1
|
Sipping M, Kumar TS, Kamdem N. Scientific investigation on antibacterial, antioxidant, cytotoxic effects and TLC bioautography of Terminalia schimperiania stem bark extracts. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2025:jcim-2024-0251. [PMID: 39789714 DOI: 10.1515/jcim-2024-0251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/08/2024] [Indexed: 01/12/2025]
Abstract
OBJECTIVES Terminalia schimperiana Hochst, belonging to the Combretaceae family, is known for its ethnomedicinal values, particularly in treating various diseases in Africa. This study aimed to investigate the antibacterial, antioxidant, and cytotoxic properties of T. schimperiana stem bark extracts, with a specific focus on assessing their bioactive potential and identifying active compounds via TLC bioautography. METHODS The in vitro antimicrobial activity was assessed using the agar well diffusion method against selected clinical strains. Antioxidant activity was evaluated using several methods including free radical scavenging, ferrous ion chelation assays and total phenolic content analysis. The cytotoxicity of the extracts was assessed using MTT assay towards Raw 264.7 and Vero cell lines. RESULTS All extracts demonstrated significant antibacterial activity against the bacteria tested, with inhibition zones (IZ) ranging from 6.50 ± 0.71 to 15.50 ± 0.71 mm and minimum inhibitory concentrations (MIC) ranging from 1.95 to 1,250 μg/ml. The hydroethanolic extract exhibited strongest antioxidant activities with EC50 values of 188.50; 245.30, and 281.50 μg/mL for DPPH; ABTS, ferrous ion chelation assays respectively, and a high content of phenolic compounds (101.67 ± 2.97 µgEFA/mg DW). Importantly, no cytotoxic effects were observed on Raw 264.7 and Vero cell lines. HPTLC analysis identified alkaloids and phenolic compounds in both aqueous and hydroethanolic extracts. CONCLUSIONS These findings indicate T. schimperiana provides a wealth of bio-compounds that can be utilised in the pharmaceutical industry as antibacterial and antioxidant agents to combat antibiotic resistance.
Collapse
Affiliation(s)
- Marius Sipping
- PKFokam Institute of Excellence, Yaoundé, Cameroon
- Laboratory of Phytoprotection and Valorization of Genetic Resources, Biotechnology Centre, Nkolbisson, 201336 University of Yaoundé 1 , Yaoundé, Cameroon
| | | | | |
Collapse
|
2
|
Somsuan K, Aluksanasuwan S, Woottisin S, Chiangjong W, Wanta A, Munkong N, Jaidee W, Praman S, Fuangfoo K, Morchang A, Kamsrijai U, Woottisin N, Rujanapun N, Charoensup R. Mathurameha ameliorates cardiovascular complications in high-fat diet/low-dose streptozotocin-induced type 2 diabetic rats: insights from histological and proteomic analysis. J Mol Histol 2024; 55:1177-1197. [PMID: 39227510 DOI: 10.1007/s10735-024-10258-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a global health concern with increasing prevalence. Mathurameha, a Thai herbal formula, has shown promising glucose-lowering effects and positive impacts on biochemical profiles in diabetic rats. The present study investigated the protective effects of Mathurameha on cardiovascular complications in high-fat diet/streptozotocin (HFD/STZ)-induced type 2 diabetic rats using histological and proteomic analyses. Thirty-five male Sprague-Dawley rats were divided into seven groups: normal diet (ND), ND with aqueous extract (ND + AE450), ND with ethanolic extract (ND + EE200), diabetes (DM), DM with AE (DM + AE450), DM with EE (DM + EE200), and DM with metformin (DM + Met). Mathurameha, especially at 200 mg/kg EE, significantly reduced adipocyte size, cardiac and vascular abnormalities, collagen deposition, and arterial wall thickness in DM rats. Proteomic analysis of rat aortas revealed 30 significantly altered proteins among the ND, DM, and DM + EE200 groups. These altered proteins are involved in various biological processes related to diabetes. Biochemical assays showed that Mathurameha reduced lipid peroxidation (MDA), increased antioxidant levels (GSH), and decreased the expression of inflammatory markers (ICAM1, TNF-α). In conclusion, Mathurameha exhibited significant protective effects against cardiovascular complications in HFD/STZ-induced type 2 diabetic rats through its antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Keerakarn Somsuan
- School of Medicine, Mae Fah Luang University, 365 Moo 12, Nang Lae, Mueang Chiang Rai District, Chiang Rai, 57100, Thailand.
- Cancer and Immunology Research Unit (CIRU), Mae Fah Luang University, Chiang Rai, 57100, Thailand.
| | - Siripat Aluksanasuwan
- School of Medicine, Mae Fah Luang University, 365 Moo 12, Nang Lae, Mueang Chiang Rai District, Chiang Rai, 57100, Thailand
- Cancer and Immunology Research Unit (CIRU), Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Surachet Woottisin
- School of Medicine, Mae Fah Luang University, 365 Moo 12, Nang Lae, Mueang Chiang Rai District, Chiang Rai, 57100, Thailand
| | - Wararat Chiangjong
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Arunothai Wanta
- School of Medicine, Mae Fah Luang University, 365 Moo 12, Nang Lae, Mueang Chiang Rai District, Chiang Rai, 57100, Thailand
- Cancer and Immunology Research Unit (CIRU), Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Narongsuk Munkong
- Department of Pathology, School of Medicine, University of Phayao, Phayao, 56000, Thailand
| | - Wuttichai Jaidee
- Medicinal Plants Innovation Center of Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Siwaporn Praman
- School of Medicine, Mae Fah Luang University, 365 Moo 12, Nang Lae, Mueang Chiang Rai District, Chiang Rai, 57100, Thailand
| | - Kawita Fuangfoo
- Medicinal Plants Innovation Center of Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Atthapan Morchang
- School of Medicine, Mae Fah Luang University, 365 Moo 12, Nang Lae, Mueang Chiang Rai District, Chiang Rai, 57100, Thailand
- Cancer and Immunology Research Unit (CIRU), Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Utcharaporn Kamsrijai
- School of Medicine, Mae Fah Luang University, 365 Moo 12, Nang Lae, Mueang Chiang Rai District, Chiang Rai, 57100, Thailand
| | - Nanthakarn Woottisin
- School of Integrative Medicine, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Narawadee Rujanapun
- Medicinal Plants Innovation Center of Mae Fah Luang University, Chiang Rai, 57100, Thailand
- School of Integrative Medicine, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Rawiwan Charoensup
- Medicinal Plants Innovation Center of Mae Fah Luang University, Chiang Rai, 57100, Thailand
- School of Integrative Medicine, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| |
Collapse
|
3
|
Aluksanasuwan S, Somsuan K, Chiangjong W, Rongjumnong A, Jaidee W, Rujanapun N, Chutipongtanate S, Laphookhieo S, Charoensup R. SWATH-proteomics reveals Mathurameha, a traditional anti-diabetic herbal formula, attenuates high glucose-induced endothelial dysfunction through the EGF/NO/IL-1β regulatory axis. J Proteomics 2024; 306:105263. [PMID: 39047940 DOI: 10.1016/j.jprot.2024.105263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/02/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Mathurameha is a traditional Thai herbal formula with a clinically proven effect of blood sugar reduction in patients with diabetes mellitus, but its anti-diabetic complication potential is largely unknown. This study aimed to elucidate the effects of Mathurameha and its underlying mechanisms against high glucose-induced endothelial dysfunction in human endothelial EA.hy926 cells. After confirming no cytotoxic effects, the cells were treated with normal glucose (NG), high glucose (HG), or high glucose plus Mathurameha (HG + M) for 24 h. A quantitative label-free proteomic analysis using the sequential window acquisition of all theoretical mass spectra (SWATH-MS) approach identified 24 differentially altered proteins among the three groups: 7 between HG and NG, 9 between HG + M and NG, and 13 between HG + M and HG. Bioinformatic analyses suggested a potential anti-diabetic action through the epidermal growth factor (EGF) pathway. Subsequent functional validations demonstrated that Mathurameha reduced the EGF secretion and the intracellular reactive oxygen species (ROS) level in high glucose-treated cells. Mathurameha also exhibited a stimulatory effect on nitric oxide (NO) production while significantly reducing the secretion of endothelin-1 (ET-1) and interleukin-1β (IL-1β) in high glucose-treated cells. In conclusion, our findings demonstrated that Mathurameha attenuated high glucose-induced endothelial dysfunction through the EGF/NO/IL-1β regulatory axis. SIGNIFICANCE: This study reveals the potential of Mathurameha, a traditional Thai herbal formula, in mitigating high glucose-induced endothelial dysfunction, a common complication in diabetes mellitus. Using proteomics and bioinformatic analyses followed by functional validations, the present study highlights the protective effects of Mathurameha through the EGF/NO/IL-1β regulatory axis. These findings support its potential use as a therapeutic intervention for diabetic vascular complications and provide valuable information for developing more effective anti-diabetic drugs.
Collapse
Affiliation(s)
- Siripat Aluksanasuwan
- School of Medicine, Mae Fah Luang University, Chiang Rai 57100, Thailand; Cancer and Immunology Research Unit (CIRU), Mae Fah Luang University, Chiang Rai 57100, Thailand.
| | - Keerakarn Somsuan
- School of Medicine, Mae Fah Luang University, Chiang Rai 57100, Thailand; Cancer and Immunology Research Unit (CIRU), Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Wararat Chiangjong
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Artitaya Rongjumnong
- Cancer and Immunology Research Unit (CIRU), Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Wuttichai Jaidee
- Medicinal Plants Innovation Center of Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Narawadee Rujanapun
- Medicinal Plants Innovation Center of Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Somchai Chutipongtanate
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0056, USA
| | - Surat Laphookhieo
- Medicinal Plants Innovation Center of Mae Fah Luang University, Chiang Rai 57100, Thailand; Center of Chemical Innovation for Sustainability (CIS), School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Rawiwan Charoensup
- Medicinal Plants Innovation Center of Mae Fah Luang University, Chiang Rai 57100, Thailand; School of Integrative Medicine, Mae Fah Luang University, Chiang Rai 57100, Thailand.
| |
Collapse
|
4
|
Kong Q, Shang Z, Liu Y, Fakhar-e-Alam Kulyar M, Suo-lang S, Xu Y, Tan Z, Li J, Liu S. Preventive effect of Terminalia bellirica (Gaertn.) Roxb. extract on mice infected with Salmonella Typhimurium. Front Cell Infect Microbiol 2023; 12:1054205. [PMID: 36699727 PMCID: PMC9868565 DOI: 10.3389/fcimb.2022.1054205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Terminalia bellirica (Gaertn.) Roxb. (TB) is a traditional herbal combination used in Chinese medicine for the treatment of a broad range of diseases. In this study, thirty KM mice were randomly divided into control (N), infection group (NS), and the TB protection group (HS). Based on its digestive feature, intestinal physical barrier, immunological barrier and gut microbiota effects in vivo on challenged with S.typhimurium mice were investigated after oral administration of 600 mg/kg b.wt of TB for 13 days. The results show that the extract could improve the level of serum immunoglobulins (IgA and IgG), decrease the intestinal cytokine secretion to relieve intestinal cytokine storm, reinforce the intestinal biochemical barrier function by elevating the sIgA expression, and strengthen the intestinal physical barrier function. Simultaneously, based on the V3-V4 region of the 16S rRNA analyzed, the results of the taxonomic structure of the intestinal microbiota demonstrated that the TB prevention effect transformed the key phylotypes of the gut microbiota in S. Typhimurium-challenged mice and promoted the multiplication of beneficial bacteria. Furthermore, the abundance of Firmicutes and Deferribacteres increased, while that of Bacteroidetes and Actinobacteria decreased. At the genus level, the abundance of Ruminococcus and Oscillospira was substantially enhanced, while the other dominant genera showed no significant change between the vehicle control groups and the TB prevention groups. In summary, these results provide evidence that the administration of TB extract can prevent S. Typhimurium infection by alleviating the intestinal physical and immunological barriers and normalizing the gut microbiota, highlighting a promising application in clinical treatment. Thus, our results provide new insights into the biological functions of TB for the preventive effect of intestinal inflammation.
Collapse
Affiliation(s)
- Qinghui Kong
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhenda Shang
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
- Tibetan Plateau Feed Processing Engineering Research Center, Nyingchi, China
| | - Yao Liu
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
| | | | - Sizhu Suo-lang
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
| | - Yefen Xu
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
| | - Zhankun Tan
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
- Tibetan Plateau Feed Processing Engineering Research Center, Nyingchi, China
| | - Jiakui Li
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Suozhu Liu
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
- Tibetan Plateau Feed Processing Engineering Research Center, Nyingchi, China
| |
Collapse
|
5
|
Vysakh A, Jayesh K, Jisha N, Vijeesh V, Midhun SJ, Jyothis M, Latha MS. Rotula aquatica Lour. mitigates oxidative stress and inflammation in acute pyelonephritic rats. Arch Physiol Biochem 2022; 128:92-100. [PMID: 31560224 DOI: 10.1080/13813455.2019.1665073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The current study evaluates the efficacy of methanolic extract of Rotula aquatica Lour. (MERA) against inflammatory changes associated with acute pyelonephritis. The antioxidant enzymes such as SOD, CAT, GPx, GR and oxidative stress markers like GSH content, malondialdehyde (MDA) level, nitrate level, reactive oxygen species (ROS) level and renal toxicity markers were evaluated in this study. The mRNA level expression of Toll-like receptor 4 (TLR-4), nuclear transcription factor kappa B (NF-κB), tumour necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and Tamm Horsfall protein (THP) were studied by RT-PCR analysis. The oral administration of MERA increases the antioxidant enzyme status in pyelonephritis rat. The elevated levels of oxidative stress markers in pyelonephritic rats were ameliorated by the administration of MERA at 100 mg/kg and 200 mg/kg bwt of the rat. The mRNA level expression of major genes were restored to normal level by MERA.
Collapse
Affiliation(s)
- A Vysakh
- School of Biosciences, Mahatma Gandhi University, Priyadarshini Hills, Kottayam, Kerala, India
| | - Kuriakose Jayesh
- School of Biosciences, Mahatma Gandhi University, Priyadarshini Hills, Kottayam, Kerala, India
| | - Ninan Jisha
- School of Biosciences, Mahatma Gandhi University, Priyadarshini Hills, Kottayam, Kerala, India
| | - V Vijeesh
- School of Biosciences, Mahatma Gandhi University, Priyadarshini Hills, Kottayam, Kerala, India
| | - Sebastian Jose Midhun
- School of Biosciences, Mahatma Gandhi University, Priyadarshini Hills, Kottayam, Kerala, India
| | - Mathew Jyothis
- School of Biosciences, Mahatma Gandhi University, Priyadarshini Hills, Kottayam, Kerala, India
| | - M S Latha
- School of Biosciences, Mahatma Gandhi University, Priyadarshini Hills, Kottayam, Kerala, India
| |
Collapse
|
6
|
Sunil MA, Sunitha VS, Santhakumaran P, Mohan MC, Jose MS, Radhakrishnan EK, Mathew J. Protective effect of (+)-catechin against lipopolysaccharide-induced inflammatory response in RAW 264.7 cells through downregulation of NF-κB and p38 MAPK. Inflammopharmacology 2021; 29:1139-1155. [PMID: 34115226 DOI: 10.1007/s10787-021-00827-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/29/2021] [Indexed: 12/26/2022]
Abstract
Catechin, a flavonol belonging to the flavonoid group of polyphenols is present in many plant foods. The present study was done to evaluate the effect of catechin on various inflammatory mediators using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. The effect of catechin on total cyclooxygenase (COX) activity, 5-lipoxygenase (5-LOX), myeloperoxidase, nitrite and inducible nitric oxide synthase (iNOS) level, secretion of tumor necrosis factor-α (TNF-α) and interleukin-10 (IL-10) were assessed in LPS-stimulated RAW 264.7 cells. The expression of COX-2, iNOS, TNF-α, nuclear factor-ĸB (NF-κB) and p38 mitogen-activated protein kinase (MAPK) genes were also investigated. The effect was further analyzed using human PBMCs by assessing the level of TNF-α and IL-10. The study demonstrated that the inflammatory mediators such as COX, 5-LOX, nitrite, iNOS, and TNF-α were significantly inhibited by catechin in a concentration-dependent manner whereas IL-10 production was up-regulated in RAW 264.7 cells. Moreover, catechin down-regulated the mRNA level expression of COX-2, iNOS, TNF-α, NF-κB and p38 MAPK. The current study ratifies the beneficial effect of catechin as a dietary component in plant foods to provide protection against inflammatory diseases.
Collapse
Affiliation(s)
- M A Sunil
- School of Biosciences, Mahatma Gandhi University Kottayam, Kerala, 686560, India
| | - V S Sunitha
- School of Biosciences, Mahatma Gandhi University Kottayam, Kerala, 686560, India
| | | | - Mohind C Mohan
- School of Biosciences, Mahatma Gandhi University Kottayam, Kerala, 686560, India
| | | | - E K Radhakrishnan
- School of Biosciences, Mahatma Gandhi University Kottayam, Kerala, 686560, India
| | - Jyothis Mathew
- School of Biosciences, Mahatma Gandhi University Kottayam, Kerala, 686560, India.
| |
Collapse
|
7
|
Chakraborty K, Krishnan S, Joy M. Euryfuranyl compounds from edible species of cuttlefish as potential anti-inflammatory leads attenuating NF-κB signaling cascade in lipopolysaccharide-activated macrophages. Bioorg Chem 2021; 114:105052. [PMID: 34146918 DOI: 10.1016/j.bioorg.2021.105052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 06/01/2021] [Indexed: 01/17/2023]
Abstract
Nuclear factor-kappa B is an inducible transcription element, which was considered as an important regulator of immune functions, and plays a critical role to induce inflammatory reactions. In this study, we have demonstrated the anti-inflammatory potentials of previously undescribed (4 → 13)-abeo-euryfuranyls (1-2) from the spineless cuttlefish Sepiella inermis in lipopolysaccharide-stimulated macrophages. The euryfuranyl bearing (4 → 13)-abeo-euryfuranyl-2-ene-6-hydroxymethyl-propanoate framework (compound 1) displayed prominent inhibitory effects against pro-inflammatory cyclooxygenase-2 (IC50 0.36 mM) and 5-lipoxygenase (IC50 0.70 mM). Additionally, it suppressed the generation of inducible nitric oxide synthase along with cyclooxygenase-2 and 5-lipoxygenase in lipopolysaccharide-stimulated macrophages. The euryfuranyl analogue (1) down-regulated the mRNA expression of cyclooxygenase-2 and nuclear factor-κB signaling pathway in lipopolysaccharide-activated macrophage cells by hindering the degradation of inhibitor-κB proteins, and transfer of the subunit NF-κB p65 to the nucleus from the cytosol. These results demonstrated that the euryfuranyl analogue could be explored as a promising anti-inflammatory therapeutic lead attenuating nuclear factor-κB signaling cascade.
Collapse
Affiliation(s)
- Kajal Chakraborty
- Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin 682018, Kerala, India.
| | - Soumya Krishnan
- Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin 682018, Kerala, India
| | - Minju Joy
- Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin 682018, Kerala, India
| |
Collapse
|
8
|
Chang Z, Jian P, Zhang Q, Liang W, Zhou K, Hu Q, Liu Y, Liu R, Zhang L. Tannins in Terminalia bellirica inhibit hepatocellular carcinoma growth by regulating EGFR-signaling and tumor immunity. Food Funct 2021; 12:3720-3739. [PMID: 33900343 DOI: 10.1039/d1fo00203a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The fruits of Terminalia bellirica (Gaertn.) Roxb. (TB) are used as a multi-use therapeutic herbal product in the Tibetan medicinal system and are prescribed as a general health tonic in the traditional Ayurvedic medicinal system. It has been demonstrated that these fruits have a variety of pharmacological activities, including anti-tumor, anti-oxidative, anti-inflammatory, hepatoprotective and immunoregulatory effects, etc. However, the therapeutic effects of tannins in TB on HCC and the underlying mechanisms remain uncharacterized. In the current study, we aimed to identify the anti-tumor effect of tannins in TB by employing a H22 xenograft mouse model and by performing cell-based in vitro studies with the assistance of the network pharmacology analysis. The crude extract of TB was purified to yield total tannin fraction (TB-TF), and our results found that TB-TF significantly inhibited the tumor growth of H22 xenografts in mice by inducing apoptosis and reducing angiogenesis. A total of 90 compounds were then identified in TB-TF by UPLC-MS/MS, and 27 were found in serum after oral administration of TB-TF in mice. The network pharmacology analysis based on these absorbed components was performed and, along with experimental evidence, it revealed that the ERBB, PI3K-Akt, and MAPK signaling pathways may be involved in the anti-tumor effect of TB-TF on HCC. Furthermore, we suggested that TB-TF effectively modulated the immunosuppressive tumor microenvironment in H22 xenograft mice. In summary, our study demonstrated that TB-TF could be developed as a functional food, which is not only a promising anti-cancer reagent but also a potential candidate with bright prospects for the emerging trends of immunotherapy for HCC.
Collapse
Affiliation(s)
- Zihao Chang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China.
| | - Ping Jian
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China.
| | - Qiunan Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China.
| | - Wenyi Liang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China.
| | - Kun Zhou
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China.
| | - Qian Hu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China.
| | - Yuqi Liu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China.
| | - Runping Liu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China.
| | - Lanzhen Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China.
| |
Collapse
|
9
|
Sørnes EØ, Risal A, Manandhar K, Thomas H, Steiner TJ, Linde M. Use of medicinal plants for headache, and their potential implication in medication-overuse headache: Evidence from a population-based study in Nepal. Cephalalgia 2021; 41:561-581. [PMID: 33435708 PMCID: PMC8047708 DOI: 10.1177/0333102420970904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background In Nepal, traditional treatment using medicinal plants is popular. Whereas
medication-overuse headache is, by definition, caused by excessive use of
acute headache medication, we hypothesized that medicinal plants, being
pharmacologically active, were as likely a cause. Methods We used data from a cross-sectional, nationwide population-based study, which
enquired into headache and use of medicinal plants and allopathic
medications. We searched the literature for pharmacodynamic actions of the
medicinal plants. Results Of 2100 participants, 1794 (85.4%) reported headache in the preceding year;
161 (7.7%) reported headache on ≥15 days/month, of whom 28 (17.4%) had used
medicinal plants and 117 (72.7%) allopathic medication(s). Of 46 with
probable medication-overuse headache, 87.0% (40/46) were using allopathic
medication(s) and 13.0% (6/46) medicinal plants, a ratio of 6.7:1, higher
than the overall ratio among those with headache of 4.9:1 (912/185). Of 60
plant species identified, 49 were pharmacodynamically active on the central
nervous system, with various effects of likely relevance in
medication-overuse headache causation. Conclusions MPs are potentially a cause of medication-overuse headache, and not to be
seen as innocent in this regard. Numbers presumptively affected in Nepal are
low but not negligible. This pioneering project provides a starting point
for further research to provide needed guidance on use of medicinal plants
for headache.
Collapse
Affiliation(s)
- Elise Øien Sørnes
- Department of Neuromedicine and Movement Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Ajay Risal
- Dhulikhel Hospital, Kathmandu University Hospital, Dhulikhel, Kavre, Nepal.,Kathmandu University School of Medical Sciences, Dhulikhel, Kavre, Nepal
| | - Kedar Manandhar
- Dhulikhel Hospital, Kathmandu University Hospital, Dhulikhel, Kavre, Nepal.,Kathmandu University School of Medical Sciences, Dhulikhel, Kavre, Nepal
| | - Hallie Thomas
- Department of Neuromedicine and Movement Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Timothy J Steiner
- Department of Neuromedicine and Movement Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway.,Division of Brain Sciences, Imperial College London, London, UK
| | - Mattias Linde
- Department of Neuromedicine and Movement Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
10
|
Polygalactan from bivalve Crassostrea madrasensis attenuates nuclear factor-κB activation and cytokine production in lipopolysaccharide-activated macrophage. Carbohydr Polym 2020; 249:116817. [PMID: 32933665 DOI: 10.1016/j.carbpol.2020.116817] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/23/2020] [Accepted: 07/23/2020] [Indexed: 12/30/2022]
Abstract
A polygalactosamino-glucopyranosyl fucopyranose →4)-β-GlcAp{(3→1)-α-Fucp}-β-GalNAcp-(4,6-SO3-)-(1→ isolated from the bivalve Crassostrea madrasensis exhibited prospective anti-inflammatory activity against cyclooxygenase-2 and 5-lipoxygenase (IC50 < 50 μg mL-1) on lipopolysaccharide-induced macrophages. The polygalactan attenuated inducible nitric oxide synthase (IC50 65.7 μg mL-1) in lipopolysaccharide-prompted inflammation leading to the reduction of pro-inflammatory cytokine nitric oxide (236.2 μg mL-1 lysate), nuclear factor-κB, tumor necrosis factor-α, and interleukins (0.19-0.22 units mg-1 protein at 100 μg mL-1) by inhibiting cyclooxygenase-2. The polygalacatan suppressed the mRNA of nuclear factor-κB and cyclooxygenase-2 in lipopolysaccharide-induced macrophages. Western blot experiment revealed that the polygalactan attenuated the migration of nuclear factor-κB-p65 to the nucleus from cytoplasm, and suppressed the phosphorylation of α-subunit of κB inhibitor. Greater selectivity index of sulfated polygalactan (3.93) towards inducible cyclooxygenase-2 as compared with the anti-inflammatory agent ibuprofen (1.11), and the potential to inhibit nuclear factor-κB cascade to generate chemokine production manifested its utilization in the development of functional food attenuating inflammation-related disorders.
Collapse
|
11
|
Patra S, Panda PK, Naik P, Panigrahi DP, Praharaj PP, Bhol CS, Mahapatra KK, Padhi P, Jena M, Patil S, Patra SK, Bhutia SK. Terminalia bellirica extract induces anticancer activity through modulation of apoptosis and autophagy in oral squamous cell carcinoma. Food Chem Toxicol 2020; 136:111073. [DOI: 10.1016/j.fct.2019.111073] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/29/2022]
|
12
|
Zhang XR, Kaunda JS, Zhu HT, Wang D, Yang CR, Zhang YJ. The Genus Terminalia (Combretaceae): An Ethnopharmacological, Phytochemical and Pharmacological Review. NATURAL PRODUCTS AND BIOPROSPECTING 2019; 9:357-392. [PMID: 31696441 PMCID: PMC6872704 DOI: 10.1007/s13659-019-00222-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
Terminalia Linn, a genus of mostly medium or large trees in the family Combretaceae with about 250 species in the world, is distributed mainly in southern Asia, Himalayas, Madagascar, Australia, and the tropical and subtropical regions of Africa. Many species are used widely in many traditional medicinal systems, e.g., traditional Chinese medicine, Tibetan medicine, and Indian Ayurvedic medicine practices. So far, about 39 species have been phytochemically studied, which led to the identification of 368 compounds, including terpenoids, tannins, flavonoids, phenylpropanoids, simple phenolics and so on. Some of the isolates showed various bioactivities, in vitro or in vivo, such as antitumor, anti HIV-1, antifungal, antimicrobial, antimalarial, antioxidant, diarrhea and analgesic. This review covers research articles from 1934 to 2018, retrieved from SciFinder, Wikipedia, Google Scholar, Chinese Knowledge Network and Baidu Scholar by using "Terminalia" as the search term ("all fields") with no specific time frame setting for the search. Thirty-nine important medicinal and edible Terminalia species were selected and summarized on their geographical distribution, traditional uses, phytochemistry and related pharmacological activities.
Collapse
Affiliation(s)
- Xiao-Rui Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China. Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Joseph Sakah Kaunda
- State Key Laboratory of Phytochemistry and Plant Resources in West China. Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Hong-Tao Zhu
- State Key Laboratory of Phytochemistry and Plant Resources in West China. Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, People's Republic of China
| | - Dong Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China. Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, People's Republic of China
| | - Chong-Ren Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China. Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, People's Republic of China
| | - Ying-Jun Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China. Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, People's Republic of China.
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China.
| |
Collapse
|
13
|
Balkrishna A, Sakat SS, Joshi K, Paudel S, Joshi D, Joshi K, Ranjan R, Gupta A, Bhattacharya K, Varshney A. Anti-Inflammatory and Anti-Arthritic Efficacies of an Indian Traditional Herbo-Mineral Medicine "Divya Amvatari Ras" in Collagen Antibody-Induced Arthritis (CAIA) Mouse Model Through Modulation of IL-6/IL-1β/TNF-α/NFκB Signaling. Front Pharmacol 2019; 10:659. [PMID: 31333447 PMCID: PMC6614787 DOI: 10.3389/fphar.2019.00659] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 05/21/2019] [Indexed: 12/28/2022] Open
Abstract
Rheumatoid arthritis (RA) is defined as a chronic autoimmune inflammatory disorder that causes damage to limb joints and progressive injuries to secondary organs. Medical practitioners prescribe Methotrexate (MTX) as standard care medicine for treating RA. However, the long-term application of MTX has shown to have adverse health-related effects. Divya Amvatari Ras (DAR), an Indian Ayurvedic herbo-mineral formulation, has been described in ancient texts to provide relief from RA inflammation associated distress. Therefore, in the present study, we explored the biocompatibility, anti-inflammatory, and anti-arthritic efficacy of DAR using in vivo and in vitro disease models. Using carrageenan (CA)-stimulated Wistar rat paw edema model, we showed a reduction in inflammation-induced paw edema at human equivalent dose of DAR. Anti-rheumatic efficacy of DAR was studied using collagen-antibody cocktail (C-Ab) Induced Arthritis (CAIA) mouse model. The onset of RA in the CAIA mice was determined using parameters such as the increase in arthritis score, and induction of disease associated lesions in the ankle and knee joints, and increase in mechanical and thermal hyperalgesia. Treatment of CAIA animals with a human equivalent dose of DAR significantly reversed the RA-associated pathogenesis. These effects were comparable with the standard of care RA drug, MTX. DAR acted at multiple levels of inflammation associated with RA to reduce progressive pathogenesis. Animal serum biochemistry showed DAR was capable of ameliorating RA induced increase in liver enzyme Alanine Aminotransferase (ALT) and pro-inflammatory cytokine interleukin 6 (IL-6). In the lipopolysaccharide stimulated THP-1 cells, DAR was found to inhibit the release of IL-6, IL-1β, TNF-α, and upstream inflammatory gene regulatory protein, NFκB. The study endorsed the anti-arthritic and anti-inflammatory activity of the Indian Traditional herbo-mineral medicine, DAR. These results also confirm that DAR was highly biocompatible and would show minimal health-related side effects than those associated with standard of care MTX. Taken together, we show that the DAR could be utilized as a promising alternative or complementary therapy for treating rheumatoid arthritis.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India.,University of Patanjali, Patanjali Yog Peeth, Haridwar, India
| | - Sachin Shridhar Sakat
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
| | - Kheemraj Joshi
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
| | - Sandeep Paudel
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
| | - Deepika Joshi
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
| | - Kamal Joshi
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
| | - Ravikant Ranjan
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
| | - Abhishek Gupta
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
| | - Kunal Bhattacharya
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India.,Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India.,University of Patanjali, Patanjali Yog Peeth, Haridwar, India
| |
Collapse
|
14
|
Protective Role of Terminalia bellirica (Gaertn.) Roxb Fruits Against CCl 4 Induced Oxidative Stress and Liver Injury in Rodent Model. Indian J Clin Biochem 2018; 34:155-163. [PMID: 31092988 DOI: 10.1007/s12291-017-0732-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 12/22/2017] [Indexed: 01/14/2023]
Abstract
Abstract The medicinal plant, Terminalia bellirica (Gaertn.) Roxb. is widely used in the traditional Indian system of medicine like Ayurveda for centuries in the treatment of various ailments owing to it's rejuvenating as well as health promoting effects. The present study evaluates protective role of aqueous acetone extract of T. bellirica fruits (AATB) against CCl4 induced liver toxicity in animal model. The liver damage was assessed by liver function markers including ALT, AST, ALP, GGT, LDH, total bilirubin, total protein, albumin, globulin and albumin-globulin ratio. The levels of MDA, ROS, and NO along with the tissue antioxidants were evaluated to assess hepatic oxidative stress and level of lipid peroxidation. Treatment with AATB prior to the exposure of CCl4 significantly reduced the damage when compared to the control rats. The outcome of the present study advocates the traditional use of the plant as ethnic food and health tonic. Graphical Abstract
Collapse
|