1
|
Pawar B, Otavi S, Singh A, Kaur S, Tekade RK. On-demand Opto-Laser activatable nanoSilver ThermoGel for treatment of full-thickness diabetic wound in a mouse model. BIOMATERIALS ADVANCES 2024; 164:213994. [PMID: 39153455 DOI: 10.1016/j.bioadv.2024.213994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
Patients suffering from diabetes mellitus are prone to develop diabetic wounds that are non-treatable with conventional therapies. Hence, there is an urgent need of hour to develop the therapy that will overcome the lacunas of conventional therapies. This investigation reports the Quality by Design-guided one-pot green synthesis of unique Opto-Laser activatable nanoSilver ThermoGel (OL→nSil-ThermoGel) for hyperthermia-assisted treatment of full-thickness diabetic wounds in mice models. The characterization findings confirmed the formation of spherical-shaped nanometric Opto-Laser activatable nanoSilver (30.75 ± 2.7 nm; ∆T: 37 ± 0.2 °C → 66.2 ± 0.1 °C; at 1.8 W/cm2 NIR laser density). The findings indicated acceptable in vitro cytocompatibility and significant keratinocyte migration (95.04 ± 0.07 %) activity of OL→nSil towards HaCaT cells. The rheological data of OL→nSil hybridized in situ thermoresponsive gel (OL→nSil-ThermoGel) showed the gelling temperature at 32 ± 2 °C. In vivo studies on full-thickness diabetic wounds in a Mouse model showed OL→nSil-ThermoGel accelerated wound closure (94.42 ± 1.03 %) and increased collagen synthesis, angiogenesis, and decreased inflammatory markers. Similarly, immunohistochemistry study showed significant angiogenesis and faster phenotypic switching of fibroblasts to myofibroblasts in OL→nSil-ThermoGel treated diabetic wounds. Histological evaluation revealed a marked rise in keratinocyte migration, organized collagen deposition, and early regeneration of the epithelial layer compared to the diabetic wound control. In conclusion, the OL→nSil-ThermoGel modulates the cytokines, re-epithelialization, protein expression, and growth factors, thereby improving the repair and regeneration of diabetic wounds in mice.
Collapse
Affiliation(s)
- Bhakti Pawar
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air force station, Gandhinagar 382355, Gujarat, India
| | - Shivam Otavi
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air force station, Gandhinagar 382355, Gujarat, India
| | - Amrita Singh
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air force station, Gandhinagar 382355, Gujarat, India
| | - Simranjeet Kaur
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air force station, Gandhinagar 382355, Gujarat, India
| | - Rakesh K Tekade
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air force station, Gandhinagar 382355, Gujarat, India.
| |
Collapse
|
2
|
Yao K, Peng Y, Tang Q, Liu K, Peng C. Human Serum Albumin/Selenium Complex Nanoparticles Protect the Skin from Photoaging Injury. Int J Nanomedicine 2024; 19:9161-9174. [PMID: 39258006 PMCID: PMC11383846 DOI: 10.2147/ijn.s446090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/11/2024] [Indexed: 09/12/2024] Open
Abstract
Introduction Photoaging-induced skin damage leads to appearance issues and dermatoma. Selenium nanoparticles (SeNPs) possess high antioxidant properties but are prone to inactivation. In this study, human serum albumin/SeNPs (HSA-SeNPs) were synthesized for enhanced stability. Methods HSA-SeNPs were prepared by self-assembling denatured human serum albumin and inorganic selenite. The cytotoxicity of HSA-SeNPs was assessed using the MTT method. Cell survival and proliferation rates were tested to observe the protective effect of HSA-SeNPs on human skin keratinocytes against photoaging. Simultaneously, ICR mice were used for animal experiments. H&E and Masson trichromatic staining were employed to observe morphological changes in skin structure and collagen fiber disorders after UVB irradiation. Quantitative RT-PCR was utilized to measure changes in mRNA expression levels of factors related to collagen metabolism, inflammation, oxidative stress regulation, and senescence markers. Results The HSA-SeNPs group exhibited significantly higher survival and proliferation rates of UVB-irradiated keratinocytes than the control group. Following UVB irradiation, the back skin of ICR mice displayed severe sunburn with disrupted collagen fibers. However, HSA-SeNPs demonstrated superior efficacy in alleviating these symptoms compared to SeNPs alone. In a UVB-irradiated mice model, mRNA expression of collagen type I and III was dysregulated while MMP1, inflammatory factors, and p21 mRNA expression were upregulated; concurrently Nrf2 and Gpx1 mRNA expression were downregulated. In contrast, HSA-SeNPs maintained the mRNA expression of those factors to be stable In addition, the level of SOD decreased, and MDA elevated significantly in the skin after UVB irradiation, but no significant differences in SOD and MDA levels between the HSA-SeNPs group with UVB irradiation and the UVB-free untreated group. Discussion HSA-SeNPs have more anti-photoaging effects on the skin than SeNPs, including the protective effects on skin cell proliferation, cell survival, and structure under photoaging conditions. HSA-SeNPs can be used to protect skin from photoaging and repair skin injury caused by UVB exposure.
Collapse
Affiliation(s)
- Kai Yao
- Department of Vascular Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Yongbo Peng
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
| | - Qiyu Tang
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Kaixuan Liu
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Cheng Peng
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
3
|
Riaz A, Ali S, Summer M, Noor S, Nazakat L, Aqsa, Sharjeel M. Exploring the underlying pharmacological, immunomodulatory, and anti-inflammatory mechanisms of phytochemicals against wounds: a molecular insight. Inflammopharmacology 2024:10.1007/s10787-024-01545-5. [PMID: 39138746 DOI: 10.1007/s10787-024-01545-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/26/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Numerous cellular, humoral, and molecular processes are involved in the intricate process of wound healing. PHARMACOLOGICAL RELEVANCE Numerous bioactive substances, such as ß-sitosterol, tannic acid, gallic acid, protocatechuic acid, quercetin, ellagic acid, and pyrogallol, along with their pharmacokinetics and bioavailability, have been reviewed. These phytochemicals work together to promote angiogenesis, granulation, collagen synthesis, oxidative balance, extracellular matrix (ECM) formation, cell migration, proliferation, differentiation, and re-epithelialization during wound healing. FINDINGS AND NOVELTY To improve wound contraction, this review delves into how the application of each bioactive molecule mediates with the inflammatory, proliferative, and remodeling phases of wound healing to speed up the process. This review also reveals the underlying mechanisms of the phytochemicals against different stages of wound healing along with the differentiation of the in vitro evidence from the in vivo evidence There is growing interest in phytochemicals, or plant-derived compounds, due their potential health benefits. This calls for more scientific analysis and mechanistic research. The various pathways that these phytochemicals control/modulate to improve skin regeneration and wound healing are also briefly reviewed. The current review also elaborates the immunomodulatory modes of action of different phytochemicals during wound repair.
Collapse
Affiliation(s)
- Anfah Riaz
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan.
| | - Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Shehzeen Noor
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Laiba Nazakat
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Aqsa
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Muhammad Sharjeel
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
4
|
Khorsandi K, Fekrazad R. Skin wound healing in diabetic rat model using low-dose photodynamic therapy. Biotechnol Appl Biochem 2024; 71:681-690. [PMID: 38409884 DOI: 10.1002/bab.2568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/20/2024] [Indexed: 02/28/2024]
Abstract
Chronic wound is one of the major challenges in medicine and imposes a heavy financial burden on the healthcare of different countries. Diabetic foot ulcers as one of the important examples for chronic wounds can lead to lower limb amputation, disability, and death in diabetics. In this regard, novel technology with low side effects got attention in recent years. Low-dose photodynamic therapy (LDPDT) is one of the noninvasive techniques that can be considered for wound healing in diabetic wounds. In this experiment, we aim to study the effect of LDPDT on diabetic rats' wound healing and compare it to healthy rats. In this in vitro experimental study, 32 male rats were used. Rats in both normal and diabetic (streptozotocin injection) groups after being wounded (two wounds [0.8 × 0.8 cm]) on the back of each rat were randomly divided into four groups, including the control group (without treatment), radiation-only (660 nm-1 J/cm2) group, 5-ALA-only (1 µg/mL) group, and LDPDT-recipient group. The procedure has been done for 2 days, and at the end of Days 3, 7, 14, and 21, the wound sample was sent to the histopathology laboratory, and the wound size and tissue indices in these groups were evaluated by histology and microscopy techniques. The impact of low concentrations of 5-ALA and low irradiation energy density in both normal and diabetic rats were positive, which accelerated the wound-healing process as seen in the histology study. In diabetic rats treated with only radiation and LDPDT, the process of epithelial regeneration, collagen production, reduction of mast cells, and production of follicles was more as compared to the normal group. The results suggest that LDPDT can have a positive impact on the diabetic rat model wound healing.
Collapse
Affiliation(s)
- Khatereh Khorsandi
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- Department of Photodynamic, Medical Laser Research Center, YARA Institute, ACECR, Tehran, Iran
| | - Reza Fekrazad
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
5
|
Tanhai G, Chahardehi AM, Sohrabi MA, Afshoon M, Saberian P, Pourshams M, Ghasemi D, Motaghi SM, Arefnezhad R, Niknam Z. Ameliorative properties of quercetin in the treatment of traumatic brain injury: a mechanistic review based on underlying mechanisms. Mol Biol Rep 2024; 51:695. [PMID: 38796674 DOI: 10.1007/s11033-024-09641-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/13/2024] [Indexed: 05/28/2024]
Abstract
Traumatic brain injury (TBI) is a leading cause of disability worldwide, with an estimated annual incidence of 27-69 million. TBI is a severe condition that can lead to high mortality rates and long-term cognitive, behavioral, and physical impairments in young adults. It is a significant public health concern due to the lack of effective treatments available. Quercetin, a natural flavonoid found in various fruits and vegetables, has demonstrated therapeutic potential with anti-inflammatory, antioxidant, and neuroprotective properties. Recently, some evidence has accentuated the ameliorating effects of quercetin on TBI. This review discusses quercetin's ability to reduce TBI-related damage by regulating many cellular and molecular pathways. Quercetin in vitro and in vivo studies exhibit promise in reducing inflammation, oxidative stress, apoptosis, and enhancing cognitive function post-TBI. Further clinical investigation into quercetin's therapeutic potential as a readily available adjuvant in the treatment of TBI is warranted in light of these findings. This review adds to our knowledge of quercetin's potential in treating TBI by clarifying its mechanisms of action.
Collapse
Affiliation(s)
- Golale Tanhai
- Department of Psychology and Counseling, Faculty of Humanities, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | | | | | - Maryam Afshoon
- Clinical Research Development Unit, Valiasr Educational Hospital, Abadan University of Medical Sciences, Abadan, Iran
| | - Parsa Saberian
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Maryam Pourshams
- Department of Psychiatry, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Darioush Ghasemi
- Kimia Andisheh Teb Medical and Research Laboratory Co., Tehran, Iran
| | | | | | - Zahra Niknam
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
6
|
Kim S, Park J, Choi Y, Jeon H, Lim N. Investigating the Relevance of Cyclic Adenosine Monophosphate Response Element-Binding Protein to the Wound Healing Process: An In Vivo Study Using Photobiomodulation Treatment. Int J Mol Sci 2024; 25:4838. [PMID: 38732058 PMCID: PMC11084265 DOI: 10.3390/ijms25094838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/05/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Monitoring inflammatory cytokines is crucial for assessing healing process and photobiomodulation (PBM) enhances wound healing. Meanwhile, cAMP response element-binding protein (CREB) is a regulator of cellular metabolism and proliferation. This study explored potential links between inflammatory cytokines and the activity of CREB in PBM-treated wounds. A total of 48 seven-week-old male SD rats were divided into four groups (wound location, skin or oral; treatment method, natural healing or PBM treatment). Wounds with a 6 mm diameter round shape were treated five times with an 808 nm laser every other day (total 60 J). The wound area was measured with a caliper and calculated using the elliptical formula. Histological analysis assessed the epidermal regeneration and collagen expression of skin and oral tissue with H&E and Masson's trichrome staining. Pro-inflammatory (TNF-α) and anti-inflammatory (TGF-β) cytokines were quantified by RT-PCR. The ratio of phosphorylated CREB (p-CREB) to unphosphorylated CREB was identified through Western blot. PBM treatment significantly reduced the size of the wounds on day 3 and day 7, particularly in the skin wound group (p < 0.05 on day 3, p < 0.001 on day 7). The density of collagen expression was significantly higher in the PBM treatment group (in skin wound, p < 0.05 on day 3, p < 0.001 on day 7, and p < 0.05 on day 14; in oral wound, p < 0.01 on day 7). The TGF-β/TNF-α ratio and the p-CREB/CREB ratio showed a parallel trend during wound healing. Our findings suggested that the CREB has potential as a meaningful marker to track the wound healing process.
Collapse
Affiliation(s)
- Sungyeon Kim
- Department of Plastic and Reconstructive Surgery, Dankook University College of Medicine, Cheonan 31116, Chungnam, Republic of Korea; (S.K.); (H.J.)
| | - Jion Park
- Department of Medical Laser, Graduate School, Dankook University, Cheonan 31116, Chungnam, Republic of Korea;
| | - Younghoon Choi
- Institute of Medical Science, Dankook University Hospital, Cheonan 31116, Chungnam, Republic of Korea;
| | - Hongbae Jeon
- Department of Plastic and Reconstructive Surgery, Dankook University College of Medicine, Cheonan 31116, Chungnam, Republic of Korea; (S.K.); (H.J.)
- Dankook Physician Scientist Research Center (DPSRC), Dankook University Hospital, Cheonan 31116, Chungnam, Republic of Korea
| | - Namkyu Lim
- Department of Plastic and Reconstructive Surgery, Dankook University College of Medicine, Cheonan 31116, Chungnam, Republic of Korea; (S.K.); (H.J.)
- Dankook Physician Scientist Research Center (DPSRC), Dankook University Hospital, Cheonan 31116, Chungnam, Republic of Korea
| |
Collapse
|
7
|
Calabrese EJ, Hayes AW, Pressman P, Dhawan G, Kapoor R, Agathokleous E, Calabrese V. Quercetin induces its chemoprotective effects via hormesis. Food Chem Toxicol 2024; 184:114419. [PMID: 38142767 DOI: 10.1016/j.fct.2023.114419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
Quercetin is a polyphenol present in numerous fruits and vegetables and therefore widely consumed by humans with average daily dietary intakes of 10-20 mg/day. It is also a popular dietary supplement of 250-1000 mg/day. However, despite the widespread consumer interest in quercetin, due to its possible chemopreventive properties, the extensively studied quercetin presents a highly diverse and complex array of biological effects. Consequently, the present paper provides the first assessment of quercetin-induced hormetic concentration/dose responses, their quantitative features and mechanistic foundations, and their biological, biomedical, clinical, and public health implications. The findings indicate that quercetin-induced hormetic dose responses are widespread, being independent of biological model, cell type, and endpoint. These findings have the potential to enlighten future experimental studies with quercetin especially with respect to study design parameters and may also affect the appraisal of possible public health benefits and risks associated with highly diverse consumer consumption practices.
Collapse
Affiliation(s)
- Edward J Calabrese
- School of Public Health and Health Sciences, Department of Environmental Health, Morrill I-N344, University of Massachusetts, Amherst, MA, 01003, USA.
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, USA.
| | - Peter Pressman
- University of Maine, 5728 Fernald Hall, Room 201, Orono, ME, 04469, USA.
| | - Gaurav Dhawan
- Sri Guru Ram Das (SGRD), University of Health Sciences, Amritsar, India.
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA.
| | - Evgenios Agathokleous
- School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania, 95123, Italy.
| |
Collapse
|
8
|
Zheng H, Wang C, Wu S, Pei Q, Yao M. Photobiomodulation therapy at 632 nm wavelength ameliorates intrauterine adhesion via activation of cAMP/PKA/CREB pathway. Photochem Photobiol 2024; 100:214-224. [PMID: 37212452 DOI: 10.1111/php.13813] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/23/2023]
Abstract
Intrauterine adhesion (IUA), a major cause of uterine infertility, is pathologically characterized by endometrial fibrosis. Current treatments for IUA have poor efficacy with high recurrence rate, and restoring uterine functions is difficult. We aimed to determine the therapeutic efficacy of photobiomodulation (PBM) therapy on IUA and elucidate its underlying mechanisms. A rat IUA model was established via mechanical injury, and PBM was applied intrauterinely. The uterine structure and function were evaluated using ultrasonography, histology, and fertility tests. PBM therapy induced a thicker, more intact, and less fibrotic endometrium. PBM also partly recovered endometrial receptivity and fertility in IUA rats. A cellular fibrosis model was then established with human endometrial stromal cells (ESCs) cultured in the presence of TGF-β1. PBM alleviated TGF-β1-induced fibrosis and triggered cAMP/PKA/CREB signaling in ESCs. Pretreatment with the inhibitors targeting this pathway weakened PBM's protective efficacy in the IUA rats and ESCs. Therefore, we conclude that PBM improved endometrial fibrosis and fertility via activating cAMP/PKA/CREB signaling in IUA uterus. This study sheds more lights on the efficacy of PBM as a potential treatment for IUA.
Collapse
Affiliation(s)
- Hongjie Zheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Caixia Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- Shanghai Institute of Laser Technology, Shanghai, China
| | - Shan Wu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Qing Pei
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Min Yao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Cao F, Zhang Y, Zong Y, Feng X, Deng J, Wang Y, Cao Y. Exploring the potential mechanism of Simiao Yongan decoction in the treatment of diabetic peripheral vascular disease based on network pharmacology and molecular docking technology. Medicine (Baltimore) 2023; 102:e36762. [PMID: 38206683 PMCID: PMC10754584 DOI: 10.1097/md.0000000000036762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/01/2023] [Indexed: 01/13/2024] Open
Abstract
The study aims to investigate the potential action targets and molecular mechanisms of Simiao Yongan decoction (SMYAD) in treating diabetic peripheral vascular disease (DPVD) by utilizing network pharmacology analysis and molecular docking technology. The components and targets of SMYAD were screened using the TCMSP database, while DPVD-related genes were obtained from the GeneCards, OMIM, and Disgenet databases. After intersecting the gene sets, a Protein-Protein Interaction (PPI) network was established, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were carried out. The practical chemical components and core targets identified were molecularly docked using AutoDock software. A total of 126 active compounds were screened from which 25 main components included quercetin, rutoside, hesperidin, naringin, and β-sitosterol were determined to be the active components most associated with the core targets. A total of 224 common target genes were obtained. Among them, JUN, AKT1, MAPK3, TP53, STAT3, RELA, MAPK1, FOS, and others are the expected core targets of traditional Chinese medicine. The top-ranked GO enrichment analysis results included 727 biological processes (BP), 153 molecular functions (MF), and 102 cellular components (CC). KEGG pathway enrichment analysis involved mainly 178 signaling pathways, such as cancer signaling pathway, AGE-RAGE signaling pathway, interleukin-17 signaling pathway, tumor necrosis factor signaling pathway, endocrine resistance signaling pathway, cell aging signaling pathway, and so on. The molecular docking results demonstrate that the principal chemical components of SMYAD exhibit considerable potential for binding to the core targets. SMYAD has the potential to treat DPVD through various components, targets, and pathways. Its mechanism of action requires further experimental investigation.
Collapse
Affiliation(s)
- Fang Cao
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Diagnosis and Treatment Center of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongkang Zhang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Diagnosis and Treatment Center of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuan Zong
- Diagnosis and Treatment Center of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xia Feng
- Diagnosis and Treatment Center of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Junlin Deng
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Diagnosis and Treatment Center of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuzhen Wang
- Diagnosis and Treatment Center of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yemin Cao
- Diagnosis and Treatment Center of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
10
|
Sayed LH, Badr G, Omar HEDM, Elghaffar SKA, Sayed A. Bee gomogenat enhances the healing process of diabetic wounds by orchestrating the connexin-pannexin gap junction proteins in streptozotocin-induced diabetic mice. Sci Rep 2023; 13:19961. [PMID: 37968314 PMCID: PMC10651848 DOI: 10.1038/s41598-023-47206-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023] Open
Abstract
Delay in wound healing remains one of diabetes's worse side effects, which increases mortality. The proposed study sought to scrutinize the implications of bee gomogenat (BG) on diabetic's wound closure in a streptozotocin-(STZ)-enhanced type-1 diabetes model's rodents. We used 3 different mice groups: group 1 non-diabetic rodents "serving as control", group 2 diabetic rodents, and group3 BG-treated diabetic rodents. We noticed that diabetic rodents experience a delayed wound closure, which emerged as a significant (*P < 0.05) decline in the deposition of collagen as compared to control non-diabetic animals. We noticed that diabetic rodents have a delayed wound closure characterized by a significant (*P < 0.05) decrease in the CD31 expression (indicator for wound angiogenesis and neovascularization) and an apparent elevation in the expression of such markers of inflammation as MCP-1 and HSP-70 as compared to control animals. Moreover, diabetic animals displayed a significant (*P < 0.05) increase in the expression of gap junction proteins Cx43 and a significant decrease in the expression of Panx3 in the wounded skin tissues when compared to the controls. Intriguingly, topical application with BG on the diabetic wounded skin tissues contributes to a significant (#P < 0.05) enhancing in the collagen deposition, up-regulating the level of CD31 expression and a significant (#P < 0.05) down-regulation in the MCP-1 and HSP-70 expressions as compared to diabetic non-treated animals. The expression's levels of Cx43 and Panx3 were significantly (#P < 0.05) retrieved in diabetic rodents after BG treatment. Taken together, our findings showed for the first time that BG promotes the recovering process and accelerated the closure of diabetic related wounds.
Collapse
Affiliation(s)
- Leila H Sayed
- Zoology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
- Laboratory of Immunology, Zoology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Gamal Badr
- Zoology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
- Laboratory of Immunology, Zoology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| | | | - Sary Khaleel Abd Elghaffar
- Pathology and Clinical Pathology Department, Faculty of Veterinary Medicine, Assiut University, Assiut, 71516, Egypt
- School of Veterinary Medicine, Badr University, Assiut, Egypt
| | - Aml Sayed
- Mallawi Specialized Hospital, 26Th of July Street, Mallawi, Minia, Egypt
| |
Collapse
|
11
|
Huang H, Chen Y, Hu J, Guo X, Zhou S, Yang Q, Du Y, Jin Y, Liu G, Peng Y. Quercetin and its derivatives for wound healing in rats/mice: Evidence from animal studies and insight into molecular mechanisms. Int Wound J 2023; 21:e14389. [PMID: 37818786 PMCID: PMC10828129 DOI: 10.1111/iwj.14389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 10/13/2023] Open
Abstract
Aimed to clarify the effect of quercetin and its derivatives on wound healing in animal experiments. PubMed, Embase, Science Direct, Web of Science, SinoMed, Vip Journal Integration Platform, China National Knowledge Infrastructure and WanFang databases were searched for animal experiments investigating the effect of quercetin and its derivatives on wound healing to April 2023. The Review Manager 5.4 software was used to conduct meta-analysis. Eighteen studies were enrolled in this article. According to the SYRCLE's RoB tool assessment, these studies exposed relatively low methodological quality. It was shown that animals with cutaneous wound receiving quercetin had faster wound healing in wound closure (%) than the control group. Moreover, the difference in efficacy gradually emerged after third day (WMD = 7.13 [5.52, 8.74]), with a peak reached on the tenth day after wounding (WMD = 19.78 [17.82, 21.74]). Subgroup analysis revealed that quercetin for wound closure (%) was independent of the types of rats and mice, wound area and with or without diabetes. Clear conclusion was also shown regarding the external application of quercetin for wound healing (WMD = 17.77 [11.11, 24.43]). A significant reduction in the distribution of inflammatory cells occurred in the quercetin group. Quercetin could increase blood vessel density (WMD = 1.85 [0.68, -3.02]), fibroblast distribution and collagen fraction. Biochemical indicators, including IL-1β, IL-10, TNF-α, TGF-β, vascular endothelial growth factor (VEGF), hydroxyproline and alpha-smooth muscle actin (α-SMA), had the consistent results. Quercetin and its derivatives could promote the recovery of cutaneous wound in animals, through inhibiting inflammatory response and accelerating angiogenesis, proliferation of fibroblast and collagen deposition.
Collapse
Affiliation(s)
- He‐chen Huang
- Shuguang Hospital Affiliated to Shanghai University of traditional Chinese medicineShanghaiChina
| | - Yan Chen
- Shanghai Municipal Hospital of Traditional Chinese MedicineAffiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jie Hu
- Shanghai Municipal Hospital of Traditional Chinese MedicineAffiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xiu‐tian Guo
- Shanghai Municipal Hospital of Traditional Chinese MedicineAffiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Shao‐rong Zhou
- Shuguang Hospital Affiliated to Shanghai University of traditional Chinese medicineShanghaiChina
| | - Qi‐qi Yang
- Shuguang Hospital Affiliated to Shanghai University of traditional Chinese medicineShanghaiChina
| | - Yu‐qing Du
- Shuguang Hospital Affiliated to Shanghai University of traditional Chinese medicineShanghaiChina
| | - Yu Jin
- Shuguang Hospital Affiliated to Shanghai University of traditional Chinese medicineShanghaiChina
| | - Guo‐bin Liu
- Shuguang Hospital Affiliated to Shanghai University of traditional Chinese medicineShanghaiChina
| | - Yun‐hua Peng
- Shuguang Hospital Affiliated to Shanghai University of traditional Chinese medicineShanghaiChina
| |
Collapse
|
12
|
Fathallah S, Abdellatif A, Saadeldin MK. Unleashing nature's potential and limitations: Exploring molecular targeted pathways and safe alternatives for the treatment of multiple sclerosis (Review). MEDICINE INTERNATIONAL 2023; 3:42. [PMID: 37680650 PMCID: PMC10481116 DOI: 10.3892/mi.2023.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023]
Abstract
Driven by the limitations and obstacles of the available approaches and medications for multiple sclerosis (MS) that still cannot treat the disease, but only aid in accelerating the recovery from its attacks, the use of naturally occurring molecules as a potentially safe and effective treatment for MS is being explored in model organisms. MS is a devastating disease involving the brain and spinal cord, and its symptoms vary widely. Multiple molecular pathways are involved in the pathogenesis of the disease. The present review showcases the recent advancements in harnessing nature's resources to combat MS. By deciphering the molecular pathways involved in the pathogenesis of the disease, a wealth of potential therapeutic agents is uncovered that may revolutionize the treatment of MS. Thus, a new hope can be envisioned in the future, aiming at paving the way toward identifying novel safe alternatives to improve the lives of patients with MS.
Collapse
Affiliation(s)
- Sara Fathallah
- Biotechnology Program, School of Science and Engineering, American University in Cairo, New Cairo 11835, Egypt
| | - Ahmed Abdellatif
- Biotechnology Program, School of Science and Engineering, American University in Cairo, New Cairo 11835, Egypt
- Biology Department, School of Science and Engineering, American University in Cairo, New Cairo 11835, Egypt
| | - Mona Kamal Saadeldin
- Biotechnology Program, School of Science and Engineering, American University in Cairo, New Cairo 11835, Egypt
- Biology Department, School of Science and Engineering, American University in Cairo, New Cairo 11835, Egypt
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
13
|
Priyadarshi A, Keshri GK, Gupta A. Effect of combination of photobiomodulation 904 nm superpulsed laser therapy and Hippophae rhamnoides L. on third-degree burn wound healing. J Cosmet Dermatol 2023; 22:2492-2501. [PMID: 37272267 DOI: 10.1111/jocd.15806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/28/2023] [Accepted: 04/23/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Burn is a traumatic injury and aesthetic scarless repair poses a great challenge in area of cosmetic dermatology. Focus on multimode therapeutic strategies to promote healing of burns by regulating various stages of healing is warranted. Photobiomodulation therapy (PBMT), a non-invasive modality grabs the attention to repair impaired wounds. Seabuckthorn extract (SBTL-ALE) is known to possess antioxidant, anti-inflammation, and tissue-repair abilities. Current study aims to assess the effect of combination treatment of PBM 904 nm superpulsed laser and SBTL-ALE (2.5%) on repair of third-degree burn in rats. METHODS Rats were randomized into five groups: uninjured, control, SBTL-ALE, 904 nm PBMT, and combination. A transdermal burn wound was induced on the dorsal side of rats of all groups except the uninjured group and respective treatment was applied for 7 days postwounding. RESULTS Dual treatment increased wound area contraction compared to control and either treatment alone. Immunohistochemical analyses exhibited increased angiogenesis, dermal hydration, collagen synthesis, and maintained redox homeostasis as evidenced by enhanced expression (p < 0.05) of CD31, aquaporin3, collagen type 3, Nrf2, and HO1 in combination group compared with control. Conversely, pro-inflammatory and oxidative stress markers exhibited reduced (p < 0.05) TNF-α, IL-6, IL-1β, NOS-2, ROS levels, and increased catalase activity in combined treatment. Furthermore, energy metabolizing enzymes viz. citrate synthase, CCO, and ATP contents were substantially (p < 0.05) increased, and LDH activity was reduced in the combination group. CONCLUSIONS Dual treatment (PBMT + SBTL-ALE) prominently accelerates third-degree burn wound healing in rats, which could pave the path for multimode therapeutic strategies for the management of burns and dermal cosmetic care.
Collapse
Affiliation(s)
- Ashok Priyadarshi
- Pharmacology Division, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Timarpur, India
| | - Gaurav K Keshri
- Pharmacology Division, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Timarpur, India
| | - Asheesh Gupta
- Pharmacology Division, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Timarpur, India
| |
Collapse
|
14
|
Stępień AE, Trojniak J, Tabarkiewicz J. Health-Promoting Properties: Anti-Inflammatory and Anticancer Properties of Sambucus nigra L. Flowers and Fruits. Molecules 2023; 28:6235. [PMID: 37687064 PMCID: PMC10489118 DOI: 10.3390/molecules28176235] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Sambucus nigra L. has been used for centuries in traditional medicine thanks to its valuable healing properties. The healing properties result from its high content of biologically active compounds, mainly antioxidants, which contribute to its anti-inflammatory and anticancer properties. In our review, we have presented scientific studies evaluating the anti-inflammatory and anticancer effects of extracts and their components from S. nigra L. flowers and fruits. The results of the research show that the effect of antioxidant phytochemicals contained in their composition reduces the level of free radicals and pro-inflammatory cytokines, prevents mutations that increase the risk of cancer development, and inhibits cell proliferation, induction of apoptosis, and changes in intracellular signaling, consequently inhibiting the growth of malignant tumors and the formation of metastases. Flowers and fruits of S. nigra L. are a valuable source of nutraceutical and pharmacological substances that can support prevention and anti-inflammatory and oncological therapy without negative side effects for the patient.
Collapse
Affiliation(s)
- Agnieszka Ewa Stępień
- Institute of Health Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszów, Poland
| | - Julia Trojniak
- Student’s Scientific Club Immunology, Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszów, Poland;
| | - Jacek Tabarkiewicz
- Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszów, Poland;
| |
Collapse
|
15
|
Rao KM, Kim E, Kim HJ, Uthappa UT, Han SS. Hyaluronic acid-quercetin pendant drug conjugate for wound healing applications. Int J Biol Macromol 2023; 240:124336. [PMID: 37030466 DOI: 10.1016/j.ijbiomac.2023.124336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/11/2023] [Accepted: 04/02/2023] [Indexed: 04/10/2023]
Abstract
In this study, a simple approach was used for the synthesis of a water-soluble hyaluronic acid-quercetin (HA-Q) pendant drug conjugate to evaluate its potential wound-healing properties. The HA-Q conjugation was confirmed by Fourier-transform infrared spectroscopy (FTIR), ultraviolet-visible spectrophotometry (UV-Vis), and nuclear magnetic resonance (NMR) spectroscopy techniques. To produce the HA-Q, quercetin was conjugated on the HA backbone to the extent of 44.7 %. The HA-Q conjugate was soluble in water and a solution with a concentration of 20 mg/ml was prepared. The conjugate exhibited good biocompatibility and supported the growth and cell migration of skin fibroblast cells. HA-Q presented improved radical scavenging capacity compared to quercetin (Q) alone. The overall results confirmed the potential role of HA-Q in wound healing applications.
Collapse
Affiliation(s)
- Kummara Madhusudana Rao
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Research Institute of cell culture, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Eunbi Kim
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Hyeon Jin Kim
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Uluvangada Thammaiah Uthappa
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Research Institute of cell culture, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
16
|
Ma EZ, Khachemoune A. Flavonoids and their therapeutic applications in skin diseases. Arch Dermatol Res 2023; 315:321-331. [PMID: 36129522 DOI: 10.1007/s00403-022-02395-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/03/2022] [Accepted: 09/07/2022] [Indexed: 11/02/2022]
Abstract
Flavonoids are a class of plant polyphenols found in a variety of fruits, vegetables, teas, and flowers. These compounds are present in many common dietary sources, such as green tea, wine, pomegranates, and turmeric, and possess a broad spectrum of biological activity due to their unique chemical structure. Flavonoids exhibit antioxidant, anti-inflammatory, antiviral, and anticarcinogenic properties that have been widely studied as potential therapeutics for diseases ranging from Alzheimer's disease to liver disease. There is currently significant research into therapeutic benefits of flavonoids in various skin conditions as these compounds have been shown to absorb ultraviolet radiation and modulate cancer and inflammation signaling pathways. This review discusses the current research in the application of flavonoids in skin diseases (e.g., prevention of premature photoaging, prevention and treatment of skin cancer, and promotion of skin wound healing) and their proposed mechanisms to provide a basis for future basic and translational research of flavonoids as potential drugs in the prevention and treatment of skin disorders.
Collapse
Affiliation(s)
- Emily Z Ma
- Department of Dermatology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amor Khachemoune
- Brooklyn Campus of the VA NY Harbor Healthcare System, 800 Poly Place, Brooklyn, NY, 11209, USA.
- Department of Dermatology, SUNY Downstate, 450 Clarkson Ave, Brooklyn, NY, USA.
| |
Collapse
|
17
|
Abstract
Flavonoids are a class of plant polyphenols found in a variety of fruits, vegetables, teas, and flowers. These compounds are present in many common dietary sources, such as green tea, wine, pomegranates, and turmeric, and possess a broad spectrum of biological activity due to their unique chemical structure. Flavonoids exhibit antioxidant, anti-inflammatory, antiviral, and anticarcinogenic properties that have been widely studied as potential therapeutics for diseases ranging from Alzheimer's disease to liver disease. There is currently significant research into therapeutic benefits of flavonoids in various skin conditions as these compounds have been shown to absorb ultraviolet radiation and modulate cancer and inflammation signaling pathways. This review discusses the current research in the application of flavonoids in skin diseases (e.g., prevention of premature photoaging, prevention and treatment of skin cancer, and promotion of skin wound healing) and their proposed mechanisms to provide a basis for future basic and translational research of flavonoids as potential drugs in the prevention and treatment of skin disorders.
Collapse
Affiliation(s)
- Emily Z Ma
- Department of Dermatology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amor Khachemoune
- Brooklyn Campus of the VA NY Harbor Healthcare System, 800 Poly Place, Brooklyn, NY, 11209, USA.
- Department of Dermatology, SUNY Downstate, 450 Clarkson Ave, Brooklyn, NY, USA.
| |
Collapse
|
18
|
El-Sherbeni SA, Negm WA. The wound healing effect of botanicals and pure natural substances used in in vivo models. Inflammopharmacology 2023; 31:755-772. [PMID: 36811778 PMCID: PMC10140094 DOI: 10.1007/s10787-023-01157-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/06/2023] [Indexed: 02/24/2023]
Abstract
Repairing the wound is a multistep process that includes the spatial and temporal synchronization of a different range of cell types to increase the speed of wound contraction, the proliferation of epithelial cells, and collagen formation. The need for proper management of acute wounds to be cured and not turned into chronic wounds is a significant clinical challenge. The traditional practice of medicinal plants in many regions of the world has been used in wound healing since ancient times. Recent scientific research introduced evidence of the efficacy of medicinal plants, their phyto-components, and the mechanisms underlying their wound-repairing activity. This review aims to briefly highlight the wound-curing effect of different plant extracts and purely natural substances in excision, incision, and burn experimental animal models with or without infection of mice, rats (diabetic and nondiabetic), and rabbits in the last 5 years. The in vivo studies represented reliable evidence of how powerful natural products are in healing wounds properly. They have good scavenging activity against Reactive oxygen species (ROS) and anti-inflammatory and antimicrobial effects that help in the process of wound healing. It is evident that incorporating bioactive natural products into wound dressings of bio- or synthetic polymers in nanofiber, hydrogel, film, scaffold, and sponge forms showed promising results in different phases of the wound-curing process of haemostasis, inflammation, growth, re-epithelialization, and remodelling.
Collapse
Affiliation(s)
- S. A. El-Sherbeni
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, 31527 Egypt
| | - W. A. Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, 31527 Egypt
| |
Collapse
|
19
|
da Silva Tonetto L, da Silva CCF, Gonzatti N, Guex CG, Hartmann DD, Boschi ES, Lago PD, Trevisan ME, de Freitas Bauermann L, Jaenisch RB. Effects of photobiomodulation on oxidative stress in rats with type 2 diabetes mellitus. Lasers Med Sci 2023; 38:90. [PMID: 36947266 DOI: 10.1007/s10103-023-03745-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/18/2023] [Indexed: 03/23/2023]
Abstract
The present study aimed to evaluate photobiomodulation effects on oxidative stress in type 2 diabetes mellitus (DM2). Thirty-one male Wistar rats were used and divided into 4 groups: group 1 - animals without diabetes mellitus 2 without laser 21 J/cm2 (C-SHAM), group 2 - animals with diabetes mellitus 2 without laser 21 J/cm2 (C-DM2), group 3 - animals without diabetes mellitus 2 with laser 21 J/cm2 (L-SHAM), group 4 - animals with diabetes mellitus 2 with laser 21 J/cm2 (L-DM2). The protocol was performed 5 days/week, for 6 weeks. The animals that received photobiomodulation had one dose irradiated at two spots in the right gastrocnemius muscle. Twenty-four hours after the last intervention, the animals were euthanized. Heart, diaphragm, liver, right gastrocnemius, plasma, kidneys, weighed, and stored for further analysis. In rats with DM2, photobiomodulation promoted a decrease in thiobarbituric acid reactive substance assay (TBARS) in plasma levels. On the other hand, photobiomodulation demonstrated an increase in non-protein thiol levels (NPSH) in the heart, diaphragm and gastrocnemius. Moreover, photobiomodulation produced in the heart, diaphragm and plasma levels led to an increase in superoxide dismutase (SOD). Interestingly, photobiomodulation was able to increase superoxide dismutase in rats without DM2 in the heart, diaphragm, gastrocnemius and kidneys. These findings suggested that 6 weeks of photobiomodulation in rats with DM2 promoted beneficial adaptations in oxidative stress, with a decrease in parameters of oxidant activity and an increase in antioxidant activity.
Collapse
Affiliation(s)
- Larissa da Silva Tonetto
- Department of Physiotherapy and Rehabilitation, Postgraduate Program in Movement and Rehabilitation Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | - Carlos Cassiano Figueiró da Silva
- Department of Physiotherapy and Rehabilitation, Postgraduate Program in Movement and Rehabilitation Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | - Nubia Gonzatti
- Department of Physiotherapy and Rehabilitation, Postgraduate Program in Movement and Rehabilitation Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | - Camille Gaube Guex
- Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Diane Duarte Hartmann
- Department of Biochemical Sciences, Postgraduate Program in Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Emerson Soldateli Boschi
- Department of Physiotherapy, Pontifical Catholic University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Pedro Dal Lago
- Department of Physiotherapy, Federal University of Health Sciences, Porto Alegre, RS, Brazil
| | - Maria Elaine Trevisan
- Department of Physiotherapy and Rehabilitation, Postgraduate Program in Movement and Rehabilitation Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | | | - Rodrigo Boemo Jaenisch
- Department of Physiotherapy and Rehabilitation, Postgraduate Program in Movement and Rehabilitation Sciences, Federal University of Santa Maria, Santa Maria, Brazil.
| |
Collapse
|
20
|
Kurt AH, Olutas EB, Avcioglu F, Karakuş H, Sungur MA, Kara Oztabag C, Yıldırım M. Quercetin- and caffeic acid-functionalized chitosan-capped colloidal silver nanoparticles: one-pot synthesis, characterization, and anticancer and antibacterial activities. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:362-376. [PMID: 36998241 PMCID: PMC10043739 DOI: 10.3762/bjnano.14.31] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
The presented study comprises the one-pot synthesis and the characterization of quercetin- and caffeic acid-functionalized chitosan-capped colloidal silver nanoparticles (Ch/Q- and Ch/CA-Ag NPs), and their antibacterial and anticancer activities. The formation of Ch/Q- and Ch/CA-Ag NPs has been confirmed by ultraviolet-visible (UV-vis) spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, and transmission electron microscopy (TEM). The characteristic surface plasmon resonance (SPR) absorption band has been found at 417 and 424 nm for Ch/Q- and Ch/CA-Ag NPs, respectively. The formation of a chitosan shell comprising quercetin and caffeic acid, which surround the colloidal core Ag NPs, was confirmed by UV-vis, and FTIR analyses, and monitored by TEM microscopy. The size of nanoparticles has been determined as 11.2 and 10.3 nm for Ch/Q- and Ch/CA-Ag, respectively. The anticancer activity of Ch/Q- and Ch/CA-Ag NPs has been evaluated against U-118 MG (human glioblastoma) and ARPE-19 (human retinal pigment epithelium) cells. Both NPs showed anticancer activity, but Ch/Q-Ag NPs seemed to be more effective on cancer cell lines (U-118 MG) in comparison to healthy ones (ARPE-19). Furthermore, the antibacterial activity of Ch/Q- and Ch/CA-Ag NPs against Gram-negative (P. aeruginosa and E. coli) and Gram-positive (S. aureus and S. epidermidis) bacteria was determined, and dose-dependent antibacterial effects were found.
Collapse
Affiliation(s)
- Akif Hakan Kurt
- Department of Medicinal Pharmacology, Faculty of Medicine, Bolu Abant Izzet Baysal University, 14030 Bolu, Türkiye
| | - Elif Berna Olutas
- Department of Chemistry, Faculty of Arts and Sciences, Bolu Abant Izzet Baysal University, 14030 Bolu, Türkiye
| | - Fatma Avcioglu
- Department of Medical Microbiology, Faculty of Medicine, Bolu Abant Izzet Baysal University, 14030 Bolu, Türkiye
| | - Hamza Karakuş
- Technology Transfer Application and Research Center, Bolu Abant Izzet Baysal University, 14030 Bolu, Türkiye
| | - Mehmet Ali Sungur
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Duzce University, 81620 Duzce, Türkiye
| | - Cansu Kara Oztabag
- Department of Interdisciplinary Neuroscience, Graduate Education Institute, Bolu Abant Izzet Baysal University, 14030 Bolu, Türkiye
| | - Muhammet Yıldırım
- Department of Chemistry, Faculty of Arts and Sciences, Bolu Abant Izzet Baysal University, 14030 Bolu, Türkiye
| |
Collapse
|
21
|
Di Cristo F, Valentino A, De Luca I, Peluso G, Bonadies I, Di Salle A, Calarco A. Polylactic Acid/Poly(vinylpyrrolidone) Co-Electrospun Fibrous Membrane as a Tunable Quercetin Delivery Platform for Diabetic Wounds. Pharmaceutics 2023; 15:pharmaceutics15030805. [PMID: 36986666 PMCID: PMC10054567 DOI: 10.3390/pharmaceutics15030805] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Diabetic wound infections (DWI) represent one of the most costly and disruptive complications in diabetic mellitus. The hyperglycemic state induces a persistent inflammation with immunological and biochemical impairments that promotes delayed wound healing processes and wound infection that often results in extended hospitalization and limb amputations. Currently, the available therapeutic options for the management of DWI are excruciating and expensive. Hence, it is essential to develop and improve DWI-specific therapies able to intervene on multiple fronts. Quercetin (QUE) exhibits excellent anti-inflammatory, antioxidant, antimicrobial and wound healing properties, which makes it a promising molecule for the management of diabetic wounds. In the present study, Poly-lactic acid/poly(vinylpyrrolidone) (PP) co-electrospun fibers loaded with QUE were developed. The results demonstrated a bimodal diameter distribution with contact angle starting from 120°/127° and go to 0° in less than 5 s indicating the hydrophilic nature of fabricated samples. The release QUE kinetics, analyzed in simulated wound fluid (SWF), revealed a strong initial burst release, followed by a constant and continuous QUE release. Moreover, QUE-loaded membranes present excellent antibiofilm and anti-inflammatory capacity and significantly reduce the gene expression of M1 markers tumor necrosis factor (TNF)-α, and IL-1β in differentiated macrophages. In conclusion, the results suggested that the prepared mats loaded with QUE could be a hopeful drug-delivery system for the effective treatment of diabetic wound infections.
Collapse
Affiliation(s)
| | - Anna Valentino
- Research Institute on Terrestrial Ecosystems (IRET)—CNR, Via Pietro Castellino, 111, 80131 Naples, Italy
| | - Ilenia De Luca
- Research Institute on Terrestrial Ecosystems (IRET)—CNR, Via Pietro Castellino, 111, 80131 Naples, Italy
| | - Gianfranco Peluso
- Research Institute on Terrestrial Ecosystems (IRET)—CNR, Via Pietro Castellino, 111, 80131 Naples, Italy
- Faculty of Medicine and Surgery, Saint Camillus International University of Health and Medical Sciences, Via di Sant’Alessandro, 8, 00131 Rome, Italy
| | - Irene Bonadies
- Institute of Polymers, Composites and Biomaterials (IPCB-CNR), Via Campi Flegrei, 34, 80078 Pozzuoli, Italy
- Correspondence: (I.B.); (A.C.)
| | - Anna Di Salle
- Research Institute on Terrestrial Ecosystems (IRET)—CNR, Via Pietro Castellino, 111, 80131 Naples, Italy
| | - Anna Calarco
- Research Institute on Terrestrial Ecosystems (IRET)—CNR, Via Pietro Castellino, 111, 80131 Naples, Italy
- Correspondence: (I.B.); (A.C.)
| |
Collapse
|
22
|
Zheng Y, Dong X, Chen S, He Y, An J, Liu M, He L, Zhang Y. Low-level laser therapy prevents medication-related osteonecrosis of the jaw-like lesions via IL-1RA-mediated primary gingival wound healing. BMC Oral Health 2023; 23:14. [PMID: 36627695 PMCID: PMC9832759 DOI: 10.1186/s12903-022-02678-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Medication-related osteonecrosis of the jaw (MRONJ) is a serious debilitating disease caused by anti-resorption and anti-angiogenesis drugs, significantly affecting patients' quality of life. Recent studies suggested that primary gingival wound healing may effectively prevent the development of MRONJ. This study aimed to evaluate the effects of low-level light therapy (LLLT) on promoting gingival wound healing in extraction sockets of MRONJ-like mice and preventing the occurrence of MRONJ. Furthermore, we explored underlying mechanisms. METHODS Mice were randomly divided into the Ctrl, Zol, and Zol + LLLT groups. Administration of zoledronate and tooth extraction of bilateral maxillary second molars were used to build the MRONJ model, and LLLT was locally administered into the tooth sockets to examine the effect of LLLT. Next, to explore the function of IL-1RA, we performed LLLT with interleukin-1 receptor antagonist (IL-1RA) neutralizing antibody (named Zol + LLLT + IL-1RA NAb group) or negative control antibodies for tooth extraction in subsequent rescue animal experiments. Stereoscope observations, micro-computed tomography, and histological examination were conducted to evaluate gingival wound healing and bone regeneration in tooth sockets. The effects of LLLT on the migration capacities of zoledronate-treated epithelial cells were assessed in vitro. RESULTS LLLT promoted primary gingival wound healing without exposed necrotic bone. Micro-computed tomography results showed higher bone volume and mineral density of the tooth sockets after LLLT. Histology analysis showed complete gingival coverage, obvious bone regeneration, and reduced soft tissue inflammation, with down-regulated pro-inflammation cytokines, like interleukin-1 beta (IL-1β) and tumor necrosis factor-α (TNF-α), and up-regulated IL-1RA expression in the gingival tissue in the LLLT group. The rescue assay further showed that the effects of LLLT promoting gingival wound healing and preventing MRONJ might be partially abolished by IL-1RA neutralizing antibodies. In vitro studies demonstrated that LLLT accelerated zoledronate-treated epithelial cell migration. CONCLUSIONS LLLT might promote primary gingival wound healing and contribute to subsequent bone regeneration of the tooth extractions in MRONJ-like lesions via IL-1RA-mediated pro-inflammation signaling suppression.
Collapse
Affiliation(s)
- Yi Zheng
- grid.11135.370000 0001 2256 9319Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Nandajie, Haidian District, Beijing, 100081 People’s Republic of China
| | - Xian Dong
- grid.11135.370000 0001 2256 9319Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Nandajie, Haidian District, Beijing, 100081 People’s Republic of China
| | - Shuo Chen
- grid.11135.370000 0001 2256 9319Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Nandajie, Haidian District, Beijing, 100081 People’s Republic of China
| | - Yang He
- grid.11135.370000 0001 2256 9319Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Nandajie, Haidian District, Beijing, 100081 People’s Republic of China
| | - Jingang An
- grid.11135.370000 0001 2256 9319Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Nandajie, Haidian District, Beijing, 100081 People’s Republic of China
| | - Meng Liu
- grid.11135.370000 0001 2256 9319Laser and Cosmetic Surgery Division, Peking University School and Hospital of Stomatology, Beijing, People’s Republic of China
| | - Linhai He
- grid.11135.370000 0001 2256 9319Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Nandajie, Haidian District, Beijing, 100081 People’s Republic of China ,grid.11135.370000 0001 2256 9319First Clinical Division, Peking University School and Hospital of Stomatology, 22 Zhongguancun Nandajie, Haidian District, Beijing, 100081 People’s Republic of China
| | - Yi Zhang
- grid.11135.370000 0001 2256 9319Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Nandajie, Haidian District, Beijing, 100081 People’s Republic of China
| |
Collapse
|
23
|
Moulari B, Morabandza CJ, Assoungou HG, Abena AA. In vitro assessment of the wound healing activity of the ethanolic extract of Strychnos camptoneura (Loganiaceae) seeds. J Herb Med 2023. [DOI: 10.1016/j.hermed.2023.100624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
24
|
Wang Q, Wang F, Li X, Ma Z, Jiang D. Quercetin inhibits the amphiregulin/EGFR signaling-mediated renal tubular epithelial-mesenchymal transition and renal fibrosis in obstructive nephropathy. Phytother Res 2023; 37:111-123. [PMID: 36221860 DOI: 10.1002/ptr.7599] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 07/17/2022] [Accepted: 08/09/2022] [Indexed: 01/19/2023]
Abstract
Quercetin is a widely distributed, bioactive flavonoid compound, which displays potential to inhibit fibrosis in several diseases. The purpose of our study was to determine the effect of quercetin treatment on renal fibrosis and investigate the mechanism. Human proximal tubular epithelial cells (HK-2) stimulated by transforming growth factor-β1 (TGF-β1) and a rat model of unilateral ureter obstruction (UUO) that contributes to fibrosis were used to investigate the role and molecular mechanism of quercetin. PD153035 (N-[3-Bromophenyl]-6,7-dimethoxyquinazolin-4-amine) was used to inactivate EGFR (epidermal growth factor receptor). The level of fibrosis, proliferation, apoptosis, and oxidative stress in HK-2 were measured. All data are presented as means ± standard deviation (SD). p-value < .05 was considered statistically significant. In UUO rats, quercetin reduced the area of fibrosis as well as inflammation, oxidative stress, and cell apoptosis. In cultured HK-2 cells, quercetin significantly ameliorated the EMT induced by TGF-β1, which was accompanied by increased amphiregulin (AREG) expression. Moreover, quercetin inhibited AREG binding to the EGFR receptor, thereby further affecting other downstream pathways. Quercetin may alleviate fibrosis in vitro and in vivo by inhibiting the activation of AREG/EGFR signaling indicating a potential therapeutic effect of quercetin in renal fibrosis.
Collapse
Affiliation(s)
- Qi Wang
- Department of General Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fuqiang Wang
- Department of Pediatric Surgery, Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, China
| | - Xiangze Li
- Department of General Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi Ma
- Department of Pediatric Surgery, Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, China
| | - Dapeng Jiang
- Department of General Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
25
|
Rajendran NK, Houreld NN. Photobiomodulation hastens diabetic wound healing via modulation of the PI3K/AKT/FoxO1 pathway in an adipose derived stem cell-fibroblast co-culture. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2022. [DOI: 10.1016/j.jpap.2022.100157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
26
|
Wound Healing and Anti-Inflammatory Effects of a Newly Developed Ointment Containing Jujube Leaves Extract. LIFE (BASEL, SWITZERLAND) 2022; 12:life12121947. [PMID: 36556312 PMCID: PMC9785415 DOI: 10.3390/life12121947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/15/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022]
Abstract
Ziziphus jujuba Mill. (jujube) is a well-known medicinal plant with pronounced wound healing properties. The present study aimed to establish the chemical composition of the lyophilized ethanolic extract from Romanian Ziziphus jujuba leaves and to evaluate the healing and anti-inflammatory properties of a newly developed lipophilic ointment containing 10% dried jujube leaves extract. The ultra-High-Performance Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometry method was used, and 47 compounds were detected, among them the novel epicatechin and caffeic acid. The extract contains significant amounts of rutin (29.836 mg/g), quercetin (15.180 mg/g) and chlorogenic acid (350.96 µg/g). The lipophilic ointment has a slightly tolerable pH, between 5.41-5.42, and proved to be non-toxic in acute dermal irritation tests on New Zealand albino rabbits and after repeated administration on Wistar rats. The ointment also has a healing activity comparable to Cicatrizin (a pharmaceutical marketed product) on Wistar rats and a moderate anti-inflammatory action compared to the control group, but statistically insignificant compared to indomethacin in the rat-induced inflammation test by intraplantar administration of kaolin. The healing and anti-inflammatory properties of the tested ointment are due to phenolic acids and flavonoids content, less because of minor components as apocynin, scopoletin, and isofraxidin.
Collapse
|
27
|
Photobiomodulation isolated or associated with adipose-derived stem cells allograft improves inflammatory and oxidative parameters in the delayed-healing wound in streptozotocin-induced diabetic rats. Lasers Med Sci 2022; 37:3297-3308. [PMID: 36006574 DOI: 10.1007/s10103-022-03630-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/14/2022] [Indexed: 12/06/2022]
Abstract
The single and associated impressions of photobiomodulation (PBM) and adipose-derived stem cells (ADS) on stereological parameters (SP), and gene expression (GE) of some antioxidant and oxidative stressors of repairing injured skin at inflammation and proliferation steps (days 4 and 8) of a delayed healing, ischemic, and infected wound model (DHIIWM) were examined in type one diabetic (DM1) rats. DM1 was induced by administration of streptozotocin (40 mg/kg) in 48 rats. The DHIIWM was infected by methicillin-resistant Staphylococcus aureus (MRSA). The study comprised 4 groups (each, n = 6): Group 1 was the control group (CG). Group 2 received allograft human (h) ADSs transplanted into the wound. In group 3, PBM (890 nm, 80 Hz, 0.2 J/cm2) was emitted, and in group 4, a combination of PBM+ADS was used. At both studied time points, PBM+ADS, PBM, and ADS significantly decreased inflammatory cell count (p < 0.05) and increased granulation tissue formation compared to CG (p < 0.05). Similarly, there were lower inflammatory cells, as well as higher granulation tissue in the PBM+ADS compared to those of alone PBM and ADS (all, p < 0.001). At both studied time points, the GE of catalase (CAT) and superoxide dismutase (SOD) was remarkably higher in all treatment groups than in CG (p < 0.05). Concomitantly, the outcomes of the PBM+ADS group were higher than the single effects of PBM and ADS (p < 0.05). On day 8, the GE of NADPH oxidase (NOX) 1 and NOX4 was substantially less in the PBM+ADS than in the other groups (p < 0.05). PBM+ADS, PBM, and ADS treatments significantly accelerated the inflammatory and proliferative stages of wound healing in a DIIWHM with MRSA in DM1 rats by decreasing the inflammatory response, and NOX1 and 4 as well; and also increasing granulation tissue formation and SOD and CAT. The associated treatment of PBM+ADS was more effective than the individual impacts of alone PBM and ADS because of the additive anti-inflammatory and proliferative effects of PBM plus ADS treatments.
Collapse
|
28
|
Calabrese EJ, Calabrese V. Hormesis and Epidermal Stem Cells. Dose Response 2022; 20:15593258221119911. [PMID: 36158736 PMCID: PMC9500281 DOI: 10.1177/15593258221119911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
This paper provides an assessment of hormetic dose responses in epidermal stem cells (EpSCs) in animal models and humans, with emphasis on cell proliferation and differentiation and application to wound healing and aging processes. Hormetic dose responses were induced by several agents, including dietary supplements (eg, luteolin, quercetin), pharmaceuticals (eg, nitric oxide), endogenous agents (eg, growth/differentiation factor 5), and via diverse chemical means to sustain steaminess features to retard aging and disease onset. While hormetic dose responses have been extensively reported in a broad spectrum of stem cells, this area has only been explored to a limited extent in EpSCs, principally within the past 5 years. Nonetheless, these findings provide the first integrated assessment of hormesis and EpSC biology within the context of enhancing key functions such as cell proliferation and differentiation and resilience to inflammatory stresses. This paper assesses putative mechanisms of hormetic responses in EpSCs and potential therapeutic applications to prevent dermatological injury and disease.
Collapse
Affiliation(s)
- Edward J Calabrese
- School of Public Health and Health Sciences, Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Catania, Italy
| |
Collapse
|
29
|
Mi Y, Zhong L, Lu S, Hu P, Pan Y, Ma X, Yan B, Wei Z, Yang G. Quercetin promotes cutaneous wound healing in mice through Wnt/β-catenin signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 290:115066. [PMID: 35122975 DOI: 10.1016/j.jep.2022.115066] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/17/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Oxytropis falcata Bunge is a legume distributed in Northwest China, which is mainly used to treat knife wounds and inflammation. Quercetin is a bioactive flavonoid in O. falcata and becomes a promising healing compound for its angiogenic and anti-inflammatory activities. However, the healing mechanism of quercetin in cutaneous wound remains elusive. AIM OF THE STUDY The purpose of this study was to evaluate the healing effect of quercetin on cutaneous wound models in vivo and in vitro, and to reveal the Wnt/β-catenin pathway and Telomerase reverse transcriptase (TERT) involved mechanisms. MATERIALS AND METHODS The effects of quercetin on the proliferation and migration of 4 kinds of skin cells were determined by CCK-8 and scratch assay. The wound-healing capacity of quercetin was evaluated in cutaneous wound model of C57BL/6 mice and the wound healing degree was observed by histological staining. The expressions of inflammatory factors, growth factors and the related proteins were detected via Western blot and RT-qPCR analyses. The molecular docking was adopted to evaluate the binding ability of quercetin and TERT. RESULTS Quercetin could promote both proliferation and migration of fibroblasts, and enhance cutaneous wound healing capacity in mice. Compared to the control group, the wound healing rates in low (1.5 mg/mL), medium (3.0 mg/mL) and high dose (6.0 mg/mL) quercetin groups reached 94.67%, 97.31% and 98.42%, respectively. Moreover, the dermal structure in quercetin treated mice restored normal and the content of collagen fiber became abundant after administration. The levels of inflammatory factors, including tumor necrosis factor-α, interleukin-1β and interleukin-6 were significantly reduced after quercetin administration. Among which, the level of IL-1β in cutaneous wound was 0.007 times higher than that of the control group when treated with quercetin of high dose (6.0 mg/mL). The improved level of GSH in quercetin treated cutaneous wounds also indicated its higher antioxidant ability. In addition, dose-dependent positive associations were found in the expression levels of vascular endothelial growth factor, fibroblast growth factor and alpha smooth muscle actin in quercetin treated cutaneous wounds. The significantly upregulated protein levels of Wnt and β-catenin further indicated the important role of quercetin in promoting wound healing in mice. According to molecular docking analysis, the formed hydrogen bonds between quercetin and Ala195, Gln308, Asn369 and Lys372 residues of TERT also indicated the indispensable role of TERT in improving wound healing capacity. CONCLUSION Quercetin effectively promoted cutaneous wound healing by enhancing the proliferation and migration of fibroblasts, as well as inhibiting inflammation and increasing the expression of growth factors in mice via Wnt/β-catenin signaling pathway and TERT. It provides a basis for a more thorough understanding of mechanism of action of O. falcata Bunge in the treatment of knife wounds and burns.
Collapse
Affiliation(s)
- Yuhui Mi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, PR China
| | - Lei Zhong
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, PR China
| | - Saijian Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, PR China
| | - Po Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, PR China
| | - Yang Pan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, PR China.
| | - Xuelin Ma
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, PR China
| | - Binghui Yan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, PR China
| | - Zhenhuan Wei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, PR China
| | - Guangming Yang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, PR China.
| |
Collapse
|
30
|
Gómez García FJ, Del Vecchio A, Romeo U, Martínez Díaz F, García Carrillo N, Camacho Alonso F. Study of the Effect of Photobiomodulation on a Skin Repair Model in SKH-1 Mice. Photobiomodul Photomed Laser Surg 2022; 40:325-333. [DOI: 10.1089/photob.2021.0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Francisco José Gómez García
- Group Odontología: Medicina Oral, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
- Department of Dermatology, Stomatology, Radiology and Physic Medicine, Faculty of Medicine, Campus of Excellence Mare Nostrum, University of Murcia, Murcia, Spain
| | - Alessandro Del Vecchio
- Department of Oral and Maxillofacial Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Umberto Romeo
- Department of Oral and Maxillofacial Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Francisco Martínez Díaz
- Group Odontología: Medicina Oral, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
- Department of Pathology, Hospital General Universitario Reina Sofía, Murcia, Spain
| | - Nuria García Carrillo
- Group Odontología: Medicina Oral, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Fabio Camacho Alonso
- Department of Dermatology, Stomatology, Radiology and Physic Medicine, Faculty of Medicine, Campus of Excellence Mare Nostrum, University of Murcia, Murcia, Spain
| |
Collapse
|
31
|
Abdou HM, Hamaad FA, Ali EY, Ghoneum MH. Antidiabetic efficacy of Trifolium alexandrinum extracts hesperetin and quercetin in ameliorating carbohydrate metabolism and activating IR and AMPK signaling in the pancreatic tissues of diabetic rats. Biomed Pharmacother 2022; 149:112838. [PMID: 35344738 DOI: 10.1016/j.biopha.2022.112838] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/02/2022] Open
Abstract
Diabetes is a metabolic disease that is mainly characterized by hyperglycemia. The present work investigated the efficacy of the flavanones hesperetin (HES) and quercetin (Q) extracted from Trifolium alexandrinum (TA) to treat type 2 diabetic rats. Wistar albino rats were supplemented with a high fat diet (HFD) for 2 weeks and then administered streptozotocin to induce diabetes. Diabetic rats were orally treated with Q, HES, and TA extract at concentrations of 40, 50, and 200 mg/kg BW, respectively, for 4 weeks. Various biochemical, molecular, and histological analysis were performed to evaluate the antidiabetic effects of these treatments. Q, HES, and TA extract treatments all significantly improved diabetic rats' levels of serum glucose, insulin, glucagon, liver function enzymes, hepatic glycogen, α-amylase, lipase enzymes, lipid profiles, oxidative stress indicators, and antioxidant enzymes as compared with control diabetic untreated rats. In addition, supplementation with Q, HES, and TA extract attenuated the activities of glucose-6-phosphate; fructose-1,6-bisphospahate; 6-phosphogluconate dehydrogenase; glucose-6-phosphate dehydrogenase; glucokinase; and hexokinase in pancreatic tissue, and they improved the levels of glucose transporter 2 and glucose transporter 4. Furthermore, these treatments modulated the expressions levels of insulin receptor (IR), phosphoinositide 3-kinase (PI3K), AMP-activated protein kinase (AMPK), caspase-3, and interleukin-1β (IL-1β). Enhancement of the histological alterations in pancreatic tissues provided further evidence of the ability of Q, HES, and TA extract to exert antidiabetic effects. Q, HES, and TA extract remedied insulin resistance by altering the IR/PI3K and AMPK signaling pathways, and they attenuated type 2 diabetes by improving the antioxidant defense system.
Collapse
Affiliation(s)
- Heba M Abdou
- Department of Zoology, Faculty of Science, Alexandria University, Egypt.
| | - Fatma A Hamaad
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Esraa Y Ali
- Department of Zoology, Faculty of Science, Alexandria University, Egypt
| | - Mamdooh H Ghoneum
- Department of Surgery, Charles R. Drew University of Medicine and Science, 1621 E. 120th Street, Los Angeles, CA 90059, USA; Department of Surgery, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
32
|
Yan L, Vaghari-Tabari M, Malakoti F, Moein S, Qujeq D, Yousefi B, Asemi Z. Quercetin: an effective polyphenol in alleviating diabetes and diabetic complications. Crit Rev Food Sci Nutr 2022; 63:9163-9186. [PMID: 35468007 DOI: 10.1080/10408398.2022.2067825] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Various studies, especially in recent years, have shown that quercetin has beneficial therapeutic effects in various human diseases, including diabetes. Quercetin has significant anti-diabetic effects and may be helpful in lowering blood sugar and increasing insulin sensitivity. Quercetin appears to affect many factors and signaling pathways involved in insulin resistance and the pathogenesis of type 2 of diabetes. TNFα, NFKB, AMPK, AKT, and NRF2 are among the factors that are affected by quercetin. In addition, quercetin can be effective in preventing and ameliorating the diabetic complications, including diabetic nephropathy, cardiovascular complications, neuropathy, delayed wound healing, and retinopathy, and affects the key mechanisms involved in the pathogenesis of these complications. These positive effects of quercetin may be related to its anti-inflammatory and anti-oxidant properties. In this article, after a brief review of the pathogenesis of insulin resistance and type 2 diabetes, we will review the latest findings on the anti-diabetic effects of quercetin with a molecular perspective. Then we will review the effects of quercetin on the key mechanisms of pathogenesis of diabetes complications including nephropathy, cardiovascular complications, neuropathy, delayed wound healing, and retinopathy. Finally, clinical trials investigating the effect of quercetin on diabetes and diabetes complications will be reviewed.
Collapse
Affiliation(s)
- Lei Yan
- Clinical Experimental Centre, Xi'an International Medical Center Hospital, Xi'an, China
- Department of Pre-Clinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang, Malaysia
| | - Mostafa Vaghari-Tabari
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faezeh Malakoti
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Moein
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
33
|
Dual Drug Loaded pH-sensitive Micelles for Efficient Bacterial Infection Treatment. Pharm Res 2022; 39:1165-1180. [DOI: 10.1007/s11095-022-03182-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/26/2022] [Indexed: 12/20/2022]
|
34
|
Kant V, Sharma M, Jangir BL, Kumar V. Acceleration of wound healing by quercetin in diabetic rats requires mitigation of oxidative stress and stimulation of the proliferative phase. Biotech Histochem 2022; 97:461-472. [PMID: 35105256 DOI: 10.1080/10520295.2022.2032829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Increased oxidative stress in diabetic wound areas impairs wound healing. Quercetin exhibits significant antioxidant properties. We investigated the effects of topical quercetin on antioxidant status in diabetic wound areas and its effect on wound healing in rats. A 2 cm2 cutaneous wound was produced on the back of streptozotocin induced diabetic and normal rats. Rats were divided into three groups of 20: normal healthy control group, diabetic group and quercetin treated diabetic group. The control and diabetic groups were treated topically with ointment base once daily for 21 days. The quercetin treated diabetic rats were treated similarly with ointment containing quercetin. The quercetin treated diabetic group exhibited increased levels of catalase, glutathione peroxidase, superoxide dismutase and total thiols compared to the diabetic group. Nitrite levels in the diabetic group were decreased significantly on day 3 compared to the healthy control group. Malondialdehyde levels were decreased in the quercetin treated diabetic group compared to the diabetic group. The expression of proliferating cell nuclear antigen) (PCNA) was greater in the quercetin treated diabetic group on day 7 compared to healthy control and diabetic groups. Formation of granulation tissue and the quality of healed tissue was improved in the quercetin treated diabetic group compared to the diabetic group. Quercetin improves antioxidant status in wounds of diabetic rats and stimulates the proliferation phase, which accelerates wound healing.
Collapse
Affiliation(s)
- Vinay Kant
- Department of Veterinary Pharmacology and Toxicology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Maneesh Sharma
- Department of Veterinary Clinical Complex, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Science, Hisar, India
| | - Babu Lal Jangir
- Department of Veterinary Pathology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Vinod Kumar
- Department of Veterinary Pharmacology and Toxicology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| |
Collapse
|
35
|
Rozza AL, Beserra FP, Vieira AJ, Oliveira de Souza E, Hussni CA, Martinez ERM, Nóbrega RH, Pellizzon CH. The Use of Menthol in Skin Wound Healing-Anti-Inflammatory Potential, Antioxidant Defense System Stimulation and Increased Epithelialization. Pharmaceutics 2021; 13:pharmaceutics13111902. [PMID: 34834317 PMCID: PMC8620938 DOI: 10.3390/pharmaceutics13111902] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 12/17/2022] Open
Abstract
Wound healing involves inflammatory, proliferative, and remodeling phases, in which various cells and chemical intermediates are involved. This study aimed to investigate the skin wound healing potential of menthol, as well as the mechanisms involved in its effect, after 3, 7, or 14 days of treatment, according to the phases of wound healing. Skin wound was performed in the back of Wistar rats, which were topically treated with vehicle cream; collagenase-based cream (1.2 U/g); or menthol-based cream at 0.25%, 0.5%, or 1.0% over 3, 7, or 14 days. Menthol cream at 0.5% accelerated the healing right from the inflammatory phase (3 days) by decreasing mRNA expression of inflammatory cytokines TNF-α and Il-6. At the proliferative phase (7 days), menthol 0.5% increased the activity of antioxidant enzymes SOD, GR, and GPx, as well as the level of GSH, in addition to decreasing the levels of inflammatory cytokines TNF-α, IL-6, and IL-1β and augmenting mRNA expression for Ki-67, a marker of cellular proliferation. At the remodeling phase (14 days), levels of inflammatory cytokines were decreased, and the level of Il-10 and its mRNA expression were increased in the menthol 0.5% group. Menthol presented skin wound healing activity by modulating the antioxidant system of the cells and the inflammatory response, in addition to stimulating epithelialization.
Collapse
Affiliation(s)
- Ariane Leite Rozza
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Dr. Antonio Celso W Zanin Street, 250, Botucatu 18618-689, Brazil; (F.P.B.); (A.J.V.); (E.O.d.S.); (E.R.M.M.); (R.H.N.); (C.H.P.)
- Correspondence:
| | - Fernando Pereira Beserra
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Dr. Antonio Celso W Zanin Street, 250, Botucatu 18618-689, Brazil; (F.P.B.); (A.J.V.); (E.O.d.S.); (E.R.M.M.); (R.H.N.); (C.H.P.)
| | - Ana Júlia Vieira
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Dr. Antonio Celso W Zanin Street, 250, Botucatu 18618-689, Brazil; (F.P.B.); (A.J.V.); (E.O.d.S.); (E.R.M.M.); (R.H.N.); (C.H.P.)
| | - Eduardo Oliveira de Souza
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Dr. Antonio Celso W Zanin Street, 250, Botucatu 18618-689, Brazil; (F.P.B.); (A.J.V.); (E.O.d.S.); (E.R.M.M.); (R.H.N.); (C.H.P.)
| | - Carlos Alberto Hussni
- Department of Surgery and Veterinary Anesthesiology, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Dr. Walter M Correa Street, Botucatu 18618-689, Brazil;
| | - Emanuel Ricardo Monteiro Martinez
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Dr. Antonio Celso W Zanin Street, 250, Botucatu 18618-689, Brazil; (F.P.B.); (A.J.V.); (E.O.d.S.); (E.R.M.M.); (R.H.N.); (C.H.P.)
| | - Rafael Henrique Nóbrega
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Dr. Antonio Celso W Zanin Street, 250, Botucatu 18618-689, Brazil; (F.P.B.); (A.J.V.); (E.O.d.S.); (E.R.M.M.); (R.H.N.); (C.H.P.)
| | - Cláudia Helena Pellizzon
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Dr. Antonio Celso W Zanin Street, 250, Botucatu 18618-689, Brazil; (F.P.B.); (A.J.V.); (E.O.d.S.); (E.R.M.M.); (R.H.N.); (C.H.P.)
| |
Collapse
|
36
|
Cellular Signalling and Photobiomodulation in Chronic Wound Repair. Int J Mol Sci 2021; 22:ijms222011223. [PMID: 34681882 PMCID: PMC8537491 DOI: 10.3390/ijms222011223] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 12/29/2022] Open
Abstract
Photobiomodulation (PBM) imparts therapeutically significant benefits in the healing of chronic wounds. Chronic wounds develop when the stages of wound healing fail to progress in a timely and orderly frame, and without an established functional and structural outcome. Therapeutic benefits associated with PBM include augmenting tissue regeneration and repair, mitigating inflammation, relieving pain, and reducing oxidative stress. PBM stimulates the mitochondria, resulting in an increase in adenosine triphosphate (ATP) production and the downstream release of growth factors. The binding of growth factors to cell surface receptors induces signalling pathways that transmit signals to the nucleus for the transcription of genes for increased cellular proliferation, viability, and migration in numerous cell types, including stem cells and fibroblasts. Over the past few years, significant advances have been made in understanding how PBM regulates numerous signalling pathways implicated in chronic wound repair. This review highlights the significant role of PBM in the activation of several cell signalling pathways involved in wound healing.
Collapse
|
37
|
Badhwar R, Mangla B, Neupane YR, Khanna K, Popli H. Quercetin loaded silver nanoparticles in hydrogel matrices for diabetic wound healing. NANOTECHNOLOGY 2021; 32:505102. [PMID: 34500444 DOI: 10.1088/1361-6528/ac2536] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Quercetin (QCT) is an effective antioxidant, antifibrotic and wound healing agent. Silver nanoparticles (AgNPs) are an effective antimicrobial, antifungal and wound healing agent and considered as gold standard for wound treatment especially diabetic and burn wounds. The present study aimed to investigate QCT loaded AgNPs in hydrogel matrices (QCT-AgNPs hydrogel) as synergistic treatment paradigms for diabetic wound. Quality by Design approach was employed for the optimization of hydrogel preparation using carbopol-934 andaloevera.The developed QCT-AgNPs hydrogel was characterized for hydrodynamic diameter, %entrapment efficiency (%EE), surface morphology, texture analysis,in-vitrodrug release, skin irritation study,ex-vivopermeation study (confocal study), and antimicrobial efficacy. The optimized formulation showed hydrodynamic diameter of ∼44.1 nm with smooth spherical surface morphology and ∼92.09% of QCT was entrapped in QCT-AgNPs hydrogel matrices. The antimicrobial study revealed superior therapeutic efficacy of QCT-AgNPs hydrogel in comparison to marketed (MRKT) gel onS. aureusandE. coli. Moreover,in-vivoresults demonstrated that QCT-AgNPs hydrogel significantly (p < 0.001) reduced the wound gap and increased % re-epithelialization compared with diabetic control after 18 d of post treatment in excisional diabetic wound model. In conclusion, this study opens up an avenue for the treatment of diabetic wound.
Collapse
Affiliation(s)
- Reena Badhwar
- Department of Pharmaceutics, Delhi Pharmaceutical Science and Research University, Mehrauli Badarpur Road, Sector-3 PushpVihar, New Delhi-110017, India
| | - Bharti Mangla
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi-110062, India
| | - Yub Raj Neupane
- Department of Pharmacy, National University of Singapore, 117559, Singapore
| | - Kushagra Khanna
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Timarpur, Delhi, India
| | - Harvinder Popli
- Department of Pharmaceutics, Delhi Pharmaceutical Science and Research University, Mehrauli Badarpur Road, Sector-3 PushpVihar, New Delhi-110017, India
| |
Collapse
|
38
|
Carvalho MTB, Araújo-Filho HG, Barreto AS, Quintans-Júnior LJ, Quintans JSS, Barreto RSS. Wound healing properties of flavonoids: A systematic review highlighting the mechanisms of action. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 90:153636. [PMID: 34333340 DOI: 10.1016/j.phymed.2021.153636] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/22/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Flavonoids are a class of compounds with a wide variety of biological functions, being an important source of new products with pharmaceutical potential, including treatment of skin wounds. PURPOSE This review aimed to summarize and evaluate the evidence in the literature in respect of the healing properties of flavonoids on skin wounds in animal models. STUDY DESIGN This is a systematic review following the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. METHODS This was carried out through a specialized search of four databases: PubMed, Scopus, Web of Science and Embase. The following keyword combinations were used: "flavonoidal" OR "flavonoid" OR "flavonoidic" OR "flavonoids" AND "wound healing" as well as MeSH terms, Emtree terms and free-text words. RESULTS Fifty-five (55) articles met the established inclusion and exclusion criteria. Flavonoids presented effects in respect of the inflammatory process, angiogenesis, re-epithelialization and oxidative stress. They were shown to be able to act on macrophages, fibroblasts and endothelial cells by mediating the release and expression of TGF-β1, VEGF, Ang, Tie, Smad 2 and 3, and IL-10. Moreover, they were able to reduce the release of inflammatory cytokines, NFκB, ROS and the M1 phenotype. Flavonoids acted by positively regulating MMPs 2, 8, 9 and 13, and the Ras/Raf/MEK/ERK, PI3K/Akt and NO pathways. CONCLUSION Flavonoids are useful tools in the development of therapies to treat skin lesions, and our review provides a scientific basis for future basic and translational research.
Collapse
Affiliation(s)
- Mikaella T B Carvalho
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, Marechal Rondon Avenue, S/N, Rosa Elza, CEP: 49.000-100, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Heitor G Araújo-Filho
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, Marechal Rondon Avenue, S/N, Rosa Elza, CEP: 49.000-100, São Cristóvão, SE, Brazil
| | - André S Barreto
- Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, São Cristóvão, SE, Brazil; Laboratory Pharmacology Cardiovascular (LAFAC), Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Lucindo J Quintans-Júnior
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, Marechal Rondon Avenue, S/N, Rosa Elza, CEP: 49.000-100, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Jullyana S S Quintans
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, Marechal Rondon Avenue, S/N, Rosa Elza, CEP: 49.000-100, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Rosana S S Barreto
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, Marechal Rondon Avenue, S/N, Rosa Elza, CEP: 49.000-100, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, São Cristóvão, SE, Brazil.
| |
Collapse
|
39
|
Barakat M, DiPietro LA, Chen L. Limited Treatment Options for Diabetic Wounds: Barriers to Clinical Translation Despite Therapeutic Success in Murine Models. Adv Wound Care (New Rochelle) 2021; 10:436-460. [PMID: 33050829 PMCID: PMC8236303 DOI: 10.1089/wound.2020.1254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022] Open
Abstract
Significance: Millions of people worldwide suffer from diabetes mellitus and its complications, including chronic diabetic wounds. To date, there are few widely successful clinical therapies specific to diabetic wounds beyond general wound care, despite the vast number of scientific discoveries in the pathogenesis of defective healing in diabetes. Recent Advances: In recent years, murine animal models of diabetes have enabled the investigation of many possible therapeutics for diabetic wound care. These include specific cell types, growth factors, cytokines, peptides, small molecules, plant extracts, microRNAs, extracellular vesicles, novel wound dressings, mechanical interventions, bioengineered materials, and more. Critical Issues: Despite many research discoveries, few have been translated from their success in murine models to clinical use in humans. This massive gap between bench discovery and bedside application begs the simple and critical question: what is still missing? The complexity and multiplicity of the diabetic wound makes it an immensely challenging therapeutic target, and this lopsided progress highlights the need for new methods to overcome the bench-to-bedside barrier. How can laboratory discoveries in animal models be effectively translated to novel clinical therapies for human patients? Future Directions: As research continues to decipher deficient healing in diabetes, new approaches and considerations are required to ensure that these discoveries can become translational, clinically usable therapies. Clinical progress requires the development of new, more accurate models of the human disease state, multifaceted investigations that address multiple critical components in wound repair, and more innovative research strategies that harness both the existing knowledge and the potential of new advances across disciplines.
Collapse
Affiliation(s)
- May Barakat
- Center for Wound Repair and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Luisa A. DiPietro
- Center for Wound Repair and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Lin Chen
- Center for Wound Repair and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
40
|
Kant V, Jangir BL, Sharma M, Kumar V, Joshi VG. Topical application of quercetin improves wound repair and regeneration in diabetic rats. Immunopharmacol Immunotoxicol 2021; 43:536-553. [PMID: 34278923 DOI: 10.1080/08923973.2021.1950758] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Purpose: There is an urgent need of effective drug/formulation to speed up the healing process in diabetic wounds. In our earlier studies, quercetin has accelerated the healing of nondiabetic wounds. So, we investigated the wound-healing potentials of quercetin in diabetic rats.Materials and methods: A square-shaped cutaneous wound (≈400 mm2) was created on the back of nondiabetic and diabetic rats. They were divided into three groups, viz. healthy control (nondiabetic), diabetic control and diabetic-treated group. Ointment base was topically applied for 21 days in healthy and diabetic control groups. Quercetin (0.3%) ointment was similarly applied in third group. Effects of quercetin on repair and regenerations of diabetic wounds in terms of wound closure, inflammation, angiogenesis, fibroblast proliferation, collagen synthesis, epithelialization, axonal regeneration etc was studied.Results: Quercetin accelerated the wound closure and increased the expressions of IL-10, VEGF and TGF-β1 in granulation/healing tissue of diabetic wound. However, quercetin decreased the expression of TNF-α, IL-1β, and MMP-9. Histopathological evaluation revealed amelioration of persistence of inflammatory cells by quercetin in diabetic wounds. There was good quality of granulation tissue, marked fibroblast proliferation, well organized collagen deposition, early regeneration of epithelial layer etc. in the quercetin treated diabetic wounds in comparison to diabetic control group. Results of immunohistochemistry showed more angiogenesis, faster phenotypic switching of fibroblast to myofibroblasts and increased GAP-43 positive nerve fibers in quercetin-treated diabetic wounds.Conclusion: Quercetin ointment at 0.3% w/w concentration modulates cytokines, growth factors and protease, thereby improved repair and regenerations of cutaneous diabetic wounds in rats.
Collapse
Affiliation(s)
- Vinay Kant
- Department of Veterinary Pharmacology and Toxicology, Lala Lajpat Rai University of Veterinary & Animal Sciences (LUVAS), Hisar, Haryana, India
| | - Babu Lal Jangir
- Department of Veterinary Pathology, Lala Lajpat Rai University of Veterinary & Animal Sciences (LUVAS), Hisar, Haryana, India
| | - Maneesh Sharma
- Department of Veterinary Clinical Complex, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Vinod Kumar
- Department of Veterinary Pharmacology and Toxicology, Lala Lajpat Rai University of Veterinary & Animal Sciences (LUVAS), Hisar, Haryana, India
| | - Vinay G Joshi
- Department of Animal Biotechnology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| |
Collapse
|
41
|
Zhang W, Chen L, Xiong Y, Panayi AC, Abududilibaier A, Hu Y, Yu C, Zhou W, Sun Y, Liu M, Xue H, Hu L, Yan C, Xie X, Lin Z, Cao F, Mi B, Liu G. Antioxidant Therapy and Antioxidant-Related Bionanomaterials in Diabetic Wound Healing. Front Bioeng Biotechnol 2021; 9:707479. [PMID: 34249895 PMCID: PMC8264455 DOI: 10.3389/fbioe.2021.707479] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/03/2021] [Indexed: 12/23/2022] Open
Abstract
Ulcers are a lower-extremity complication of diabetes with high recurrence rates. Oxidative stress has been identified as a key factor in impaired diabetic wound healing. Hyperglycemia induces an accumulation of intracellular reactive oxygen species (ROS) and advanced glycation end products, activation of intracellular metabolic pathways, such as the polyol pathway, and PKC signaling leading to suppression of antioxidant enzymes and compounds. Excessive and uncontrolled oxidative stress impairs the function of cells involved in the wound healing process, resulting in chronic non-healing wounds. Given the central role of oxidative stress in the pathology of diabetic ulcers, we performed a comprehensive review on the mechanism of oxidative stress in diabetic wound healing, focusing on the progress of antioxidant therapeutics. We summarize the antioxidant therapies proposed in the past 5 years for use in diabetic wound healing, including Nrf2- and NFκB-pathway-related antioxidant therapy, vitamins, enzymes, hormones, medicinal plants, and biological materials.
Collapse
Affiliation(s)
- Wenqian Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Lang Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yuan Xiong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Adriana C Panayi
- Division of Plastic Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Abudula Abududilibaier
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yiqiang Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Chenyan Yu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Wu Zhou
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yun Sun
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China.,Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengfei Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Hang Xue
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Liangcong Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Chenchen Yan
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Xuedong Xie
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Ze Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Faqi Cao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
42
|
Shen P, Lin W, Deng X, Ba X, Han L, Chen Z, Qin K, Huang Y, Tu S. Potential Implications of Quercetin in Autoimmune Diseases. Front Immunol 2021; 12:689044. [PMID: 34248976 PMCID: PMC8260830 DOI: 10.3389/fimmu.2021.689044] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022] Open
Abstract
Autoimmune diseases are a worldwide health problem with growing rates of morbidity, and are characterized by breakdown and dysregulation of the immune system. Although their etiology and pathogenesis remain unclear, the application of dietary supplements is gradually increasing in patients with autoimmune diseases, mainly due to their positive effects, relatively safety, and low cost. Quercetin is a natural flavonoid that is widely present in fruits, herbs, and vegetables. It has been shown to have a wide range of beneficial effects and biological activities, including anti-inflammation, anti-oxidation, and neuroprotection. In several recent studies quercetin has reportedly attenuated rheumatoid arthritis, inflammatory bowel disease, multiple sclerosis, and systemic lupus erythematosus in humans or animal models. This review summarizes the evidence for the pharmacological application of quercetin for autoimmune diseases, which supports the view that quercetin may be useful for their prevention and treatment.
Collapse
Affiliation(s)
- Pan Shen
- Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Weiji Lin
- Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Deng
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xin Ba
- Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Liang Han
- Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Zhe Chen
- Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Kai Qin
- Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Ying Huang
- Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Shenghao Tu
- Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
43
|
Su X, Xian C, Gao M, Liu G, Wu J. Edible Materials in Tissue Regeneration. Macromol Biosci 2021; 21:e2100114. [PMID: 34117831 DOI: 10.1002/mabi.202100114] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/28/2021] [Indexed: 11/07/2022]
Abstract
Edible materials have attracted increasing attention because of their excellent properties including availability, biocompatibility, biological activity, and biodegradability. Natural polysaccharides, phenolic compounds, and proteins are widely used in tissue regeneration. To better characterize their healing effect, this review article describes the applications of edible materials in tissue regeneration including wound healing and bone tissue regeneration. As an introduction to the topic, their sources and main bioactive properties are discussed. Then, the mechanism by which they facilitate wound healing based on their hemostasis, antibacterial, anti-inflammatory, and antioxidant properties is systematically investigated. Moreover, a more comprehensive discussion is presented on the approaches by which edible materials can be used as scaffolds or agents for the provision of the components of natural bones for regulating the level of osteogenesis-related cytokines to enhance bone repair. Finally, the prospects of edible materials for tissue regeneration are discussed.
Collapse
Affiliation(s)
- Xiaohan Su
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 518057, China
| | - Caihong Xian
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 518057, China
| | - Ming Gao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Guiting Liu
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Jun Wu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 518057, China
| |
Collapse
|
44
|
Calis Z, Mogulkoc R, Baltaci AK. The Roles of Flavonols/Flavonoids in Neurodegeneration and Neuroinflammation. Mini Rev Med Chem 2021; 20:1475-1488. [PMID: 31288717 DOI: 10.2174/1389557519666190617150051] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/05/2019] [Accepted: 05/25/2019] [Indexed: 12/27/2022]
Abstract
The inflammatory process in the human body is a physiological response involving many cellular types and mediators. It results in scar formation to separate the damaged area from the surrounding healthy tissue. Because of increased blood-brain barrier permeability following inflammation, leukocytes infiltrate the CNS and are also supplemented by proinflammatory mediators. However, an acute inflammatory process after cerebral trauma or stroke may also result in a prolonged lesion formation, leading to a severe neuronal loss. The prolonged inflammatory process in the CNS may cause serious damage to the neuronal system. It may lead to CNS damage in such a way that endangers functional integration and proinflammatory system balance. Effects of different flavonoid species on ischemia-reperfusion injury and cognition and function have also been shown in experimental studies. Flavonoids are presented broadly in plants and diets. They are believed to have various bioactive effects including anti-viral, anti-inflammatory, cardioprotective, anti-diabetic, anti-cancer, anti-aging, etc. Quercetine is the predominant dietary flavonoid. Main sources are tea, onion, and apple. It is demonstrated that the frequently consumed food like soybean, peanut, mustard, rice, sesame, olive, potatoes, onion, and oats contain flavonoids. Catechin and its derivates which are isolated from tea leaves have antioxidant activity but in low doses, their prooxidant effects are also reported. Ipriflavone which is a synthetic flavonoid may increase total calcium in bone. In this review, the effects of flavonoids species on the inflammatory process in the neurodegenerative process were examined as general.
Collapse
Affiliation(s)
- Zehra Calis
- Department of Physiology, Medical Faculty, Selcuk University, Konya, Turkey
| | - Rasim Mogulkoc
- Department of Physiology, Medical Faculty, Selcuk University, Konya, Turkey
| | | |
Collapse
|
45
|
Ahmed OM, AbouZid SF, Ahmed NA, Zaky MY, Liu H. An Up-to-Date Review on Citrus Flavonoids: Chemistry and Benefits in Health and Diseases. Curr Pharm Des 2021; 27:513-530. [PMID: 33245267 DOI: 10.2174/1381612826666201127122313] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 08/09/2020] [Indexed: 11/22/2022]
Abstract
Flavonoids, the main class of polyphenols, are characterized by the presence of 2-phenyl-benzo-pyrane nucleus. They are found in rich quantities in citrus fruits. Citrus flavonoids are classified into flavanones, flavones, flavonols, polymethoxyflavones and anthocyanins (found only in blood oranges). Flavanones are the most abundant flavonoids in citrus fruits. In many situations, there are structure-function relationships. Due to their especial structures and presence of many hydroxyls, polymethoxies and glycoside moiety, the flavonoids have an array of multiple biological and pharmacological activities. This article provides an updated overview of the differences in chemical structures of the classes and members of citrus flavonoids and their benefits in health and diseases. The review article also sheds light on the mechanisms of actions of citrus flavonoids in the treatment of different diseases, including arthritis, diabetes mellitus, cancer and neurodegenerative disorders as well as liver, kidney and heart diseases. The accumulated and updated knowledge in this review may provide useful information and ideas in the discovery of new strategies for the use of citrus flavonoids in the protection, prevention and therapy of diseases.
Collapse
Affiliation(s)
- Osama M Ahmed
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Egypt
| | - Sameh F AbouZid
- Pharmacognosy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Noha A Ahmed
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Egypt
| | - Mohamed Y Zaky
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Egypt
| | - Han Liu
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| |
Collapse
|
46
|
Oyebode O, Houreld NN, Abrahamse H. Photobiomodulation in diabetic wound healing: A review of red and near-infrared wavelength applications. Cell Biochem Funct 2021; 39:596-612. [PMID: 33870502 DOI: 10.1002/cbf.3629] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 12/22/2022]
Abstract
The development of a painless, non-invasive, and faster way to diabetic wound healing is at the forefront of research. The complexity associated with diabetic wounds makes it a cause for concern amongst diabetic patients and the world at large. Irradiation of cells generates a photobiomodulatory response on cells and tissues, directly causing alteration of cellular processes and inducing diabetic wound repair. Photobiomodulation therapy (PBMT) using red and near-infrared (NIR) wavelengths is being considered as a promising technique for speeding up the rate of diabetic wound healing, eradication of pain and reduction of inflammation through the alteration of diverse cellular and molecular processes. This review presents the extent to which the potential of red and NIR wavelengths have been harnessed in PBMT for diabetic wound healing. Important research challenges and gaps are identified and discussed, and future directions mapped out. This review thus provides useful insights and strategies into improvement of PBMT, including its acceptance within the global medical research community.
Collapse
Affiliation(s)
- Olajumoke Oyebode
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| | - Nicolette Nadene Houreld
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| |
Collapse
|
47
|
Webb DR, Churchill SR, Hill GD, McGee CA, Shi M, King-Herbert AP, Blankenship-Paris TL. Effects of Buprenorphine, Chlorhexidine, and Low-level Laser Therapy on Wound Healing in Mice. Comp Med 2021; 71:191-202. [PMID: 33863402 DOI: 10.30802/aalas-cm-20-000104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Systemic buprenorphine and topical antiseptics such as chlorhexidine are frequently used in research animals to aid in pain control and to reduce infection, respectively. These therapeutics are controversial, especially when used in wound healing studies, due to conflicting data suggesting that they delay wound healing. Low-level laser therapy (LLLT) has been used to aid in wound healing without exerting the systemic effects of therapies such as buprenorphine. We conducted 2 studies to investigate the effects of these common treatment modalities on the rate of wound healing in mice. The first study used models of punch biopsy and dermal abrasion to assess whether buprenorphine HCl or 0.12% chlorhexidine delayed wound healing. The second study investigated the effects of sustained-released buprenorphine, 0.05% chlorhexidine, and LLLT on excisional wound healing. The rate of wound healing was assessed by obtaining photographs on days 0, 2, 4, 7, and 9 for the punch biopsy model in study 1, days 0, 1, 2, 4, 6, 8, 11, and 13 for the dermal abrasion model in study 1, and days 0, 3, 6, and 10 for the mice in study 2. Image J software was used to analyze the photographed wounds to determine the wound area. When comparing the wound area on the above days to the original wound area, no significant differences in healing were observed for any of the treatment groups at any time period for either study. Given the results of these studies, we believe that systemic buprenorphine, topical chlorhexidine, and LLLT can be used without impairing or delaying wound healing in mice.
Collapse
Affiliation(s)
- Donna R Webb
- National Institute of Environmental Health Sciences, Comparative & Molecular Pathogenesis Branch, National Toxicology Program, Durham, North Carolina;,
| | | | - Georgette D Hill
- Integrated Laboratory Systems, LLC., Research Triangle Park, North Carolina
| | - Christopher A McGee
- National Institute of Environmental Health Sciences, Clinical Research Branch, Durham, North Carolina
| | - Min Shi
- National Institute of Environmental Health Sciences, Biostatistics & Computational Biology Branch, Durham, North Carolina
| | - Angela P King-Herbert
- National Institute of Environmental Health Sciences, Comparative & Molecular Pathogenesis Branch, National Toxicology Program, Durham, North Carolina
| | - Terry L Blankenship-Paris
- National Institute of Environmental Health Sciences, Comparative Medicine Branch, Durham, North Carolina
| |
Collapse
|
48
|
Hatefi S, Alizargar J, Le Roux F, Hatefi K, Etemadi Sh M, Davids H, Hsieh NC, Smith F, Abou-El-Hossein K. Review of physical stimulation techniques for assisting distraction osteogenesis in maxillofacial reconstruction applications. Med Eng Phys 2021; 91:28-38. [PMID: 34074463 DOI: 10.1016/j.medengphy.2021.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 02/17/2021] [Accepted: 03/24/2021] [Indexed: 01/24/2023]
Abstract
Distraction Osteogenesis (DO) is an emerging limb lengthening method for the reconstruction of the hard tissue and the surrounding soft tissue, in different human body zones. DO plays an important role in treating bone defects in Maxillofacial Reconstruction Applications (MRA) due to reduced side effects and better formed bone tissue compared to conventional reconstruction methods i.e. autologous bone graft, and alloplast implantation. Recently, varying techniques have been evaluated to enhance the characteristics of the newly formed tissues and process parameters. Promising results have been shown in assisting DO treatments while benefiting bone formation mechanisms by using physical stimulation techniques, including photonic, electromagnetic, electrical, and mechanical stimulation technique. Using assisted DO techniques has provided superior results in the outcome of the DO procedure compared to a standard DO procedure. However, DO methods, as well as assisting technologies applied during the DO procedure, are still emerging. Studies and experiments on developed solutions related to this field have been limited to animal and clinical trials. In this review paper, recent advances in physical stimulation techniques and their effects on the outcome of the DO treatment in MRA are surveyed. By studying the effects of using assisting techniques during the DO treatment, enabling an ideal assisted DO technique in MRA can be possible. Although mentioned techniques have shown constructive effects during the DO procedure, there is still a need for more research and investigation to be done to fully understand the effects of assisting techniques and advanced technologies for use in an ultimate DO procedure in MRA.
Collapse
Affiliation(s)
- Shahrokh Hatefi
- Precision Engineering Laboratory, Nelson Mandela University, Port Elizabeth, South Africa.
| | - Javad Alizargar
- Research Center for Healthcare Industry Innovation, National Taipei University of Nursing and Health Sciences, Taipei 112, Taiwan.
| | - Francis Le Roux
- Department of Mechatronics Engineering, Nelson Mandela University, Port Elizabeth, South Africa.
| | - Katayoun Hatefi
- Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran.
| | - Milad Etemadi Sh
- Department of Oral and Maxillofacial Surgery, Dental Implants Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Hajierah Davids
- Department of Physiology, Nelson Mandela University, Port Elizabeth, South Africa.
| | - Nan-Chen Hsieh
- Department of Information Management, National Taipei University of Nursing and Health Sciences, Taipei 112, Taiwan.
| | - Farouk Smith
- Department of Mechatronics Engineering, Nelson Mandela University, Port Elizabeth, South Africa.
| | - Khaled Abou-El-Hossein
- Precision Engineering Laboratory, Nelson Mandela University, Port Elizabeth, South Africa.
| |
Collapse
|
49
|
In Vitro Wound Healing Potential of Photobiomodulation Is Possibly Mediated by Its Stimulatory Effect on AKT Expression in Adipose-Derived Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6664627. [PMID: 33505585 PMCID: PMC7811432 DOI: 10.1155/2021/6664627] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/02/2020] [Accepted: 12/19/2020] [Indexed: 02/07/2023]
Abstract
Increasing evidence suggests that adipose-derived stem cells (ADSCs) serve as a therapeutic approach for wound healing. The aim of this study was to determine the effect of photobiomodulation (PBM) on antioxidant enzymes in ADSCs. Four ADSC cell models, namely, normal, wounded, diabetic, and diabetic wounded, were irradiated with 660 nm (fluence of 5 J/cm2 and power density of 11.2 mW/cm2) or 830 nm (fluence of 5 J/cm2 and power density of 10.3 mW/cm2). Nonirradiated cells served as controls. Cell morphology and wound migration were determined using light microscopy. Cell viability was determined by the trypan blue exclusion assay. The enzyme-linked immunosorbent assay (ELISA) was used to measure the levels of antioxidants (superoxide dismutase (SOD), catalase (CAT), and heme oxygenase (HMOX1)). AKT activation and FOXO1 levels were determined by immunofluorescence and western blotting. The gaps (wound) in PBM-treated wounded and diabetic wounded cell models closed faster than the controls. PBM treatment significantly increased antioxidant levels in all cell models. This reflects that oxidative stress is reduced on the counterpart of increased antioxidant levels. This might be due to the activation of the AKT signaling pathway as evidenced by the increased AKT signals via western blotting and immunofluorescence. This data suggests that PBM promotes wound healing by increasing antioxidant levels by activating AKT signaling.
Collapse
|
50
|
Kong M, Xie K, Lv M, Li J, Yao J, Yan K, Wu X, Xu Y, Ye D. Anti-inflammatory phytochemicals for the treatment of diabetes and its complications: Lessons learned and future promise. Biomed Pharmacother 2021; 133:110975. [PMID: 33212375 DOI: 10.1016/j.biopha.2020.110975] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus (type 1 and type 2) and its various complications continue to place a huge burden on global medical resources, despite the availability of numerous drugs that successfully lower blood glucose levels. The major challenging issue in diabetes management is the prevention of various complications that remain the leading cause of diabetes-related mortality. Moreover, the limited long-term durability of monotherapy and undesirable side effects of currently used anti-diabetic drugs underlie the urgent need for novel therapeutic approaches. Phytochemicals represent a rich source of plant-derived molecules that are of pivotal importance to the identification of compounds with therapeutic potential. In this review, we aim to discuss recent advances in the identification of a large array of phytochemicals with immense potential in the management of diabetes and its complications. Given that metabolic inflammation has been established as a key pathophysiological event that drives the progression of diabetes, we focus on the protective effects of representative phytochemicals in metabolic inflammation. This paper also discusses the potential of phytochemicals in the development of new drugs that target the inflammation in the management of diabetes and its complications.
Collapse
Affiliation(s)
- Mengjie Kong
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Kang Xie
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Minghui Lv
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jufei Li
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jianyu Yao
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Kaixuan Yan
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaoqin Wu
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ying Xu
- The First Affiliated Hospital/School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dewei Ye
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|