1
|
Gao Y, Zong C, Liu H, Zhang K, Yang H, Wang Y, Li Y, Song B, Xu Y. Clinical features and associated factors of coexisting intracerebral hemorrhage in patients with cerebral small vessel disease: a cross-sectional study. Sci Rep 2024; 14:5596. [PMID: 38454101 PMCID: PMC10920749 DOI: 10.1038/s41598-024-55968-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/29/2024] [Indexed: 03/09/2024] Open
Abstract
Intracerebral hemorrhage (ICH) is generally considered to be closely related to cerebral small vessel disease (CSVD), leading to a poor prognosis. However, the coexistence of ICH in general CSVD patients and related factors remain underreported. In our cross-sectional study, we screened 414 CSVD patients from a database at the Department of Neurology, First Affiliated Hospital of Zhengzhou University (September 2018 to April 2022). Imaging biomarkers of CSVD and coexisting ICH lesion were assessed. Factors associated with coexisting ICH in CSVD were determined using multivariate logistic regression analysis. ICH was observed in 59 patients (14.3%). Multivariate logistic regression showed that previous history of ischemic stroke or transient ischemic attack (OR 5.189, 95%CI 2.572-10.467, P < 0.001), high-grade perivascular space in the basal ganglia (n > 10) (OR 2.051, 95%CI 1.044-4.027, P = 0.037) and low adjusted calcium-phosphorus product (OR 0.728 per 1 [mmol/L]2 increase, 95%CI 0.531-0.998, P = 0.049) were associated with coexisting ICH in CSVD patients. The considerable proportion of coexisting ICH and revelation of associated factors in general CSVD patients alert physicians of the potential risk of the reoccurrence of ICH, and might have a significant impact on therapeutic strategies.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Erqi District, Zhengzhou, 450052, Henan Province, China
| | - Ce Zong
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Erqi District, Zhengzhou, 450052, Henan Province, China
| | - Hongbing Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Erqi District, Zhengzhou, 450052, Henan Province, China
| | - Ke Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Erqi District, Zhengzhou, 450052, Henan Province, China
| | - Hongxun Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Erqi District, Zhengzhou, 450052, Henan Province, China
| | - Yunchao Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Erqi District, Zhengzhou, 450052, Henan Province, China
| | - Yusheng Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Erqi District, Zhengzhou, 450052, Henan Province, China
| | - Bo Song
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Erqi District, Zhengzhou, 450052, Henan Province, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Erqi District, Zhengzhou, 450052, Henan Province, China.
| |
Collapse
|
2
|
Eltayeb A, Al-Sarraj F, Alharbi M, Albiheyri R, Mattar EH, Abu Zeid IM, Bouback TA, Bamagoos A, Uversky VN, Rubio-Casillas A, Redwan EM. Intrinsic factors behind long COVID: IV. Hypothetical roles of the SARS-CoV-2 nucleocapsid protein and its liquid-liquid phase separation. J Cell Biochem 2024; 125:e30530. [PMID: 38349116 DOI: 10.1002/jcb.30530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/10/2024] [Accepted: 01/24/2024] [Indexed: 03/12/2024]
Abstract
When the SARS-CoV-2 virus infects humans, it leads to a condition called COVID-19 that has a wide spectrum of clinical manifestations, from no symptoms to acute respiratory distress syndrome. The virus initiates damage by attaching to the ACE-2 protein on the surface of endothelial cells that line the blood vessels and using these cells as hosts for replication. Reactive oxygen species levels are increased during viral replication, which leads to oxidative stress. About three-fifths (~60%) of the people who get infected with the virus eradicate it from their body after 28 days and recover their normal activity. However, a large fraction (~40%) of the people who are infected with the virus suffer from various symptoms (anosmia and/or ageusia, fatigue, cough, myalgia, cognitive impairment, insomnia, dyspnea, and tachycardia) beyond 12 weeks and are diagnosed with a syndrome called long COVID. Long-term clinical studies in a group of people who contracted SARS-CoV-2 have been contrasted with a noninfected matched group of people. A subset of infected people can be distinguished by a set of cytokine markers to have persistent, low-grade inflammation and often self-report two or more bothersome symptoms. No medication can alleviate their symptoms efficiently. Coronavirus nucleocapsid proteins have been investigated extensively as potential drug targets due to their key roles in virus replication, among which is their ability to bind their respective genomic RNAs for incorporation into emerging virions. This review highlights basic studies of the nucleocapsid protein and its ability to undergo liquid-liquid phase separation. We hypothesize that this ability of the nucleocapsid protein for phase separation may contribute to long COVID. This hypothesis unlocks new investigation angles and could potentially open novel avenues for a better understanding of long COVID and treating this condition.
Collapse
Affiliation(s)
- Ahmed Eltayeb
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Faisal Al-Sarraj
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mona Alharbi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Raed Albiheyri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Immunology Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ehab H Mattar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Isam M Abu Zeid
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Thamer A Bouback
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Atif Bamagoos
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Moscow Region, Russia
| | - Alberto Rubio-Casillas
- Autlan Regional Hospital, Health Secretariat, Autlan, Jalisco, Mexico
- Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan, Jalisco, Mexico
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
3
|
Estudillo E, López-Ornelas A, Rodríguez-Oviedo A, Gutiérrez de la Cruz N, Vargas-Hernández MA, Jiménez A. Thinking outside the black box: are the brain endothelial cells the new main target in Alzheimer's disease? Neural Regen Res 2023; 18:2592-2598. [PMID: 37449594 DOI: 10.4103/1673-5374.373672] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
The blood-brain barrier is the interface through which the brain interacts with the milieu and consists mainly of a sophisticated network of brain endothelial cells that forms blood vessels and selectively moves molecules inside and outside the brain through multiple mechanisms of transport. Although brain endothelial cell function is crucial for brain homeostasis, their role in neurodegenerative diseases has historically not been considered with the same importance as other brain cells such as microglia, astroglia, neurons, or even molecules such as amyloid beta, Tau, or alpha-synuclein. Alzheimer's disease is the most common neurodegenerative disease, and brain endothelial cell dysfunction has been reported by several groups. However, its impairment has barely been considered as a potential therapeutic target. Here we review the most recent advances in the relationship between Alzheimer's disease and brain endothelial cells commitment and analyze the possible mechanisms through which their alterations contribute to this neurodegenerative disease, highlighting their inflammatory phenotype and the possibility of an impaired secretory pattern of brain endothelial cells that could contribute to the progression of this ailment. Finally, we discuss why shall brain endothelial cells be appreciated as a therapeutic target instead of solely an obstacle for delivering treatments to the injured brain in Alzheimer's disease.
Collapse
Affiliation(s)
- Enrique Estudillo
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City, Mexico
| | - Adolfo López-Ornelas
- División de Investigación, Hospital Juárez de México; Hospital Nacional Homeopático, Hospitales Federales de Referencia, Mexico City, Mexico
| | | | - Neptali Gutiérrez de la Cruz
- Laboratorio de Morfología; Escuela Militar de Graduados de Sanidad, Secretaría de la Defensa Nacional, Batalla de Celaya, Lomas de Sotelo, Miguel Hidalgo, Mexico City, Mexico
| | - Marco Antonio Vargas-Hernández
- Escuela Militar de Graduados de Sanidad, Secretaría de la Defensa Nacional, Batalla de Celaya, Lomas de Sotelo, Miguel Hidalgo, Mexico City, Mexico
| | - Adriana Jiménez
- División de Investigación, Hospital Juárez de México, Mexico City, Mexico
| |
Collapse
|
4
|
Tanzadehpanah H, Modaghegh MHS, Mahaki H. Key biomarkers in cerebral arteriovenous malformations: Updated review. J Gene Med 2023; 25:e3559. [PMID: 37380428 DOI: 10.1002/jgm.3559] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/02/2023] [Accepted: 06/08/2023] [Indexed: 06/30/2023] Open
Abstract
The formation of vascular networks consisting of arteries, capillaries, and veins is vital in embryogenesis. It is also crucial in adulthood for the formation of a functional vasculature. Cerebral arteriovenous malformations (CAVMs) are linked with a remarkable risk of intracerebral hemorrhage because arterial blood is directly shunted into the veins before the arterial blood pressure is dissipated. The underlying mechanisms responsible for arteriovenous malformation (AVM) growth, progression, and rupture are not fully known, yet the critical role of inflammation in AVM pathogenesis has been noted. The proinflammatory cytokines are upregulated in CAVM, which stimulates overexpression of cell adhesion molecules in endothelial cells (ECs), leading to improved leukocyte recruitment. It is well-known that metalloproteinase-9 secretion by leukocytes disrupts CAVM walls resulting in rupture. Moreover, inflammation alters the angioarchitecture of CAVMs by upregulating angiogenic factors impacting the apoptosis, migration, and proliferation of ECs. A better understanding of the molecular signature of CAVM might allow us to identify biomarkers predicting this complication, acting as a goal for further investigations that may be potentially targeted in gene therapy. The present review is focused on the numerous studies conducted on the molecular signature of CAVM and the associated hemorrhage. The association of numerous molecular signatures with a higher risk of CAVM rupture is shown through inducing proinflammatory mediators, as well as growth factors signaling, Ras-mitogen-activated protein kinase-extracellular signal-regulated kinase, and NOTCH pathways, which are accompanied by cellular level inflammation and endothelial alterations resulting in vascular wall instability. According to the studies, it is assumed that matrix metalloproteinase, interleukin-6, and vascular endothelial growth factor are the biomarkers most associated with CAVM and the rate of hemorrhage, as well as diagnostic methods, with respect to enhancing the patient-specific risk estimation and improving treatment choices.
Collapse
Affiliation(s)
- Hamid Tanzadehpanah
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hanie Mahaki
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Chen L, Zhen Y, Wang X, Wang J, Zhu G. Neurovascular glial unit: A target of phytotherapy for cognitive impairments. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:155009. [PMID: 37573807 DOI: 10.1016/j.phymed.2023.155009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/29/2023] [Accepted: 08/01/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND Neurovascular glial unit (NVGU) dysfunction has been reported to be an early and critical event in the pathophysiology of Alzheimer's disease (AD) and vascular dementia (VD). Although herbal medicines, with their favorable safety profiles and low adverse effects, have been suggested to be useful for the treatment of cognitive impairment, the potential role of the NVGU as the target of the effects of herbal medicines is still unclear. PURPOSE This review aimed to retrieve evidence from experimental studies of phytopharmaceuticals targeting the NVGU for the treatment of cognitive impairment in AD and VD, and discussed the potential of phytopharmaceuticals to improve cognitive impairment from the perspective of the NVGU. STUDY DESIGN AND METHODS We systematically searched PubMed, Google Scholar, Web of Science, and CNKI. The keywords used for searching information on the NVGU in the treatment of cognitive impairments included "Alzheimer's disease," "Vascular dementia," "Herbal medicines," "Natural products," "Neurovascular," "Adverse reaction," and "Toxicity, etc." We selected studies on the basis of predefined eligibility criteria. RESULTS NVGU mainly consists of endothelial cells, pericytes, astrocytes, microglia, oligodendrocytes, and neurons, and damage to these cells can induce cognitive impairment by impairing the blood-brain barrier (BBB) and cerebral blood flow (CBF) as well as neuronal function. The active components of herbal medicines, including Ginkgo biloba L., Ginseng Radix et Rhizoma, Epimedium Folium, Chuanxiong Rhizoma, Carthami flos, and Acorus tatarinowii Schott, as well as traditional Chinese medicine prescriptions have shown the potential to improve BBB function and increase CBF to prevent cognitive impairment by inhibiting astrocyte and microglia activation, protecting oligodendrocyte myelin function, reducing neuronal apoptosis, and promoting angiogenesis. CONCLUSIONS Herbal medicines demonstrate great potential to prevent cognitive impairment. Multiple components from herbal medicines may function through different signaling pathways to target the NVGU. Future studies using novel drug-carrier or delivery systems targeting the NVGU will certainly facilitate the development of phytopharmaceuticals for AD and VD.
Collapse
Affiliation(s)
- Lixia Chen
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yilan Zhen
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xuncui Wang
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jingji Wang
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China; The Second Affiliation Hospital of Anhui University of Chinese Medicine, Hefei 230061, China.
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
6
|
Morris EK, Daignault-Mill S, Stehbens SJ, Genovesi LA, Lagendijk AK. Addressing blood-brain-tumor-barrier heterogeneity in pediatric brain tumors with innovative preclinical models. Front Oncol 2023; 13:1101522. [PMID: 36776301 PMCID: PMC9909546 DOI: 10.3389/fonc.2023.1101522] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/06/2023] [Indexed: 01/27/2023] Open
Abstract
Brain tumors represent the leading cause of disease-related mortality and morbidity in children, with effective treatments urgently required. One factor limiting the effectiveness of systemic therapy is the blood-brain-barrier (BBB), which limits the brain penetration of many anticancer drugs. BBB integrity is often compromised in tumors, referred to as the blood-brain-tumor-barrier (BBTB), and the impact of a compromised BBTB on the therapeutic sensitivity of brain tumors has been clearly shown for a few selected agents. However, the heterogeneity of barrier alteration observed within a single tumor and across distinct pediatric tumor types represents an additional challenge. Herein, we discuss what is known regarding the heterogeneity of tumor-associated vasculature in pediatric brain tumors. We discuss innovative and complementary preclinical model systems that will facilitate real-time functional analyses of BBTB for all pediatric brain tumor types. We believe a broader use of these preclinical models will enable us to develop a greater understanding of the processes underlying tumor-associated vasculature formation and ultimately more efficacious treatment options.
Collapse
Affiliation(s)
- Elysse K. Morris
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Sheena Daignault-Mill
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Samantha J. Stehbens
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Laura A. Genovesi
- The University of Queensland Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia,*Correspondence: Laura A. Genovesi, ; Anne K. Lagendijk,
| | - Anne K. Lagendijk
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia,School of Biomedical Sciences, University of Queensland, St. Lucia, QLD, Australia,*Correspondence: Laura A. Genovesi, ; Anne K. Lagendijk,
| |
Collapse
|
7
|
Li GS, Wang XX, Tan RB, Wang KH, Hu XS, Hu Y. Ultrastructural destruction of neurovascular unit in experimental cervical spondylotic myelopathy. Front Neurosci 2022; 16:1031180. [PMID: 36466180 PMCID: PMC9709118 DOI: 10.3389/fnins.2022.1031180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/25/2022] [Indexed: 08/30/2023] Open
Abstract
Background and purpose The pathogenesis of cervical spondylotic myelopathy (CSM) remains unclear. This study aimed to explore the ultrastructural pathology of neurovascular unit (NVU) during natural development of CSM. Methods A total of 24 rats were randomly allocated to the control group and the CSM group. Basso-Beattie-Bresnahan (BBB) scoring and somatosensory evoked potentials (SEP) were used as functional assessments. Hematoxylin-eosin (HE), toluidine blue (TB), and Luxol fast blue (LFB) stains were used for general structure observation. Transmission electron microscopy (TEM) was applied for investigating ultrastructural characteristics. Results The evident compression caused significant neurological dysfunction, which was confirmed by the decrease in BBB score and SEP amplitude, as well as the prolongation of SEP latency (P < 0.05). The histopathological findings verified a significant decrease in the amount of Nissl body and myelin area and an increase in vacuolation compared with the control group (P < 0.05). The TEM results revealed ultrastructural destruction of NVU in several forms, including: neuronal degeneration and apoptosis; disruption of axonal cytoskeleton (neurofilaments) and myelin sheath and dystrophy of axonal terminal with dysfunction mitochondria; degenerative oligodendrocyte, astrocyte, and microglial cell inclusions with degenerating axon and dystrophic dendrite; swollen microvascular endothelium and loss of tight junction integrity; corroded basement membrane and collapsed microvascular wall; and proliferated pericyte and perivascular astrocytic endfeet. In the CSM group, reduction was observed in the amount of mitochondria with normal appearance and the number of cristae per mitochondria (P < 0.05), while no substantial drop of synaptic vesicle number was seen (P > 0.05). Significant narrowing of microvascular lumen size was also observed, accompanied by growth in the vascular wall area, endothelial area, basement membrane thickness, astrocytic endfeet area, and pericyte coverage area (rate) (P < 0.05). Conclusion Altogether, the findings of this study demonstrated ultrastructural destruction of NVU in an experimental CSM model with dorsal-lateral compression, revealing one of the crucial pathophysiological mechanisms of CSM.
Collapse
Affiliation(s)
- Guang-Sheng Li
- Spinal Division of Orthopaedic and Traumatology Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xu-Xiang Wang
- Spinal Division of Orthopaedic and Traumatology Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ron-Bang Tan
- Spinal Division of Orthopaedic and Traumatology Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Kang-Heng Wang
- Spinal Division of Orthopaedic and Traumatology Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Xiao-song Hu
- Spinal Division of Orthopaedic and Traumatology Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yong Hu
- Spinal Division of Orthopaedic and Traumatology Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
8
|
Antioxidant Genetic Profile Modifies Probability of Developing Neurological Sequelae in Long-COVID. Antioxidants (Basel) 2022; 11:antiox11050954. [PMID: 35624818 PMCID: PMC9138155 DOI: 10.3390/antiox11050954] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 02/06/2023] Open
Abstract
Understanding the sequelae of COVID-19 is of utmost importance. Neuroinflammation and disturbed redox homeostasis are suggested as prevailing underlying mechanisms in neurological sequelae propagation in long-COVID. We aimed to investigate whether variations in antioxidant genetic profile might be associated with neurological sequelae in long-COVID. Neurological examination and antioxidant genetic profile (SOD2, GPXs and GSTs) determination, as well as, genotype analysis of Nrf2 and ACE2, were conducted on 167 COVID-19 patients. Polymorphisms were determined by the appropriate PCR methods. Only polymorphisms in GSTP1AB and GSTO1 were independently associated with long-COVID manifestations. Indeed, individuals carrying GSTP1 Val or GSTO1 Asp allele exhibited lower odds of long-COVID myalgia development, both independently and in combination. Furthermore, the combined presence of GSTP1 Ile and GSTO1 Ala alleles exhibited cumulative risk regarding long-COVID myalgia in carriers of the combined GPX1 LeuLeu/GPX3 CC genotype. Moreover, individuals carrying combined GSTM1-null/GPX1LeuLeu genotype were more prone to developing long-COVID “brain fog”, while this probability further enlarged if the Nrf2 A allele was also present. The fact that certain genetic variants of antioxidant enzymes, independently or in combination, affect the probability of long-COVID manifestations, further emphasizes the involvement of genetic susceptibility when SARS-CoV-2 infection is initiated in the host cells, and also months after.
Collapse
|
9
|
Lv W, Cui C, Wang Z, Jiang J, Deng B. A High Serum Phosphate and Calcium-Phosphate Product Is Associated With Cerebral Small Vascular Disease in Patients With Stroke: A Real-World Study. Front Nutr 2022; 9:801667. [PMID: 35445062 PMCID: PMC9013770 DOI: 10.3389/fnut.2022.801667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/04/2022] [Indexed: 01/23/2023] Open
Abstract
Cerebral small vessel disease (CSVD) is a slowly progressive disease, often accompanied by stroke, and results in dementia, depression, and cognitive impairment. It was already known that calcium and phosphorus metabolism (CPM) disorders were associated with vascular-related adverse events. The risk factors of CSVD and the relationship between serum calcium (Ca), phosphorus (P), calcium-phosphate product (Ca × P), and CSVD in patients with stroke without CPM disorders are still obscure. In our study, 528 patients with stroke without CPM disorders were enrolled in a cohort from a consecutive hospital-based stroke registry, with 488 patients with CSVD as cases and 140 without CSVD as controls. The patients with CSVD were further sub-grouped into lacunes, white matter hyperintensities (WMHs), and cerebral microbleeds (CMBs). By applying univariate and multivariate logistic regression analysis, the following novel findings were obtained: (i) up to 76.19% of patients with stroke had signs of CSVD, and lacunes are the most common subtype. Notably, 22.96% of patients with CSVD had multiple subtypes coexisted. (ii) Compared with patients without CSVD, patients with CSVD had higher levels of age, rate of hypertension or diabetes, serum Ca, P, Ca × P, and lower levels of white blood cell (WBC) and hemoglobin (HB). (iii) We developed 2 predictive models and nomograms for predicting CSVD, in addition to the known factors (age and hypertension). The levels of P and Ca × P were positively correlated with the risk of CSVD (P: OR = 3,720.401, 95% CI (646.665–21,404.249); Ca × P: OR = 1.294, 95% CI (1.222–1.370)). (iv) The models were further validated in subtypes of CSVD, including lacunes, WMHs, and CMBs, and the results were still valid among the subtypes. In summary, CSVD was highly prevalent in patients with stroke, and high serum P and Ca × P are potential risk factors of CSVD and all subtypes including lacunes, WMHs, and CMBs.
Collapse
Affiliation(s)
- Wenjing Lv
- Department of Geriatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Can Cui
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Zixuan Wang
- Department of Geriatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Junqi Jiang
- Medical College, Qingdao University, Qingdao, China
| | - Binbin Deng
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Binbin Deng
| |
Collapse
|
10
|
Jarrott B, Head R, Pringle KG, Lumbers ER, Martin JH. "LONG COVID"-A hypothesis for understanding the biological basis and pharmacological treatment strategy. Pharmacol Res Perspect 2022; 10:e00911. [PMID: 35029046 PMCID: PMC8929332 DOI: 10.1002/prp2.911] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/07/2021] [Indexed: 12/11/2022] Open
Abstract
Infection of humans with SARS‐CoV‐2 virus causes a disease known colloquially as “COVID‐19” with symptoms ranging from asymptomatic to severe pneumonia. Initial pathology is due to the virus binding to the ACE‐2 protein on endothelial cells lining blood vessels and entering these cells in order to replicate. Viral replication causes oxidative stress due to elevated levels of reactive oxygen species. Many (~60%) of the infected people appear to have eliminated the virus from their body after 28 days and resume normal activity. However, a significant proportion (~40%) experience a variety of symptoms (loss of smell and/or taste, fatigue, cough, aching pain, “brain fog,” insomnia, shortness of breath, and tachycardia) after 12 weeks and are diagnosed with a syndrome named “LONG COVID.” Longitudinal clinical studies in a group of subjects who were infected with SARS‐CoV‐2 have been compared to a non‐infected matched group of subjects. A cohort of infected subjects can be identified by a battery of cytokine markers to have persistent, low level grade of inflammation and often self‐report two or more troubling symptoms. There is no drug that will relieve their symptoms effectively. It is hypothesized that drugs that activate the intracellular transcription factor, nuclear factor erythroid‐derived 2‐like 2 (NRF2) may increase the expression of enzymes to synthesize the intracellular antioxidant, glutathione that will quench free radicals causing oxidative stress. The hormone melatonin has been identified as an activator of NRF2 and a relatively safe chemical for most people to ingest chronically. Thus, it is an option for consideration of re‐purposing studies in “LONG COVID” subjects experiencing insomnia, depression, fatigue, and “brain fog” but not tachycardia. Appropriately designed clinical trials are required to evaluate melatonin.
Collapse
Affiliation(s)
- Bevyn Jarrott
- Florey Institute of Neuroscience & Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Richard Head
- University of South Australia, Adelaide, South Australia, Australia
| | - Kirsty G Pringle
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, New South Wales, Australia
| | - Eugenie R Lumbers
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, New South Wales, Australia
| | - Jennifer H Martin
- Centre for Drug Repurposing and Medicines Research, Clinical Pharmacology, University of Newcastle, New Lambton, New South Wales, Australia
| |
Collapse
|
11
|
Conde JN, Sanchez-Vicente S, Saladino N, Gorbunova EE, Schutt WR, Mladinich MC, Himmler GE, Benach J, Kim HK, Mackow ER. Powassan Viruses Spread Cell to Cell during Direct Isolation from Ixodes Ticks and Persistently Infect Human Brain Endothelial Cells and Pericytes. J Virol 2022; 96:e0168221. [PMID: 34643436 PMCID: PMC8754205 DOI: 10.1128/jvi.01682-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/06/2021] [Indexed: 11/20/2022] Open
Abstract
Powassan viruses (POWVs) are neurovirulent tick-borne flaviviruses emerging in the northeastern United States, with a 2% prevalence in Long Island (LI) deer ticks (Ixodes scapularis). POWVs are transmitted within as little as 15 min of a tick bite and enter the central nervous system (CNS) to cause encephalitis (10% of cases are fatal) and long-term neuronal damage. POWV-LI9 and POWV-LI41 present in LI Ixodes ticks were isolated by directly inoculating VeroE6 cells with tick homogenates and detecting POWV-infected cells by immunoperoxidase staining. Inoculated POWV-LI9 and LI41 were exclusively present in infected cell foci, indicative of cell to cell spread, despite growth in liquid culture without an overlay. Cloning and sequencing establish POWV-LI9 as a phylogenetically distinct lineage II POWV strain circulating in LI deer ticks. Primary human brain microvascular endothelial cells (hBMECs) and pericytes form a neurovascular complex that restricts entry into the CNS. We found that POWV-LI9 and -LI41 and lineage I POWV-LB productively infect hBMECs and pericytes and that POWVs were basolaterally transmitted from hBMECs to lower-chamber pericytes without permeabilizing polarized hBMECs. Synchronous POWV-LI9 infection of hBMECs and pericytes induced proinflammatory chemokines, interferon-β (IFN-β) and proteins of the IFN-stimulated gene family (ISGs), with delayed IFN-β secretion by infected pericytes. IFN inhibited POWV infection, but despite IFN secretion, a subset of POWV-infected hBMECs and pericytes remained persistently infected. These findings suggest a potential mechanism for POWVs (LI9/LI41 and LB) to infect hBMECs, spread basolaterally to pericytes, and enter the CNS. hBMEC and pericyte responses to POWV infection suggest a role for immunopathology in POWV neurovirulence and potential therapeutic targets for preventing POWV spread to neuronal compartments. IMPORTANCE We isolated POWVs from LI deer ticks (I. scapularis) directly in VeroE6 cells, and sequencing revealed POWV-LI9 as a distinct lineage II POWV strain. Remarkably, inoculation of VeroE6 cells with POWV-containing tick homogenates resulted in infected cell foci in liquid culture, consistent with cell-to-cell spread. POWV-LI9 and -LI41 and lineage I POWV-LB strains infected hBMECs and pericytes that comprise neurovascular complexes. POWVs were nonlytically transmitted basolaterally from infected hBMECs to lower-chamber pericytes, suggesting a mechanism for POWV transmission across the blood-brain barrier (BBB). POWV-LI9 elicited inflammatory responses from infected hBMEC and pericytes that may contribute to immune cell recruitment and neuropathogenesis. This study reveals a potential mechanism for POWVs to enter the CNS by infecting hBMECs and spreading basolaterally to abluminal pericytes. Our findings reveal that POWV-LI9 persists in cells that form a neurovascular complex spanning the BBB and suggest potential therapeutic targets for preventing POWV spread to neuronal compartments.
Collapse
Affiliation(s)
- Jonas N. Conde
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
| | - Santiago Sanchez-Vicente
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University New York, New York, USA
| | - Nicholas Saladino
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
| | - Elena E. Gorbunova
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
| | - William R. Schutt
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
| | - Megan C. Mladinich
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
| | - Grace E. Himmler
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
| | - Jorge Benach
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
| | - Hwan Keun Kim
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
| | - Erich R. Mackow
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
12
|
Brown D, Altermatt M, Dobreva T, Chen S, Wang A, Thomson M, Gradinaru V. Deep Parallel Characterization of AAV Tropism and AAV-Mediated Transcriptional Changes via Single-Cell RNA Sequencing. Front Immunol 2021; 12:730825. [PMID: 34759919 PMCID: PMC8574206 DOI: 10.3389/fimmu.2021.730825] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/17/2021] [Indexed: 12/21/2022] Open
Abstract
Engineered variants of recombinant adeno-associated viruses (rAAVs) are being developed rapidly to meet the need for gene-therapy delivery vehicles with particular cell-type and tissue tropisms. While high-throughput AAV engineering and selection methods have generated numerous variants, subsequent tropism and response characterization have remained low throughput and lack resolution across the many relevant cell and tissue types. To fully leverage the output of these large screening paradigms across multiple targets, we have developed an experimental and computational single-cell RNA sequencing (scRNA-seq) pipeline for in vivo characterization of barcoded rAAV pools at high resolution. Using this platform, we have both corroborated previously reported viral tropisms and discovered unidentified AAV capsid targeting biases. As expected, we observed that the tropism profile of AAV.CAP-B10 in mice was shifted toward neurons and away from astrocytes when compared with AAV-PHP.eB. Transcriptomic analysis revealed that this neuronal bias is due mainly to increased targeting efficiency for glutamatergic neurons, which we confirmed by RNA fluorescence in situ hybridization. We further uncovered cell subtype tropisms of AAV variants in vascular and glial cells, such as low transduction of pericytes and Myoc+ astrocytes. Additionally, we have observed cell-type-specific transitory responses to systemic AAV-PHP.eB administration, such as upregulation of genes involved in p53 signaling in endothelial cells three days post-injection, which return to control levels by day twenty-five. The presented experimental and computational approaches for parallel characterization of AAV tropism will facilitate the advancement of safe and precise gene delivery vehicles, and showcase the power of understanding responses to gene therapies at the single-cell level.
Collapse
Affiliation(s)
- David Brown
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Michael Altermatt
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Tatyana Dobreva
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Sisi Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Alexander Wang
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, United States
| | - Matt Thomson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
13
|
Yang R, Xu B, Yang B, Fu J, Chen H, Wang X. Non-coding RNAs: the extensive and interactive regulators of the blood-brain barrier permeability. RNA Biol 2021; 18:108-116. [PMID: 34241576 PMCID: PMC8677028 DOI: 10.1080/15476286.2021.1950465] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The blood-brain barrier (BBB), which controls permeability into and out of the nervous system, is a tightly connected, structural, and functional separation between the central nervous system (CNS) and circulating blood. CNS diseases, such as Alzheimer’s disease, multiple sclerosis, traumatic brain injury, stroke, meningitis, and brain cancers, often develop with the increased BBB permeability and further leads to irreversible CNS injury. Non-coding RNAs (ncRNAs) are functional RNA molecules that generally lack the coding abilities but can actively regulate the mRNA expression and function through different mechanisms. Various types of ncRNAs, including microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs), are highly expressed in brain microvascular endothelial cells and are potential mediators of BBB permeability. Here, we summarized the recent research progress on miRNA, lncRNA, and circRNA roles regulating the BBB permeability in different CNS diseases. Understanding how these ncRNAs affect the BBB permeability shall provide important therapeutic insights into the prevention and control of the BBB dysfunction.
Collapse
Affiliation(s)
- Ruicheng Yang
- The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,State Key Laboratory of Agricultural Microbiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, China
| | - Bojie Xu
- The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,State Key Laboratory of Agricultural Microbiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, China
| | - Bo Yang
- The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,State Key Laboratory of Agricultural Microbiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, China
| | - Jiyang Fu
- The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,State Key Laboratory of Agricultural Microbiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, China
| | - Huanchun Chen
- The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,State Key Laboratory of Agricultural Microbiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei, China
| | - Xiangru Wang
- The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,State Key Laboratory of Agricultural Microbiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei, China
| |
Collapse
|
14
|
Bayir E, Sendemir A. Role of Intermediate Filaments in Blood-Brain Barrier in Health and Disease. Cells 2021; 10:cells10061400. [PMID: 34198868 PMCID: PMC8226756 DOI: 10.3390/cells10061400] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/11/2022] Open
Abstract
The blood–brain barrier (BBB) is a highly selective cellular monolayer unique to the microvasculature of the central nervous system (CNS), and it mediates the communication of the CNS with the rest of the body by regulating the passage of molecules into the CNS microenvironment. Limitation of passage of substances through the BBB is mainly due to tight junctions (TJ) and adherens junctions (AJ) between brain microvascular endothelial cells. The importance of actin filaments and microtubules in establishing and maintaining TJs and AJs has been indicated; however, recent studies have shown that intermediate filaments are also important in the formation and function of cell–cell junctions. The most common intermediate filament protein in endothelial cells is vimentin. Vimentin plays a role in blood–brain barrier permeability in both cell–cell and cell–matrix interactions by affecting the actin and microtubule reorganization and by binding directly to VE-cadherin or integrin proteins. The BBB permeability increases due to the formation of stress fibers and the disruption of VE–cadherin interactions between two neighboring cells in various diseases, disrupting the fiber network of intermediate filament vimentin in different ways. Intermediate filaments may be long ignored key targets in regulation of BBB permeability in health and disease.
Collapse
Affiliation(s)
- Ece Bayir
- Ege University Central Research Test and Analysis Laboratory Application and Research Center (EGE-MATAL), Ege University, 35100 Izmir, Turkey;
| | - Aylin Sendemir
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey
- Department of Biomedical Technologies, Graduate School of Natural and Applied Science, Ege University, 35100 Izmir, Turkey
- Correspondence: ; Tel.: +90-232-3114817
| |
Collapse
|
15
|
Sun H, Hu H, Liu C, Sun N, Duan C. Methods used for the measurement of blood-brain barrier integrity. Metab Brain Dis 2021; 36:723-735. [PMID: 33635479 DOI: 10.1007/s11011-021-00694-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/11/2021] [Indexed: 01/12/2023]
Abstract
The blood-brain barrier (BBB) comprises the interface between blood, brain and cerebrospinal fluid. Its primary function, which is mainly carried out by tight junctions, is to stabilize the tightly controlled microenvironment of the brain. To study the development and maintenance of the BBB, as well as various roles their intrinsic mechanisms that play in neurological disorders, suitable measurements are required to demonstrate integrity and functional changes at the interfaces between the blood and brain tissue. Markers and plasma proteins with different molecular weight (MW) are used to measure the permeability of BBB. In addition, the expression changes of tight-junction proteins form the basic structure of BBB, and imaging modalities are available to study the disruption of BBB. In the present review, above mentioned methods are depicted in details, together with the pros and cons as well as the differences between these methods, which maybe benefit research studies focused on the detection of BBB breakdown.
Collapse
Affiliation(s)
- Huixin Sun
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Huiling Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Chuanjie Liu
- Weihai City Key Laboratory of Autoimmunity, Weihai Central Hospital, Weihai, 264400, Shandong Province, China
| | - Nannan Sun
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
| | - Chaohui Duan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
- Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
16
|
Kuppuswamy D, Chinnakkannu P, Reese C, Hoffman S. The Caveolin-1 Scaffolding Domain Peptide Reverses Aging-Associated Deleterious Changes in Multiple Organs. J Pharmacol Exp Ther 2021; 378:1-9. [PMID: 33879542 DOI: 10.1124/jpet.120.000424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/13/2021] [Indexed: 11/22/2022] Open
Abstract
Aging is a progressive, multifactorial, degenerative process in which deleterious changes occur in the biochemistry and function of organs. We showed that angiotensin II (AngII)-induced pathologies in the heart and kidney of young (3-month-old) mice are suppressed by the caveolin-1 scaffolding domain (CSD) peptide. Because AngII mediates many aging-associated changes, we explored whether CSD could reverse pre-existing pathologies and improve organ function in aged mice. Using 18-month-old mice (similar to 60-year-old humans), we found that >5-fold increases in leakage of serum proteins and >2-fold increases in fibrosis are associated with aging in the heart, kidney, and brain. Because tyrosine phosphorylation of cell junction proteins leads to the loss of microvascular barrier function, we analyzed the activation of the receptor tyrosine kinase PDGFR and the nonreceptor tyrosine kinases c-Src and Pyk2. We observed 5-fold activation of PDGFR and 2- to 3-fold activation of c-Src and Pyk2 in aged mice. Treatment with CSD for 4 weeks reversed these pathologic changes (microvascular leakage, fibrosis, kinase activation) in all organs almost down to the levels in healthy, young mice. In studies of heart function, CSD reduced the aging-associated increase in cardiomyocyte cross-sectional area and enhanced ventricular compliance in that echocardiographic studies demonstrated improved ejection fraction and fractional shortening and reduced isovolumic relation time. These results suggest that versions of CSD may be developed as treatments for aging-associated diseases in human patients based on the concept that CSD inhibits tyrosine kinases, leading to the inhibition of microvascular leakage and associated fibrosis, thereby improving organ function. SIGNIFICANCE STATEMENT: The caveolin-1 scaffolding domain (CSD) peptide reverses aging-associated fibrosis, microvascular leakage, and organ dysfunction in the heart, kidneys, and brain via a mechanism that involves the suppression of the activity of multiple tyrosine kinases, suggesting that CSD can be developed as a treatment for a wide range of diseases found primarily in the aged.
Collapse
Affiliation(s)
- Dhandapani Kuppuswamy
- Divisions of Cardiology (D.K., P.C.) and Rheumatology (C.R., S.H.), Department of Medicine, Medical University of South Carolina, Charleston, Charleston, South Carolina
| | - Panneerselvam Chinnakkannu
- Divisions of Cardiology (D.K., P.C.) and Rheumatology (C.R., S.H.), Department of Medicine, Medical University of South Carolina, Charleston, Charleston, South Carolina
| | - Charles Reese
- Divisions of Cardiology (D.K., P.C.) and Rheumatology (C.R., S.H.), Department of Medicine, Medical University of South Carolina, Charleston, Charleston, South Carolina
| | - Stanley Hoffman
- Divisions of Cardiology (D.K., P.C.) and Rheumatology (C.R., S.H.), Department of Medicine, Medical University of South Carolina, Charleston, Charleston, South Carolina
| |
Collapse
|
17
|
Bennett HC, Kim Y. Pericytes Across the Lifetime in the Central Nervous System. Front Cell Neurosci 2021; 15:627291. [PMID: 33776651 PMCID: PMC7994897 DOI: 10.3389/fncel.2021.627291] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/23/2021] [Indexed: 12/25/2022] Open
Abstract
The pericyte is a perivascular cell type that encapsulates the microvasculature of the brain and spinal cord. Pericytes play a crucial role in the development and maintenance of the blood-brain barrier (BBB) and have a multitude of important functions in the brain. Recent evidence indicates that pericyte impairment has been implicated in neurovascular pathology associated with various human diseases such as diabetes mellitus, Alzheimer's disease (AD), and stroke. Although the pericyte is essential for normal brain function, knowledge about its developmental trajectory and anatomical distribution is limited. This review article summarizes the scientific community's current understanding of pericytes' regional heterogeneity in the brain and their changes during major life stages. More specifically, this review article focuses on pericyte differentiation and migration during brain development, regional population differences in the adult brain, and changes during normal and pathological aging. Most of what is known about pericytes come from studies of the cerebral cortex and hippocampus. Therefore, we highlight the need to expand our understanding of pericyte distribution and function in the whole brain to better delineate this cell type's role in the normal brain and pathological conditions.
Collapse
Affiliation(s)
- Hannah C Bennett
- Department of Neural and Behavioral Sciences, Penn State University, Hershey, PA, United States
| | - Yongsoo Kim
- Department of Neural and Behavioral Sciences, Penn State University, Hershey, PA, United States
| |
Collapse
|
18
|
Pathophysiology and Therapeutic Potential of NADPH Oxidases in Ischemic Stroke-Induced Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6631805. [PMID: 33777315 PMCID: PMC7969100 DOI: 10.1155/2021/6631805] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/22/2021] [Accepted: 02/02/2021] [Indexed: 12/23/2022]
Abstract
Stroke is a leading cause of death and disability in humans. The excessive production of reactive oxygen species (ROS) is an important contributor to oxidative stress and secondary brain damage after stroke. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, an enzyme complex consisting of membrane subunits and cytoplasmic subunits, regulates neuronal maturation and cerebrovascular homeostasis. However, NADPH oxidase overproduction contributes to neurotoxicity and cerebrovascular disease. NADPH oxidase has been implicated as the principal source of ROS in the brain, and numerous studies have shown that the knockout of NADPH exerts a protective effect in the model of ischemic stroke. In this review, we summarize the mechanism of activation of the NADPH oxidase family members, the pathophysiological effects of NADPH oxidase isoforms in ischemic stroke, and the studies of NADPH oxidase inhibitors to explore potential clinical applications.
Collapse
|
19
|
Caffrey TM, Button EB, Robert J. Toward three-dimensional in vitro models to study neurovascular unit functions in health and disease. Neural Regen Res 2021; 16:2132-2140. [PMID: 33818484 PMCID: PMC8354124 DOI: 10.4103/1673-5374.310671] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The high metabolic demands of the brain require an efficient vascular system to be coupled with neural activity to supply adequate nutrients and oxygen. This supply is coordinated by the action of neurons, glial and vascular cells, known collectively as the neurovascular unit, which temporally and spatially regulate local cerebral blood flow through a process known as neurovascular coupling. In many neurodegenerative diseases, changes in functions of the neurovascular unit not only impair neurovascular coupling but also permeability of the blood-brain barrier, cerebral blood flow and clearance of waste from the brain. In order to study disease mechanisms, we need improved physiologically-relevant human models of the neurovascular unit. Advances towards modeling the cellular complexity of the neurovascular unit in vitro have been made using stem-cell derived organoids and more recently, vascularized organoids, enabling intricate studies of non-cell autonomous processes. Engineering and design innovations in microfluidic devices and tissue engineering are progressing our ability to interrogate the cerebrovasculature. These advanced models are being used to gain a better understanding of neurodegenerative disease processes and potential therapeutics. Continued innovation is required to build more physiologically-relevant models of the neurovascular unit encompassing both the cellular complexity and designed features to interrogate neurovascular unit functionality.
Collapse
Affiliation(s)
- Tara M Caffrey
- Djavad Mowafaghian Center for Brain Health; Department of Pathology, University of British Columbia, Vancouver, BC, Canada
| | - Emily B Button
- Djavad Mowafaghian Center for Brain Health; Department of Pathology, University of British Columbia, Vancouver, BC, Canada
| | - Jerome Robert
- Institute of Clinical Chemistry, University Hospital of Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Lima MN, Freitas RJRX, Passos BABR, Darze AMG, Castro-Faria-Neto HC, Maron-Gutierrez T. Neurovascular Interactions in Malaria. Neuroimmunomodulation 2021; 28:108-117. [PMID: 33951667 DOI: 10.1159/000515557] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/23/2021] [Indexed: 11/19/2022] Open
Abstract
Malaria is caused by Plasmodium infection and remains a serious public health problem worldwide, despite control efforts. Malaria can progress to severe forms, affecting multiple organs, including the brain causing cerebral malaria (CM). CM is the most severe neurological complication of malaria, and cognitive and behavior deficits are commonly reported in surviving patients. The number of deaths from malaria has been reducing in recent years, and as a consequence, neurological sequelae have been more evident. Neurological damage in malaria might be related to the neuroinflammation, characterized by glia cell activation, neuronal apoptosis and changes in the blood-brain barrier (BBB) integrity. The neurovascular unit (NVU) is responsible for maintaining the homeostasis of the BBB. Endothelial and pericytes cells in the cerebral microvasculature and neural cells, as astrocytes, neurons, and microglia, compose the NVU. The NVU can be disturbed by parasite metabolic products, such as heme and hemozoin, or cytokines that can promote activation of endothelial and glial cells and lead to increased BBB permeability and subsequently neurodegeneration. In this review, we will approach the main changes that happen in the cells of the NVU due to neuroinflammation caused by malaria infection, and elucidate how the systemic pathophysiology is involved in the onset and progression of CM.
Collapse
Affiliation(s)
- Maiara N Lima
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
| | - Rodrigo J R X Freitas
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
| | - Beatriz A B R Passos
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
| | - Ana Maria G Darze
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
| | - Hugo C Castro-Faria-Neto
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
| | - Tatiana Maron-Gutierrez
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Rio de Janeiro, Brazil
| |
Collapse
|
21
|
Ringland C, Schweig JE, Paris D, Shackleton B, Lynch CE, Eisenbaum M, Mullan M, Crawford F, Abdullah L, Bachmeier C. Apolipoprotein E isoforms differentially regulate matrix metallopeptidase 9 function in Alzheimer's disease. Neurobiol Aging 2020; 95:56-68. [PMID: 32758917 DOI: 10.1016/j.neurobiolaging.2020.06.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/05/2020] [Accepted: 06/25/2020] [Indexed: 01/10/2023]
Abstract
Apolipoprotein E (APOE) has been shown to influence amyloid-β (Aβ) clearance from the brain in an isoform-specific manner. Our prior work showed that Aβ transit across the blood-brain-barrier was reduced by apoE4, compared to other apoE isoforms, due to elevated lipoprotein receptor shedding in brain endothelia. Recently, we demonstrated that matrix metallopeptidase 9 (MMP-9) induces lipoprotein receptor proteolysis in an apoE isoform-dependent manner, which impacts Aβ elimination from the brain. The current studies interrogated the relationship between apoE and MMP-9 and found that apoE impacted proMMP-9 cellular secretion from brain endothelia (apoE2 < apoE3 = apoE4). In a cell-free assay, apoE dose-dependently reduced MMP-9 activity, with apoE4 showing a significantly weaker ability to inhibit MMP-9 function than apoE2 or apoE3. Finally, we observed elevated MMP-9 expression and activity in the cerebrovasculature of both human and animal AD brain specimens with an APOE4 genotype. Collectively, these findings suggest a role for apoE in regulating MMP-9 disposition and may describe the effect of apoE4 on Aβ pathology in the AD brain.
Collapse
Affiliation(s)
- Charis Ringland
- The Roskamp Institute, Sarasota, FL, USA; The Open University, Milton Keynes, UK.
| | | | | | | | | | - Maxwell Eisenbaum
- The Roskamp Institute, Sarasota, FL, USA; The Open University, Milton Keynes, UK
| | - Michael Mullan
- The Roskamp Institute, Sarasota, FL, USA; The Open University, Milton Keynes, UK
| | - Fiona Crawford
- The Roskamp Institute, Sarasota, FL, USA; The Open University, Milton Keynes, UK; James A. Haley Veterans' Hospital, Tampa, FL, USA
| | - Laila Abdullah
- The Roskamp Institute, Sarasota, FL, USA; The Open University, Milton Keynes, UK; James A. Haley Veterans' Hospital, Tampa, FL, USA
| | - Corbin Bachmeier
- The Roskamp Institute, Sarasota, FL, USA; The Open University, Milton Keynes, UK; Bay Pines VA Healthcare System, Bay Pines, FL, USA
| |
Collapse
|
22
|
Cadmium-Induced Oxidative Stress: Focus on the Central Nervous System. Antioxidants (Basel) 2020; 9:antiox9060492. [PMID: 32516892 PMCID: PMC7346204 DOI: 10.3390/antiox9060492] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/22/2020] [Accepted: 06/02/2020] [Indexed: 12/18/2022] Open
Abstract
Cadmium (Cd), a category I human carcinogen, is a well-known widespread environmental pollutant. Chronic Cd exposure affects different organs and tissues, such as the central nervous system (CNS), and its deleterious effects can be linked to indirect reactive oxygen species (ROS) generation. Since Cd is predominantly present in +2 oxidation state, it can interplay with a plethora of channels and transporters in the cell membrane surface in order to enter the cells. Mitochondrial dysfunction, ROS production, glutathione depletion and lipid peroxidation are reviewed in order to better characterize the Cd-elicited molecular pathways. Furthermore, Cd effects on different CNS cell types have been highlighted to better elucidate its role in neurodegenerative disorders. Indeed, Cd can increase blood-brain barrier (BBB) permeability and promotes Cd entry that, in turn, stimulates pericytes in maintaining the BBB open. Once inside the CNS, Cd acts on glial cells (astrocytes, microglia, oligodendrocytes) triggering a pro-inflammatory cascade that accounts for the Cd deleterious effects and neurons inducing the destruction of synaptic branches.
Collapse
|