1
|
Shi W, Xu W, Song L, Zeng Q, Qi G, Qin Y, Li Z, Liu X, Jiao Z, Zhao Y, Liu N, Lu H. A tumor-conditional IL-15 safely synergizes with immunotherapy to enhance antitumor immune responses. Mol Ther 2024:S1525-0016(24)00681-6. [PMID: 39489922 DOI: 10.1016/j.ymthe.2024.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/20/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024] Open
Abstract
It is a challenge to invigorate tumor-infiltrating lymphocytes without causing immune-related adverse events, which also stands as a primary factor contributing to resistance against cancer immunotherapies. Interleukin (IL)-15 can potently promote expansion and activation of T cells, but its clinical use has been limited by dose-limiting toxicities. In this study, we develop a tumor-conditional IL-15 (pro-IL-15), which masks IL-15 with steric hindrance caused by Fc fragment and IL-15Rα-sushi domain. Upon reaching the tumor site, it can be cleaved by tumor-associated proteases to release an IL-15 superagonist, resulting in potent antitumor activities. Systemic delivery of pro-IL-15 demonstrates significantly reduced toxicity but uncompromised antitumor efficacy. Pro-IL-15 can yield better effectors and vitalize terminally exhausted CD8+ T cells to overcome checkpoint blockade resistance. Moreover, pro-IL-15 promotes chemotaxis and activation of adoptive T cells, leading to eradication of advanced solid tumors and durable cures. Furthermore, pro-IL-15 shows promise for synergizing with other immunotherapies like IL-12 and oncolytic virus by improving the CD8/Treg ratio and interferon-γ levels, resulting in substantial regression of both local and metastatic cold tumors. Collectively, our results suggest that pro-IL-15 represents a compelling strategy for overcoming resistance to current immunotherapies while avoiding toxicities.
Collapse
Affiliation(s)
- Wenqiang Shi
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Shanghai Frontiers Science Center for Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wei Xu
- Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai 200336, China
| | - Luyao Song
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Shanghai Frontiers Science Center for Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qiongya Zeng
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Shanghai Frontiers Science Center for Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Gen Qi
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Shanghai Frontiers Science Center for Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ying Qin
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Shanghai Frontiers Science Center for Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhikun Li
- Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai 200336, China
| | - Xianglei Liu
- National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, China
| | - Zheng Jiao
- Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 241 Huaihai West Road, Shanghai 200030, China
| | - Yonggang Zhao
- Suzhou HKeyBio Company Ltd, 218 Xinghu Street, Suzhou 215004, China
| | - Nan Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| | - Huili Lu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Shanghai Frontiers Science Center for Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Chongqing Research Institute, Shanghai Jiao Tong University, Chongqing 401135, China.
| |
Collapse
|
2
|
Chen P, Li S, Nagaoka K, Kakimi K, Kataoka K, Cabral H. Nanoenabled IL-15 Superagonist via Conditionally Stabilized Protein-Protein Interactions Eradicates Solid Tumors by Precise Immunomodulation. J Am Chem Soc 2024. [PMID: 39356776 DOI: 10.1021/jacs.4c08327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Protein complexes are crucial structures that control many biological processes. Harnessing these structures could be valuable for therapeutic therapy. However, their instability and short lifespans need to be addressed for effective use. Here, we propose an innovative approach based on a functional polymeric cloak that coordinately anchors different domains of protein complexes and assembles them into a stabilized nanoformulation. As the polymer-protein association in the cloak is pH sensitive, the nanoformulation also allows targeting the release of the protein complexes to the acidic microenvironment of tumors for aiding their therapeutic performance. Building on this strategy, we developed an IL-15 nanosuperagonist (Nano-SA) by encapsulating the interleukin-15 (IL-15)/IL-15 Receptor α (IL-15Rα) complex (IL-15cx) for fostering synergistic transpresentation in tumors. Upon intravenous administration, Nano-SA stably circulated in the bloodstream, safeguarding the integrity of IL-15cx until reaching the tumor site, where it selectively released the active complex. Thus, Nano-SA significantly amplified the antitumor immune signals while diminishing systemic off-target effects. In murine colon cancer models, Nano-SA achieved potent immunotherapeutic effects, eradicating tumors without adverse side effects. These findings highlight the transformative potential of nanotechnology for advancing protein complex-based therapies.
Collapse
Affiliation(s)
- Pengwen Chen
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shangwei Li
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Koji Nagaoka
- Department of Immunotherapeutics, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kazuhiro Kakimi
- Department of Immunotherapeutics, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
3
|
Ye J, Liu Q, He Y, Song Z, Lin B, Hu Z, Hu J, Ning Y, Cai C, Li Y. Combined therapy of CAR-IL-15/IL-15Rα-T cells and GLIPR1 knockdown in cancer cells enhanced anti-tumor effect against gastric cancer. J Transl Med 2024; 22:171. [PMID: 38368374 PMCID: PMC10874561 DOI: 10.1186/s12967-024-04982-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/12/2024] [Indexed: 02/19/2024] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR) T cell therapy has shown remarkable responses in hematological malignancies with several approved products, but not in solid tumors. Patients suffer from limited response and tumor relapse due to low efficacy of CAR-T cells in the complicated and immunosuppressive tumor microenvironment. This clinical challenge has called for better CAR designs and combined strategies to improve CAR-T cell therapy against tumor changes. METHODS In this study, IL-15/IL-15Rα was inserted into the extracellular region of CAR targeting mesothelin. In-vitro cytotoxicity and cytokine production were detected by bioluminescence-based killing and ELISA respectively. In-vivo xenograft mice model was used to evaluate the anti-tumor effect of CAR-T cells. RNA-sequencing and online database analysis were used to identify new targets in residual gastric cancer cells after cytotoxicity assay. CAR-T cell functions were detected in vitro and in vivo after GLI Pathogenesis Related 1 (GLIPR1) knockdown in gastric cancer cells. Cell proliferation and migration of gastric cancer cells were detected by CCK-8 and scratch assay respectively after GLIPR1 were overexpressed or down-regulated. RESULTS CAR-T cells constructed with IL-15/IL-15Rα (CAR-ss-T) showed significantly improved CAR-T cell expansion, cytokine production and cytotoxicity, and resulted in superior tumor control compared to conventional CAR-T cells in gastric cancer. GLIPR1 was up-regulated after CAR-T treatment and survival was decreased in gastric cancer patients with high GLIPR1 expression. Overexpression of GLIPR1 inhibited cytotoxicity of conventional CAR-T but not CAR-ss-T cells. CAR-T treatment combined with GLIPR1 knockdown increased anti-tumor efficacy in vitro and in vivo. CONCLUSIONS Our data demonstrated for the first time that this CAR structure design combined with GLIPR1 knockdown in gastric cancer improved CAR-T cell-mediated anti-tumor response.
Collapse
Affiliation(s)
- Jianbin Ye
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Qiaoyuan Liu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Yunxuan He
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Zhenkun Song
- Shenzhen Beike Biotechnology Co., Ltd., Shenzhen, 518000, Guangdong, People's Republic of China
| | - Bao Lin
- Shenzhen Beike Biotechnology Co., Ltd., Shenzhen, 518000, Guangdong, People's Republic of China
| | - Zhiwei Hu
- Shenzhen Beike Biotechnology Co., Ltd., Shenzhen, 518000, Guangdong, People's Republic of China
| | - Juanyuan Hu
- Shenzhen Beike Biotechnology Co., Ltd., Shenzhen, 518000, Guangdong, People's Republic of China
| | - Yunshan Ning
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.
| | - Cheguo Cai
- Shenzhen Beike Biotechnology Co., Ltd., Shenzhen, 518000, Guangdong, People's Republic of China.
| | - Yan Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.
| |
Collapse
|
4
|
Lou X, Duan S, Li M, Yuan Y, Chen S, Wang Z, Wang Z, Sun L, Qian F. IL-36α inhibits melanoma by inducing pro-inflammatory polarization of macrophages. Cancer Immunol Immunother 2023; 72:3045-3061. [PMID: 37318520 PMCID: PMC10992341 DOI: 10.1007/s00262-023-03477-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/02/2023] [Indexed: 06/16/2023]
Abstract
Interleukin-36α (IL-36α) is essential for various inflammatory conditions, such as psoriasis and rheumatoid arthritis, whereas its role in tumor immunity is unclear. In this study, it was demonstrated that IL-36α could activate the NF-κB and MAPK signaling pathways in macrophages, leading to the expression of IL-1β, IL-6, TNF-α, CXCL1, CXCL2, CXCL3, CXCL5 and iNOS. Importantly, IL-36α has significant antitumor effects, altering the tumor microenvironment and promoting the infiltration of MHC IIhigh macrophages and CD8+ T cells while decreasing the levels of monocyte myeloid-derived suppressor cells, CD4+ T cells and regulatory T cells. This ultimately results in the inhibition of tumor growth and migration. Furthermore, IL-36α synergized with the PD-L1 antibody increased the immune cells infiltration and enhanced the anti-tumor effect of the PD-L1 antibody on melanoma. Collectively, this study reveals a new role for IL-36α in promoting anti-tumor immune responses in macrophages and suggests its potential for cancer immunotherapy.
Collapse
Affiliation(s)
- Xinyi Lou
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Shixin Duan
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Mengkai Li
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Yao Yuan
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Shiyi Chen
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Zhiming Wang
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Zishu Wang
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, Bengbu, Anhui, 233004, People's Republic of China
| | - Lei Sun
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China.
| | - Feng Qian
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China.
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, Bengbu, Anhui, 233004, People's Republic of China.
| |
Collapse
|
5
|
Lee J, Lee K, Bae H, Lee K, Lee S, Ma J, Jo K, Kim I, Jee B, Kang M, Im SJ. IL-15 promotes self-renewal of progenitor exhausted CD8 T cells during persistent antigenic stimulation. Front Immunol 2023; 14:1117092. [PMID: 37409128 PMCID: PMC10319055 DOI: 10.3389/fimmu.2023.1117092] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 06/05/2023] [Indexed: 07/07/2023] Open
Abstract
In chronic infections and cancer, exhausted CD8 T cells exhibit heterogeneous subpopulations. TCF1+PD-1+ progenitor exhausted CD8 T cells (Tpex) can self-renew and give rise to Tim-3+PD-1+ terminally differentiated CD8 T cells that retain their effector functions. Tpex cells are thus essential to maintaining a pool of antigen-specific CD8 T cells during persistent antigenic stimulation, and only they respond to PD-1-targeted therapy. Despite their potential as a crucial therapeutic target for immune interventions, the mechanisms controlling the maintenance of virus-specific Tpex cells remain to be determined. We observed approximately 10-fold fewer Tpex cells in the spleens of mice chronically infected with lymphocytic choriomeningitis virus (LCMV) one-year post-infection (p.i.) than at three months p.i. Similar to memory CD8 T cells, Tpex cells have been found to undergo self-renewal in the lymphoid organs, prominently the bone marrow, during chronic LCMV infection. Furthermore, ex vivo treatment with IL-15 preferentially induced the proliferation of Tpex cells rather than the terminally differentiated subsets. Interestingly, single-cell RNA sequencing analysis of LCMV-specific exhausted CD8 T cells after ex vivo IL-15 treatment compared with those before treatment revealed increased expression of ribosome-related genes and decreased expression of genes associated with the TCR signaling pathway and apoptosis in both Tpex and Ttex subsets. The exogenous administration of IL-15 to chronically LCMV-infected mice also significantly increased self-renewal of Tpex cells in the spleen and bone marrow. In addition, we assessed the responsiveness of CD8 tumor-infiltrating lymphocytes (TILs) from renal cell carcinoma patients to IL-15. Similar to the data we obtained from chronic viral infection in mice, the expansion of the Tpex subset of PD-1+ CD8 TILs upon ex vivo IL-15 treatment was significantly higher than that of the terminally differentiated subset. These results show that IL-15 could promote self-renewal of Tpex cells, which has important therapeutic implications.
Collapse
Affiliation(s)
- Junghwa Lee
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Kyungmin Lee
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Hyeonjin Bae
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Kunhee Lee
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Solhwi Lee
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Junhui Ma
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Kyungjo Jo
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Ijun Kim
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - ByulA Jee
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Minyong Kang
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Se Jin Im
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
6
|
Shi W, Lv L, Liu N, Wang H, Wang Y, Zhu W, Liu Z, Zhu J, Lu H. A novel anti-PD-L1/IL-15 immunocytokine overcomes resistance to PD-L1 blockade and elicits potent antitumor immunity. Mol Ther 2023; 31:66-77. [PMID: 36045584 PMCID: PMC9840182 DOI: 10.1016/j.ymthe.2022.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 08/08/2022] [Accepted: 08/25/2022] [Indexed: 01/28/2023] Open
Abstract
Despite the demonstrated immense potential of immune checkpoint inhibitors in various types of cancers, only a minority of patients respond to these therapies. Immunocytokines designed to deliver an immune-activating cytokine directly to the immunosuppressive tumor microenvironment (TME) and block the immune checkpoint simultaneously may provide a strategic advantage over the combination of two single agents. To increase the response rate to checkpoint blockade, in this study, we developed a novel immunocytokine (LH01) composed of the antibody against programmed death-ligand 1 (PD-L1) fused to interleukin (IL)-15 receptor alpha-sushi domain/IL-15 complex. We demonstrate that LH01 efficiently binds mouse or human PD-L1 and maintains IL-15 stimulatory activity. In syngeneic mouse models, LH01 showed improved antitumor efficacy and safety versus anti-PD-L1 plus LH02 (Fc-sushi-IL15) combination and overcame resistance to anti-PD-L1 treatment. Mechanistically, the dual anti-immunosuppressive function of LH01 activated both the innate and adaptive immune responses and induced a favorable and immunostimulatory TME. Furthermore, combination therapy with LH01 and bevacizumab exerts synergistic antitumor effects in an HT29 colorectal xenograft model. Collectively, our results provide supporting evidence that fusion of anti-PD-L1 and IL-15 might be a potent strategy to treat patients with cold tumors or resistance to checkpoint blockade.
Collapse
Affiliation(s)
- Wenqiang Shi
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Liangyin Lv
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Nan Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Hui Wang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yang Wang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wen Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zexin Liu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jianwei Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Huili Lu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
7
|
Gross SM, Dane MA, Smith RL, Devlin KL, McLean IC, Derrick DS, Mills CE, Subramanian K, London AB, Torre D, Evangelista JE, Clarke DJB, Xie Z, Erdem C, Lyons N, Natoli T, Pessa S, Lu X, Mullahoo J, Li J, Adam M, Wassie B, Liu M, Kilburn DF, Liby TA, Bucher E, Sanchez-Aguila C, Daily K, Omberg L, Wang Y, Jacobson C, Yapp C, Chung M, Vidovic D, Lu Y, Schurer S, Lee A, Pillai A, Subramanian A, Papanastasiou M, Fraenkel E, Feiler HS, Mills GB, Jaffe JD, Ma’ayan A, Birtwistle MR, Sorger PK, Korkola JE, Gray JW, Heiser LM. A multi-omic analysis of MCF10A cells provides a resource for integrative assessment of ligand-mediated molecular and phenotypic responses. Commun Biol 2022; 5:1066. [PMID: 36207580 PMCID: PMC9546880 DOI: 10.1038/s42003-022-03975-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/12/2022] [Indexed: 02/01/2023] Open
Abstract
The phenotype of a cell and its underlying molecular state is strongly influenced by extracellular signals, including growth factors, hormones, and extracellular matrix proteins. While these signals are normally tightly controlled, their dysregulation leads to phenotypic and molecular states associated with diverse diseases. To develop a detailed understanding of the linkage between molecular and phenotypic changes, we generated a comprehensive dataset that catalogs the transcriptional, proteomic, epigenomic and phenotypic responses of MCF10A mammary epithelial cells after exposure to the ligands EGF, HGF, OSM, IFNG, TGFB and BMP2. Systematic assessment of the molecular and cellular phenotypes induced by these ligands comprise the LINCS Microenvironment (ME) perturbation dataset, which has been curated and made publicly available for community-wide analysis and development of novel computational methods ( synapse.org/LINCS_MCF10A ). In illustrative analyses, we demonstrate how this dataset can be used to discover functionally related molecular features linked to specific cellular phenotypes. Beyond these analyses, this dataset will serve as a resource for the broader scientific community to mine for biological insights, to compare signals carried across distinct molecular modalities, and to develop new computational methods for integrative data analysis.
Collapse
Affiliation(s)
- Sean M. Gross
- grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, OHSU, Portland, OR USA
| | - Mark A. Dane
- grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, OHSU, Portland, OR USA
| | - Rebecca L. Smith
- grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, OHSU, Portland, OR USA
| | - Kaylyn L. Devlin
- grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, OHSU, Portland, OR USA
| | - Ian C. McLean
- grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, OHSU, Portland, OR USA
| | - Daniel S. Derrick
- grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, OHSU, Portland, OR USA
| | - Caitlin E. Mills
- grid.38142.3c000000041936754XLaboratory of Systems Pharmacology, Department of Systems Biology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA USA
| | - Kartik Subramanian
- grid.38142.3c000000041936754XLaboratory of Systems Pharmacology, Department of Systems Biology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA USA
| | - Alexandra B. London
- grid.59734.3c0000 0001 0670 2351Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Denis Torre
- grid.59734.3c0000 0001 0670 2351Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - John Erol Evangelista
- grid.59734.3c0000 0001 0670 2351Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Daniel J. B. Clarke
- grid.59734.3c0000 0001 0670 2351Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Zhuorui Xie
- grid.59734.3c0000 0001 0670 2351Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Cemal Erdem
- grid.26090.3d0000 0001 0665 0280Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC USA
| | - Nicholas Lyons
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Ted Natoli
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Sarah Pessa
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Xiaodong Lu
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - James Mullahoo
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Jonathan Li
- grid.116068.80000 0001 2341 2786Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Miriam Adam
- grid.116068.80000 0001 2341 2786Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Brook Wassie
- grid.116068.80000 0001 2341 2786Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Moqing Liu
- grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, OHSU, Portland, OR USA
| | - David F. Kilburn
- grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, OHSU, Portland, OR USA
| | - Tiera A. Liby
- grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, OHSU, Portland, OR USA
| | - Elmar Bucher
- grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, OHSU, Portland, OR USA
| | - Crystal Sanchez-Aguila
- grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, OHSU, Portland, OR USA
| | - Kenneth Daily
- grid.430406.50000 0004 6023 5303Sage Bionetworks, Seattle, WA USA
| | - Larsson Omberg
- grid.430406.50000 0004 6023 5303Sage Bionetworks, Seattle, WA USA
| | - Yunguan Wang
- grid.38142.3c000000041936754XLaboratory of Systems Pharmacology, Department of Systems Biology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA USA
| | - Connor Jacobson
- grid.38142.3c000000041936754XLaboratory of Systems Pharmacology, Department of Systems Biology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA USA
| | - Clarence Yapp
- grid.38142.3c000000041936754XLaboratory of Systems Pharmacology, Department of Systems Biology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA USA
| | - Mirra Chung
- grid.38142.3c000000041936754XLaboratory of Systems Pharmacology, Department of Systems Biology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA USA
| | - Dusica Vidovic
- grid.26790.3a0000 0004 1936 8606Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136 USA ,grid.26790.3a0000 0004 1936 8606Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136 USA ,grid.26790.3a0000 0004 1936 8606Institute for Data Science & Computing, University of Miami, Miami, FL 33136 USA
| | - Yiling Lu
- grid.240145.60000 0001 2291 4776Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Stephan Schurer
- grid.26790.3a0000 0004 1936 8606Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136 USA ,grid.26790.3a0000 0004 1936 8606Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136 USA ,grid.26790.3a0000 0004 1936 8606Institute for Data Science & Computing, University of Miami, Miami, FL 33136 USA
| | - Albert Lee
- grid.94365.3d0000 0001 2297 5165Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, USA
| | - Ajay Pillai
- grid.94365.3d0000 0001 2297 5165Human Genome Research Institute, National Institutes of Health, Bethesda, USA
| | - Aravind Subramanian
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Malvina Papanastasiou
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Ernest Fraenkel
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA ,grid.116068.80000 0001 2341 2786Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Heidi S. Feiler
- grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, OHSU, Portland, OR USA ,grid.5288.70000 0000 9758 5690Knight Cancer Institute, OHSU, Portland, OR USA
| | - Gordon B. Mills
- grid.5288.70000 0000 9758 5690Knight Cancer Institute, OHSU, Portland, OR USA ,grid.5288.70000 0000 9758 5690Division of Oncological Sciences, OHSU, Portland, OR USA
| | - Jake D. Jaffe
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Avi Ma’ayan
- grid.59734.3c0000 0001 0670 2351Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Marc R. Birtwistle
- grid.26090.3d0000 0001 0665 0280Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC USA
| | - Peter K. Sorger
- grid.38142.3c000000041936754XLaboratory of Systems Pharmacology, Department of Systems Biology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA USA
| | - James E. Korkola
- grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, OHSU, Portland, OR USA ,grid.5288.70000 0000 9758 5690Knight Cancer Institute, OHSU, Portland, OR USA
| | - Joe W. Gray
- grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, OHSU, Portland, OR USA ,grid.5288.70000 0000 9758 5690Knight Cancer Institute, OHSU, Portland, OR USA
| | - Laura M. Heiser
- grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, OHSU, Portland, OR USA ,grid.5288.70000 0000 9758 5690Knight Cancer Institute, OHSU, Portland, OR USA
| |
Collapse
|
8
|
A homodimeric IL-15 superagonist F4RLI with easy preparation, improved half-life, and potent antitumor activities. Appl Microbiol Biotechnol 2022; 106:7039-7050. [PMID: 36184689 DOI: 10.1007/s00253-022-12209-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/28/2022] [Accepted: 09/23/2022] [Indexed: 11/02/2022]
Abstract
Interleukin-15 (IL-15) is a promising candidate for cancer immunotherapy due to its potent immune-activating effects. There are several IL-15 molecules currently in clinical trials but facing shortages of poor half-life, circulation instability, or complicated production and quality control processes. The aim of this study is to design a novel IL-15 superagonist to set out the above difficulties, and we constructed F4RLI consisting of the GS-linker spaced IgG4 Fc fragment, soluble IL-15 Rα (sIL-15Rα), and IL-15(N72D). Using a single plasmid transient transfection in HEK293E cells, the matured F4RLI was secreted in the form of homodimer and got purified by an easy step of protein A affinity chromatography. The F4RLI product can significantly stimulate the proliferation of human CD3+CD8+ T cells and NK cells in vitro. Meanwhile, F4RLI greatly extended the half-life and prolonged the exposure of IL-15 in mice nearly by 28- and 200-fold, respectively, in comparison with that of the IL-15 monomer. In vivo, F4RLI vastly expanded mouse splenic CD8+ T lymphocytes, illustrating its potential in tumor immunotherapy. Further studies showed that the combination of F4RLI with the immune checkpoint blocker atezolizumab played a synergistic effect in treating MC38 mouse tumor by increasing the percentage of CD8+ T cells in tumor tissue. Moreover, the combination therapy of F4RLI with the angiogenesis inhibitor bevacizumab resulted in significant tumor growth suppression in a xenograft human HT-29 mouse model. Overall, our results demonstrate a homodimeric IL-15 superagonist F4RLI with advances in manufacturing processes and biopharmaceutical applications for cancer immunotherapy. KEY POINTS: • The homodimeric structure of F4RLI facilitates its easy production processes and quality control. • The fusion with Fc and sIL-15Rα extends the plasma half-life of IL-15 by about 28-fold. • F4RLI can play synergistic antitumor activity with the PD-1/PD-L1 checkpoint inhibitor or angiogenesis inhibitor.
Collapse
|
9
|
Holder PG, Lim SA, Huang CS, Sharma P, Dagdas YS, Bulutoglu B, Sockolosky JT. Engineering interferons and interleukins for cancer immunotherapy. Adv Drug Deliv Rev 2022; 182:114112. [PMID: 35085624 DOI: 10.1016/j.addr.2022.114112] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 02/08/2023]
Abstract
Cytokines are a class of potent immunoregulatory proteins that are secreted in response to various stimuli and act locally to regulate many aspects of human physiology and disease. Cytokines play important roles in cancer initiation, progression, and elimination, and thus, there is a long clinical history associated with the use of recombinant cytokines to treat cancer. However, the use of cytokines as therapeutics has been limited by cytokine pleiotropy, complex biology, poor drug-like properties, and severe dose-limiting toxicities. Nevertheless, cytokines are crucial mediators of innate and adaptive antitumor immunity and have the potential to enhance immunotherapeutic approaches to treat cancer. Development of immune checkpoint inhibitors and combination immunotherapies has reinvigorated interest in cytokines as therapeutics, and a variety of engineering approaches are emerging to improve the safety and effectiveness of cytokine immunotherapy. In this review we highlight recent advances in cytokine biology and engineering for cancer immunotherapy.
Collapse
|
10
|
Smith PL, Piadel K, Dalgleish AG. Directing T-Cell Immune Responses for Cancer Vaccination and Immunotherapy. Vaccines (Basel) 2021; 9:1392. [PMID: 34960140 PMCID: PMC8708201 DOI: 10.3390/vaccines9121392] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022] Open
Abstract
Cancer vaccination and immunotherapy revolutionised the treatment of cancer, a result of decades of research into the immune system in health and disease. However, despite recent breakthroughs in treating otherwise terminal cancer, only a minority of patients respond to cancer immunotherapy and some cancers are largely refractive to immunotherapy treatment. This is due to numerous issues intrinsic to the tumour, its microenvironment, or the immune system. CD4+ and CD8+ αβ T-cells emerged as the primary effector cells of the anti-tumour immune response but their function in cancer patients is often compromised. This review details the mechanisms by which T-cell responses are hindered in the setting of cancer and refractive to immunotherapy, and details many of the approaches under investigation to direct T-cell function and improve the efficacy of cancer vaccination and immunotherapy.
Collapse
Affiliation(s)
- Peter Lawrence Smith
- Institute of Infection and Immunity, St. Georges University of London, London SW17 0RE, UK; (K.P.); (A.G.D.)
| | | | | |
Collapse
|
11
|
Xu H, Shi M, Shao C, Li H, Wu J, Yu Y, Fang F, Guo Y, Xiao W. Development of IL-15/IL-15Rα sushi domain-IgG4 Fc complexes in Pichia pastoris with potent activities and prolonged half-lives. Microb Cell Fact 2021; 20:115. [PMID: 34107983 PMCID: PMC8190845 DOI: 10.1186/s12934-021-01605-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 05/31/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Interleukin-15 (IL-15) is a critical cytokine for the development, proliferation, and function of natural killer (NK) cells, NKT cells, and CD8+ memory T cells and has become one of the most promising protein molecules for the treatment of cancer and viral diseases. However, there are several limitations in applying IL-15 in therapy, such as its low yield in vitro, limited potency, and short half-life in vivo. To date, there are several recombinant IL-15 agonists based on configurational modifications that are being pursued in the treatment of cancer, such as ALT-803, which are mainly produced from mammalian cells. RESULTS In this study, we designed two different forms of the IL-15 complex, which were formed by the noncovalent assembly of IL-15 with dimeric or monomeric sushi domain of IL-15 receptor α (SuIL-15Rα)-IgG4 Fc fusion protein and designated IL-15/SuIL-15Rα-dFc and IL-15/SuIL-15Rα-mFc, respectively. The two IL-15 complexes were expressed in Pichia pastoris (P. pastoris), and their activities and half-lives were evaluated and compared. Pharmacokinetic analysis showed that IL-15/SuIL-15Rα-dFc had a half-life of 14.26 h while IL-15/SuIL-15Rα-mFc had a half-life of 9.16 h in mice, which were much longer than the 0.7-h half-life of commercial recombinant human IL-15 (rhIL-15). Treatment of mice with intravenous injection of the two IL-15 complexes resulted in significant increases in NK cells, NKT cells, and memory CD8+ T cells, which were not observed after rhIL-15 treatment. Treatment of human peripheral blood mononuclear cells (PBMCs) from healthy donors with the two IL-15 complexes yielded enhanced NK and CD8+ T cell activation and proliferation, which was comparable to the effect of rhIL-15. CONCLUSIONS These findings indicate that the IL-15/SuIL-15Rα-dFc and IL-15/SuIL-15Rα-mFc produced in P. pastoris exhibit potent activities and prolonged half-lives and may serve as superagonists for immunotherapy in further research and applications.
Collapse
Affiliation(s)
- Huan Xu
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China.,Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China.,Institute of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China.,Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Mingyang Shi
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China.,Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China.,Institute of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China.,Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Changsheng Shao
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China.,Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China.,Institute of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China.,Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Hao Li
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China.,Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China.,Institute of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China.,Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Jing Wu
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China.,Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China.,Institute of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China.,Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Yin Yu
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China.,Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China.,Institute of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China.,Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Fang Fang
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China.,Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China.,Institute of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China.,Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Yugang Guo
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China. .,Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China. .,Institute of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China. .,Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, Anhui, China.
| | - Weihua Xiao
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China. .,Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China. .,Institute of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China. .,Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, Anhui, China.
| |
Collapse
|
12
|
Guo S, Smeltz RB, Nanajian A, Heller R. IL-15/IL-15Rα Heterodimeric Complex as Cancer Immunotherapy in Murine Breast Cancer Models. Front Immunol 2021; 11:614667. [PMID: 33628206 PMCID: PMC7897681 DOI: 10.3389/fimmu.2020.614667] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/15/2020] [Indexed: 01/22/2023] Open
Abstract
Interleukin 15 (IL-15) has been evaluated as a potential treatment for solid tumors in clinical trials, but the effectiveness of systemic IL-15 administration as a monotherapy has not been realized. IL-15 receptor alpha (IL-15Rα) can stabilize IL-15 and enhance its bioactivity. The goal of this study was to examine the activity of IL-15/IL-15Rα complex (IL-15cx) to CD8+ T cells and evaluate its potential efficacy in murine breast cancer models. The antitumor efficacy was studied in mouse mammary carcinoma models (Her2/neu transgenic and 4T1-luc mammary cancers) treated with systemic recombinant protein with/without the depletion of myeloid-derived suppressor cells or intra-tumoral gene electrotransfer (GET). IL-15cx shows superior in vivo bioactivity to expand CD8 T cells in comparison to an equimolar single chain IL-15. T-bet is partially involved in CD8 T cell expansion ex vivo and in vivo due to IL-15 or IL-15cx. Intraperitoneal administration of IL-15cx results in a moderate inhibition of breast cancer growth that is associated with an increase in the frequency of cytotoxic CD8 T cells and the improvement of their function. The depletion of myeloid-derived suppressor cells (MDSCs) has no impact on mouse breast cancer growth. IL-15cx treatment diminishes MDSCs in murine tumors. However, it also antagonizes the effects of anti-Gr-1 depleting antibodies. Intratumoral GET with plasmid IL-15/IL-15Rα leads to a long-term survival benefit in 4T1 mammary carcinoma model. An early increase of local cytotoxic cells correlates with GET treatment and an increase of long-term memory T cells results from animals with complete tumor regression. Systemic and local administration of IL-15cx shows two distinct therapeutic responses, a moderate tumor growth inhibition or heterogeneous tumor regressions with survival improvement. Further studies are warranted to improve the efficacy of IL-15cx as an immunotherapy for breast cancer.
Collapse
Affiliation(s)
- Siqi Guo
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States.,Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, VA, United States
| | - Ronald B Smeltz
- Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, VA, United States
| | - Anthony Nanajian
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States
| | - Richard Heller
- Department of Medical Engineering, University of South Florida, Tampa, FL, United States
| |
Collapse
|
13
|
Hangasky JA, Waldmann TA, Santi DV. Interleukin 15 Pharmacokinetics and Consumption by a Dynamic Cytokine Sink. Front Immunol 2020; 11:1813. [PMID: 32903632 PMCID: PMC7438588 DOI: 10.3389/fimmu.2020.01813] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
Interleukin-15 (IL-15) is crucial for the proliferation and survival of NK and CD8+ T memory cells, and of significant interest in immuno-oncology. Immune cell expansion requires continuous IL-15 exposure above a threshold concentration for an extended period. However, the short t1/2 of IL-15 makes this impossible to achieve after a single injection without a high Cmax and toxicities. The most effective way to deliver IL-15 is continuous intra-venous infusion, but this administration mode is impractical. Efforts have been devoted to developing IL-15 agonists which after a single injection maintain the cytokine in a narrow therapeutic window for a long period. Enigmatically, although the half-life extension technologies used often extend the half-life of a protein to 1 or more weeks, the modified IL-15 agonists studied usually have systemic elimination half-lives of only a few hours and rarely much longer than 1 day. These short half-lives—common to all circulating IL-15 agonists thus far reported—can be explained by a dynamic increase in clearance of the agonists that accompanies target immune cell proliferation. What is needed is an IL-15 agonist that is as effective as continuous intravenous infusion, but with the convenience and acceptance of single injections at 1-week or longer intervals.
Collapse
Affiliation(s)
| | - Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, United States
| | | |
Collapse
|
14
|
Waldmann TA, Miljkovic MD, Conlon KC. Interleukin-15 (dys)regulation of lymphoid homeostasis: Implications for therapy of autoimmunity and cancer. J Exp Med 2020; 217:132622. [PMID: 31821442 PMCID: PMC7037239 DOI: 10.1084/jem.20191062] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/30/2019] [Accepted: 10/30/2019] [Indexed: 12/15/2022] Open
Abstract
IL-15 supports NK, NK-T, γδ, ILC1, and memory CD8 T cell function, and dysregulated IL-15 is associated with many autoimmune diseases. Striking IL-15–driven increases in NK and CD8 T cells in patients highlight the potential for combination therapy of cancers. IL-15, a pleiotropic cytokine, stimulates generation of NK, NK-T, γδ, ILC1, and memory CD8 T cells. IL-15 disorders play pathogenetic roles in organ-specific autoimmune diseases including celiac disease. Diverse approaches are developed to block IL-15 action. IL-15 administered to patients with malignancy yielded dramatic increases in NK numbers and modest increases in CD8 T cells. Due to immunological checkpoints, to achieve major cancer therapeutic efficacy, IL-15 will be used in combination therapy, and combination trials with checkpoint inhibitors, with anti-CD40 to yield tumor-specific CD8 T cells, and with anticancer monoclonal antibodies to increase ADCC and antitumor efficacy, have been initiated.
Collapse
Affiliation(s)
- Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Milos D Miljkovic
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Kevin C Conlon
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
15
|
Waldmann TA, Dubois S, Miljkovic MD, Conlon KC. IL-15 in the Combination Immunotherapy of Cancer. Front Immunol 2020; 11:868. [PMID: 32508818 PMCID: PMC7248178 DOI: 10.3389/fimmu.2020.00868] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/15/2020] [Indexed: 12/19/2022] Open
Abstract
We completed clinical trials of rhIL-15 by bolus, subcutaneous, and continuous intravenous infusions (CIV). IL-15 administered by CIV at 2 mcg/kg/day yielded a 38-fold increase in 10- day number of circulating NK cells, a 358-fold increase in CD56bright NK cells and a 5.8-fold increase in CD8 T cells. However, IL-15 preparations administered as monotherapy were ineffective, due to actions of immunological checkpoints and due to the lack of tumor specific targeting by NK cells. To circumvent checkpoints, trials of IL-15 in combination with other anticancer agents were initiated. Tumor-bearing mice receiving IL-15 with antibodies to CTLA-4 and PD-L1 manifested marked prolongation of survival compared to mice receiving IL-15 with either agent alone. In translation, a phase I trial was initiated involving IL-15 (rhIL-15), nivolumab and ipilimumab in patients with malignancy (NCT03388632). In rhesus macaques CIV IL-15 at 20 μg/kg/day for 10 days led to an 80-fold increase in number of circulating effector memory CD8 T cells. However, administration of γc cytokines such as IL-15 led to paralysis/depression of CD4 T-cells that was mediated through transient expression of SOCS3 that inhibited the STAT5 signaling pathway. This lost CD4 helper role could be restored alternatively by CD40 agonists. In the TRAMP-C2 prostate tumor model the combination of IL-15 with agonistic anti-CD40 produced additive effects in terms of numbers of TRAMP-C2 tumor specific Spas/SCNC/9H tetramer positive CD8 T cells expressed and tumor responses. A clinical trial is being initiated for patients with cancer using an intralesional anti-CD40 in combination with CIV rhIL-15. To translate IL-15-mediated increases in NK cells, we investigated combination therapy of IL-15 with anticancer monoclonal antibodies including rituximab in mouse models of EL-4 lymphoma transfected with human CD20 and with alemtuzumab (CAMPATH-1H) in a xenograft model of adult T cell leukemia (ATL). IL-15 enhanced the ADCC and therapeutic efficacy of both antibodies. These results provided the scientific basis for trials of IL-15 combined with alemtuzumab (anti-CD52) for patients with ATL (NCT02689453), with obinutuzumab (anti-CD20) for patients with CLL (NCT03759184), and with avelumab (anti-PD-L1) in patients with T-cell lymphoma (NCT03905135) and renal cancer (NCT04150562). In the first trial, there was elimination of circulating ATL and CLL leukemic cells in select patients.
Collapse
Affiliation(s)
- Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Sigrid Dubois
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Milos D Miljkovic
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Kevin C Conlon
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
16
|
Gao F, Zhai G, Wang H, Lu L, Xu J, Zhu J, Chen D, Lu H. Protective effects of anti-alginate monoclonal antibody against Pseudomonas aeruginosa infection of HeLa cells. Microb Pathog 2020; 145:104240. [PMID: 32360522 DOI: 10.1016/j.micpath.2020.104240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 11/25/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that is highly resistant to antibiotics, especially when it grows in biofilms. As an alternative to antibiotic intervention, antimicrobial antibody drugs have drawn attention in recent years due to their immunotherapeutic functions. In this study, we designed a monoclonal scFv-Fc-form antibody, MFb, targeting P. aeruginosa antigen alginate and investigated its function against this bacterium in vitro. MFb was generated by transient gene expression in HEK293 cells and purified by one-step protein A affinity chromatography. Experiments showed that MFb could recognize alginate specifically based on enzyme-linked immunosorbent assays. Its KD value of 8.31 nM was determined by surface plasmon resonance, demonstrating its high affinity for alginate. Further detailed studies revealed that the antibody exerted antibacterial effects by three mechanisms: 1) MFb inhibited P. aeruginosa biofilm formation with an IC50 of 0.58 μg/mL; 2) MFb reduced P. aeruginosa adhesion to HeLa cells, and successfully prevented its invasion on epithelial cells; 3) based on an in vitro macrophage phagocytosis assay, MFb could enhance the phagocytotic capacity of macrophages for P. aeruginosa in a concentration-dependent manner. Taken together, our work demonstrated that the antimicrobial monoclonal antibody MFb has a protective effect on HeLa cells, and it may be a promising novel strategy to treat P. aeruginosa infection.
Collapse
Affiliation(s)
- Fei Gao
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guanxing Zhai
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China; College of Life Sciences, Shanghai Normal University, Shanghai, 200233, China
| | - Hui Wang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lu Lu
- School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Jianrong Xu
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Jianwei Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Daijie Chen
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China; College of Life Sciences, Shanghai Normal University, Shanghai, 200233, China; School of Biotechnology, East China University of Science and Technology, Shanghai, China.
| | - Huili Lu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
17
|
Wu J, Zhao X, Sun Q, Jiang Y, Zhang W, Luo J, Li Y. Synergic effect of PD-1 blockade and endostar on the PI3K/AKT/mTOR-mediated autophagy and angiogenesis in Lewis lung carcinoma mouse model. Biomed Pharmacother 2020; 125:109746. [PMID: 32106386 DOI: 10.1016/j.biopha.2019.109746] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/24/2019] [Accepted: 11/29/2019] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Immunotherapy has been shown to be effective as a first-line treatment option for non-small cell lung cancer (NSCLC) patients. Unfortunately, it has failed to acquire an anticipant anti-tumour effect for relatively lower clinical benefit rates. It is therefore important to identify novel strategies for improving immunotherapy. Endostar is a novel recombinant human endostatin that exerts its anti-angiogenic effects via vascular endothelial growth factor (VEGF)-related signalling pathways. Anti-programmed death receptor 1 (PD-1) antibody is an immune checkpoint inhibitor that was developed to stimulate the immune system. In this study, the synergy of PD-1 blockade and endostar was assessed in a lung carcinoma mouse model. METHODS Lewis lung carcinoma (LLC)-bearing mice were randomly assigned into three groups: controls, anti-PD-1 and anti-PD-1+endostar. The levels of cytokines such as interleukin (IL)-17, transforming growth factor-β1 (TGF-β1) and interferon-γ (IFN-γ) were measured with enzyme-linked immune sorbent assay (ELISA). The expression of VEGF, CD34 and CD31 was assessed with immunohistochemistry (IHC). The proportion of mature dendritic cells (mDC) and myeloid-derived suppressor cells (MDSC) was analysed with flow cytometry. The major proteins in PI3K/AKT/mTOR and autophagy were quantified with Western blot. RESULTS Anti-PD-1 combined with endostar dramatically suppressed tumour growth in LLC mouse models. This synergistic effect resulted in decreased pro-inflammatory cytokine IL-17 and immunosuppressive factor TGF-β1 levels, increased IFN-γ secretion, reduced myeloid-derived suppressor cell (MDSC) accumulation, and reversed CD8 + T cell suppression. The expression of VEGF, CD34 and CD31 was significantly down-regulated, while tumour cell apoptosis and PI3K/AKT/mTOR-mediated autophagy was up-regulated. CONCLUSION The combination of anti-PD-1 and endostar has a remarkably synergic effect on LLC tumour growth by means of improving the tumour microenvironment and activating autophagy.
Collapse
Affiliation(s)
- Jing Wu
- Department of Pharmacy, The Second Hospital of Shandong University, Jinan, China; Key Laboratory of Chest Cancer, Shandong University,Jinan, China
| | - Xiaogang Zhao
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, China; Key Laboratory of Chest Cancer, Shandong University,Jinan, China
| | - Qifeng Sun
- Department of Thoracic Surgery, Shandong Provincial Hospital, Jinan, China
| | - Yunfeng Jiang
- Department of Thoracic Surgery, YantaiYuhuangding Hospital, Yantai, China
| | - Weiquan Zhang
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, China; Key Laboratory of Chest Cancer, Shandong University,Jinan, China
| | - Junwen Luo
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, China; Key Laboratory of Chest Cancer, Shandong University,Jinan, China
| | - Yixin Li
- Key Laboratory of Chest Cancer, Shandong University,Jinan, China; Department of Medical Imaging, The Second Hospital of Shandong University, Jinan, China.
| |
Collapse
|
18
|
Peng J, Chen J, Xie F, Bao W, Xu H, Wang H, Xu Y, Du Z. Herceptin-conjugated paclitaxel loaded PCL-PEG worm-like nanocrystal micelles for the combinatorial treatment of HER2-positive breast cancer. Biomaterials 2019; 222:119420. [PMID: 31445322 DOI: 10.1016/j.biomaterials.2019.119420] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/06/2019] [Accepted: 08/09/2019] [Indexed: 12/21/2022]
Abstract
We have constructed Herceptin-conjugated, paclitaxel (PTX) loaded, PCL-PEG worm-like nanocrystal micelles (PTX@PCL-PEG-Herceptin) for the combinatorial therapy of HER2-positive breast cancer that exploit the specific targeting of Herceptin to HER2-positive breast cancer cells. Firstly, amphiphilic PCL2000-MPEG2000 and PCL5000-PEG2000-CHO were selected as the optimized matrix to wrap PTX that self-assembled into worm-like micelles with internal nanocrystal structures (PTX@PCL-PEG). Then the aldehydes of PCL5000-PEG2000-CHO exposed on the outside surface of PTX@PCL-PEG were utilized to react with the primary amines of Herceptin and formed stable, carbon-nitrogen single linkers (-C-N-) between the antibodies and nanoparticles. This study shows PTX@PCL-PEG-Herceptin remained relatively stable in the circulation and in the tumor microenvironment, and rapidly targeted and entered into the HER2-overexpressing tumor cells while sparing normal tissues from the toxic effects. PTX@PCL-PEG-Herceptin shrank the tumors and prolonged survival time in a SKBR-3-tumor-xenograft, nude mice model more effectively than TAXOL®, PTX@PCL-PEG, Herceptin+TAXOL® and Herceptin+PTX@PCL-PEG. Mechanistic studies showed that PTX@PCL-PEG-Herceptin entered into the HER2-positive tumor cells through the caveolin-mediated pathway. The conjugated Herceptin greatly enhanced the binding ability of the nanoparticle to the targeted SKBR-3 cells. This novel strategy provides a rational and simple antibody-conjugated-nanoparticle platform for the clinical application of combinatorial anticancer treatment.
Collapse
Affiliation(s)
- Jiahui Peng
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | - Juan Chen
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | - Fang Xie
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | - Wei Bao
- Department of Gynecologic Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, PR China
| | - Hongyan Xu
- Shanghai GL Peptide LTD, 519 Ziyue Road, Shanghai, 200241, PR China
| | - Hongxia Wang
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai, 201620, PR China.
| | - Yuhong Xu
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | - Zixiu Du
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China.
| |
Collapse
|