSs proliferation and apoptosis were detected by cell counting Kit-8 and flow cytometry assays, respectively. The determination of TNF-α, IL-6, and IL-1β concentrations in RA-FLSs supernatant were done by ELISA. The levels of miR-506 were detected to be significantly lower in the synovial tissues and FLSs of RA than in the synovial tissues and FLSs of healthy controls. The miR-506 up-regulation in RA-FLSs significantly inhibited the proliferation and promoted cell cycle arrest at the G0/G1 phase. The overexpression of miR-506 induced apoptosis, along with an increase in activities of caspase-3 and -8. A target gene Toll-like receptor 4 (TLR4) under the direct regulation of miR-506 was identified through the luciferase assay, qRT-PCR and western blot analysis. Forced overexpression of TLR4 in the rescue experiments showed that TLR4 effectively reversed the effect on proliferation and apoptosis in miR-506-overexpressing RA-FLSs. Thus, miR-506 may be a potential target for RA prevention and therapy of RA.
Collapse
|
46
|
Liu L, Zuo Y, Xu Y, Zhang Z, Li Y, Pang J. MiR-613 inhibits proliferation and invasion and induces apoptosis of rheumatoid arthritis synovial fibroblasts by direct down-regulation of DKK1. Cell Mol Biol Lett 2019; 24:8. [PMID: 31019537 PMCID: PMC6474051 DOI: 10.1186/s11658-018-0130-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/07/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND This study aimed to investigate the effects of miR-613 on the proliferation, invasion and apoptosis of rheumatoid arthritis synovial fibroblasts (RASFs). METHODS Synovial tissue samples were collected from 20 rheumatoid arthritis (RA) patients and 10 patients with joint trauma undergoing joint replacement surgery. The RASFs were isolated and cultured. MiR-613 and DKK1 expression in both synovial tissues and cells was detected using quantitative real-time PCR (qRT-PCR). Dual luciferase reporter gene assay was employed to evaluate the effect of miR-613 on the luciferase activity of DKK1. Then RASFs were transfected with miR-613 mimics, si-DKK1 and pcDNA-DKK1. Changes in cellular proliferation, invasion and apoptosis were detected through BrdU assay, Transwell invasion assay and flow cytometry analysis, respectively. RESULTS MiR-613 was significantly down-regulated in RA tissues and RASFs compared to normal tissues and cells, whereas DKK1 was up-regulated in RA tissues and RASFs. Dual luciferase reporter gene assay showed that miR-613 could specifically bind to the 3'UTR of DKK1 and significantly inhibit the luciferase activity. Moreover, miR-613 significantly reduced the expression of DKK1. Overexpression of miR-613 or knockdown of DKK1 suppressed proliferation and invasion of RASFs, and induced RASF apoptosis. The reverse results were observed when DKK1 was up-regulated in miR-613-overexpressing RASFs. CONCLUSIONS MiR-613 can inhibit proliferation and invasion and induce apoptosis of RASFs by directly targeting DKK1 expression.
Collapse
Affiliation(s)
- Liang Liu
- Department of Rheumatology and Immunology, Cangzhou Central Hospital, Cangzhou, 061000 People’s Republic of China
| | - Yanhua Zuo
- Department of Rheumatology and Immunology, Cangzhou Central Hospital, Cangzhou, 061000 People’s Republic of China
| | - Yan Xu
- The Second Nephrology Department, Cangzhou Central Hospital, Cangzhou, 061000 People’s Republic of China
| | - Zongfang Zhang
- Department of Rheumatology and Immunology, Cangzhou Central Hospital, Cangzhou, 061000 People’s Republic of China
| | - Ying Li
- Department of Rheumatology and Immunology, Cangzhou Central Hospital, Cangzhou, 061000 People’s Republic of China
| | - Jie Pang
- Department of Rheumatology and Immunology, Cangzhou Central Hospital, Cangzhou, 061000 People’s Republic of China
| |
Collapse
|
47
|
Micro-RNAs in inflammatory arthritis: From physiopathology to diagnosis, prognosis and therapeutic opportunities. Biochem Pharmacol 2019; 165:134-144. [PMID: 30825433 DOI: 10.1016/j.bcp.2019.02.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 02/26/2019] [Indexed: 12/12/2022]
Abstract
Micro-RNAs are an area of research exponentially expanding over the past years. These small sequences of 20-22 nucleotides have a strong role as post-transcriptional regulators of gene expression. Inflammatory arthritis pathophysiology involves various key players from innate to adaptive immunity, as well as various signalling pathways of inflammation. In this review, we discuss how micro-RNAs are involved in rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis and juvenile inflammatory arthritis, from pre-clinical phases to established diseases. We describe mi-RNAs key roles in fibroblast like synoviocytes migration, proliferation, apoptosis and cytokine production, in macrophages polarization, as well as in B cells and T cell proliferation and differentiation, with a special emphasis on Treg/Th17 imbalance. We finally discuss the application of these findings in pre-clinical models and highlight opportunities and limits of a therapeutic approach using mi-RNAs agonists or antagonists.
Collapse
|
48
|
Salvi V, Gianello V, Tiberio L, Sozzani S, Bosisio D. Cytokine Targeting by miRNAs in Autoimmune Diseases. Front Immunol 2019; 10:15. [PMID: 30761124 PMCID: PMC6361839 DOI: 10.3389/fimmu.2019.00015] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/04/2019] [Indexed: 12/21/2022] Open
Abstract
Persistent and excessive cytokine production is a hallmark of autoimmune diseases and may play a role in disease pathogenesis and amplification. Therefore, cytokine neutralization is a useful therapeutic strategy to treat immune-mediated conditions. MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression in diverse biological processes. Altered miRNA levels are observed in most autoimmune diseases and are recognized to influence autoimmunity through different mechanisms. Here, we review the impact of altered miRNA levels on the expression of cytokines that play a relevant pathogenic role in autoimmunity, namely primary pro-inflammatory cytokines, the IL-17/IL-23 axis, type I interferons and IL-10. Regulation can be either “direct” on the target cytokine, or “indirect,” meaning that one given miRNA post-transcriptionally regulates the expression of a protein that in turn influences the level of the cytokine. In addition, miRNAs associated with extracellular vesicles can regulate cytokine production in neighboring cells, either post-transcriptionally or via the stimulation of innate immune RNA-sensors, such as Toll-like receptors. Because of their tremendous potential as physiological and pathological regulators, miRNAs are in the limelight as promising future biopharmaceuticals. Thus, these studies may lead in the near future to the design and testing of therapeutic miRNAs as next generation drugs to target pathogenic cytokines in autoimmunity.
Collapse
Affiliation(s)
- Valentina Salvi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Veronica Gianello
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Laura Tiberio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Silvano Sozzani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Daniela Bosisio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
49
|
Upregulation of miRNA-140-5p inhibits inflammatory cytokines in acute lung injury through the MyD88/NF-κB signaling pathway by targeting TLR4. Exp Ther Med 2018; 16:3913-3920. [PMID: 30344669 PMCID: PMC6176196 DOI: 10.3892/etm.2018.6692] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 08/21/2018] [Indexed: 12/13/2022] Open
Abstract
The present study was designed to determine the effect of miR-140-5p on acute lung injury (ALI) and the associated inflammation induced. As a result, miR-140-5p expression in mice with ALI was suppressed when compared with the normal group. Downregulation of miR-140-5p increased the levels of inflammatory factors induced by ALI [including tumor necrosis factor-α, interleukin (IL)-1β, IL-6 and myeloperoxidase] in an in vitro model of human lung A549 cells. Downregulation of miR-140-5p also induced the protein expression of Toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88) and nuclear factor (NF)-κB in an in vitro model. Overexpression of miR-140-5p reduced the levels of inflammation in the in vitro model of ALI via the suppression of the TLR4/MyD88/NF-κB signaling pathway. The inhibition of TLR4 using a TLR4 inhibitor reduced the proinflammation effects of anti-miR-140-5p in the in vitro model of ALI. The NF-κB inhibitor also inhibited the proinflammation effects of anti-miR-140-5p in the in vitro model of ALI. Overall, the results of the present study indicated that miR-140-5p inhibited ALI-induced inflammation via the TLR4/MyD88/NF-κB signaling pathway.
Collapse
|
50
|
Chen YJ, Chang WA, Wu LY, Hsu YL, Chen CH, Kuo PL. Systematic Analysis of Differential Expression Profile in Rheumatoid Arthritis Chondrocytes Using Next-Generation Sequencing and Bioinformatics Approaches. Int J Med Sci 2018; 15:1129-1142. [PMID: 30123050 PMCID: PMC6097257 DOI: 10.7150/ijms.27056] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/08/2018] [Indexed: 12/15/2022] Open
Abstract
Cartilage destruction in rheumatoid arthritis (RA) occurs primarily in the pannus-cartilage interface. The close contact of the synovium-cartilage interface implicates crosstalk between synovial fibroblasts and chondrocytes. The aim of this study is to explore the differentially expressed genes and novel microRNA regulations potentially implicated in the dysregulated cartilage homeostasis in joint destruction of RA. Total RNAs were extracted from human primary cultured normal and RA chondrocytes for RNA and small RNA expression profiling using next-generation sequencing. Using systematic bioinformatics analyses, we identified 463 differentially expressed genes in RA chondrocytes were enriched in biological functions related to altered cell cycle process, inflammatory response and hypoxic stimulation. Moreover, fibroblast growth factor 9 (FGF9), kynureninase (KYNU), and regulator of cell cycle (RGCC) were among the top dysregulated genes identified to be potentially affected in the RA joint microenvironment, having similar expression patterns observed in arrays of clinical RA synovial tissues from the Gene Expression Omnibus database. Additionally, among the 31 differentially expressed microRNAs and 10 candidate genes with potential microRNA-mRNA interactions in RA chondrocytes, the novel miR-140-3p-FGF9 interaction was validated in different microRNA prediction databases, and proposed to participate in the pathogenesis of joint destruction through dysregulated cell growth in RA. The findings provide new perspectives for target genes in the management of cartilage destruction in RA.
Collapse
Affiliation(s)
- Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Physical Medicine and Rehabilitation, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Wei-An Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Ling-Yu Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chia-Hsin Chen
- Department of Physical Medicine and Rehabilitation, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Po-Lin Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|