1
|
Li Z, Hu F, Xiong L, Zhou X, Dong C, Zheng Y. Underlying mechanisms of traditional Chinese medicine in the prevention and treatment of diabetic retinopathy: Evidences from molecular and clinical studies. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118641. [PMID: 39084273 DOI: 10.1016/j.jep.2024.118641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
As one of the most serious microvascular complications of diabetes mellitus (DM), diabetic retinopathy (DR) can cause visual impairment and even blindness. With the rapid increase in the prevalence of DM, the incidence of DR is also rising year by year. Preventing and effectively treating DR has become a major focus in the medical field. Traditional Chinese medicine (TCM) has a wealth of experience in treating DR and has achieved significant results with various herbs and TCM prescriptions. Traditional Chinese Medicine (TCM) provides a comprehensive therapeutic strategy for diabetic retinopathy (DR), encompassing anti-inflammatory and antioxidant actions, anti-neovascularization, neuroprotection, regulation of glucose metabolism, and inhibition of apoptosis. This review provides an overview of the current status of TCM treatment for DR in recent years, including experimental studies and clinical researches, to explore the clinical efficacy and the underlying modern mechanisms of herbs and TCM prescriptions. Besides, we also discussed the challenges TCM faces in treating DR, such as drug-drug interactions among TCM components and the lack of high-quality evidence-based medicine practice, which pose significant obstacles to TCM's application in DR.
Collapse
Affiliation(s)
- Zhengpin Li
- Anhui University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Hefei, China
| | - Faquan Hu
- Anhui University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Hefei, China
| | - Liyuan Xiong
- Anhui University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Hefei, China
| | - Xuemei Zhou
- Anhui University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Hefei, China
| | - Changwu Dong
- The Second Clinical Medical School, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Yujiao Zheng
- Anhui University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Hefei, China.
| |
Collapse
|
2
|
Qi G, Jiang Z, Niu J, Jiang C, Zhang J, Pei J, Wang X, An S, Yu T, Wang X, Zhang Y, Ma T, Zhang X, Yuan G, Wang Z. SrHPO 4-coated Mg alloy implant attenuates postoperative pain by suppressing osteoclast-induced sensory innervation in osteoporotic fractures. Mater Today Bio 2024; 28:101227. [PMID: 39290467 PMCID: PMC11405936 DOI: 10.1016/j.mtbio.2024.101227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/17/2024] [Accepted: 09/01/2024] [Indexed: 09/19/2024] Open
Abstract
Osteoporotic fractures have become a common public health problem and are usually accompanied by chronic pain. Mg and Mg-based alloys are considered the next-generation orthopedic implants for their excellent osteogenic inductivity, biocompatibility, and biodegradability. However, Mg-based alloy can initiate aberrant activation of osteoclasts and modulate sensory innervation into bone callus resulting in postoperative pain at the sequential stage of osteoporotic fracture healing. Its mechanism is going to be investigated. Strontium hydrogen phosphate (SrHPO4) coating to delay the Mg-based alloy degradation, can reduce the osteoclast formation and inhibit the growth of sensory nerves into bone callus, dorsal root ganglion hyperexcitability, and pain hypersensitivity at the early stage. Liquid chromatography-mass spectrometry (LC-MS) metabolomics analysis of bone marrow-derived macrophages (BMMs) treated with SrHPO4-coated Mg alloy extracts shows the potential effect of increased metabolite levels of AICAR (an activator of the AMPK pathway). We demonstrate a possible modulated secretion of AICAR and osteoclast differentiation from BMMs, which inhibits sensory innervation and postoperative pain through the AMPK/mTORc1/S6K pathway. Importantly, supplementing with AICAR in Mg-activated osteoclasts attenuates postoperative pain. These results suggest that Mg-induced postoperative pain is related to the osteoclastogenesis and sensory innervation at the early stage in the osteoporotic fractures and the SrHPO4 coating on Mg-based alloys can reduce the pain by upregulating AICAR secretion from BMMs or preosteoclasts.
Collapse
Affiliation(s)
- Guobin Qi
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai, 200233, China
| | - Zengxin Jiang
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai, 200233, China
| | - Jialin Niu
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chang Jiang
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jian Zhang
- Shanghai Innovation Medical Technology Co., Ltd, 600 Xinyuan South Road, Lingang New Area, Pudong New District, Shanghai, 201306, China
| | - Jia Pei
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiao Wang
- Department of Orthopedic Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Senbo An
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Tao Yu
- Department of Spine Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Xiuhui Wang
- Department of Orthopedics, Shanghai University of Medicine & Health Sciences Affiliated to Zhoupu Hospital, Shanghai, 201318, China
| | - Yueqi Zhang
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Tianle Ma
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaotian Zhang
- Orthpaedic Trauma, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Guangyin Yuan
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhe Wang
- Orthpaedic Trauma, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
3
|
Ren Y, Liang H, Xie M, Zhang M. Natural plant medications for the treatment of retinal diseases: The blood-retinal barrier as a clue. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155568. [PMID: 38795692 DOI: 10.1016/j.phymed.2024.155568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/15/2024] [Accepted: 03/23/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Retinal diseases significantly contribute to the global burden of visual impairment and blindness. The occurrence of retinal diseases is often accompanied by destruction of the blood‒retinal barrier, a vital physiological structure responsible for maintaining the stability of the retinal microenvironment. However, detailed summaries of the factors damage the blood‒retinal barrier and treatment methods involving natural plant medications are lacking. PURPOSE To comprehensively summarize and analyze the protective effects of active substances in natural plant medications on damage to the blood-retina barrier that occurs when retinal illnesses, particularly diabetic retinopathy, and examine their medicinal value and future development prospects. METHODS In this study, we searched for studies published in the ScienceDirect, PubMed, and Web of Science databases. The keywords used included natural plant medications, plants, natural herbs, blood retinal barrier, retinal diseases, diabetic retinopathy, age-related macular degeneration, and uveitis. Chinese herbal compound articles, non-English articles, warning journals, and duplicates were excluded from the analysis. RESULTS The blood‒retinal barrier is susceptible to high glucose, aging, immune responses, and other factors that destroy retinal homeostasis, resulting in pathological changes such as apoptosis and increased vascular permeability. Existing studies have shown that the active compounds or extracts of many natural plants have the effect of repairing blood-retinal barrier dysfunction. Notably, berberine, puerarin, and Lycium barbarum polysaccharides exhibited remarkable therapeutic effects. Additionally, curcumin, astragaloside IV, hesperidin, resveratrol, ginsenoside Rb1, luteolin, and Panax notoginseng saponins can effectively protect the blood‒retinal barrier by interfering with distinct pathways. The active ingredients found in natural plant medications primarily repair the blood‒retinal barrier by modulating pathological factors such as oxidative stress, inflammation, pyroptosis, and autophagy, thereby alleviating retinal diseases. CONCLUSION This review summarizes a series of plant extracts and plant active compounds that can treat retinal diseases by preventing and treating blood‒retinal barrier damage and provides reference for the research of new drugs for treating retinal diseases.
Collapse
Affiliation(s)
- Yuan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Huan Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Mengjun Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| | - Mei Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| |
Collapse
|
4
|
Gao S, Li N, Lin Z, Zhong Y, Wang Y, Shen X. Inhibition of NLRP3 inflammasome by MCC950 under hypoxia alleviates photoreceptor apoptosis via inducing autophagy in Müller glia. FASEB J 2024; 38:e23671. [PMID: 38752538 DOI: 10.1096/fj.202301922rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 04/06/2024] [Accepted: 05/02/2024] [Indexed: 07/16/2024]
Abstract
NLRP3 inflammasome activation has emerged as a critical initiator of inflammatory response in ischemic retinopathy. Here, we identified the effect of a potent, selective NLRP3 inhibitor, MCC950, on autophagy and apoptosis under hypoxia. Neonatal mice were exposed to hyperoxia for 5 days to establish oxygen-induced retinopathy (OIR) model. Intravitreal injection of MCC950 was given, and then autophagy and apoptosis markers were assessed. Retinal autophagy, apoptosis, and related pathways were evaluated by western blot, immunofluorescent labeling, transmission electron microscopy, and TUNEL assay. Autophagic activity in Müller glia after NLRP3 inflammasome inhibition, together with its influence on photoreceptor death, was studied using western blot, immunofluorescence staining, mRFP-GFP-LC3 adenovirus transfection, cell viability, proliferation, and apoptosis assays. Results showed that activation of NLRP3 inflammasome in Müller glia was detected in OIR model. MCC950 could improve impaired retinal autophagic flux and attenuate retinal apoptosis while it regulated the retinal AMPK/mTOR/ULK-1 pathway. Suppressed autophagy and depressed proliferation capacity resulting from hypoxia was promoted after MCC950 treatment in Müller glia. Inhibition of AMPK and ULK-1 pathway significantly interfered with the MCC950-induced autophagy activity, indicating MCC950 positively modulated autophagy through AMPK/mTOR/ULK-1 pathway in Müller cells. Furthermore, blockage of autophagy in Müller glia significantly induced apoptosis in the cocultured 661W photoreceptor cells, whereas MCC950 markedly preserved the density of photoreceptor cells. These findings substantiated the therapeutic potential of MCC950 against impaired autophagy and subsequent apoptosis under hypoxia. Such protective effect might involve the modulation of AMPK/mTOR/ULK-1 pathway. Targeting NLRP3 inflammasome in Müller glia could be beneficial for photoreceptor survival under hypoxic conditions.
Collapse
Affiliation(s)
- Shuang Gao
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Na Li
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhongjing Lin
- Department of Ophthalmology, Renji Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yisheng Zhong
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanuo Wang
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xi Shen
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Lorrai R, Cavaterra D, Giammaria S, Sbardella D, Tundo GR, Boccaccini A. Eye Diseases: When the Solution Comes from Plant Alkaloids. PLANTA MEDICA 2024; 90:426-439. [PMID: 38452806 DOI: 10.1055/a-2283-2350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Plants are an incredible source of metabolites showing a wide range of biological activities. Among these, there are the alkaloids, which have been exploited for medical purposes since ancient times. Nowadays, many plant-derived alkaloids are the main components of drugs used as therapy for different human diseases. This review deals with providing an overview of the alkaloids used to treat eye diseases, describing the historical outline, the plants from which they are extracted, and the clinical and molecular data supporting their therapeutic activity. Among the different alkaloids that have found application in medicine so far, atropine and pilocarpine are the most characterized ones. Conversely, caffeine and berberine have been proposed for the treatment of different eye disorders, but further studies are still necessary to fully understand their clinical value. Lastly, the alkaloid used for managing hypertension, reserpine, has been recently identified as a potential drug for ameliorating retinal disorders. Other important aspects discussed in this review are different solutions for alkaloid production. Given that the industrial production of many of the plant-derived alkaloids still relies on extraction from plants, and the chemical synthesis can be highly expensive and poorly efficient, alternative methods need to be found. Biotechnologies offer a multitude of possibilities to overcome these issues, spanning from genetic engineering to synthetic biology for microorganisms and bioreactors for plant cell cultures. However, further efforts are needed to completely satisfy the pharmaceutical demand.
Collapse
Affiliation(s)
- Riccardo Lorrai
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| | - Dario Cavaterra
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Tor Vergata, Rome, Italy
| | | | | | - Grazia Raffaella Tundo
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università di Roma Tor Vergata, Rome, Italy
| | | |
Collapse
|
6
|
Liu F, Zhao L, Wu T, Yu W, Li J, Wang W, Huang C, Diao Z, Xu Y. Targeting autophagy with natural products as a potential therapeutic approach for diabetic microangiopathy. Front Pharmacol 2024; 15:1364616. [PMID: 38659578 PMCID: PMC11039818 DOI: 10.3389/fphar.2024.1364616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
As the quality of life improves, the incidence of diabetes mellitus and its microvascular complications (DMC) continues to increase, posing a threat to people's health and wellbeing. Given the limitations of existing treatment, there is an urgent need for novel approaches to prevent and treat DMC. Autophagy, a pivotal mechanism governing metabolic regulation in organisms, facilitates the removal of dysfunctional proteins and organelles, thereby sustaining cellular homeostasis and energy generation. Anomalous states in pancreatic β-cells, podocytes, Müller cells, cardiomyocytes, and Schwann cells in DMC are closely linked to autophagic dysregulation. Natural products have the property of being multi-targeted and can affect autophagy and hence DMC progression in terms of nutrient perception, oxidative stress, endoplasmic reticulum stress, inflammation, and apoptosis. This review consolidates recent advancements in understanding DMC pathogenesis via autophagy and proposes novel perspectives on treating DMC by either stimulating or inhibiting autophagy using natural products.
Collapse
Affiliation(s)
- Fengzhao Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lijuan Zhao
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenfei Yu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jixin Li
- Xi yuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenru Wang
- Xi yuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chengcheng Huang
- Department of Endocrinology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| | - Zhihao Diao
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yunsheng Xu
- Department of Endocrinology, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
7
|
Zheng J, Zheng A, Song S, Lin M, Liu T, Xu Q. Mechanism for Huanglian Jiedu Decoction-Based Therapy for MAFLD Analyzed Through Network Pharmacology and Experimental Verification. Nat Prod Commun 2024; 19. [DOI: 10.1177/1934578x241235604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Objective: To analyze the mechanism of Huanglian Jiedu Decoction (HLJDD) in the treatment of metabolism-associated fatty liver disease (MAFLD). Methods: The main components, targets, and pathways for treating MAFLD of HLJDD were screened through network pharmacology and molecular docking validation was done; HLJDD was used to intervene MAFLD model of rat, the levels of ALT, AST, TC, TG, GLU, HDL, and LDL were identified, HE staining was used to observe the pathological changes, lipid deposition in liver was detected by oil red O staining. MAFLD model of HepG2 (hepatocellular carcinoma cell line) was constructed by PA (palmitate-acid) incubating, and HLJDD was administered with drug-containing serum intervention, lipid droplets in HepG2 cells was observed by oil red O staining, TG and FFA of HepG2 were detected, the expressions of AMPK, mToR, and Beclin-1 were detected through Western blot. Results: Seventy components and 229 targets were obtained, and 85 targets were used to treat MAFLD, which focus on the signal passways of AMPK/mToR/PI3K-AKt/MAPK, NAFLD, autophagy-animal, insulin, etc. Molecular docking outcomes showed quercetin, kaempferol, and baicalein that were successfully docked with AMPK and mToR, and had good binding activity, compared with MAFLD group of rats, the levels of ALT, AST, TC, TG, GLU, HDL, and LDL were significantly decreased in Silybin group and each dos group of HLJDD, liver pathology and lipid deposition were significantly improved; the results in vitro experiments showed that drug-containing serum of HLJDD and Silybin could improve intracellular lipid accumulation and reduce the increase of TG and FFA levels in HepG2 cells, the therapeutic effect of HLJDD was significantly attenuated after application of AMPK inhibitor; the results of Western blot showed that HLJDD could up-regulate the protein expression of AMPK and Beclin-1,down-regulate the protein expression of mToR. Conclusion: Within process of MAFLD intervention, HLJDD could regulate AMPK-mToR signaling pathway to treat MAFLD.
Collapse
Affiliation(s)
- Jixian Zheng
- Traditonal Chinese Medicine department, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Hainan Medical University, Haikou, China
| | - Anni Zheng
- Traditonal Chinese Medicine department, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Hainan Medical University, Haikou, China
| | - Sufei Song
- Hainan Medical University, Haikou, China
| | - Mengyu Lin
- Hainan Medical University, Haikou, China
| | - Tao Liu
- Traditonal Chinese Medicine department, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Hainan Medical University, Haikou, China
| | - Qiuling Xu
- Traditonal Chinese Medicine department, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Hainan Medical University, Haikou, China
| |
Collapse
|
8
|
Yang W, Qiu C, Lv H, Zhang Z, Yao T, Huang L, Wu G, Zhang X, Chen J, He Y. Sirt3 Protects Retinal Pigment Epithelial Cells From High Glucose-Induced Injury by Promoting Mitophagy Through the AMPK/mTOR/ULK1 Pathway. Transl Vis Sci Technol 2024; 13:19. [PMID: 38517447 PMCID: PMC10981157 DOI: 10.1167/tvst.13.3.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/31/2024] [Indexed: 03/23/2024] Open
Abstract
Purpose The regulation of mitophagy by Sirt3 has rarely been studied in ocular diseases. In the present study, we determined the effects of Sirt3 on AMPK/mTOR/ULK1 signaling pathway-mediated mitophagy in retinal pigment epithelial (RPE) cells in a high glucose environment. Methods The mRNA expression levels of Sirt3, AMPK, mTOR, ULK1, and LC3B in RPE cells under varying glucose conditions were measured by real-time polymerase chain reaction (RT-PCR). The expressions of Sirt3, mitophagy protein, and AMPK/mTOR/ULK1 signaling pathway-related proteins were detected by Western blotting. Lentivirus (LV) transfection mediated the stable overexpression of Sirt3 in cell lines. The experimental groups were NG (5.5 mM glucose), hypertonic, HG (30 mM glucose), HG + LV-GFP, and HG + LV-Sirt3. Western blotting was performed to detect the expressions of mitophagy proteins and AMPK/mTOR/ULK1-related proteins in a high glucose environment during the overexpression of Sirt3. Reactive oxygen species (ROS) production in a high glucose environment was measured by DCFH-DA staining. Mitophagy was detected by labeling mitochondria and lysosomes with MitoTracker and LysoTracker probes, respectively. Apoptosis was detected by flow cytometry. Results Sirt3 expression was reduced in the high glucose group, inhibiting the AMPK/mTOR/ULK1 pathway, with diminished mitophagy and increased intracellular ROS production. The overexpression of Sirt3, increased expression of p-AMPK/AMPK and p-ULK1/ULK1, and decreased expression of p-mTOR/mTOR inhibited cell apoptosis and enhanced mitophagy. Conclusions Sirt3 protected RPE cells from high glucose-induced injury by activating the AMPK/mTOR/ULK1 signaling pathway. Translational Relevance By identifying new targets of action, we aimed to establish effective therapeutic targets for diabetic retinopathy treatment.
Collapse
Affiliation(s)
- Wei Yang
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan , China
| | - Chen Qiu
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan , China
| | - Hongbin Lv
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan , China
| | - Zhiru Zhang
- Department of Ophthalmology, People's Hospital of Deyang City, Deyang, Sichuan, China
| | - Tianyu Yao
- Department of Ophthalmology, The Second People's Hospital of Yibin, Yibin, Sichuan, China
| | - Li Huang
- Sichuan Vocational College of Health and Rehabilitation, Zigong, Sichuan, China
| | - Guihong Wu
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan , China
| | - Xueqin Zhang
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan , China
| | - Jie Chen
- Department of Rheumatology and Immunology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yue He
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan , China
- Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
9
|
Wu Y, Mou J, Zhou G, Yuan C. CASC19: An Oncogenic Long Non-coding RNA in Different Cancers. Curr Pharm Des 2024; 30:1157-1166. [PMID: 38544395 DOI: 10.2174/0113816128300061240319034243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/29/2024] [Indexed: 06/28/2024]
Abstract
A 324 bp lncRNA called CASC19 is found on chromosome 8q24.21. Recent research works have revealed that CASC19 is involved in the prognosis of tumors and related to the regulation of the radiation tolerance mechanisms during tumor radiotherapy (RT). This review sheds light on the changes and roles that CASC19 plays in many tumors and diseases, such as nasopharyngeal carcinoma (NPC), cervical cancer, colorectal cancer (CRC), non-small cell lung cancer (NSCLC), clear cell renal cell carcinoma (ccRCC), gastric cancer (GC), pancreatic cancer (PC), hepatocellular carcinoma (HCC), glioma, and osteoarthritis (OA). CASC19 provides a new strategy for targeted therapy, and the regulatory networks of CASC19 expression levels play a key role in the occurrence and development of tumors and diseases. In addition, the expression level of CASC19 has predictive roles in the prognosis of some tumors and diseases, which has major implications for clinical diagnoses and treatments. CASC19 is also unique in that it is a key gene affecting the efficacy of RT in many tumors, and its expression level plays a decisive role in improving the success rate of treatments. Further research is required to determine the precise process by which CASC19 causes changes in diseased cells in some tumors and diseases.
Collapse
Affiliation(s)
- Yinxin Wu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
| | - Jie Mou
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
| | - Gang Zhou
- College of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
- Yichang Hospital of Traditional Chinese Medicine, Yichang 443002, China
| | - Chengfu Yuan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
| |
Collapse
|
10
|
Askari VR, Khosravi K, Baradaran Rahimi V, Garzoli S. A Mechanistic Review on How Berberine Use Combats Diabetes and Related Complications: Molecular, Cellular, and Metabolic Effects. Pharmaceuticals (Basel) 2023; 17:7. [PMID: 38275993 PMCID: PMC10819502 DOI: 10.3390/ph17010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
Berberine (BBR) is an isoquinoline alkaloid that can be extracted from herbs such as Coptis, Phellodendron, and Berberis. BBR has been widely used as a folk medicine to treat various disorders. It is a multi-target drug with multiple mechanisms. Studies have shown that it has antioxidant and anti-inflammatory properties and can also adjust intestinal microbial flora. This review focused on the promising antidiabetic effects of BBR in several cellular, animal, and clinical studies. Based on previous research, BBR significantly reduced levels of fasting blood glucose, hemoglobin A1C, inflammatory cytokines, and oxidative stress markers. Furthermore, BBR stimulated insulin secretion and improved insulin resistance through different pathways, including up-regulation of protein expression of proliferator-activated receptor (PPAR)-γ, glucose transporter (GLUT) 4, PI3K/AKT, and AMP-activated protein kinase (AMPK) activation. Interestingly, it was demonstrated that BBR has protective effects against diabetes complications, such as diabetic-induced hepatic damage, cardiovascular disorders, nephropathy, and neuropathy. Furthermore, multiple clinical trial studies have emphasized the ameliorative effects of BBR in type 2 diabetic patients.
Collapse
Affiliation(s)
- Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran;
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Kimia Khosravi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 1696700, Iran;
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 1696700, Iran;
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, P. le Aldo Moro, 5, 00185 Rome, Italy
| |
Collapse
|
11
|
Han Y, Guo S, Li Y, Li J, Zhu L, Liu Y, Lv Y, Yu D, Zheng L, Huang C, Li C, Hu J, Liu Z. Berberine ameliorate inflammation and apoptosis via modulating PI3K/AKT/NFκB and MAPK pathway on dry eye. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155081. [PMID: 37748390 DOI: 10.1016/j.phymed.2023.155081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/08/2023] [Accepted: 09/10/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Dry eye disease (DED) is a multifactorial disease in ocular surface, and inflammation plays an etiological role. Berberine (BBR) has shown efficacy in treating inflammatory diseases. Yet, there was no adequate information related to the therapeutic effects of BBR for DED. PURPOSE To detect the effects and explore the potential mechanisms of BBR on DED. STUDY DESIGN In vitro, in vivo study and network pharmacology analysis were involved. METHOD The human corneal epithelium cells viability was evaluated with different concentrations of BBR. Dry eye murine model was established by exposing to the desiccating stress, and Ciclosporin (CSA), BBR eye drops or vehicle were topical administration for 7 days. The phenol red cotton tests, Oregon-green-dextran staining and Periodic acid-Schiff staining were performed and evaluated the dry eye after treatment. Inflammation and apoptosis levels of ocular surface were quantified. The potential targets related to berberine and dry eye were collected from databases. The Protein-Protein interaction network analysis and GO & KEGG enrichment analysis were realized by STRING database, Metascape platform and Cytoscape software to find core targets and signaling pathways. The SchrÖdinger software was used to molecular docking and PyMOL software to visualization. Finally, the levels of PI3K/AKT/NFκB and MAPK pathways were detected. RESULT The data revealed BBR could rescue impaired HCE under hyperosmotic conditions. In addition, BBR eye drops could ameliorate dry eye. And BBR eye drops suppressed the inflammatory factors and CD4+T cells infiltration in conjunctiva. Besides, BBR eye drops protected ocular surface by avoiding the severe apoptosis and decreasing the level of MMP-3 and MMP-9. 148 common targets intersection between BBR and dry eye were found via network pharmacology analysis. Core proteins and core pathways were identified through PPI and GO&KEGG enrichment analysis. Molecular docking displayed excellent binding between BBR and those core targets. Finally, in vivo study verified that BBR eye drops had a therapeutic effect in dry eye by inhibiting PI3K/AKT/NFκB and MAPK pathways. CONCLUSION The research provided convincing evidence that BBR could be a candidate drug for dry eye.
Collapse
Affiliation(s)
- Yi Han
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Fujian Engineering and Research Center of Eye Regenerative Medicine, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China; Department of Ophthalmology, the First Affiliated Hospital of University of South China, Postdoctoral mobile station of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Shujia Guo
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Fujian Engineering and Research Center of Eye Regenerative Medicine, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yunpeng Li
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Fujian Engineering and Research Center of Eye Regenerative Medicine, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jiani Li
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Fujian Engineering and Research Center of Eye Regenerative Medicine, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Linfangzi Zhu
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Fujian Engineering and Research Center of Eye Regenerative Medicine, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yuwen Liu
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Fujian Engineering and Research Center of Eye Regenerative Medicine, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yufei Lv
- Department of Ophthalmology, the First Affiliated Hospital of University of South China, Postdoctoral mobile station of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Dong Yu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Lan Zheng
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Fujian Engineering and Research Center of Eye Regenerative Medicine, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Caihong Huang
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Fujian Engineering and Research Center of Eye Regenerative Medicine, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Cheng Li
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Fujian Engineering and Research Center of Eye Regenerative Medicine, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China; Department of Ophthalmology, the First Affiliated Hospital of University of South China, Postdoctoral mobile station of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Jiaoyue Hu
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Fujian Engineering and Research Center of Eye Regenerative Medicine, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
| | - Zuguo Liu
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Fujian Engineering and Research Center of Eye Regenerative Medicine, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China; Department of Ophthalmology, the First Affiliated Hospital of University of South China, Postdoctoral mobile station of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
12
|
Tian E, Sharma G, Dai C. Neuroprotective Properties of Berberine: Molecular Mechanisms and Clinical Implications. Antioxidants (Basel) 2023; 12:1883. [PMID: 37891961 PMCID: PMC10604532 DOI: 10.3390/antiox12101883] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Berberine (BBR), an isoquinoline alkaloid natural product, is isolated primarily from Coptis chinensis and other Berberis plants. BBR possesses various bioactivities, including antioxidant, anti-inflammation, anticancer, immune-regulation, and antimicrobial activities. Growing scientific evidence underscores BBR's substantial neuroprotective potential, prompting increased interest and scrutiny. In this comprehensive review, we elucidate the neuroprotective attributes of BBR, delineate the underlying molecular mechanisms, and assess its clinical safety and efficacy. The multifaceted molecular mechanisms responsible for BBR's neuroprotection encompass the attenuation of oxidative stress, mitigation of inflammatory responses, inhibition of apoptotic pathways, facilitation of autophagic processes, and modulation of CYP450 enzyme activities, neurotransmitter levels, and gut microbiota composition. Furthermore, BBR engages numerous signaling pathways, including the PI3K/Akt, NF-κB, AMPK, CREB, Nrf2, and MAPK pathways, to confer its neuroprotective effects. This comprehensive review aims to provide a substantial knowledge base, stimulate broader scientific discourse, and facilitate advancements in the application of BBR for neuroprotection.
Collapse
Affiliation(s)
- Erjie Tian
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang 471000, China
| | - Gaurav Sharma
- Cardiovascular and Thoracic Surgery and Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75230, USA
| | - Chongshan Dai
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
13
|
Zhang X, Luo Z, Li J, Lin Y, Li Y, Li W. Sestrin2 in diabetes and diabetic complications. Front Endocrinol (Lausanne) 2023; 14:1274686. [PMID: 37920252 PMCID: PMC10619741 DOI: 10.3389/fendo.2023.1274686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023] Open
Abstract
Diabetes is a global health problem which is accompanied with multi-systemic complications. It is of great significance to elucidate the pathogenesis and to identify novel therapies of diabetes and diabetic complications. Sestrin2, a stress-inducible protein, is primarily involved in cellular responses to various stresses. It plays critical roles in regulating a series of cellular events, such as oxidative stress, mitochondrial function and endoplasmic reticulum stress. Researches investigating the correlations between Sestrin2, diabetes and diabetic complications are increasing in recent years. This review incorporates recent findings, demonstrates the diverse functions and regulating mechanisms of Sestrin2, and discusses the potential roles of Sestrin2 in the pathogenesis of diabetes and diabetic complications, hoping to highlight a promising therapeutic direction.
Collapse
Affiliation(s)
- Xiaodan Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zirui Luo
- The Second Clinical Medicine School, Guangzhou Medical University, Guangzhou, China
| | - Jiahong Li
- The Second Clinical Medicine School, Guangzhou Medical University, Guangzhou, China
| | - Yaxuan Lin
- The Second Clinical Medicine School, Guangzhou Medical University, Guangzhou, China
| | - Yu Li
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wangen Li
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
14
|
Ma Y, Feng H, Wang Y, Hu L, Su X, Li N, Li X. COTE-1 promotes the proliferation and invasion of small cell lung cancer by regulating autophagy activity via the AMPK/mTOR signaling pathway. Mol Cell Probes 2023; 71:101918. [PMID: 37454876 DOI: 10.1016/j.mcp.2023.101918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/06/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND COTE-1 has been found to promote the proliferation and invasion of non-small cell lung cancer. However, the mechanism of COTE-1 in SCLC is still unclear. Exploring the role of COTE-1 in SCLC is expected to provide a potential target for the prognosis and treatment of SCLC. METHODS The expression of COTE-1 and ki-67 was detected by immunohistochemical staining. PCR detected COTE-1 expression level. Cell proliferation activity was detected by CCK8 assay. A wound healing test detected cell migrative ability. Transwell invasion assay detected cell invasive ability. The numbers of autophagosomes were observed by transmission electron microscopy. WB detected the expression levels of autophagy-related proteins and AMPK/mTOR pathway-related proteins. The effect of COTE-1 expression level on the proliferation of SCLC tumor tissues was investigated by establishing a mouse SCLC xenograft tumor model. RESULTS The expression of COTE-1 in SCLC tissues and cells was higher than that in normal tissues and cells. In SCLC cells with high COTE-1 expression, the expression level of autophagy proteins was notably increased, the number of intracellular autophagosomes increased, and the proliferative activity, migration and invasion abilities were enhanced. COTE-1 promotes autophagy, proliferation, and invasion of SCLC cells under nutrient deprivation by activating the AMPK/mTOR signaling pathway. Activation of autophagy by COTE-1 promotes the proliferation and development of xenograft tumors in a mouse model of SCLC. CONCLUSION COTE-1 promotes the proliferation, migration and invasion of small cell lung cancer by mediating autophagy based on the AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Yuhui Ma
- Department of Thoracic Oncology, Shanxi Bethune Hospital, Taiyuan, China
| | - Huijing Feng
- Department of Thoracic Oncology, Shanxi Bethune Hospital, Taiyuan, China
| | - Yuxuan Wang
- Department of Thoracic Surgery, Shanxi Bethune Hospital, Taiyuan, China
| | - Lina Hu
- Department of Pathology, Shanxi Bethune Hospital, Taiyuan, China
| | - Xuan Su
- Department of Thoracic Oncology, Shanxi Bethune Hospital, Taiyuan, China
| | - Nan Li
- Department of Thoracic Oncology, Shanxi Bethune Hospital, Taiyuan, China
| | - Xu Li
- Department of Thoracic Surgery, Shanxi Bethune Hospital, Taiyuan, China.
| |
Collapse
|
15
|
Chen P, Chen X, Zhang H, Chen J, Lin M, Qian H, Gao F, Chen Y, Gong C, Zheng X, Zheng T. Dexmedetomidine Regulates Autophagy via the AMPK/mTOR Pathway to Improve SH-SY5Y-APP Cell Damage Induced by High Glucose. Neuromolecular Med 2023; 25:415-425. [PMID: 37017880 DOI: 10.1007/s12017-023-08745-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/25/2023] [Indexed: 04/06/2023]
Abstract
Neurodegenerative diseases and postoperative cognitive dysfunction involve the accumulation of β-amyloid peptide (Aβ). High glucose can inhibit autophagy, which facilitates intracellular Aβ clearance. The α2-adrenoreceptor agonist dexmedetomidine (DEX) can provide neuroprotection against several neurological diseases; however, the mechanism remains unclear. This study investigated whether DEX regulated autophagy via the AMPK/mTOR pathway to improve high glucose-induced neurotoxicity in SH-SY5Y/APP695 cells. SH-SY5Y/APP695 cells were cultured with high glucose with/without DEX. To examine the role of autophagy, the autophagy activator rapamycin (RAPA) and autophagy inhibitor 3-methyladenine (3-MA) were used. The selective AMPK inhibitor compound C was used to investigate the involvement of the AMPK pathway. Cell viability and apoptosis were examined by CCK-8 and annexin V-FITC/PI flow cytometric assays, respectively. Autophagy was analyzed by monodansylcadaverine staining of autophagic vacuoles. Autophagy- and apoptosis-related protein expression and the phosphorylation levels of AMPK/mTOR pathway molecules were quantified by western blotting. DEX pretreatment significantly suppressed high glucose-induced neurotoxicity in SH-SY5Y/APP695 cells, as evidenced by the enhanced viability, restoration of cellular morphology, and reduction in apoptotic cells. Furthermore, RAPA had a protective effect similar to that of DEX, but 3-MA eliminated the protective effect of DEX by promoting mTOR activation. Moreover, the AMPK/mTOR pathway was involved in DEX-mediated autophagy. Compound C significantly suppressed autophagy and reversed the protective effect of DEX against high glucose in SH-SY5Y/APP695 cells. Our findings demonstrated that DEX protected SH-SY5Y/APP695 cells against high glucose-induced neurotoxicity by upregulating autophagy through the AMPK/mTOR pathway, suggesting a role of DEX in treating POCD in diabetic patients.
Collapse
Affiliation(s)
- Pinzhong Chen
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, No.134 Dong Street, Fuzhou, 350001, Fujian, People's Republic of China
| | - Xiaohui Chen
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, No.134 Dong Street, Fuzhou, 350001, Fujian, People's Republic of China
| | - Honghong Zhang
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, No.134 Dong Street, Fuzhou, 350001, Fujian, People's Republic of China
| | - Jianghu Chen
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, No.134 Dong Street, Fuzhou, 350001, Fujian, People's Republic of China
| | - Mingxue Lin
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, No.134 Dong Street, Fuzhou, 350001, Fujian, People's Republic of China
| | - Haitao Qian
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, No.134 Dong Street, Fuzhou, 350001, Fujian, People's Republic of China
| | - Fei Gao
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, No.134 Dong Street, Fuzhou, 350001, Fujian, People's Republic of China
| | - Yisheng Chen
- Center for Experimental Research in Clinical Medicine, Fujian Provincial Hospital, No.134 Dong Street, Fuzhou, 350001, Fujian, People's Republic of China
| | - Cansheng Gong
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, No.134 Dong Street, Fuzhou, 350001, Fujian, People's Republic of China
| | - Xiaochun Zheng
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, No.134 Dong Street, Fuzhou, 350001, Fujian, People's Republic of China.
- Fujian Emergency Medical Center, Fujian Provincial Key Laboratory of Emergency Medicine, Fujian Provincial Key Laboratory of Critical Medicine, Fujian Provincial Co-constructed Laboratory of "Belt and Road", Fuzhou, China.
| | - Ting Zheng
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, No.134 Dong Street, Fuzhou, 350001, Fujian, People's Republic of China.
| |
Collapse
|
16
|
Sehrawat A, Mishra J, Mastana SS, Navik U, Bhatti GK, Reddy PH, Bhatti JS. Dysregulated autophagy: A key player in the pathophysiology of type 2 diabetes and its complications. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166666. [PMID: 36791919 DOI: 10.1016/j.bbadis.2023.166666] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/27/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
Autophagy is essential in regulating the turnover of macromolecules via removing damaged organelles, misfolded proteins in various tissues, including liver, skeletal muscles, and adipose tissue to maintain the cellular homeostasis. In these tissues, a specific type of autophagy maintains the accumulation of lipid droplets which is directly related to obesity and the development of insulin resistance. It appears to play a protective role in a normal physiological environment by eliminating the invading pathogens, protein aggregates, and damaged organelles and generating energy and new building blocks by recycling the cellular components. Ageing is also a crucial modulator of autophagy process. During stress conditions involving nutrient deficiency, lipids excess, hypoxia etc., autophagy serves as a pro-survival mechanism by recycling the free amino acids to maintain the synthesis of proteins. The dysregulated autophagy has been found in several ageing associated diseases including type 2 diabetes (T2DM), cancer, and neurodegenerative disorders. So, targeting autophagy can be a promising therapeutic strategy against the progression to diabetes related complications. Our article provides a comprehensive outline of understanding of the autophagy process, including its types, mechanisms, regulation, and role in the pathophysiology of T2DM and related complications. We also explored the significance of autophagy in the homeostasis of β-cells, insulin resistance (IR), clearance of protein aggregates such as islet amyloid polypeptide, and various insulin-sensitive tissues. This will further pave the way for developing novel therapeutic strategies for diabetes-related complications.
Collapse
Affiliation(s)
- Abhishek Sehrawat
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Jayapriya Mishra
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Sarabjit Singh Mastana
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.
| | - Umashanker Navik
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, India.
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India.
| |
Collapse
|
17
|
Zhang Y, Liu L, Hou X, Zhang Z, Zhou X, Gao W. Role of Autophagy Mediated by AMPK/DDiT4/mTOR Axis in HT22 Cells Under Oxygen and Glucose Deprivation/Reoxygenation. ACS OMEGA 2023; 8:9221-9229. [PMID: 36936290 PMCID: PMC10018509 DOI: 10.1021/acsomega.2c07280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Background: cerebral ischemia/reperfusion (I/R) injury is an important complication of ischemic stroke, and autophagy is one of the mechanisms of it. In this study, we aimed to determine the role and mechanism of autophagy in cerebral I/R injury. Methods: the oxygen and glucose deprivation/reoxygenation (OGD/R) method was used to model cerebral I/R injury in HT22 cells. CCK-8 and LDH were conducted to detect viability and damage of the cells, respectively. Apoptosis was measured by flow cytometry and Tunel staining. Autophagic vesicles of HT22 cells were assessed by transmission electron microscopy. Western blotting analysis was used to examine the protein expression involving AMPK/DDiT4/mTOR axis and autophagy-related proteins. 3-Methyladenine and rapamycin were, respectively, used to inhibit and activate autophagy, compound C and AICAR acted as AMPK inhibitor and activator, respectively, and were used to control the starting link of AMPK/DDiT4/mTOR axis. Results: autophagy was activated in HT22 cells after OGD/R was characterized by an increased number of autophagic vesicles, the expression of Beclin1 and LC3II/LC3I, and a decrease in the expression of P62. Rapamycin could increase the viability, reduce LDH leakage rate, and alleviate cell apoptosis in OGD/R cells by activating autophagy. 3-Methyladenine played an opposite role to rapamycin in OGD/R cells. The expression of DDiT4 and the ratio of p-AMPK/AMPK were increased after OGD/R in HT22 cells. While the ratio of p-mTOR/mTOR was reduced by OGD/R, AICAR effectively increased the number of autophagic vesicles, improved viability, reduced LDH leakage rate, and alleviated apoptosis in HT22 cells which suffered OGD/R. However, the effects of compound C in OGD/R HT22 cells were opposite to that of AICAR. Conclusions: autophagy is activated after OGD/R; autophagy activator rapamycin significantly enhanced the protective effect of autophagy on cells of OGD/R. AMPK/DDiT4/mTOR axis is an important pathway to activate autophagy, and AMPK/DDiT4/mTOR-mediated autophagy significantly alleviates cell damage caused by OGD/R.
Collapse
Affiliation(s)
| | | | | | | | | | - Weijuan Gao
- . Phone: 86 311 89926007. Fax: (86) 311 89926000
| |
Collapse
|
18
|
Yang X, Huang Z, Xu M, Chen Y, Cao M, Yi G, Fu M. Autophagy in the retinal neurovascular unit: New perspectives into diabetic retinopathy. J Diabetes 2023; 15:382-396. [PMID: 36864557 PMCID: PMC10172025 DOI: 10.1111/1753-0407.13373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/08/2023] [Accepted: 02/18/2023] [Indexed: 03/04/2023] Open
Abstract
Diabetic retinopathy (DR) is one of the most prevalent retinal disorders worldwide, and it is a major cause of vision impairment in individuals of productive age. Research has demonstrated the significance of autophagy in DR, which is a critical intracellular homeostasis mechanism required for the destruction and recovery of cytoplasmic components. Autophagy maintains the physiological function of senescent and impaired organelles under stress situations, thereby regulating cell fate via various signals. As the retina's functional and fundamental unit, the retinal neurovascular unit (NVU) is critical in keeping the retinal environment's stability and supporting the needs of retinal metabolism. However, autophagy is essential for the normal NVU structure and function. We discuss the strong association between DR and autophagy in this review, as well as the many kinds of autophagy and its crucial physiological activities in the retina. By evaluating the pathological changes of retinal NVU in DR and the latest advancements in the molecular mechanisms of autophagy that may be involved in the pathophysiology of DR in NVU, we seek to propose new ideas and methods for the prevention and treatment of DR.
Collapse
Affiliation(s)
- Xiongyi Yang
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
- The Second Clinical School, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Zexin Huang
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
- The Second Clinical School, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Mei Xu
- The Second People's Hospital of Jingmen, Jingmen, Hubei, People's Republic of China
| | - Yanxia Chen
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Mingzhe Cao
- Department of Ophthalmology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, P. R. China
| | - Guoguo Yi
- Department of Ophthalmology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
| | - Min Fu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
19
|
Yan J, Deng J, Cheng F, Zhang T, Deng Y, Cai Y, Cong W. Thioredoxin-Interacting Protein Inhibited Vascular Endothelial Cell-Induced HREC Angiogenesis Treatment of Diabetic Retinopathy. Appl Biochem Biotechnol 2023; 195:1268-1283. [PMID: 36346561 DOI: 10.1007/s12010-022-04191-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2022] [Indexed: 11/10/2022]
Abstract
Diabetic retinopathy is the most common reason for blindness among employed adults worldwide. Hyperglycemia and the overaccumulation of vascular endothelial growth factor (VEGF) lead to diabetic retinopathy, pathological angiogenesis in diabetic retinopathy, and consequent visual impairment. Expression levels of thioredoxin-interacting protein (TXNIP) substantially increase in retinal endothelial cells in diabetic circumstances. The part of TXNIP in retinal angiogenesis combined with diabetes remains unclear. This study examined the effect of reduced TXNIP expression levels and determined how it affects diabetic retinal angiogenesis. Display of human retinal vascular endothelial cells (HRECs) to moderately high glucose (MHG) encouraged tube formation and cell migration, not cell proliferation. In response to MHG conditions, in HRECs, TXNIP knockdown inhibited the production of reactive oxygen species (ROS), cell migration, tube formation, and the Akt/mTOR activation pathway. In addition, gene silencing of TXNIP decreased the VEGF-triggered angiogenic response in HRECs by preventing activation of both VEGF receptor 2 and the downstream components of the Akt/mTOR pathway signaling. Furthermore, TXNIP knockout mice reduced VEGF-induced or VEGF- and MHG-triggered ex vivo retinal angiogenesis compared to wild-type mice. Finally, our findings revealed that TXNIP knockdown suppressed VEGF- and MHG-triggered angiogenic responses in HRECs and mouse retinas, indicating that TXNIP is a promising therapeutic window against the proliferation of diabetic patients' retinopathy.
Collapse
Affiliation(s)
- Jian Yan
- Ophthalmology Department, Guangdong Province, Longgang District Central Hospital of Shenzhen, Shenzhen, 518117, China
| | - Jiantao Deng
- Ophthalmology Department, Guangdong Province, Longgang District Central Hospital of Shenzhen, Shenzhen, 518117, China
| | - Fang Cheng
- Ophthalmology Department, Guangdong Province, Longgang District Central Hospital of Shenzhen, Shenzhen, 518117, China
| | - Tao Zhang
- Ophthalmology Department, Guangdong Province, Longgang District Central Hospital of Shenzhen, Shenzhen, 518117, China
| | - Yixuan Deng
- Ophthalmology Department, Guangdong Province, Longgang District Central Hospital of Shenzhen, Shenzhen, 518117, China
| | - Yulian Cai
- Ophthalmology Department, Guangdong Province, Longgang District Central Hospital of Shenzhen, Shenzhen, 518117, China
| | - Wendong Cong
- Department of Neurology, Guangdong Province, Longgang District Central Hospital, Longgang Road, Shenzhen, 6082518117, No, China.
| |
Collapse
|
20
|
Dátilo MN, Formigari GP, de Faria JBL, de Faria JML. AMP kinase activation by Omega-3 polyunsaturated fatty acid protects the retina against ischemic insult: An in vitro and in vivo study. Exp Eye Res 2023; 226:109345. [PMID: 36509164 DOI: 10.1016/j.exer.2022.109345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/07/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE To investigate the possible beneficial effects of omega-3 polyunsaturated fatty acids (ω3-PUFAs) in ischemic retinal angiogenesis and whether AMP-activated protein kinase (AMPK) is involved. METHODS Human retinal microvascular endothelial cells (hRMECs) were exposed to dimethyloxalylglycine (DMOG), a hypoxia-inducible factor hydroxylase inhibitor, in the presence or absence of docosahexaenoic acid (DHA) and small interfering RNA (siRNA) for AMPKα for 24 h. Ischemic factors, endothelial mesenchymal transition marker, endothelial barrier integrity, cell migration, and tube formation were evaluated. Neonatal AMPKα2-/- and control wild-type (WT) mice were submitted to an oxygen-induced retinopathy (OIR) protocol; their nursing mother mice were either fed ω3-PUFAs or not. In the end, ischemic markers and endothelial cell proliferation were evaluated in neonatal mouse retinal tissue through immunohistochemical or immunofluorescent assays among all studied groups. RESULTS Cells exposed to DMOG displayed increased expressions of hypoxic and endothelial mesenchymal transition (vimentin) markers and barrier disarrangement of Zonula Occludens-1 compared to the control, accompanied by increased cellular migration and tube formation (p < 0.05). AMPK activity was significantly decreased. Supplementation with DHA restored the mentioned alterations compared to DMOG (p<0.05). In siRNAAMPKα-treated cells, the beneficial effects observed with DHA were abolished. DHA upregulated G-protein receptor-120 (GPR120), which promptly increased intracellular levels of calcium (p ≤ 0.001), which consequently increased Calcium/calmodulin-dependent protein kinase kinase β expression (CaMKKβ) thus phosphorylating AMPKThr172. AMPKα2-/- and wild-type (WT) OIR mice exhibited similar retinal ischemic changes, and the oral supplementation with ω3-PUFA efficiently prevented the noticed ischemic alterations only in WT mice, suggesting that AMPKα2 is pivotal in the protective effects of ω3-PUFA. CONCLUSIONS ω3-PUFAs protect the retina from the effects of ischemic conditions, and this effect occurs via the GPR120-CaMKKβ-AMPK axis. A better understanding of this mechanism might improve the control of pathological angiogenesis in retinal ischemic diseases.
Collapse
Affiliation(s)
- Marcella N Dátilo
- Renal Pathophysiology Laboratory, Investigation on Diabetes Complications, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Guilherme P Formigari
- Renal Pathophysiology Laboratory, Investigation on Diabetes Complications, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - José B Lopes de Faria
- Renal Pathophysiology Laboratory, Investigation on Diabetes Complications, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Jacqueline M Lopes de Faria
- Renal Pathophysiology Laboratory, Investigation on Diabetes Complications, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
21
|
Zou J, Tan W, Liu K, Chen B, Duan T, Xu H. Wnt inhibitory factor 1 ameliorated diabetic retinopathy through the AMPK/mTOR pathway-mediated mitochondrial function. FASEB J 2022; 36:e22531. [PMID: 36063130 DOI: 10.1096/fj.202200366rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/12/2022] [Accepted: 08/23/2022] [Indexed: 11/11/2022]
Abstract
Diabetic retinopathy (DR) is one of the most common complications of diabetes mellitus and will lead to visual impairment. We aim to explore the effects and mechanisms of wnt inhibitory factor 1 (WIF1) in the progression of DR. To establish DR in vitro and in vivo, human retinal pigment epithelium (RPE) cell line ARPE-19 was treated with high-glucose (HG) and diabetic mice models were induced by streptozotocin (STZ), respectively. Different dose of recombinant WIF1 protein was used to treat DR. qRT-PCR and western blotting results demonstrated that WIF1 was downregulated, while VEGFA was upregulated in HG-induced ARPE-19 cells. WIF1 overexpression promoted cell migration. The ARPE-19 cells culture medium treated with WIF1 inhibited retinal endothelial cell tube formation and downregulated VEGFA expression. Moreover, WIF1 decreased the levels of ROS and MDA, while increasing the activity of SOD and GPX. WIF1 increased the ΔΨm in the mitochondria and downregulated the expression of mitochondrial autophagy-related proteins including Parkin, Pink1, LC3-II/LC3-I ratio, cleaved caspase 3, and cyt-c, which ameliorated mitochondrial dysfunction. The in vivo studies further demonstrated the consistent effects of WIF1 in STZ-induced mice. Taken together, WIF1 ameliorated mitochondrial dysfunction in DR by downregulating the AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Jing Zou
- Eye Center of Xiangya Hospital, Central South University, Changsha, P.R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Wei Tan
- Eye Center of Xiangya Hospital, Central South University, Changsha, P.R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Kangcheng Liu
- Eye Center of Xiangya Hospital, Central South University, Changsha, P.R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Bolin Chen
- Eye Center of Xiangya Hospital, Central South University, Changsha, P.R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - TianQi Duan
- Eye Center of Xiangya Hospital, Central South University, Changsha, P.R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Huizhuo Xu
- Eye Center of Xiangya Hospital, Central South University, Changsha, P.R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, P.R. China
| |
Collapse
|
22
|
Qin M, Xie Z, Cao T, Wang Z, Zhang X, Wang F, Wei W, Jin M, Ma J, Zeng L, Wang Y, Pei S, Zhang X. Autophagy in Rat Müller Glial Cells Is Modulated by the Sirtuin 4/AMPK/mTOR Pathway and Induces Apoptosis under Oxidative Stress. Cells 2022; 11:cells11172645. [PMID: 36078054 PMCID: PMC9454555 DOI: 10.3390/cells11172645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/14/2022] [Accepted: 08/18/2022] [Indexed: 11/30/2022] Open
Abstract
Müller glial cells (MGCs) are a group of glial cells in the retina that provide essential support to retinal neurons; however, the understanding of MGC apoptosis and autophagy remains limited. This study was aimed at investigating the role of autophagy in MGCs under normal and oxidative conditions, and identifying the underlying mechanisms. In addition, the sirtuin 4 (SIRT4)-mediated signaling pathway was observed to regulate the autophagic process in MGCs. To assess the effect of autophagy on MGC mitochondrial function and survival, we treated rMC-1 cells—rat-derived Müller glial cells—with rapamycin and 3-methyladenine (3-MA), and found that MGC death was not induced by such treatment, while autophagic dysfunction could increase MGC apoptosis under oxidative stress, as reflected by the expression level of cleaved caspase 3 and PI staining. In addition, the downregulation of autophagy by 3-MA could influence the morphology of the mitochondrial network structure, the mitochondrial membrane potential, and generation of reactive oxygen species (ROS) under oxidative stress. Moreover, SIRT4 depletion enhanced autophagosome formation, as verified by an increase in the LC3 II/I ratio and a decrease in the expression of SQSTM1/p62, and vice versa. The inhibition of AMPK phosphorylation by compound C could reverse these changes in LC3 II/I and SQSTM1/p62 caused by SIRT4 knockdown. Our research concludes that MGCs can endure autophagic dysfunction in the absence of oxidative stress, while the downregulation of autophagy can cause MGCs to become more sensitized to oxidative stress. Simultaneous exposure to oxidative stress and autophagic dysfunction in MGCs can result in a pronounced impairment of cell survival. Mechanically, SIRT4 depletion can activate the autophagic process in MGCs by regulating the AMPK–mTOR signaling pathway.
Collapse
Affiliation(s)
- Mengqi Qin
- Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center of Ophthalmic Disease, Affiliated Eye Hospital of Nanchang University, Nanchang 330006, China
| | - Zhi Xie
- Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center of Ophthalmic Disease, Affiliated Eye Hospital of Nanchang University, Nanchang 330006, China
| | - Ting Cao
- Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center of Ophthalmic Disease, Affiliated Eye Hospital of Nanchang University, Nanchang 330006, China
| | - Zhiruo Wang
- Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center of Ophthalmic Disease, Affiliated Eye Hospital of Nanchang University, Nanchang 330006, China
| | - Xiaoyu Zhang
- Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center of Ophthalmic Disease, Affiliated Eye Hospital of Nanchang University, Nanchang 330006, China
| | - Feifei Wang
- Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center of Ophthalmic Disease, Affiliated Eye Hospital of Nanchang University, Nanchang 330006, China
| | - Wei Wei
- Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center of Ophthalmic Disease, Affiliated Eye Hospital of Nanchang University, Nanchang 330006, China
| | - Ming Jin
- Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center of Ophthalmic Disease, Affiliated Eye Hospital of Nanchang University, Nanchang 330006, China
| | - Jingyuan Ma
- Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center of Ophthalmic Disease, Affiliated Eye Hospital of Nanchang University, Nanchang 330006, China
- Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Ling Zeng
- Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center of Ophthalmic Disease, Affiliated Eye Hospital of Nanchang University, Nanchang 330006, China
| | - Yanan Wang
- Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center of Ophthalmic Disease, Affiliated Eye Hospital of Nanchang University, Nanchang 330006, China
| | - Shaonan Pei
- Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center of Ophthalmic Disease, Affiliated Eye Hospital of Nanchang University, Nanchang 330006, China
| | - Xu Zhang
- Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center of Ophthalmic Disease, Affiliated Eye Hospital of Nanchang University, Nanchang 330006, China
- Correspondence:
| |
Collapse
|
23
|
Parmar UM, Jalgaonkar MP, Kulkarni YA, Oza MJ. Autophagy-nutrient sensing pathways in diabetic complications. Pharmacol Res 2022; 184:106408. [PMID: 35988870 DOI: 10.1016/j.phrs.2022.106408] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/05/2022] [Accepted: 08/16/2022] [Indexed: 11/24/2022]
Abstract
The incidence of diabetes has been increasing in recent decades which is affecting the population of both, developed and developing countries. Diabetes is associated with micro and macrovascular complications which predominantly result from hyperglycemia and disrupted metabolic pathways. Persistent hyperglycemia leads to increased reactive oxygen species (ROS) generation, formation of misfolded and abnormal proteins, and disruption of normal cellular functioning. The inability to maintain metabolic homeostasis under excessive energy and nutrient input, which induces insulin resistance, is a crucial feature during the transition from obesity to diabetes. According to various study reports, redox alterations, intracellular stress and chronic inflammation responses have all been linked to dysregulated energy metabolism and insulin resistance. Autophagy has been considered a cleansing mechanism to prevent these anomalies and restore cellular homeostasis. However, disrupted autophagy has been linked to the pathogenesis of metabolic disorders such as obesity and diabetes. Recent studies have reported that the regulation of autophagy has a beneficial role against these conditions. When there is plenty of food, nutrient-sensing pathways activate anabolism and storage, but the shortage of food activates homeostatic mechanisms like autophagy, which mobilises internal stockpiles. These nutrient-sensing pathways are well conserved in eukaryotes and are involved in the regulation of autophagy which includes SIRT1, mTOR and AMPK. The current review focuses on the role of SIRT1, mTOR and AMPK in regulating autophagy and suggests autophagy along with these nutrient-sensing pathways as potential therapeutic targets in reducing the progression of various diabetic complications.
Collapse
Affiliation(s)
- Urvi M Parmar
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400056, India
| | - Manjiri P Jalgaonkar
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400056, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai 400056, India
| | - Manisha J Oza
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400056, India.
| |
Collapse
|
24
|
Fang W, Huang X, Wu K, Zong Y, Yu J, Xu H, Shi J, Wei J, Zhou X, Jiang C. Activation of the GABA-alpha receptor by berberine rescues retinal ganglion cells to attenuate experimental diabetic retinopathy. Front Mol Neurosci 2022; 15:930599. [PMID: 36017075 PMCID: PMC9396352 DOI: 10.3389/fnmol.2022.930599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeThe aim of this study was to investigate the role and mechanism of berberine (BBR) in the protection of injured retinal ganglion cells (RGCs) in diabetic retinopathy (DR).MethodsExperimental diabetic retinopathy rat model was successfully induced by a single intraperitoneal injection of streptozotocin (STZ, 60 mg/kg) in male SD rats with sufficient food and water for 8 weeks. Animals were randomly divided into four groups: (1) non-diabetic, (2) diabetic, (3) diabetic + BBR + PBS, and (4) diabetic + BBR + SR95531. BBR (100 mg/kg) was given daily by gavage to rats in the group (3) and group (4) for 8 weeks, and weekly intravitreal injections were conducted to rats in the group (3) with 5 μL of 1×PBS and rats in the group (4) with 5 μL of GABA-alpha receptor antagonist SR95531 to investigate the underlying mechanisms. The survival and apoptosis of RGCs were observed by fluorescence gold labeling technology and TUNEL staining. Visual function was evaluated by visual electrophysiological examination. Western blotting and immunofluorescence staining were used to analyze the expression of GABA-alpha receptors in RGCs.ResultsIn an animal model, BBR can increase the survival of RGCs, reduce RGCs apoptosis, and significantly improve the visual function. The reduction of GABA, PKC-α, and Bcl-2 protein expression caused by DR can be considerably increased by BBR. SR95531 inhibits BBR's protective effect on RGC and visual function, as well as its upregulation of PKC-α and Bcl-2.ConclusionBBR is a promising preventive or adjuvant treatment for DR complications, and its key protective effect may involve the regulation of RGC apoptosis through the GABA-alpha receptor/protein kinase C-alpha (GABAAR/PKC-α) pathway.
Collapse
Affiliation(s)
- Wangyi Fang
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
- Department of Ophthalmology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaojing Huang
- Department of Ophthalmology, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Kaicheng Wu
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Yuan Zong
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Jian Yu
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Huan Xu
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Jiemei Shi
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Jiaojiao Wei
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Xujiao Zhou
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
- Eye Institute, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Shanghai Medical College, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
- Xujiao Zhou
| | - Chunhui Jiang
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
- *Correspondence: Chunhui Jiang
| |
Collapse
|
25
|
Chen G, Zeng L, Yan F, Liu J, Qin M, Wang F, Zhang X. Long-term oral administration of naringenin counteracts aging-related retinal degeneration via regulation of mitochondrial dynamics and autophagy. Front Pharmacol 2022; 13:919905. [PMID: 35910364 PMCID: PMC9330024 DOI: 10.3389/fphar.2022.919905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Aging-related retinal degeneration can manifest as decreased visual function due to damage to retinal structures and dysfunction in retinal homeostasis. Naringenin, a flavonoid, has beneficial effects in preventing cellular aging, preserving the functionality of photoreceptors, and slowing down visual function loss. However, the role and potential mechanism of naringenin in the aging mouse retina require further investigation. In this study, we evaluated the effects of naringenin on the aging eye using electroretinogram (ERG) and hematoxylin and eosin staining and explored its potential mechanism by western blotting. ERG showed that naringenin increased the amplitude of the a- and b-waves of scotopic 3.0, 10.0, and the a-wave amplitude of photopic 3.0 in the aging mouse retina. Furthermore, administration of naringenin prevented aging-induced retinal degeneration in the total retina, ganglion cell, inner plexiform layer, inner nuclear layer, and outer nuclear layer. The expression of mitochondrial fusion protein two was increased, OPA1 protein expression and the ratio of L-OPA1/S-OPA1 were unchanged, and dynamin-related protein one was decreased in the 12-month-old mice treated with naringenin compared with the 12-month-old mice treated with vehicle. Furthermore, the downregulation of age-related alterations in autophagy was significantly rescued in the aging mice by treatment with naringenin. Taken together, these results suggest that the oral administration of naringenin improves visual function, retinal structure, mitochondrial dynamics, and autophagy in the aging mouse retinas. Naringenin may be a potential dietary supplement for the prevention or treatment of aging-related retinal degeneration.
Collapse
Affiliation(s)
- Guiping Chen
- Affiliated Eye Hospital of Nanchang University, Jiangxi Clinical Research Center of Ophthalmic Disease, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, JX, China
| | - Ling Zeng
- Affiliated Eye Hospital of Nanchang University, Jiangxi Clinical Research Center of Ophthalmic Disease, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, JX, China
| | - Feng Yan
- Affiliated Eye Hospital of Nanchang University, Jiangxi Clinical Research Center of Ophthalmic Disease, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, JX, China
- School of Pharmacy, Nanchang University, Nanchang, JX, China
| | - Jinlong Liu
- Affiliated Eye Hospital of Nanchang University, Jiangxi Clinical Research Center of Ophthalmic Disease, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, JX, China
| | - Mengqi Qin
- Affiliated Eye Hospital of Nanchang University, Jiangxi Clinical Research Center of Ophthalmic Disease, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, JX, China
| | - Feifei Wang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Clinical Research Center of Ophthalmic Disease, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, JX, China
| | - Xu Zhang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Clinical Research Center of Ophthalmic Disease, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, JX, China
- *Correspondence: Xu Zhang,
| |
Collapse
|
26
|
Ai X, Yu P, Peng L, Luo L, Liu J, Li S, Lai X, Luan F, Meng X. Berberine: A Review of its Pharmacokinetics Properties and Therapeutic Potentials in Diverse Vascular Diseases. Front Pharmacol 2022; 12:762654. [PMID: 35370628 PMCID: PMC8964367 DOI: 10.3389/fphar.2021.762654] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022] Open
Abstract
Traditional Chinese medicine plays a significant role in the treatment of various diseases and has attracted increasing attention for clinical applications. Vascular diseases affecting vasculature in the heart, cerebrovascular disease, atherosclerosis, and diabetic complications have compromised quality of life for affected individuals and increase the burden on health care services. Berberine, a naturally occurring isoquinoline alkaloid form Rhizoma coptidis, is widely used in China as a folk medicine for its antibacterial and anti-inflammatory properties. Promisingly, an increasing number of studies have identified several cellular and molecular targets for berberine, indicating its potential as an alternative therapeutic strategy for vascular diseases, as well as providing novel evidence that supports the therapeutic potential of berberine to combat vascular diseases. The purpose of this review is to comprehensively and systematically describe the evidence for berberine as a therapeutic agent in vascular diseases, including its pharmacological effects, molecular mechanisms, and pharmacokinetics. According to data published so far, berberine shows remarkable anti-inflammatory, antioxidant, antiapoptotic, and antiautophagic activity via the regulation of multiple signaling pathways, including AMP-activated protein kinase (AMPK), nuclear factor κB (NF-κB), mitogen-activated protein kinase silent information regulator 1 (SIRT-1), hypoxia-inducible factor 1α (HIF-1α), vascular endothelial growth factor phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), janus kinase 2 (JAK-2), Ca2+ channels, and endoplasmic reticulum stress. Moreover, we discuss the existing limitations of berberine in the treatment of vascular diseases, and give corresponding measures. In addition, we propose some research perspectives and challenges, and provide a solid evidence base from which further studies can excavate novel effective drugs from Chinese medicine monomers.
Collapse
Affiliation(s)
- Xiaopeng Ai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Peiling Yu
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Lixia Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liuling Luo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Liu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shengqian Li
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xianrong Lai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Luan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianli Meng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
27
|
Wang H, Hua J, Chen S, Chen Y. SERPINB1 overexpression protects myocardial damage induced by acute myocardial infarction through AMPK/mTOR pathway. BMC Cardiovasc Disord 2022; 22:107. [PMID: 35291946 PMCID: PMC8925243 DOI: 10.1186/s12872-022-02454-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/03/2022] [Indexed: 11/23/2022] Open
Abstract
Background SERPINB1 is involved in the development of a variety of diseases. The purpose of this study was to explore the effect of SERPINB1 on acute myocardial infarction (AMI). Methods Serum SERPINB1 level of AMI patients was measured for receiver operating characteristic curve analysis. The AMI rat model was constructed to observe myocardial damage, and the H9C2 cell oxygen glucose deprivation (OGD) model was constructed to detect cell viability. Transthoracic echocardiography was used to assess the cardiac function. TTC staining and HE staining were used to detect pathologic changes of myocardial tissues. The apoptosis of myocardial tissues and cells were measured by TUNLE staining and flow cytometry assay. CCK-8 assay to measure cell viability. SERPINB1 expression was measured by qRT-PCR. Protein expression was measured by western blot. Results The serum SERPINB1 level was down-regulated in AMI patients. AMI modeling reduced the SERPINB1 expression level, induced inflammatory cells infiltrated, and myocardial apoptosis. OGD treatment inhibited cell viability and promoted apoptosis. The AMPK/mTOR pathway was inhibited in AMI rats and OGD-treated H9C2 cells. Overexpression of SERPINB1 reduced infarct size and myocardial apoptosis of AMI rats, inhibited apoptosis of H9C2 cells, and activated AMPK/mTOR pathway. However, AMPK inhibitor Dorsomorphin reversed the protective effect of SERPINB1 on myocardial cells. Conclusion SERPINB1 overexpression relieved myocardial damage induced by AMI via AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Hongliang Wang
- Department of Cardiovasology, First People's Hospital of Jinan, Jinan, 250000, Shandong, People's Republic of China
| | - Jun Hua
- Department of Clinical Laboratory, Gaotang County People's Hospital, Liaocheng, 252800, Shandong, People's Republic of China
| | - Shiyuan Chen
- Department of Breast and Thyroid Surgery, Dongying People's Hospital, Dongying, 257091, Shandong, People's Republic of China
| | - Ying Chen
- Department of Clinical Laboratory, Central Hospital of Shengli Oilfield, No. 31 Jinan Road, Dongying, 257000, Shandong, People's Republic of China.
| |
Collapse
|
28
|
Yang L, Zhang Z, Wang D, Jiang Y, Liu Y. Targeting mTOR Signaling in Type 2 Diabetes Mellitus and Diabetes Complications. Curr Drug Targets 2022; 23:692-710. [PMID: 35021971 DOI: 10.2174/1389450123666220111115528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/21/2021] [Accepted: 12/01/2021] [Indexed: 11/22/2022]
Abstract
The mechanistic target of rapamycin (mTOR) is a pivotal regulator of cell metabolism and growth. In the form of two different multi-protein complexes, mTORC1 and mTORC2, mTOR integrates cellular energy, nutrient and hormonal signals to regulate cellular metabolic homeostasis. In type 2 diabetes mellitus (T2DM) aberrant mTOR signaling underlies its pathological conditions and end-organ complications. Substantial evidence suggests that two mTOR-mediated signaling schemes, mTORC1-p70S6 kinase 1 (S6K1) and mTORC2-protein kinase B (AKT), play a critical role in insulin sensitivity and that their dysfunction contributes to development of T2DM. This review summaries our current understanding of the role of mTOR signaling in T2DM and its associated complications, as well as the potential use of mTOR inhibitors in treatment of T2DM.
Collapse
Affiliation(s)
- Lin Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhixin Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Doudou Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Ying Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
29
|
Shukal DK, Malaviya PB, Sharma T. Role of the AMPK signalling pathway in the aetiopathogenesis of ocular diseases. Hum Exp Toxicol 2022; 41:9603271211063165. [PMID: 35196887 DOI: 10.1177/09603271211063165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AMP-activated protein kinase (AMPK) plays a precise role as a master regulator of cellular energy homeostasis. AMPK is activated in response to the signalling cues that exhaust cellular ATP levels such as hypoxia, ischaemia, glucose depletion and heat shock. As a central regulator of both lipid and glucose metabolism, AMPK is considered to be a potential therapeutic target for the treatment of various diseases, including eye disorders. OBJECTIVE To review all the shreds of evidence concerning the role of the AMPK signalling pathway in the pathogenesis of ocular diseases. METHOD Scientific data search and review of available information evaluating the influence of AMPK signalling on ocular diseases. RESULTS Review highlights the significance of AMPK signalling in the aetiopathogenesis of ocular diseases, including cataract, glaucoma, diabetic retinopathy, retinoblastoma, age-related macular degeneration, corneal diseases, etc. The review also provides the information on the AMPK-associated pathways with reference to ocular disease, which includes mitochondrial biogenesis, autophagy and regulation of inflammatory response. CONCLUSION The study concludes the role of AMPK in ocular diseases. There is growing interest in the therapeutic utilization of the AMPK pathway for ocular disease treatment. Furthermore, inhibition of AMPK signalling might represent more pertinent strategy than AMPK activation for ocular disease treatment. Such information will guide the development of more effective AMPK modulators for ocular diseases.[Formula: see text].
Collapse
Affiliation(s)
- Dhaval K Shukal
- 534329Iladevi Cataract and IOL Research Centre, Memnagar, Ahmedabad, Gujarat, India.,76793Manipal Academy of Higher Education, Mangalore, Karnataka, India
| | - Pooja B Malaviya
- 534329Iladevi Cataract and IOL Research Centre, Memnagar, Ahmedabad, Gujarat, India.,76793Manipal Academy of Higher Education, Mangalore, Karnataka, India
| | - Tusha Sharma
- 534329Iladevi Cataract and IOL Research Centre, Memnagar, Ahmedabad, Gujarat, India
| |
Collapse
|
30
|
Guo J, Chen W, Bao B, Zhang D, Pan J, Zhang M. Protective effect of berberine against LPS-induced endothelial cell injury via the JNK signaling pathway and autophagic mechanisms. Bioengineered 2021; 12:1324-1337. [PMID: 33896366 PMCID: PMC8806223 DOI: 10.1080/21655979.2021.1915671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/07/2021] [Indexed: 12/14/2022] Open
Abstract
The role of autophagic mechanisms in the protective effect of berberine (BBR) on lipopolysaccharide (LPS)-induced injury in the endothelial cells human umbilical vein endothelial cells (HUVECs) and human pulmonary microvascular endothelial cells (HPMECs) was investigated. Cell viability, proliferation, and apoptosis were detected by the CCK-8 assay, the EdU kit, and flow cytometry, respectively, and autophagy-related protein expression, the number of autophagic vacuoles, and LC3 double-fluorescence were examined using western blot analysis, transmission electron microscopy, and confocal microscopy, respectively. LPS resulted in a decrease in the cell viability and proliferation of HUVECs and HPMECs and an increase in the number of apoptotic cells, while BBR treatment resulted in an increase in cell viability and proliferation, as well as a decrease in cell apoptosis. Furthermore, BBR could inhibit LPS-induced autophagy, as demonstrated by its inhibitory effects on the LC3-II/LC3-I ratio and Beclin-1 levels and its promotive effect on p62 expression. Addition of the autophagy inducer rapamycin (RAPA) aggravated LPS-induced injury, while treatment with the autophagy blocker 3-methyladenine (3-MA) attenuated the injury. Further, the protective effect of BBR was inhibited by rapamycin. JNK inhibition by SP600125 inhibited LPS-induced autophagy, and BBR could not alter the LPS-induced autophagy in HUVECs and HPMECs that were pretreated with SP600125. The present data indicate that BBR attenuated LPS-induced cell apoptosis by blocking JNK-mediated autophagy in HUVECs and HPMECs. Therefore, the JNK-mediated autophagy pathway could be a potential target for the prevention and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Junping Guo
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Clinical Medicine, Zhejiang University City College, School of Medicine, Hangzhou, China
| | - Wei Chen
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Beibei Bao
- Department of Clinical Medicine, Zhejiang University City College, School of Medicine, Hangzhou, China
| | - Dayong Zhang
- Department of Clinical Medicine, Zhejiang University City College, School of Medicine, Hangzhou, China
| | - Jianping Pan
- Department of Clinical Medicine, Zhejiang University City College, School of Medicine, Hangzhou, China
| | - Mao Zhang
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institue of Emergency Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
31
|
Chen M, Jing D, Ye R, Yi J, Zhao Z. PPARβ/δ accelerates bone regeneration in diabetic mellitus by enhancing AMPK/mTOR pathway-mediated autophagy. Stem Cell Res Ther 2021; 12:566. [PMID: 34736532 PMCID: PMC8567548 DOI: 10.1186/s13287-021-02628-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/16/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Diabetic patients are more vulnerable to skeletal complications. Peroxisome proliferators-activated receptor (PPAR) β/δ has a positive regulatory effect on bone turnover under physiologic glucose concentration; however, the regulatory effect in diabetes mellitus has not been investigated yet. Herein, we explored the effects of PPARβ/δ agonist on the regeneration of diabetic bone defects and the osteogenic differentiation of rat bone marrow mesenchymal stem cells (rBMSCs) under a pathological high-glucose condition. METHODS We detected the effect of PPARβ/δ agonist on osteogenic differentiation of rBMSCs in vitro and investigated the bone healing process in diabetic rats after PPARβ/δ agonist treatment in vivo. RNA sequencing was performed to detect the differentially expressed genes and enriched pathways. Western blot was performed to detect the autophagy-related protein level. Laser confocal microscope (LSCM) and transmission electron microscope (TEM) were used to observe the formation of autophagosomes. RESULTS Our results demonstrated that the activation of PPARβ/δ can improve the osteogenic differentiation of rBMSCs in high-glucose condition and promote the bone regeneration of calvarial defects in diabetic rats, while the inhibition of PPARβ/δ alleviated the osteogenic differentiation of rBMSCs. Mechanistically, the activation of PPARβ/δ up-regulates AMPK phosphorylation, yielding mTOR suppression and resulting in enhanced autophagy activity, which further promotes the osteogenic differentiation of rBMSCs in high-glucose condition. The addition of AMPK inhibitor Compound C or autophagy inhibitor 3-MA inhibited the osteogenesis of rBMSCs in high-glucose condition, suggesting that PPARβ/δ agonist promotes osteogenic differentiation of rBMSCs through AMPK/mTOR-regulated autophagy. CONCLUSION In conclusion, our study demonstrates the potential role of PPARβ/δ as a molecular target for the treatment of impaired bone quality and delayed bone healing in diabetic patients for the first time.
Collapse
Affiliation(s)
- Miao Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China
| | - Dian Jing
- Department of Orthodontics, Shanghai Ninth People's Hospital, Collage of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Ye
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China
| | - Jianru Yi
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China.
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
32
|
He WS, Wu Y, Ren MJ, Yu ZY, Zhao XS. Diosmetin inhibits apoptosis and activates AMPK-induced autophagy in myocardial damage under hypoxia environment. Kaohsiung J Med Sci 2021; 38:139-148. [PMID: 34713558 DOI: 10.1002/kjm2.12462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/17/2021] [Accepted: 09/06/2021] [Indexed: 01/01/2023] Open
Abstract
Inhibition of hypoxia-induced cardiomyocyte apoptosis is considered as an important treatment method for ischemic heart diseases, but related drugs are still insufficient. The present study aims to explore the protective function and mechanism of the key Chinese medicine monomer diosmetin (DIOS) on the injury of cardiomyocytes induced by hypoxia. Here, AC16 and HCM-a cells were treated with 40 μM of DIOS under hypoxic environment and a hypoxic rat model was built to study the role of DIOS. The viability and autophagy of cardiomyocytes were increased, but the apoptosis of cells was suppressed by 40 μM DIOS, under hypoxic environment. Intriguingly, 10 mM 3-methyladenine, an inhibitor of autophagy, reversed the effect of DIOS on autophagy and apoptosis of the cardiomyocytes under hypoxia. Furthermore, DIOS induced AMP-activated protein kinase (AMPK) activation and Compound C (5 μM), an AMPK inhibitor, attenuated the inhibition of DIOS on the apoptosis of cardiomyocytes under hypoxia environment. In isoprenaline-induced hypoxic rats, it was verified that DIOS inhibited apoptosis, accelerated autophagy, and activated AMPKα pathway in vivo. Our findings indicated that DIOS alleviated hypoxia-induced myocardial apoptosis via inducing the activation of AMPK-induced autophagy. In summary, the study suggested that DIOS inhibited the apoptosis and induced the autophagy of hypoxia-induced cardiomyocytes through AMPK activation.
Collapse
Affiliation(s)
- Wen-Shuai He
- Department of Cardiology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia Autonomous Region, China
| | - Yun Wu
- Department of Cardiology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia Autonomous Region, China
| | - Mao-Jia Ren
- Department of Cardiology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia Autonomous Region, China
| | - Zhong-Yu Yu
- Department of Cardiology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia Autonomous Region, China
| | - Xing-Sheng Zhao
- Department of Cardiology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia Autonomous Region, China
| |
Collapse
|
33
|
New Insight into the Effects of Metformin on Diabetic Retinopathy, Aging and Cancer: Nonapoptotic Cell Death, Immunosuppression, and Effects beyond the AMPK Pathway. Int J Mol Sci 2021; 22:ijms22179453. [PMID: 34502359 PMCID: PMC8430477 DOI: 10.3390/ijms22179453] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022] Open
Abstract
Under metabolic stress conditions such as hypoxia and glucose deprivation, an increase in the AMP:ATP ratio activates the AMP-activated protein kinase (AMPK) pathway, resulting in the modulation of cellular metabolism. Metformin, which is widely prescribed for type 2 diabetes mellitus (T2DM) patients, regulates blood sugar by inhibiting hepatic gluconeogenesis and promoting insulin sensitivity to facilitate glucose uptake by cells. At the molecular level, the most well-known mechanism of metformin-mediated cytoprotection is AMPK pathway activation, which modulates metabolism and protects cells from degradation or pathogenic changes, such as those related to aging and diabetic retinopathy (DR). Recently, it has been revealed that metformin acts via AMPK- and non-AMPK-mediated pathways to exert effects beyond those related to diabetes treatment that might prevent aging and ameliorate DR. This review focuses on new insights into the anticancer effects of metformin and its potential modulation of several novel types of nonapoptotic cell death, including ferroptosis, pyroptosis, and necroptosis. In addition, the antimetastatic and immunosuppressive effects of metformin and its hypothesized mechanism are also discussed, highlighting promising cancer prevention strategies for the future.
Collapse
|
34
|
Xu X, Yu Z, Han B, Li S, Sun Y, Du Y, Wang Z, Gao D, Zhang Z. Luteolin alleviates inorganic mercury-induced kidney injury via activation of the AMPK/mTOR autophagy pathway. J Inorg Biochem 2021; 224:111583. [PMID: 34428638 DOI: 10.1016/j.jinorgbio.2021.111583] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/14/2021] [Accepted: 08/15/2021] [Indexed: 12/11/2022]
Abstract
Inorganic mercury is a ubiquitous toxic pollutant in the environment. Exposure to inorganic mercury can cause various poisonous effects, including kidney injury. However, no safe and effective treatment for kidney injury caused by inorganic mercury has been found and used. Luteolin (Lut) possesses various beneficial bioactivities. Here, our research aims to investigate the protective effect of Lut on renal injury induced by mercury chloride (HgCl2) and identify the underlying autophagy regulation mechanism. Twenty-eight 6-8 weeks old Wistar rats were randomly assigned to four groups: control, HgCl2, HgCl2 + Lut, and Lut. We performed the determination of oxidative stress and renal function indicators, histopathological analysis, the terminal deoxynucleotidyl transferase-mediated deoxyuracil nucleoside triphosphate nick-end labeling assay to detect apoptosis, western blot detection of autophagy-related protein levels, and atomic absorption method to detect mercury content. Our results showed that Lut ameliorated oxidative stress, apoptosis and restored the autophagy and renal function caused by HgCl2 in rats. Concretely, the level of nuclear factor E2-related factor, renal adenosine monophosphate-activated protein kinase (AMPK) expression, and autophagy regulation-related proteins levels were down-regulated, and the mammalian target of rapamycin (mTOR) expression was up-regulated by HgCl2 treatment. However, Lut treatment reversed the above changes. Notably, Lut reduced the accumulation of HgCl2 in the kidneys and promoted the excretion of HgCl2 through urine. Collectively, our results demonstrate that Lut can attenuate inorganic mercury-induced renal injury via activating the AMPK/mTOR autophagy pathway. Therefore, Lut may be a potential biological medicine to protect against renal damage induced by HgCl2.
Collapse
Affiliation(s)
- Xinyue Xu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Zhongxian Yu
- Pharmacy Department, The Affiliated Hospital to Changchun University of Chinese Medicine, 1478 Gongnong Road, Hongqi Street, Chaoyang District, Changchun City, Jilin Province 130021, China
| | - Biqi Han
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Yingshuo Sun
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Yu Du
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Ziwei Wang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Di Gao
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, 600 Changjiang Road, Harbin 150030, China.
| |
Collapse
|
35
|
PPP1CA/YAP/GS/Gln/mTORC1 pathway activates retinal Müller cells during diabetic retinopathy. Exp Eye Res 2021; 210:108703. [PMID: 34280391 DOI: 10.1016/j.exer.2021.108703] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/15/2021] [Accepted: 07/15/2021] [Indexed: 01/04/2023]
Abstract
Diabetic retinopathy (DR) is a vision-loss complication caused by diabetes with high prevalence. During DR, the retinal microvascular injury and neurodegeneration derived from chronic hyperglycemia have attracted global attention to retinal Müller cells (RMCs), the major macroglia in the retina contributes to neuroprotection. Protein Phosphatase 1 Catalytic Subunit Alpha (PPP1CA) dephosphorylates the transcriptional coactivator Yes-associated protein (YAP) to promote the transcription of glutamine synthetase (GS). GS catalyzes the transformation of neurotoxic glutamate (Glu) into nontoxic glutamine (Gln) to activate the mammalian target of rapamycin complex 1 (mTORC1), which promotes the activation of RMCs. In this study, in vitro MIO-M1 cell and in vivo mouse high-fat diet and streptozotocin (STZ)-induced diabetic model to explore the role of the PPP1CA/YAP/GS/Gln/mTORC1 pathway on the activation of MRCs during DR. Results showed that PPP1CA promoted the dephosphorylation and nuclear translocation of YAP in high glucose (HG)-exposed MIO-M1 cells. YAP transcribed GS in HG-exposed MIO-M1 cells in a TEAD1-dependent and PPP1CA-dependent way. GS promoted the biosynthesis of Gln in HG-exposed MIO-M1 cells. Gln activated mTORC1 instead of mTORC2 in HG-exposed MIO-M1 cells. The proliferation and activation of HG-exposed MIO-M1 cells were PPP1CA/YAP/GS/Gln/mTORC1-dependent. Finally, RMC proliferation and activation during DR were inhibited by the PPP1CA/YAP/GS/Gln/mTORC1 blockade. The findings supplied a potential idea to protect RMCs and alleviate the development of DR.
Collapse
|
36
|
Li X, Lv J, Li J, Ren X. Kir4.1 may represent a novel therapeutic target for diabetic retinopathy (Review). Exp Ther Med 2021; 22:1021. [PMID: 34373707 PMCID: PMC8343704 DOI: 10.3892/etm.2021.10453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/28/2021] [Indexed: 12/27/2022] Open
Abstract
As the major cause of irreversible loss of vision in adults, diabetic retinopathy (DR) is one of the most serious complications of diabetes. The imbalance of the retinal microenvironment and destruction of the blood-retinal barrier have a significant role in the progression of DR. Inward rectifying potassium channel 4.1 (Kir4.1) is located on Müller cells and is closely related to potassium homeostasis, water balance and glutamate clearance in the whole retina. The present review discusses the functions of Kir4.1 in regulating the retinal microenvironment and related biological mechanisms in DR. In the future, Kir4.1 may represent a novel alternative therapeutic target for DR through affecting the retinal microenvironment.
Collapse
Affiliation(s)
- Xiaoyu Li
- Department of Histology and Embryology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China.,Department of Radiotherapy Oncology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Jiajun Lv
- Department of Histology and Embryology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China.,Department of Radiotherapy Oncology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Jiazhi Li
- Department of Radiotherapy Oncology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Xiang Ren
- Department of Histology and Embryology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| |
Collapse
|
37
|
Chen C, Lin Q, Zhu XY, Xia J, Mao T, Chi T, Wan J, Lu JJ, Li Y, Cui J, Liu J, Cui XY, Zhang J, Zhou K, Li D. Pre-clinical Evidence: Berberine as a Promising Cardioprotective Candidate for Myocardial Ischemia/Reperfusion Injury, a Systematic Review, and Meta-Analysis. Front Cardiovasc Med 2021; 8:646306. [PMID: 34124190 PMCID: PMC8187562 DOI: 10.3389/fcvm.2021.646306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/22/2021] [Indexed: 11/27/2022] Open
Abstract
Objective: Myocardial ischemia/reperfusion (I/R) injury is one of the causes of most cardiomyocyte injuries and deaths. Berberine (BBR) has been suggested a potential to exert protective effects against myocardial I/R injury. This systematic review aims to determine the intrinsic mechanisms of BBR's protective effects in myocardial I/R injury. Methods: Seven databases were searched for studies performed from inception to July 2020. Methodological quality was assessed by SYRCLE's-RoB tool. Results: Ten studies including a total of 270 animals were included in this study. The methodology quality scores of the included studies ranged from 5 to 7 points. The meta-analysis we conducted demonstrated that BBR significantly reduced myocardial infarct size and the incidence of ventricular arrhythmia, compared to control groups (P < 0.00001). Cardiac function of animals in the BBR treatment group was also markedly increased (P < 0.00001). The index of myocardial apoptosis and the levels of biomarkers of myocardial infarction (LDH and CK) were also decreased in the BBR treatment groups compared to the control groups (P < 0.00001). Conclusions: The pre-clinical evidence, according to our study, showed that BBR is a promising therapeutic agent for myocardial I/R injury. However, this conclusion should be further investigated in clinical studies.
Collapse
Affiliation(s)
- Cong Chen
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Qian Lin
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xue-Ying Zhu
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Junyan Xia
- Department of Cardiology, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Tianshi Mao
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Tiange Chi
- First Clinical Medical School, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Wan
- Department of Cardiology, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jin-Jin Lu
- Department of Cardiology, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yan Li
- Department of Cardiology, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jie Cui
- Department of Cardiology, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jing Liu
- Department of Cardiology, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Yun Cui
- Department of Cardiology, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jingqian Zhang
- Department of Cardiology, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Kun Zhou
- Department of Cardiology, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Dong Li
- Department of Cardiology, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
38
|
Li L, Chen J, Zhou Y, Zhang J, Chen L. Artesunate alleviates diabetic retinopathy by activating autophagy via the regulation of AMPK/SIRT1 pathway. Arch Physiol Biochem 2021:1-8. [PMID: 33661722 DOI: 10.1080/13813455.2021.1887266] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
CONTEXT Artesunate (ART), an antimalarial drug, possesses the ability to induce autophagy and exhibits a protective effect on diabetes. OBJECTIVE This study aimed to evaluate the effects of ART on diabetic retinopathy (DR) and to explore the underlying mechanisms. METHODS Rats with streptozotocin-induced DR were given intravitreal injection of ART. RESULTS ART administration inhibited the increase in retinal thickness and prevented blood-retinal barrier in diabetic rats. Further, vascular leukocyte adherence, microglial activation, inflammatory cytokine, and ROS production in the retinas of diabetic rats were also inhibited by ART. Additionally, ART enhanced autophagy in the retinas of diabetic rats as demonstrated by up-regulated Beclin-1 expression and LC3II/I ratio and down-regulated p62. ART also activated AMP-activated protein kinase (AMPK)/sensor class III histone deacetylase sirtuin 1 (SIRT1) pathway. CONCLUSIONS ART, as an autophagy activator, has therapeutic potential in DR treatment.
Collapse
Affiliation(s)
- Lihua Li
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| | - Jun Chen
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| | - Yun Zhou
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| | - Jiahua Zhang
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| | - Lei Chen
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
39
|
Liu H, Zheng W, Chen Q, Zhou Y, Pan Y, Zhang J, Bai Y, Shao C. lncRNA CASC19 Contributes to Radioresistance of Nasopharyngeal Carcinoma by Promoting Autophagy via AMPK-mTOR Pathway. Int J Mol Sci 2021; 22:ijms22031407. [PMID: 33573349 PMCID: PMC7866785 DOI: 10.3390/ijms22031407] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/21/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most frequent head and neck malignant tumors and is majorly treated by radiotherapy. However, radiation resistance remains a serious obstacle to the successful treatment of NPC. The aim of this study was to discover the underlying mechanism of radioresistance and to elucidate novel genes that may play important roles in the regulation of NPC radiosensitivity. By using RNA-seq analysis of NPC cell line CNE2 and its radioresistant cell line CNE2R, lncRNA CASC19 was screened out as a candidate radioresistance marker. Both in vitro and in vivo data demonstrated that a high expression level of CASC19 was positively correlated with the radioresistance of NPC, and the radiosensitivity of NPC cells was considerably enhanced by knockdown of CASC19. The incidence of autophagy was enhanced in CNE2R in comparison with CNE2 and another NPC cell line HONE1, and silencing autophagy with LC3 siRNA (siLC3) sensitized NPC cells to irradiation. Furthermore, CASC19 siRNA (siCASC19) suppressed cellular autophagy by inhibiting the AMPK/mTOR pathway and promoted apoptosis through the PARP1 pathway. Our results revealed for the first time that lncRNA CASC19 contributed to the radioresistance of NPC by regulating autophagy. In significance, CASC19 might be a potential molecular biomarker and a new therapeutic target in NPC.
Collapse
|
40
|
Luo Y, Dong X, Lu S, Gao Y, Sun G, Sun X. Gypenoside XVII alleviates early diabetic retinopathy by regulating Müller cell apoptosis and autophagy in db/db mice. Eur J Pharmacol 2021; 895:173893. [PMID: 33493483 DOI: 10.1016/j.ejphar.2021.173893] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/08/2021] [Accepted: 01/14/2021] [Indexed: 01/04/2023]
Abstract
Diabetic retinopathy (DR) is a widespread vision-threatening disease in working people. Müller cells are important glial cells that participate in the blood retinal barrier and promote the maintenance of retinal physiological and structural homeostasis. Müller cell apoptosis and autophagy play an important role in the pathogenesis of DR. Gypenoside XVII (Gyp-17) exerts strong antiapoptotic and autophagic activities. However, the effect of Gyp-17 on DR and its mechanism of action have not been elucidated. This study explored the effect of Gyp-17 on early DR and Müller cell injury in db/db mice. Blood glucose and blood lipids were measured. Optical coherence tomography and fundus fluorescein angiography were applied to detect retinal thickness and vascular leakage, respectively. Hematoxylin eosin staining assessed the pathological changes of the retina. Retinal oxidative environment and cell apoptosis and autophagy were monitored using commercial kits, immunofluorescence, and Western blot assays. Results showed that Gyp-17 exerted no significant effect on blood glucose and lipid levels but maintained normal retinal permeability, physiological structure, high anti-oxidative enzyme expression, and the thickness of the inner nuclear layer compared with the model group. Moreover, Western blot analysis and TUNEL assay indicated that Gyp-17 significantly decreased pro-apoptotic-related protein expression and increased pro-autophagy-related protein expression compared with the model group. Immunofluorescence colocalization exhibited that the regulating action of Gyp-17 may focus on Müller cells. These data strongly demonstrate that Gyp-17 prevents early DR by decreasing apoptosis and increasing autophagy in Müller cells. Gyp-17 may be a candidate drug for early DR therapy.
Collapse
Affiliation(s)
- Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China; Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, China
| | - Xi Dong
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China; Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, China
| | - Shan Lu
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China; Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, China
| | - Ye Gao
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China; Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, China
| | - Guibo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China; Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, China.
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China; Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, China.
| |
Collapse
|
41
|
Rao H, Jalali JA, Johnston TP, Koulen P. Emerging Roles of Dyslipidemia and Hyperglycemia in Diabetic Retinopathy: Molecular Mechanisms and Clinical Perspectives. Front Endocrinol (Lausanne) 2021; 12:620045. [PMID: 33828528 PMCID: PMC8020813 DOI: 10.3389/fendo.2021.620045] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/25/2021] [Indexed: 12/20/2022] Open
Abstract
Diabetic retinopathy (DR) is a significant cause of vision loss and a research subject that is constantly being explored for new mechanisms of damage and potential therapeutic options. There are many mechanisms and pathways that provide numerous options for therapeutic interventions to halt disease progression. The purpose of the present literature review is to explore both basic science research and clinical research for proposed mechanisms of damage in diabetic retinopathy to understand the role of triglyceride and cholesterol dysmetabolism in DR progression. This review delineates mechanisms of damage secondary to triglyceride and cholesterol dysmetabolism vs. mechanisms secondary to diabetes to add clarity to the pathogenesis behind each proposed mechanism. We then analyze mechanisms utilized by both triglyceride and cholesterol dysmetabolism and diabetes to elucidate the synergistic, additive, and common mechanisms of damage in diabetic retinopathy. Gathering this research adds clarity to the role dyslipidemia has in DR and an evaluation of the current peer-reviewed basic science and clinical evidence provides a basis to discern new potential therapeutic targets.
Collapse
Affiliation(s)
- Hussain Rao
- Department of Ophthalmology, School of Medicine, Vision Research Center, University of Missouri – Kansas City, Kansas City, MO, United States
| | - Jonathan A. Jalali
- Department of Ophthalmology, School of Medicine, Vision Research Center, University of Missouri – Kansas City, Kansas City, MO, United States
| | - Thomas P. Johnston
- Department of Ophthalmology, School of Medicine, Vision Research Center, University of Missouri – Kansas City, Kansas City, MO, United States
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri – Kansas City, Kansas City, MO, United States
| | - Peter Koulen
- Department of Ophthalmology, School of Medicine, Vision Research Center, University of Missouri – Kansas City, Kansas City, MO, United States
- Department of Biomedical Sciences, School of Medicine, University of Missouri – Kansas City, Kansas City, MO, United States
- *Correspondence: Peter Koulen,
| |
Collapse
|
42
|
Yuan M, He Q, Long Z, Zhu X, Xiang W, Wu Y, Lin S. Exploring the Pharmacological Mechanism of Liuwei Dihuang Decoction for Diabetic Retinopathy: A Systematic Biological Strategy-Based Research. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5544518. [PMID: 34394383 PMCID: PMC8356007 DOI: 10.1155/2021/5544518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/30/2021] [Accepted: 06/23/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To explore the pharmacological mechanism of Liuwei Dihuang decoction (LDD) for diabetic retinopathy (DR). METHODS The potential targets of LDD were predicted by PharmMapper. GeneCards and other databases were used to collect DR genes. Cytoscape was used to construct and analyze network DR and LDD's network, and DAVID was used for Gene Ontology (GO) and pathway enrichment analysis. Finally, animal experiments were carried out to verify the results of systematic pharmacology. RESULTS Five networks were constructed and analyzed: (1) diabetic retinopathy genes' PPI network; (2) compound-compound target network of LDD; (3) LDD-DR PPI network; (4) compound-known target network of LDD; (5) LDD known target-DR PPI network. Several DR and treatment-related targets, clusters, signaling pathways, and biological processes were found. Animal experiments found that LDD can improve the histopathological changes of the retina. LDD can also increase erythrocyte filtration rate and decrease the platelet adhesion rate (P < 0.05) and decrease MDA and TXB2 (P < 0.05). Compared with the model group, the retinal VEGF and HIF-1α expression in the LDD group decreased significantly (P < 0.05). CONCLUSION The therapeutic effect of LDD on DR may be achieved by interfering with the biological processes (such as response to insulin, glucose homeostasis, and regulation of angiogenesis) and signaling pathways (such as insulin, VEGF, HIF-1, and ErbB signaling pathway) related to the development of DR that was found in this research.
Collapse
Affiliation(s)
- Mengxia Yuan
- Shantou University Medical College, Shantou University, Shantou, Guangdong, China
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou City, Guangdong Province, China
| | - Qi He
- Hunan University of Chinese Medicine Affiliated People's Hospital of Ningxiang City, Ningxiang City, Hunan Province, China
| | - Zhiyong Long
- Shantou University Medical College, Shantou University, Shantou, Guangdong, China
| | - Xiaofei Zhu
- Shantou University Medical College, Shantou University, Shantou, Guangdong, China
| | - Wang Xiang
- Shantou University Medical College, Shantou University, Shantou, Guangdong, China
| | - Yonghe Wu
- Shantou University Medical College, Shantou University, Shantou, Guangdong, China
| | - Shibin Lin
- Shantou University Medical College, Shantou University, Shantou, Guangdong, China
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou City, Guangdong Province, China
| |
Collapse
|
43
|
Shang XF, Yang CJ, Morris-Natschke SL, Li JC, Yin XD, Liu YQ, Guo X, Peng JW, Goto M, Zhang JY, Lee KH. Biologically active isoquinoline alkaloids covering 2014-2018. Med Res Rev 2020; 40:2212-2289. [PMID: 32729169 PMCID: PMC7554109 DOI: 10.1002/med.21703] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 06/08/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022]
Abstract
Isoquinoline alkaloids, an important class of N-based heterocyclic compounds, have attracted considerable attention from researchers worldwide since the early 19th century. Over the past 200 years, many compounds from this class were isolated, and most of them and their analogs possess various bioactivities. In this review, we survey the updated literature on bioactive alkaloids and highlight research achievements of this alkaloid class during the period of 2014-2018. We reviewed over 400 molecules with a broad range of bioactivities, including antitumor, antidiabetic and its complications, antibacterial, antifungal, antiviral, antiparasitic, insecticidal, anti-inflammatory, antioxidant, neuroprotective, and other activities. This review should provide new indications or directions for the discovery of new and better drugs from the original naturally occurring isoquinoline alkaloids.
Collapse
Affiliation(s)
- Xiao-Fei Shang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P.R. China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Cheng-Jie Yang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P.R. China
| | - Susan L. Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Jun-Cai Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P.R. China
| | - Xiao-Dan Yin
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P.R. China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P.R. China
| | - Xiao Guo
- Tibetan Medicine Research Center of Qinghai University, Qinghai University Tibetan Medical College, Qinghai University, 251 Ningda Road, Xining 810016, P.R. China
| | - Jing-Wen Peng
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P.R. China
| | - Masuo Goto
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Ji-Yu Zhang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
- Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung 40402, Taiwan
| |
Collapse
|
44
|
Zhai J, Li Z, Zhang H, Ma L, Ma Z, Zhang Y, Zou J, Li M, Ma L, Wang X, Li X. Berberine protects against diabetic retinopathy by inhibiting cell apoptosis via deactivation of the NF‑κB signaling pathway. Mol Med Rep 2020; 22:4227-4235. [PMID: 33000205 PMCID: PMC7533441 DOI: 10.3892/mmr.2020.11505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 03/04/2020] [Indexed: 11/28/2022] Open
Abstract
A number of studies have reported that diabetic retinopathy (DR) is the major cause of blindness. Berberine (BBR) is a bioactive constituent that displays effects on blood glucose; however, the mechanism underlying the role of BBR during the development of DR is not completely understood. In the present study, a rat model of DR was successfully established. The eye tissues were removed and subsequently assessed by hematoxylin and eosin staining and the TUNEL assay. The catalase, malondialdehyde, reactive oxygen species, glutathione and superoxide dismutase contents of the eye tissues were measured. Müller cells were chosen for further in vitro experiments. Cell apoptosis was examined by Annexin V-FITC apoptosis detection and Hoechst staining, and the mitochondrial membrane potential was assessed by JC-1 mitochondrial membrane potential detection. BBR decreased ganglion cell layer, cell apoptosis, reduced diabetic-induced oxidative stress and deactivated the NF-κB signaling pathway in the rat model of DR. High glucose enhanced oxidative stress and induced mitochondria-dependent cell apoptosis in Müller cells by activating the NF-κB signaling pathway. BBR reversed the high glucose-induced effects by decreasing the phosphorylation of IκB, inhibiting NF-κB nuclear translocation and deactivating the NF-κB signaling pathway. The results suggested that BBR protected against DR by inhibiting oxidative stress and cell apoptosis via deactivation of the NF-κB signaling pathway; therefore, suggesting that BBR may serve as a promising therapeutic agent for DR.
Collapse
Affiliation(s)
- Jiajia Zhai
- Department of Endocrinology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zeping Li
- Department of Clinical Medicine, School of Queen Mary, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Huifeng Zhang
- Department of Neurology, Xi'an Electric Power Central Hospital, Xi'an, Shaanxi 710032, P.R. China
| | - Louyan Ma
- Department of Geratology, Xi'an Ninth Hospital, Xi'an, Shaanxi 710054, P.R. China
| | - Zhengquan Ma
- Department of Geratology, Xi'an Ninth Hospital, Xi'an, Shaanxi 710054, P.R. China
| | - Yi Zhang
- Department of Endocrinology, Xi'an Ninth Hospital, Xi'an, Shaanxi 710054, P.R. China
| | - Jian Zou
- Department of Internal Medicine, 522nd Hospital of Chinese People's Liberation Army, Luoyang, Henan 471003, P.R. China
| | - Mo Li
- Department of Geratology, Xi'an Ninth Hospital, Xi'an, Shaanxi 710054, P.R. China
| | - Li Ma
- Department of Geratology, Xi'an Ninth Hospital, Xi'an, Shaanxi 710054, P.R. China
| | - Xin Wang
- Department of Geratology, Xi'an Ninth Hospital, Xi'an, Shaanxi 710054, P.R. China
| | - Xiaomiao Li
- Department of Endocrinology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
45
|
Corosolic acid ameliorates cardiac hypertrophy via regulating autophagy. Biosci Rep 2020; 39:221187. [PMID: 31746323 PMCID: PMC6893168 DOI: 10.1042/bsr20191860] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 02/06/2023] Open
Abstract
Aim: In this work, we explored the role of corosolic acid (CRA) during pressure overload-induced cardiac hypertrophy. Methods and results: Cardiac hypertrophy was induced in mice by aortic banding. Four weeks post-surgery, CRA-treated mice developed blunted cardiac hypertrophy, fibrosis, and dysfunction, and showed increased LC3 II and p-AMPK expression. In line with the in vivo studies, CRA also inhibited the hypertrophic response induced by PE stimulation accompanying with increased LC3 II and p-AMPK expression. It was also found that CRA blunted cardiomyocyte hypertrophy and promoted autophagy in Angiotensin II (Ang II)-treated H9c2 cells. Moreover, to further verify whether CRA inhibits cardiac hypertrophy by the activation of autophagy, blockade of autophagy was achieved by CQ (an inhibitor of the fusion between autophagosomes and lysosomes) or 3-MA (an inhibitor of autophagosome formation). It was found that autophagy inhibition counteracts the protective effect of CRA on cardiac hypertrophy. Interestingly, AMPK knockdown with AMPKα2 siRNA-counteracted LC3 II expression increase and the hypertrophic response inhibition caused by CRA in PE-treated H9c2 cells. Conclusion: These results suggest that CRA may protect against cardiac hypertrophy through regulating AMPK-dependent autophagy.
Collapse
|
46
|
Wang Y, Liu X, Zhu L, Li W, Li Z, Lu X, Liu J, Hua W, Zhou Y, Gu Y, Zhu M. PG545 alleviates diabetic retinopathy by promoting retinal Müller cell autophagy to inhibit the inflammatory response. Biochem Biophys Res Commun 2020; 531:452-458. [PMID: 32800548 DOI: 10.1016/j.bbrc.2020.07.134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 10/23/2022]
Abstract
Diabetic retinopathy (DR), a major cause of blindness in working-age people, is attributed to the inflammatory response of retinal Müller cells (RMCs). The heparanase inhibitor PG545 plays proautophagic and anti-inflammatory roles. Intraperitoneal injection of PG545 at a dose of 20 mg/kg/d clearly reduced diabetes-induced body weight changes and fasting blood glucose levels in mice. PG545 also mitigated the reduction in retinal thickness and the formation of microaneurysms by promoting autophagy to inhibit the inflammatory response. In vitro, PG545 stimulated autophagy to downregulate the inflammatory response in high glucose-induced primary adult mouse RMCs. These data suggest that PG545 mitigates DR by promoting RMC autophagy to inhibit the inflammatory response.
Collapse
Affiliation(s)
- Ying Wang
- Department of Ophthalmology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Xiaojuan Liu
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, Jiangsu, China
| | - Linling Zhu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wendie Li
- Department of Ophthalmology, Ningbo Eye Hospital, Ningbo, China
| | - Zhizhe Li
- Department of Ophthalmology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Xiting Lu
- Department of Ophthalmology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Jie Liu
- Department of Ophthalmology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Wenjuan Hua
- Department of Ophthalmology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Yamei Zhou
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, Jiangsu, China
| | - Yonghui Gu
- Department of Ophthalmology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China.
| | - Manhui Zhu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
47
|
Lu X, Bao H, Cui L, Zhu W, Zhang L, Xu Z, Man X, Chu Y, Fu Q, Zhang H. hUMSC transplantation restores ovarian function in POI rats by inhibiting autophagy of theca-interstitial cells via the AMPK/mTOR signaling pathway. Stem Cell Res Ther 2020; 11:268. [PMID: 32620136 PMCID: PMC7333437 DOI: 10.1186/s13287-020-01784-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 05/05/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022] Open
Abstract
Background Previous studies of primary ovarian insufficiency (POI) have focused on granulosa cells (GCs) and ignored the role of theca-interstitial cells (TICs). This study aims to explore the mechanism of the protective effects of human umbilical cord-derived mesenchymal stem cells (hUMSCs) on ovarian function in POI rats by regulating autophagy of TICs. Methods The POI model was established in rats treated with cisplatin (CDDP). The hUMSCs were transplanted into POI rats by tail vein. Enzyme-linked immunosorbent assay (ELISA) analysis, hematoxylin and eosin (HE) staining, and immunohistochemistry were used to measure the protective effects of hUMSCs. The molecular mechanisms of injury and repairment of TICs were assessed by immunofluorescence, transmission electron microscope (TEM), flow cytometry (FCM), western blot, and quantitative real-time polymerase chain reaction (qRT-PCR). Results In vivo, hUMSC transplantation restored the ovarian function and alleviated the apoptosis of TICs in POI rats. In vitro, hUMSCs reduced the autophagy levels of TICs by reducing oxidative stress and regulating AMPK/mTOR signaling pathway, thereby alleviating the apoptosis of TICs. Conclusion This study indicates that hUMSCs protected ovarian function in POI by regulating autophagy signaling pathway AMPK/mTOR.
Collapse
Affiliation(s)
- Xueyan Lu
- College of Basic Medicine & Institute of Reproductive Diseases, Binzhou Medical University, Yantai, 264003, Shandong, China.,College of Basic Medicine, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Hongchu Bao
- Department of Clinical Medicine, Yantai Yuhuangding Hospital, Yantai, 264000, Shandong, China
| | - Linlu Cui
- College of Basic Medicine & Institute of Reproductive Diseases, Binzhou Medical University, Yantai, 264003, Shandong, China.,College of Basic Medicine, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Wenqian Zhu
- College of Basic Medicine & Institute of Reproductive Diseases, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Lianshuang Zhang
- College of Basic Medicine, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Zheng Xu
- College of Basic Medicine, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Xuejing Man
- Department of Clinical Medicine, Yantai Yuhuangding Hospital, Yantai, 264000, Shandong, China
| | - Yongli Chu
- Department of Clinical Medicine, Yantai Yuhuangding Hospital, Yantai, 264000, Shandong, China
| | - Qiang Fu
- College of Basic Medicine, Binzhou Medical University, Yantai, 264003, Shandong, China.
| | - Hongqin Zhang
- College of Basic Medicine & Institute of Reproductive Diseases, Binzhou Medical University, Yantai, 264003, Shandong, China. .,College of Basic Medicine, Binzhou Medical University, Yantai, 264003, Shandong, China.
| |
Collapse
|
48
|
Effect of Berberine on Glycation, Aldose Reductase Activity, and Oxidative Stress in the Lenses of Streptozotocin-Induced Diabetic Rats In Vivo-A Preliminary Study. Int J Mol Sci 2020; 21:ijms21124278. [PMID: 32560082 PMCID: PMC7349706 DOI: 10.3390/ijms21124278] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus affects the eye lens, leading to cataract formation by glycation, osmotic stress, and oxidative stress. Berberine, an isoquinoline alkaloid, is a natural compound that has been reported to counteract all these pathological processes in various tissues and organs. The goal of this study was to evaluate whether berberine administered at a dose of 50 mg/kg by oral gavage for 28 days to rats with streptozotocin-induced diabetes reveals such effects on the biochemical parameters in the lenses. For this purpose, the following lenticular parameters were studied: concentrations of soluble protein, non-protein sulfhydryl groups (NPSH), advanced oxidation protein products (AOPP), advanced glycation end-products (AGEs), thiobarbituric acid reactive substances (TBARS), and activities of aldose reductase (AR), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Diabetes induced unfavorable changes in the majority of the examined parameters. The administration of berberine resulted in an increased soluble protein level, decreased activity of AR, and lowered AOPP and AGEs levels. The results suggest that berberine administered orally positively affects the lenses of diabetic rats, and should be further examined with regard to its anticataract potential.
Collapse
|
49
|
Liu J, Liu P, Xu T, Chen Z, Kong H, Chu W, Wang Y, Liu Y. Berberine Induces Autophagic Cell Death in Acute Lymphoblastic Leukemia by Inactivating AKT/mTORC1 Signaling. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:1813-1823. [PMID: 32494123 PMCID: PMC7229801 DOI: 10.2147/dddt.s239247] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/21/2020] [Indexed: 01/01/2023]
Abstract
Introduction Berberine has been reported to inhibit cancer cell growth by apoptosis induction and exhibits a protective role against cancer progression. The current study aims to investigate the effects of berberine on acute lymphoblastic leukemia (ALL) and the mechanism beyond apoptosis. Methods Cell viability was determined in ALL cell lines EU-6 and SKW-3 using trypan blue staining. Cell autophagy was determined by immunofluorescence and Western blot. ALL xenograft mice were established to investigate the anti-tumor effects of BBR. The molecular mechanism was explored in ALL cell lines using siRNA and signaling inhibitors. Results Herein, we show that berberine treatment significantly inhibits ALL cell viability and promotes cell death by inducing autophagy in a dose-dependent manner. Moreover, berberine significantly alleviates the aggressive pathological condition in ALL xenograft mice. Mechanistic studies exhibit that berberine induces autophagic death in ALL cells by inactivating AKT/mTORC1 signaling. Chemically targeting AKT/mTORC1 signaling controls berberine-induced cell autophagy in vitro, and blockade of autophagic process blunts berberine-alleviated pathological condition in vivo. Discussion In conclusion, our study reveals that berberine could induce ALL cell autophagic death by inactivating AKT/mTORC1 signaling that could be used to develop small molecule drug for ALL treatment.
Collapse
Affiliation(s)
- Jian Liu
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Peng Liu
- Department of Pediatric Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Tiantian Xu
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Zhiwei Chen
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Huimin Kong
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Weihong Chu
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Yingchao Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Yufeng Liu
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| |
Collapse
|
50
|
Lin L, Li C, Zhang D, Yuan M, Chen CH, Li M. Synergic Effects of Berberine and Curcumin on Improving Cognitive Function in an Alzheimer's Disease Mouse Model. Neurochem Res 2020; 45:1130-1141. [PMID: 32080784 DOI: 10.1007/s11064-020-02992-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/07/2020] [Accepted: 02/17/2020] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases, and no effective therapies have been found to prevent or cure AD to date. Berberine and curcumin are extracts from traditional Chinese herbs that have a long history of clinical benefits for AD. Here, using a transgenic AD mouse model, we found that the combined berberine and curcumin treatment had a much better effect on improving the cognitive function of mice than the single-drug treatment, suggesting synergic effects of the combined berberine and curcumin treatment. In addition, we found that the combined berberine and curcumin treatment had significant synergic effects on reducing soluble amyloid-β-peptide(1-42) production. Furthermore, the combination treatment also had remarkable synergic effects on decreasing inflammatory responses and oxidative stress in both the cortex and hippocampus of AD mice. We also found that the combination treatment performed much better than the single drugs in reducing the APP and BACE1 levels and increasing AMPKα phosphorylation and cell autophagy, which might be the underlying mechanism of the synergic effects. Taken together, the result of this study reveal the synergic effects and potential underlying mechanisms of the combined berberine and curcumin treatment in improving the symptoms of AD in mice. This study sheds light on a new strategy for exploring new phytotherapies for AD and also emphasizes that more research should focus on the synergic effects of herbal drugs in the future.
Collapse
Affiliation(s)
- Lin Lin
- Collaborative Innovation Center of Sichuan for Elderly Care and Health, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Cheng Li
- Department of Public Health, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Deyi Zhang
- Department of Anesthesiology, Mianyang People's Hospital, Mianyang, 621000, Sichuan, China
| | - Mingxiang Yuan
- Department of Gynaecology and Obstetrics, Mianyang People's Hospital, Mianyang, 621000, Sichuan, China
| | - Chun-Hai Chen
- Department of Occupational Health, Amy Medical University, Chongqing, 400038, China.
| | - Maoquan Li
- Affiliated Traditional Chinese Medicine Hospital of Chengdu Medical College, Chengdu, 610300, Sichuan, China. .,Chengdu Qingbaijiang District Traditional Chinese Medicine Hospital, Chengdu, 610300, Sichuan, China. .,Department of Public Health, Chengdu Medical College, Chengdu, 610500, Sichuan, China.
| |
Collapse
|