1
|
Boutaj H. A Comprehensive Review of Moroccan Medicinal Plants for Diabetes Management. Diseases 2024; 12:246. [PMID: 39452489 PMCID: PMC11507334 DOI: 10.3390/diseases12100246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024] Open
Abstract
Moroccan flora, renowned for its diverse medicinal plant species, has long been used in traditional medicine to manage diabetes. This review synthesizes ethnobotanical surveys conducted during the last two decades. Among these plants, 10 prominent Moroccan medicinal plants are evaluated for their phytochemical composition and antidiabetic properties through both in vitro and in vivo studies. The review encompasses a comprehensive analysis of the bioactive compounds identified in these plants, including flavonoids, phenolic acids, terpenoids, and alkaloids. Phytochemical investigations revealed a broad spectrum of secondary metabolites contributing to their therapeutic efficacy. In vitro assays demonstrated the significant inhibition of key enzymes α-amylase and α-glucosidase, while in vivo studies highlighted their potential in reducing blood glucose levels and enhancing insulin secretion. Among the ten plants, notable examples include Trigonella foenum-graecum, Nigella Sativa, and Artemisia herba-alba, each showcasing distinct mechanisms of action, such as enzymatic inhibition and the modulation of glucose metabolism pathways. This review underscores the necessity for further chemical, pharmacological, and clinical research to validate the antidiabetic efficacy of these plants and their active compounds, with a view toward their potential integration into therapeutic practices.
Collapse
Affiliation(s)
- Hanane Boutaj
- Laboratory of Life and Health Sciences, FMP, Abdelmalek Essaadi University, Tetouan 93000, Morocco;
- Centre d’Agrobiotechnologie et de Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Équipe “Physiologie des Stress Abiotiques”, Faculté de Sciences et Tecchniques, Université Cadi Ayyad, Marrakesh 40000, Morocco
| |
Collapse
|
2
|
Ramadaini T, Sumiwi SA, Febrina E. The Anti-Diabetic Effects of Medicinal Plants Belonging to the Liliaceae Family: Potential Alpha Glucosidase Inhibitors. Drug Des Devel Ther 2024; 18:3595-3616. [PMID: 39156483 PMCID: PMC11330250 DOI: 10.2147/dddt.s464100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/24/2024] [Indexed: 08/20/2024] Open
Abstract
Background Diabetes mellitus is a complex metabolic disorder that has an enormous impact on people's quality of life and health. Although there is no doubt about the effectiveness of oral hypoglycemic agents combined with lifestyle management in controlling diabetes, no individual has ever been reported to have been completely cured of the disease. Globally, many medicinal plants have been used for the management of diabetes in various traditional systems of medicine. A deep look in the literature has revealed that the Liliaceae family have been poorly investigated for their antidiabetic activity and phytochemical studies. In this review, we summarize medicinal plants of Liliaceae utilized in the management of type II diabetes mellitus (T2DM) by inhibition of α-glucosidase enzyme and phytochemical content. Methods The literature search was conducted using databases including PubMed, ScienceDirect, and Google Scholar to find the significant published articles about Liliaceae plants utilized in the prevention and treatment of antidiabetics. Data were filtered to the publication period from 2013 to 2023, free full text and only English articles were included. The keywords were Liliaceae OR Alliaceae OR Amaryllidaceae AND Antidiabetic OR α-glucosidase. Results Six medicinal plants such as Allium ascalonicum, Allium cepa, Allium sativum, Aloe ferox, Anemarrhena asphodeloides, and Eremurus himalaicus are summarized. Phytochemical and α-glucosidase enzymes inhibition by in vitro, in vivo, and human studies are reported. Conclusion Plants of Liliaceae are potential as medicine herbs to regulating PPHG and prevent the progression of T2DM and its complication. In silico study, clinical application, and toxicity evaluation are needed to be investigated in the future.
Collapse
Affiliation(s)
- Tiara Ramadaini
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Jatinangor, Indonesia
| | - Sri Adi Sumiwi
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Jatinangor, Indonesia
| | - Ellin Febrina
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Jatinangor, Indonesia
| |
Collapse
|
3
|
Park S, Kim HW, Joo Lee C, Kim Y, Sung J. Profiles of volatile sulfur compounds in various vegetables consumed in Korea using HS-SPME-GC/MS technique. Front Nutr 2024; 11:1409008. [PMID: 39104760 PMCID: PMC11298481 DOI: 10.3389/fnut.2024.1409008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/11/2024] [Indexed: 08/07/2024] Open
Abstract
Volatile sulfur compounds (VSCs) are not only important for their therapeutic potential but also significantly influence the flavor profiles of agricultural products. VSCs exhibit various chemical structures due to their stability and volatility, and they may form or be altered as a result of enzymatic and chemical reactions during storage and cooking. This study has focused on profiles of VSCs in 58 different vegetable samples by using HS-SPME-GC/MS technique and chemometric analyses. The validation was carried out using cabbage juice as a vegetable matrix for VSCs analysis, showing satisfactory repeatability (RSD 8.07% ~ 9.45%), reproducibility (RSD 4.22% ~ 7.71%), accuracy and specificity. The established method was utilized on various vegetables, revealing that 21 VSCs such as sulfides, disulfides, trisulfides, isothiocyanates, sulfhydryls, and thiophenes were successfully identified and quantified. These compounds were found in a range of vegetables including Allium species, Cruciferae, Capsicum species, green leafy vegetables, and mushrooms. In particular, isocyanate and allyl groups were abundant in Cruciferae and Allium vegetables, respectively. Cooking conditions were shown to reduce the levels of certain sulfur compounds such as dimethyl sulfide and dimethyl trisulfide in vegetables like broccoli and cabbage, suggesting that heat treatment can lead to the volatilization and reduction of these compounds. The present study provides reliable insights into the compositions of VSCs in various vegetables and examines the changes induced by different cooking methods.
Collapse
Affiliation(s)
- Samuel Park
- Department of Food Science and Biotechnology, Andong National University, Andong, Gyeongbuk, Republic of Korea
| | - Heon-Woong Kim
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeonbuk, Republic of Korea
| | - Chang Joo Lee
- Department of Food Science and Biotechnology, Wonkwang University, Iksan, Jeonbuk, Republic of Korea
| | - Younghwa Kim
- Department of Food Science and Biotechnology, Kyungsung University, Busan, Republic of Korea
| | - Jeehye Sung
- Department of Food Science and Biotechnology, Andong National University, Andong, Gyeongbuk, Republic of Korea
| |
Collapse
|
4
|
El-Saadony MT, Saad AM, Korma SA, Salem HM, Abd El-Mageed TA, Alkafaas SS, Elsalahaty MI, Elkafas SS, Mosa WFA, Ahmed AE, Mathew BT, Albastaki NA, Alkuwaiti AA, El-Tarabily MK, AbuQamar SF, El-Tarabily KA, Ibrahim SA. Garlic bioactive substances and their therapeutic applications for improving human health: a comprehensive review. Front Immunol 2024; 15:1277074. [PMID: 38915405 PMCID: PMC11194342 DOI: 10.3389/fimmu.2024.1277074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 05/06/2024] [Indexed: 06/26/2024] Open
Abstract
Garlic (Allium sativum L.) is a widely abundant spice, known for its aroma and pungent flavor. It contains several bioactive compounds and offers a wide range of health benefits to humans, including those pertaining to nutrition, physiology, and medicine. Therefore, garlic is considered as one of the most effective disease-preventive diets. Many in vitro and in vivo studies have reported the sulfur-containing compounds, allicin and ajoene, for their effective anticancer, anti-diabetic, anti-inflammatory, antioxidant, antimicrobial, immune-boosting, and cardioprotective properties. As a rich natural source of bioactive compounds, including polysaccharides, saponins, tannins, linalool, geraniol, phellandrene, β-phellandrene, ajoene, alliin, S-allyl-mercapto cysteine, and β-phellandrene, garlic has many therapeutic applications and may play a role in drug development against various human diseases. In the current review, garlic and its major bioactive components along with their biological function and mechanisms of action for their role in disease prevention and therapy are discussed.
Collapse
Affiliation(s)
- Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Ahmed M. Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Sameh A. Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Heba M. Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Taia A. Abd El-Mageed
- Department of Soils and Water, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mohamed I. Elsalahaty
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Menofia, Egypt
- Faculty of Control System and Robotics, Information Technologies, Mechanics and Optics (ITMO) University, Saint-Petersburg, Russia
| | - Walid F. A. Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, Egypt
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Betty T. Mathew
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Noor A. Albastaki
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Aysha A. Alkuwaiti
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | | | - Synan F. AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Perth, WA, Australia
| | - Salam A. Ibrahim
- Food Microbiology and Biotechnology Laboratory, Food and Nutritional Science Program, North Carolina A&T State University, Greensboro, NC, United States
| |
Collapse
|
5
|
Lu M, Pan J, Hu Y, Ding L, Li Y, Cui X, Zhang M, Zhang Z, Li C. Advances in the study of vascular related protective effect of garlic (Allium sativum) extract and compounds. J Nutr Biochem 2024; 124:109531. [PMID: 37984733 DOI: 10.1016/j.jnutbio.2023.109531] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/01/2023] [Accepted: 11/10/2023] [Indexed: 11/22/2023]
Abstract
Garlic (Allium sativum) is a functional food containing multiple bioactive compounds that find widespread applications in culinary and medicinal practices. It consists of multiple chemical components, including allicin and alliin. This article offers a comprehensive review of the protective effects of garlic extracts and their active constituents on the vascular system. In vitro and in vivo experiments have shown that garlic extracts and their active ingredients possess various bioactive properties. These substances demonstrate beneficial effects on blood vessels by demonstrating anti-inflammatory and antioxidant activities, inhibiting lipid accumulation and migration, preventing lipid peroxidation, promoting angiogenesis, reducing platelet aggregation, enhancing endothelial function, and inhibiting endothelial cell apoptosis. In clinical studies, garlic and its extracts have demonstrated their efficacy in managing vascular system diseases, including atherosclerosis, diabetes, and high cholesterol levels. In summary, these studies highlight the potential therapeutic roles and underlying mechanisms of garlic and its constituents in managing conditions like diabetes, atherosclerosis, ischemic diseases, and other vascular disorders.
Collapse
Affiliation(s)
- Mengkai Lu
- Innovation Research Institute of traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinyuan Pan
- Innovation Research Institute of traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuanlong Hu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liang Ding
- Innovation Research Institute of traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuan Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinhai Cui
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Muxin Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhiyuan Zhang
- Innovation Research Institute of traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chao Li
- Innovation Research Institute of traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
6
|
Jiang X, Zhu X, Liu Y, Zhou N, Zhao Z, Lv H. Diallyl trisulfide and its active metabolite allyl methyl sulfone attenuate cisplatin-induced nephrotoxicity by inhibiting the ROS/MAPK/NF-κB pathway. Int Immunopharmacol 2024; 127:111373. [PMID: 38128310 DOI: 10.1016/j.intimp.2023.111373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Cisplatin, a chemotherapy medication employed in the treatment of various solid tumors, is constrained in its clinical application due to nephrotoxicity. Diallyl trisulfide (DATS), a compound derived from garlic that possessed anticancer and antioxidant properties, can be combined with cisplatin without hindering its antitumor effects. The present investigation examined the defensive properties of DATS and its active metabolites against renal dysfunction caused by cisplatin. We created a mouse model to study renal injury caused by cisplatin and assessed kidney histology, immunochemistry, and serum cytokines. DATS treatment effectively reduced the pathological changes caused by cisplatin by decreasing the levels of renal function markers BUN, CRE, cystatin C, NGAL, inflammatory factors TNF-α, IL-6, and the protein expression of α-SMA, NF-κB, KIM-1. A pharmacokinetic evaluation of DATS found that allyl methyl sulfone (AMSO2) was the most abundant and persistent metabolite of DATS in vivo. Then, we examined the impact of AMSO2 on cell viability, apoptosis, ROS generation, and MAPK/NF-κB pathways in HK-2 cells treated with cisplatin. Cotreatment with AMSO2 effectively hindered the HK-2 cells alterations induced by cisplatin. Furthermore, AMSO2 mitigated oxidative stress through the modulation of MAPK and NF-κB pathways. Our findings indicated that DATS and its active derivative AMSO2 attenuated cisplatin-induced nephrotoxicity. DATS shows potential as a viable treatment for nephrotoxicity caused by cisplatin.
Collapse
Affiliation(s)
- Xiaoyan Jiang
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China; School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, PR China
| | - Xiaosong Zhu
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, PR China; Department of Infection Management, Linyi People's Hospital, Linyi, Shandong 276003, PR China
| | - Yan Liu
- Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong 271000, PR China
| | - Nan Zhou
- Drug Research and Development Center, Shandong Drug and Food Vocational College, Weihai, Shandong 264210, PR China
| | - Zhongxi Zhao
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, PR China.
| | - Huaiyou Lv
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, PR China; Department of Pharmacy, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264003, PR China.
| |
Collapse
|
7
|
Liu M, Cheng L, Li X, Wang H, Wang M, Gan L. Resveratrol Reverses Myogenic Induction Suppression Caused by High Glucose Through Activating the SIRT1/AKT/FOXO1 Pathway. Nat Prod Commun 2023. [DOI: 10.1177/1934578x231159722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Background Differentiated bone marrow mesenchymal stem cells (BMSCs) may be a therapeutic strategy to treat sarcopenia caused by high glucose. The effects of resveratrol in the myogenic induction of BMSCs under high glucose are unknown. We evaluated the effects and possible mechanisms of high glucose and resveratrol on myogenic induction of rat BMSCs. Methods Primary rat BMSCs were isolated and purified from Sprague-Dawley rats aged between 3 and 4 weeks. Rat BMSCs were differentiated into myogenic cells using conditioned medium and treated with glucose and/or resveratrol along with EX527 (a specific silent information regulator 1 [SIRT1] inhibitor). The expressions of MyoD1 and Myogenin were measured. The reactive oxygen species (ROS) level, superoxide dismutase (SOD) activity, and the expressions of FOXO1 and p-AKT/AKT during myogenic induction were also examined. Results High glucose decreased cell viability, cell proliferation, and SOD activity, increased intracellular ROS levels, and inhibited the AKT/FOXO1. Resveratrol reversed myogenic induction suppression caused by high glucose, partly through restoring cell proliferation and viability, reducing peroxidative damage, and activating the AKT/FOXO1 pathway; this effect was eliminated by EX527. Conclusion Our results indicate that resveratrol promoted myogenic induction and partially reversed the suppression of myogenic induction caused by high glucose through activating the SIRT1/AKT/FOXO1 pathway.
Collapse
Affiliation(s)
- Meiling Liu
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Luyang Cheng
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xianglu Li
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongzhi Wang
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Manfeng Wang
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lu Gan
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
8
|
Sanie-Jahromi F, Zia Z, Afarid M. A review on the effect of garlic on diabetes, BDNF, and VEGF as a potential treatment for diabetic retinopathy. Chin Med 2023; 18:18. [PMID: 36803536 PMCID: PMC9936729 DOI: 10.1186/s13020-023-00725-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/09/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Garlic is one of the favorite herbs in traditional medicine that has been reported to have many medicinal features. The aim of the current study is to review the latest documents on the effect of garlic on diabetes, VEGF, and BDNF and, finally, to review the existing studies on the effect of garlic on diabetic retinopathy. MAIN TEXT The therapeutic effect of garlic on diabetes has been investigated in various studies. Diabetes, especially in advanced stages, is associated with complications such as diabetic retinopathy, which is caused by the alteration in the expression of molecular factors involved in angiogenesis, neurodegeneration, and inflammation in the retina. There are different in-vitro and in-vivo reports on the effect of garlic on each of these processes. Considering the present concept, we extracted the most related English articles from Web of Science, PubMed, and Scopus English databases from 1980 to 2022. All in-vitro and animal studies, clinical trials, research studies, and review articles in this area were assessed and classified. RESULT AND CONCLUSION According to previous studies, garlic has been confirmed to have beneficial antidiabetic, antiangiogenesis, and neuroprotective effects. Along with the available clinical evidence, it seems that garlic can be suggested as a complementary treatment option alongside common treatments for patients with diabetic retinopathy. However, more detailed clinical studies are needed in this field.
Collapse
Affiliation(s)
- Fatemeh Sanie-Jahromi
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Zand Boulevard, Poostchi Street, Shiraz, Iran
| | - Zahra Zia
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Zand Boulevard, Poostchi Street, Shiraz, Iran
| | - Mehrdad Afarid
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Zand Boulevard, Poostchi Street, Shiraz, Iran
| |
Collapse
|
9
|
Jiang Y, Yue R, Liu G, Liu J, Peng B, Yang M, Zhao L, Li Z. Garlic ( Allium sativum L.) in diabetes and its complications: Recent advances in mechanisms of action. Crit Rev Food Sci Nutr 2022; 64:5290-5340. [PMID: 36503329 DOI: 10.1080/10408398.2022.2153793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus (DM) is a metabolic disease characterized by chronic hyperglycemia and impaired islet secretion that places a heavy burden on the global health care system due to its high incidence rate, long disease course and many complications. Fortunately, garlic (Allium sativum L.), a well-known medicinal plant and functional food without the toxicity and side effects of conventional drugs, has shown positive effects in the treatment of diabetes and its complications. With interdisciplinary development and in-depth exploration, we offer a clear and comprehensive summary of the research from the past ten years, focusing on the mechanisms and development processes of garlic in the treatment of diabetes and its complications, aiming to provide a new perspective for the treatment of diabetes and promote the efficient development of this field.
Collapse
Affiliation(s)
- Yayi Jiang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rensong Yue
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guojie Liu
- School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Jun Liu
- People's Hospital of NanJiang, Bazhong, China
| | - Bo Peng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Maoyi Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lianxue Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zihan Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Song H, Wang YH, Zhou HY, Cui KM. Sulforaphane alleviates LPS-induced inflammatory injury in ARPE-19 cells by repressing the PWRN2/NF-kB pathway. Immunopharmacol Immunotoxicol 2022; 44:868-876. [PMID: 35766158 DOI: 10.1080/08923973.2022.2090954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly population and its pathogenesis has been associated with inflammatory damage to retinal pigment epithelial (RPE) cells. Here, we explored the ability of sulforaphane to protect ARPE-19 cells from lipopolysaccharide (LPS)-induced inflammatory injury and elucidated the underlying molecular mechanism. METHODS Cell viability, apoptosis, inflammation, PWRN2 expression, nuclear transcription factor-kappa B (NF-kB) activity, and the interaction between PWRN2 and the IkBa protein were assessed in RPE cells under- or over-expressing PWRN2 that had been treated with LPS and sulforaphane. RESULTS Overexpression of PWRN2 in LPS-treated cells promoted NF-kB activation by interacting with IkBa, thus reducing cell viability. In contrast, PWRN2 downregulation repressed LPS-induced NF-kB activation and apoptosis in RPE cells. Similarly, sulforaphane downregulated PWRN2 and inhibited NF-kB activation in a concentration-dependent manner. Conversely, PWRN2 overexpression or NF-kB upregulation weakened the anti-inflammatory effects of sulforaphane. CONCLUSION Our results suggest that sulforaphane protects RPE cells from LPS-induced inflammatory injury by suppressing the PWRN2/NF-kB pathway.
Collapse
Affiliation(s)
- Hui Song
- Eye Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, P.R. China
| | - Ying-Hao Wang
- Eye Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, P.R. China
| | - Hai-Yan Zhou
- Eye Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, P.R. China
| | - Kun-Ming Cui
- Eye Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, P.R. China
| |
Collapse
|
11
|
Ozma MA, Abbasi A, Ahangarzadeh Rezaee M, Hosseini H, Hosseinzadeh N, Sabahi S, Noori SMA, Sepordeh S, Khodadadi E, Lahouty M, Kafil HS. A Critical Review on the Nutritional and Medicinal Profiles of Garlic’s ( Allium sativum L.) Bioactive Compounds. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2100417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Mahdi Asghari Ozma
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Bacteriology and Virology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Abbasi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Negin Hosseinzadeh
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Sabahi
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyyed Mohammad Ali Noori
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sama Sepordeh
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsaneh Khodadadi
- Material Science and Engineering, Department of Chemistry and Biochemistry, University of Arkansas—Fayetteville, Fayetteville, AR, USA
| | - Masoud Lahouty
- Department of Microbiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Malladi N, Johny E, Uppulapu SK, Tiwari V, Alam MJ, Adela R, Banerjee SK. Understanding the Activation of Platelets in Diabetes and Its Modulation by Allyl Methyl Sulfide, an Active Metabolite of Garlic. J Diabetes Res 2021; 2021:6404438. [PMID: 35127948 PMCID: PMC8808240 DOI: 10.1155/2021/6404438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is a chronic metabolic disorder associated with higher risk of having cardiovascular disease. Platelets play a promising role in the pathogenesis of cardiovascular complications in diabetes. Since last several decades, garlic and its bioactive components are extensively studied in diabetes and its complications. Our aim was to explore the antiplatelet property of allyl methyl sulfide (AMS) focusing on ameliorating platelet activation in diabetes. METHOD We used streptozotocin- (STZ-) induced diabetic rats as model for type 1 diabetes. We have evaluated the effect of allyl methyl sulfide on platelet activation by administrating AMS to diabetic rats for 10 weeks. Flow cytometry-based analysis was used to evaluate the platelet activation, platelet aggregation, platelet macrophage interaction, and endogenous ROS generation in the platelets obtained from control, diabetes, and AMS- and aspirin-treated diabetic rats. RESULTS AMS treatment for 10 weeks effectively reduced the blood glucose levels in diabetic rats. Three weeks of AMS (50 mg/kg/day) treatment did not reduce the activation of platelets but a significant (p < 0.05) decrease was observed after 10 weeks of treatment. Oral administration of AMS significantly (p < 0.05) reduced the baseline and also reduced ADP-induced aggregation of platelets after 3 and 10 weeks of treatment. Furthermore, 10 weeks of AMS treatment in diabetic rats attenuated the endogenous ROS content (p < 0.05) of platelets and platelet macrophage interactions. The inhibition of platelet activation in diabetic rats after AMS treatment was comparable with aspirin treatment (30 mg/kg/day). CONCLUSION We observed an inhibitory effect of allyl methyl sulfide on platelet aggregation, platelet activation, platelet macrophage interaction, and increased ROS levels in type 1 diabetes. Our data suggests that AMS can be useful to control cardiovascular complication in diabetes via inhibition of platelet activation.
Collapse
Affiliation(s)
- Navya Malladi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati, 781101 Assam, India
| | - Ebin Johny
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Guwahati, 781101 Assam, India
| | - Shravan K. Uppulapu
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati, 781101 Assam, India
| | - Vikas Tiwari
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati, 781101 Assam, India
| | - Md Jahangir Alam
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati, 781101 Assam, India
| | - Ramu Adela
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Guwahati, 781101 Assam, India
| | - Sanjay K. Banerjee
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati, 781101 Assam, India
| |
Collapse
|
13
|
Yoshioka Y, Matsumura S, Morimoto M, Takemoto Y, Kishi C, Moriyama T, Zaima N. Inhibitory Activities of Sulfur Compounds in Garlic Essential Oil against Alzheimer's Disease-Related Enzymes and Their Distribution in the Mouse Brain. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10163-10173. [PMID: 34459194 DOI: 10.1021/acs.jafc.1c04123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease. Garlic reportedly has various physiological effects, including a role in protecting against dementia. However, the action mechanisms of garlic on AD are not entirely clear. In this study, we investigated the inhibitory activity of garlic essential oil (GEO) against AD-related enzymes and evaluated the distribution of active substances in GEO to the brain. We found that several sulfur compounds in GEO significantly inhibited AD-related enzymes. Sulfur compounds were detected in the serum and brain 6 h post administration. The ratios of allyl mercaptan (24.0 ± 3.9%) and allyl methyl sulfide (49.8 ± 15.6%) in the brain were significantly higher than those in GEO, while those of dimethyl trisulfide (0.89 ± 34.8%), allyl methyl trisulfide (0.41 ± 19.0%), and diallyl trisulfide (0.43 ± 72.8%) in the brain were significantly lower than those in GEO. Similar results were observed in the serum, suggesting that the organosulfur compounds were converted to allyl mercaptan or allyl methyl sulfide in the body. Although allyl mercaptan and allyl methyl sulfide are not the main components of GEO, they might be key molecules to understand the bioactivities of GEO in the body.
Collapse
Affiliation(s)
- Yuri Yoshioka
- INABATA KORYO, Co., Ltd., 3-5-20 Tagawa, Yodogawa, Osaka 532-0027, Japan
| | - Shinichi Matsumura
- INABATA KORYO, Co., Ltd., 3-5-20 Tagawa, Yodogawa, Osaka 532-0027, Japan
| | - Masanori Morimoto
- Department of Applied Biological Chemistry, Kindai University, 204-3327 Nakamachi, Nara City, Nara 631-8505, Japan
| | - Yuki Takemoto
- Department of Applied Biological Chemistry, Kindai University, 204-3327 Nakamachi, Nara City, Nara 631-8505, Japan
| | - Chihiro Kishi
- Department of Applied Biological Chemistry, Kindai University, 204-3327 Nakamachi, Nara City, Nara 631-8505, Japan
| | - Tatsuya Moriyama
- Department of Applied Biological Chemistry, Kindai University, 204-3327 Nakamachi, Nara City, Nara 631-8505, Japan
- Agricultural Technology and Innovation Research Institute, Kindai University, Nara 631-8505, Japan
| | - Nobuhiro Zaima
- Department of Applied Biological Chemistry, Kindai University, 204-3327 Nakamachi, Nara City, Nara 631-8505, Japan
- Agricultural Technology and Innovation Research Institute, Kindai University, Nara 631-8505, Japan
| |
Collapse
|
14
|
Xu P, Xiao J, Chi S. Piperlongumine attenuates oxidative stress, inflammatory, and apoptosis through modulating the GLUT-2/4 and AKT signaling pathway in streptozotocin-induced diabetic rats. J Biochem Mol Toxicol 2021; 35:1-12. [PMID: 33724628 DOI: 10.1002/jbt.22763] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/14/2020] [Accepted: 03/02/2021] [Indexed: 01/14/2023]
Abstract
The current study was done to measure the role of piperlongumine (PL) on hyperglycemia interrelated oxidative stress-mediated inflammation and apoptosis, inflammatory stress, and the diabetic insulin receptor substrate 2 (IRS2), protein kinase B (AKT), and glucose transporter 2 (GLUT-2)/4 signaling pathway in streptozotocin (STZ)-persuaded diabetic animals. Diabetes was initiated in experimental animals via a single dose intraperitoneal inoculation of STZ. Diabetic rats revealed an augmented blood-glucose level with drastically diminished plasma-insulin status. The functions of antioxidants were diminished with enhanced lipid peroxidation, conjugated dienes, and protein carbonyls noticed in diabetic rats' plasma and pancreatic tissues. An elevation of nuclear factor-κB (NF-κB), tumor necrosis factor-α, and interleukin-6 proteins was noticed in pancreatic tissues as well as IRS2, AKT, GLUT-2, and GLUT-4 marker expressions were quantified in the hepatic tissue of control and diabetic rats. Oral administration of PL for 30 days drastically lowered glucose and higher insulin status in STZ-induced diabetic rats. Impressively, PL oral supplementation considerably restored the antioxidant levels and reduced inflammation and diabetic marker expressions in STZ-diabetic rats. These results were supported through a histological study. Moreover, PL also augmented the level of B-cell lymphoma 2 and diminished the level of Bcl-2-associated X protein in STZ-treated rat's hepatic tissues. Thus, we concluded that PL excellently rescued pancreatic β cells through mitigating hyperglycemia via dynamic insulin secretion, activating antioxidants, and inhibiting inflammation and apoptosis in the pancreatic and hepatic tissue of diabetic rats.
Collapse
Affiliation(s)
- Ping Xu
- Department of Endocrinology and Metabolism, Shenzhen People's Hospital (Second Clinical Medical Collage of Jinan University), Shenzhen, Guangdong, China
| | - Juan Xiao
- Department of Endocrinology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Shuixia Chi
- Department of Traditional Chinese Medicine, Xianyang Central Hospital, Xianyang, China
| |
Collapse
|
15
|
Eser N, Yoldas A, Turk A, Kalaycı Yigin A, Yalcin A, Cicek M. Ameliorative effects of garlic oil on FNDC5 and irisin sensitivity in liver of streptozotocin-induced diabetic rats. J Pharm Pharmacol 2021; 73:824-834. [PMID: 33739409 DOI: 10.1093/jpp/rgab023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 01/28/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVES This study was aimed to investigate the effects of garlic oil (GO), an important natural constituent used in alleviating diabetes and its complications, on the expression levels of irisin and related genes. METHODS Thirty-two rats were divided into four groups: Control, Diabetes-Control, Diabetes+GO 100 mg/kg/day and Control+GO 100 mg/kg/day for 45 days. The measurements included: changes in liver Peroxisome proliferator-activated receptor-gamma-coactivator (PGC)-1α, Fibronectin Type-III-Domain-Containing5 (FNDC5), irisin expression, mRNA expression of p38 and TNF-α (Tumour necrosis factor-α), total-antioxidant-status (L-TAS; S-TAS), total-oxidant-status (L-TOS; S-TOS) in liver and serum, respectively. KEY FINDINGS There was a significant reduction in serum levels of irisin and S-TAS and expression of PGC-1α and FNDC5 in liver in Diabetes-control compared to Control-group, while a significant increase in serum levels of fasting blood glucose (FBG) and TOS, also p38 and TNF-α expressions in liver. In Diabetes+GO group, there was a significant increase in serum irisin and S-TAS, also expression of PGC-1α and FNDC5 in liver, while serum FBG, S-TOS levels, and mRNA expression of p38 and TNF-α in liver were decreased compared to Diabetes-control group (P < 0.05). CONCLUSIONS GO alleviated the diabetic liver injury by decreasing Oxidative-Stress parameters and regulation PGC-lα, FNDC5, irisin and P38, keeping the balance of TAS/TOS and TNF-α.
Collapse
Affiliation(s)
- Nadire Eser
- Department of Pharmacology, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Atila Yoldas
- Department of Anatomy, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Ahmet Turk
- Department of Histology and Embryology, Faculty of Medicine, Adiyaman University, Adiyaman, Turkey
| | - Aysel Kalaycı Yigin
- Department of Genetic, Faculty of Medicine, Istanbul Cerrahpasa University, Istanbul, Turkey
| | - Alper Yalcin
- Department of Histology and Embryology, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Mustafa Cicek
- Department of Anatomy, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| |
Collapse
|
16
|
Gojon G, Morales GA. SG1002 and Catenated Divalent Organic Sulfur Compounds as Promising Hydrogen Sulfide Prodrugs. Antioxid Redox Signal 2020; 33:1010-1045. [PMID: 32370538 PMCID: PMC7578191 DOI: 10.1089/ars.2020.8060] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/15/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022]
Abstract
Significance: Sulfur has a critical role in protein structure/function and redox status/signaling in all living organisms. Although hydrogen sulfide (H2S) and sulfane sulfur (SS) are now recognized as central players in physiology and pathophysiology, the full scope and depth of sulfur metabolome's impact on human health and healthy longevity has been vastly underestimated and is only starting to be grasped. Since many pathological conditions have been related to abnormally low levels of H2S/SS in blood and/or tissues, and are amenable to treatment by H2S supplementation, development of safe and efficacious H2S donors deserves to be undertaken with a sense of urgency; these prodrugs also hold the promise of becoming widely used for disease prevention and as antiaging agents. Recent Advances: Supramolecular tuning of the properties of well-known molecules comprising chains of sulfur atoms (diallyl trisulfide [DATS], S8) was shown to lead to improved donors such as DATS-loaded polymeric nanoparticles and SG1002. Encouraging results in animal models have been obtained with SG1002 in heart failure, atherosclerosis, ischemic damage, and Duchenne muscular dystrophy; with TC-2153 in Alzheimer's disease, schizophrenia, age-related memory decline, fragile X syndrome, and cocaine addiction; and with DATS in brain, colon, gastric, and breast cancer. Critical Issues: Mode-of-action studies on allyl polysulfides, benzyl polysulfides, ajoene, and 12 ring-substituted organic disulfides and thiosulfonates led several groups of researchers to conclude that the anticancer effect of these compounds is not mediated by H2S and is only modulated by reactive oxygen species, and that their central model of action is selective protein S-thiolation. Future Directions: SG1002 is likely to emerge as the H2S donor of choice for acquiring knowledge on this gasotransmitter's effects in animal models, on account of its unique ability to efficiently generate H2S without byproducts and in a slow and sustained mode that is dose independent and enzyme independent. Efficient tuning of H2S donation characteristics of DATS, dibenzyl trisulfide, and other hydrophobic H2S prodrugs for both oral and parenteral administration will be achieved not only by conventional structural modification of a lead molecule but also through the new "supramolecular tuning" paradigm.
Collapse
|
17
|
Ruhee RT, Roberts LA, Ma S, Suzuki K. Organosulfur Compounds: A Review of Their Anti-inflammatory Effects in Human Health. Front Nutr 2020; 7:64. [PMID: 32582751 PMCID: PMC7280442 DOI: 10.3389/fnut.2020.00064] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 04/20/2020] [Indexed: 12/15/2022] Open
Abstract
Phytonutrients are widely recognized for providing protective human health benefits. Among the phytonutrients, epidemiological and experimental studies show that dietary organosulfur compounds (OSC) play a significant role in preventing various human pathological progressions, including chronic inflammation, by decreasing inflammatory mediators such as nitric oxide (NO), prostaglandin (PG)E2, interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and IL-17, which are all typical hallmarks of inflammation. Evidence supports OSC in reducing the expression of these markers, thereby attenuating chronic inflammatory processes. Nuclear factor-kappa B (NF-κB) is a key regulating factor during inflammation, and novel evidence shows that OSC downregulates this transcriptional factor, thus contributing to the anti-inflammatory response. In vitro and in vivo studies show that inflammation is mechanistically linked with acute and chronic pathological conditions including cancer, diabetes, obesity, neural dysfunction, etc. Furthermore, a considerable number of experiments have demonstrated that the anti-inflammatory properties of OSC occur in a dose-dependent manner. These experiments also highlight indirect mechanisms as well as potent co-functions for protective roles as antioxidants, and in providing chemoprotection and neuroprotection. In this brief review, we provided an overview of the anti-inflammatory effects of OSC and elucidated probable mechanisms that are associated with inflammation and chronic disorders.
Collapse
Affiliation(s)
| | - Llion Arwyn Roberts
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia.,School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Sihui Ma
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
| | | |
Collapse
|
18
|
Manirafasha C, Rebecca Oyenihi O, Lisa Brooks N, S. du Plessis S, Guillaume Aboua Y. Potential Antioxidative Effects of Kolaviron on Reproductive Function in Streptozotocin-Induced Diabetic Wistar Rats. Antioxidants (Basel) 2019. [DOI: 10.5772/intechopen.84822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
19
|
Natural Hydrogen Sulfide Donors from Allium sp. as a Nutraceutical Approach in Type 2 Diabetes Prevention and Therapy. Nutrients 2019; 11:nu11071581. [PMID: 31336965 PMCID: PMC6682899 DOI: 10.3390/nu11071581] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 06/30/2019] [Accepted: 07/10/2019] [Indexed: 12/30/2022] Open
Abstract
Type 2 diabetes mellitus (DM) is a socially relevant chronic disease with high prevalence worldwide. DM may lead to several vascular, macrovascular, and microvascular complications (cerebrovascular, coronary artery, and peripheral arterial diseases, retinopathy, neuropathy, and nephropathy), often accelerating the progression of atherosclerosis. Dietary therapy is generally considered to be the first step in the treatment of diabetic patients. Among the current therapeutic options, such as insulin therapy and hypoglycemic drugs, in recent years, attention has been shifting to the effects and properties-that are still not completely known-of medicinal plants as valid and inexpensive therapeutic supports with limited side effects. In this review, we report the relevant effects of medicinal plants and nutraceuticals in diabetes. In particular, we paid attention to the organosulfur compounds (OSCs) present in plant extracts that due to their antioxidant, hypoglycemic, anti-inflammatory, and immunomodulatory effects, can contribute as cardioprotective agents in type 2 DM. OSCs derived from garlic (Allium sp.), due to their properties, can represent a valuable support to the diet in type 2 DM, as outlined in this manuscript based on both in vitro and in vivo studies. Moreover, a relevant characteristic of garlic OSCs is their ability to produce the gasotransmitter H2S, and many of their effects can be explained by this property. Indeed, in recent years, several studies have demonstrated the relevant effects of endogenous and exogenous H2S in human DM, including by in vitro and in vivo experiments and clinical trials; therefore, here, we summarize the effects and the underlying molecular mechanisms of H2S and natural H2S donors.
Collapse
|
20
|
Sujithra K, Srinivasan S, Indumathi D, Vinothkumar V. Allyl methyl sulfide, a garlic active component mitigates hyperglycemia by restoration of circulatory antioxidant status and attenuating glycoprotein components in streptozotocin-induced experimental rats. Toxicol Mech Methods 2018; 29:165-176. [DOI: 10.1080/15376516.2018.1534297] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Kathiroli Sujithra
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamilnadu, India
| | - Subramani Srinivasan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamilnadu, India
- Postgraduate and Research Department of Biochemistry, Government Arts College For Women, Krishnagiri, Tamilnadu, India
| | - Dhananjayan Indumathi
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamilnadu, India
| | - Veerasamy Vinothkumar
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamilnadu, India
| |
Collapse
|