1
|
Cheng C, Guo L, Xu Y, Xiong R, Zheng L, Peng Y, Hua R. ChIP-seq and RNA-seq Reveal the Involvement of Histone Lactylation Modification in Early Pregnancy with Subclinical Hypothyroidism. Biochem Genet 2025:10.1007/s10528-025-11095-2. [PMID: 40252140 DOI: 10.1007/s10528-025-11095-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 04/01/2025] [Indexed: 04/21/2025]
Abstract
Subclinical hypothyroidism (SCH) is associated with multiple adverse outcomes in early pregnancy. This study aims to explore the regulatory mechanisms underlying histone lactylation modification in early pregnancy with SCH. Peripheral blood mononuclear cells were collected from early pregnant women with or without SCH. RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) analyses were performed to identify the transcriptional pattern and histone lactylation modification in early pregnancy with SCH. RNA-seq analysis revealed that the differentially expressed genes associated with the extracellular matrix exhibited a significant downregulation in early pregnancy with SCH (EP_SCH) compared to early pregnancy without SCH (EP), while those involved in apoptosis were significantly upregulated. In the ChIP-seq analysis, 1660 hypomodified and 766 hypermodified H3K18la-binding peaks were identified in the EP_SCH group compared to the EP group. The hypomodified genes in early pregnancy with SCH compared to its control were enriched in GO terms of apoptotic process and differentiation of immune cells. The genes with increased H3K18 lactylation in early pregnancy with SCH compared to its control were associated with the nervous system, female pregnancy, and the OXT signaling pathway. When RNA-seq data was integrated with ChIP-seq data, we found that the expression and H3K18la enrichment of KCTD7, SIPA1L2, HDAC9, BCL2L14, TXNRD1, and SGK1 were increased in early pregnancy with SCH compared to its control, which was further confirmed by RT-qPCR and ChIP-PCR analyses. This study identifies the changes in histone lactylation modification in early pregnancy with SCH. These findings provide novel insights into the regulatory mechanisms of SCH during early pregnancy.
Collapse
Affiliation(s)
- Chaofei Cheng
- Department of Gynecology and Obstetrics, Zengcheng Central Hospital, Nanfang Hospital, Southern Medical University, Guangzhou, 510000, Guangdong, China
| | - Lizhen Guo
- Department of Gynecology and Obstetrics, Jihua Hospital, Guangzhou, 510000, Guangdong, China
| | - Yinjuan Xu
- Department of Gynecology and Obstetrics, Zengcheng Central Hospital, Nanfang Hospital, Southern Medical University, Guangzhou, 510000, Guangdong, China
| | - Rongzhu Xiong
- Department of Gynecology and Obstetrics, Zengcheng Central Hospital, Nanfang Hospital, Southern Medical University, Guangzhou, 510000, Guangdong, China
| | - Leirong Zheng
- Department of Gynecology and Obstetrics, Zengcheng Central Hospital, Nanfang Hospital, Southern Medical University, Guangzhou, 510000, Guangdong, China
| | - Yanmei Peng
- Department of Gynecology and Obstetrics, Zengcheng Central Hospital, Nanfang Hospital, Southern Medical University, Guangzhou, 510000, Guangdong, China
| | - Rui Hua
- Reproductive Medicine Center, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
2
|
Businge CB, Longo-Mbenza B. The Pathophysiological Mechanisms and Pattern of Dyslipidemia Associated with Iodine Deficiency and Subclinical Hypothyroidism in Pregnant Normotensive and Preeclamptic Central African Women. PATHOPHYSIOLOGY 2025; 32:18. [PMID: 40265443 PMCID: PMC12015911 DOI: 10.3390/pathophysiology32020018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/10/2025] [Accepted: 04/16/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Pregnancy simulates a metabolic syndrome-like state and predisposes to iodine deficiency and hypothyroidism through increased iodine renal loss and transplacental transfer to the fetus. Iodine deficiency is thought to predispose to dyslipidemia through elevation of serum TSH. Obesity, dyslipidemia, and hypothyroidism are established risk factors of preeclampsia. Hence, pregnant women with iodine deficiency are likely to be at increased risk of dyslipidemia and preeclampsia. We investigated the pattern of dyslipidemia among preeclamptic and normotensive pregnant women with and without iodine deficiency. METHODS The pathophysiological mechanisms linking iodine deficiency and dyslipidemia were delineated using bivariate correlations, logistic regression, and exploratory factor analysis of anthropometric, lipid profile, urine iodine concentration (UIC), and thyroid function data from 240 women with preeclampsia and 120 normotensive pregnant controls at term who attended Lomo Medical Centre, Democratic Republic of Congo (DRC). RESULTS Preeclamptic women with iodine deficiency had significantly lower HDL-C but higher triglyceride levels than those with sufficient iodine intake. Both normotensive and preeclamptic participants with elevated TSH had high serum oxidized LDL-C but low NO, p < 0.001. CONCLUSIONS SCH, secondary to iodine deficiency, is associated with elevated serum oxidized LDL and decreased Nitric Oxide (NO) among both normotensive and preeclamptic women, while insufficient iodine nutrition among preeclamptic women predisposes to reduced HDL-C and increased serum Triglycerides, which are risk factors of atherosclerosis and cardiovascular disease.
Collapse
Affiliation(s)
- Charles Bitamazire Businge
- Department of Obstetrics and Gynaecology, Faculty of Health Sciences, Walter Sisulu University, Private Bag x1 WSU, Mthatha 5117, South Africa
| | - Benjamin Longo-Mbenza
- Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of the Congo;
- Department of Public Health, Lomo University of Research, 652 Freesias, Kinshasa, Democratic Republic of the Congo
| |
Collapse
|
3
|
Wang P, Zhang W, Liu H. Research status of subclinical hypothyroidism promoting the development and progression of cardiovascular diseases. Front Cardiovasc Med 2025; 12:1527271. [PMID: 40255342 PMCID: PMC12006070 DOI: 10.3389/fcvm.2025.1527271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 03/24/2025] [Indexed: 04/22/2025] Open
Abstract
In recent years, the incidence of cardiovascular disease (CVD) has risen steadily, significantly impacting public health. Subclinical hypothyroidism (SCH) remains a controversial risk factor for CVD. This review examines the associations between SCH and dyslipidemia, carotid intima-media thickness (C-IMT), cardiac dysfunction, and cardiovascular event risk. Evidence suggests SCH may exacerbate atherosclerosis and cardiac dysfunction through mechanisms such as increased LDL synthesis, oxidative stress, and impaired vascular endothelial function. However, the causal link between SCH and cardiovascular outcomes remains unclear due to study design heterogeneity and overreliance on TSH levels. Elevated TSH may not solely reflect thyroid dysfunction but could also indicate compensatory responses to inflammation, aging, or stress. Large-scale studies like NHANES and IPD meta-analyses show a strong association between SCH and cardiovascular risk in younger populations, which diminishes in older adults due to physiological TSH increases. The cardiovascular benefits of levothyroxine (L-T4) therapy in SCH patients are limited, especially in older individuals, where a narrow therapeutic window increases side effect risks. Studies relying solely on TSH as a diagnostic and therapeutic target have significant limitations, as TSH cannot distinguish adaptive thyroid adjustments from pathological states and overlooks the role of free thyroid hormones (FT3/FT4). Future research should integrate multi-dimensional markers (such as oxidative stress indicators, vascular elasticity measures, and thyroid antibody status) and adopt longitudinal study designs to more accurately assess the clinical significance of SCH.
Collapse
Affiliation(s)
- Peijie Wang
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Weiming Zhang
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Haiyan Liu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
4
|
Torres EM, Tellechea ML. Biomarkers of endothelial dysfunction and cytokine levels in hypothyroidism: a series of meta-analyses. Expert Rev Endocrinol Metab 2025; 20:119-128. [PMID: 39676305 DOI: 10.1080/17446651.2024.2438997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 11/22/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Hypothyroidism (HT) is associated with different comorbidities comprising increased arterial stiffness and decreased flow-mediated dilatation. The exact pathological mechanism of endothelial activation and dysfunction (ED) in HT remains unknown. We conducted a systematic review and meta-analyses to provide an overview of the pathogenesis of ED in HT. METHODS The literature search was done in February 2024 for studies analyzing traditional and novel circulating biomarkers of ED in patients with HT, including cytokines and chemokines. Random-effect models were used except when no heterogeneity was found. Protocol was registered under the number PROSPERO CRD42024540560. RESULTS 25 macromolecules and 66 studies were entered into analyses. HT was associated with increased levels of E-selectin, soluble intercellular adhesion molecule-1, osteoprotegerin, and oxidized-LDL (p < 0.02). Results were not conclusive for endothelin-1. Interleukin (IL)-6, IL-12 and CXCL10 were higher in HT (p < 0.05). Subjects with overt HT may display a proinflammatory tendency with increased levels of IL-6 and interferon-γ, and decreased levels of TGF-β (p < 0.05). CONCLUSIONS The data presented and discussed here highlights the association between HT and soluble biomarkers of ED. Inflammatory mediators released by activated T-cells and macrophages may aggravate local and systemic inflammation, which arouses more inflammation, forming a vicious circle leading to ED.
Collapse
Affiliation(s)
- Emiliana María Torres
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá", Consejo Nacional de Investigaciones Científicas y Técnicas - Fundación de Endocrinología Infantil - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Mariana Lorena Tellechea
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá", Consejo Nacional de Investigaciones Científicas y Técnicas - Fundación de Endocrinología Infantil - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| |
Collapse
|
5
|
Uehara Y, Ogawa N, Yamoto T, Watanabe N, Kanasaki K. Massive Exudative Pleural Effusion With Hypothyroidism: A Case Report. Cureus 2025; 17:e80683. [PMID: 40242698 PMCID: PMC11999820 DOI: 10.7759/cureus.80683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2025] [Indexed: 04/18/2025] Open
Abstract
Here, we report the case of a 79-year-old woman with massive exudative pleural effusion and hypothyroidism. The patient underwent total thyroid and parathyroidectomy during pharyngoesophagectomy for hypopharyngeal cancer. She was administered a thyroid hormone preparation (87.5 μg of levothyroxine sodium), calcium supplementation (0.5 g of calcium lactate hydrate), and active vitamin D (2 g of alfacalcidol). Four months after missing her regular medical appointment and discontinuing her medications, she developed a severe exudative pleural effusion, circumferential pericardial effusion, and mild ascites secondary to hypothyroidism. The pleural effusion, which may have been exacerbated by prolonged hypothyroidism and associated heart failure, improved with drainage and did not recur after the initiation of thyroid hormone replacement therapy. The pericardial effusion and ascites improved with hormone replacement alone. Although fluid retention associated with hypothyroidism usually improves with thyroid hormone therapy, drainage may be required to treat severe exudative effusions in diverse body cavities when diuretic treatments are insufficient.
Collapse
Affiliation(s)
- Yukiko Uehara
- Endocrinology and Metabolism, Shimane University Faculty of Medicine, Izumo, JPN
| | - Noriko Ogawa
- Endocrinology and Metabolism, Shimane University Faculty of Medicine, Izumo, JPN
| | - Takuma Yamoto
- Endocrinology and Metabolism, Shimane University Faculty of Medicine, Izumo, JPN
| | | | - Keizo Kanasaki
- Endocrinology and Metabolism, Shimane University Faculty of Medicine, Izumo, JPN
| |
Collapse
|
6
|
Kurhaluk N, Tkaczenko H. L-Arginine and Nitric Oxide in Vascular Regulation-Experimental Findings in the Context of Blood Donation. Nutrients 2025; 17:665. [PMID: 40004994 PMCID: PMC11858268 DOI: 10.3390/nu17040665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
This narrative review provides an analysis of the role of nitric oxide (NO) and its precursors, particularly L-arginine, in vascular regulation and health, with an emphasis on findings from our experimental research in animal models. NO serves as a critical mediator of vascular function, contributing to vasodilation, the regulation of blood flow, and the prevention of thrombosis. As a primary precursor of NO, L-arginine is essential for maintaining endothelial integrity, modulating mitochondrial function, and reducing oxidative damage. This review synthesises the data and contextualises these findings within the physiological challenges faced by blood donors, such as repeated blood donation and associated oxidative stress. It examines the effects of L-arginine supplementation on mitochondrial respiration, lipid peroxidation, and microsomal oxidation in different conditions, including differences in age, gender, and dietary interventions. The mechanisms by which L-arginine enhances NO production, improves vascular elasticity, and alleviates endothelial dysfunction caused by reduced NO bioavailability are also investigated. By integrating experimental findings with insights from the existing literature, this review provides a perspective on the potential of L-arginine supplementation to address the specific physiological needs of blood donors. It highlights the importance of personalised nutritional approaches in enhancing donor recovery and vascular resilience. In addition, this review assesses the wider implications of L-arginine supplementation in mitigating oxidative stress and preserving vascular function. The interplay between NO bioavailability, dietary factors, and physiological adaptation in blood donors is highlighted, along with the identification of current knowledge gaps and recommendations for future research. By presenting both original experimental evidence and a critical synthesis of the literature, this article highlights the therapeutic potential of NO precursors, particularly L-arginine, in promoting vascular health in the context of blood donation.
Collapse
Affiliation(s)
- Natalia Kurhaluk
- Institute of Biology, Pomeranian University in Słupsk, Arciszewski St. 22b, 76-200 Słupsk, Poland;
| | | |
Collapse
|
7
|
Hwang JY, Kim MY, Cho JY. Syk/Src/NF-κB axis is essentially targeted in anti-inflammatory and anti-gastritis effects of Bletilla striata ethanol extract. JOURNAL OF ETHNOPHARMACOLOGY 2025; 339:119155. [PMID: 39580127 DOI: 10.1016/j.jep.2024.119155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/17/2024] [Accepted: 11/21/2024] [Indexed: 11/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional herbal medicine books "Shin Rhong Bon Cho Kyung" and "Hyang Yak Jip Sung Bang" mentioned that Bletilla striata (Thunb.) Rchb.f. (Orchidaceae) was often used as a medicinal plant and is used in oriental medicine to treat wounds, inflammatory symptoms, and ulcers in stomach, lung, and skin. However, systematic studies on its value as a promising anti-inflammatory remedy were not fully elucidated yet. AIM OF THE STUDY The eventual goal of this paper was to explore anti-inflammatory and anti-gastritis effects of Bletilla striata and its inhibitory mechanism with an ethanol extract of this plant (Bs-EE). MATERIALS AND METHODS In vitro study includes nitric oxide (NO) inhibitory test by was Griess assay, cell viability check by MTT assay, mRNA level analysis of inflammatory genes by PCR and RT-PCR, and protein level analysis by Western blotting and CESTA. In vivo analysis was done with a mouse gastritis model triggered by HCl/EtOH. Phytochemical finger printing result was observed by GC/MS-MS. RESULTS Our in vitro trials showed that Bs-EE dose-dependently reduced NO production in lipopolysaccharide-, Poly(I:C)-, and Pam3CSK-treated RAW264.7 cells without causing cytotoxicity, as shown by an MTT assay. The levels of inflammation-related genes (iNOS, IL-6, IL-1β) showed meaningful reductions in RT-PCR and real-time PCR. The NF-κB activity enhanced in MyD88-overexpressing HEK293T cells was strongly reduced by Bs-EE. Western blotting results indicated that the Bs-EE suppressed the phosphorylation of IκBα, IKKα/β, AKT, p65, p50, Syk, and Src, which produced anti-inflammatory effects. Both Syk and Src were found to be direct targets of Bs-EE. This extract attenuated the inflammatory effect in a murine acute gastritis model induced by HCl/EtOH. CONCLUSIONS These findings suggest that an ethanol extract of Bletilla striata could be developed as a promising natural anti-inflammatory drug or health functional food with NF-κB pathway inhibitory activity.
Collapse
Affiliation(s)
- Ji Yeon Hwang
- Department of Integrative Biotechnology, and Biomedical Institute for Convergence at SKKU, Republic of Korea.
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul, 06978, Republic of Korea.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, and Biomedical Institute for Convergence at SKKU, Republic of Korea.
| |
Collapse
|
8
|
Souza TP, Tardelli LP, Nicoletti RA, Jacomini AM, Martins GFDM, Pinheiro LC, Tanus-Santos JE, Amaral SLD, Zago AS. Short-term Oral Nitrite Administration Decreases Arterial Stiffness in Both Trained and Sedentary Wistar Rats. Arq Bras Cardiol 2024; 121:e20230783. [PMID: 39699451 DOI: 10.36660/abc.20230783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 10/16/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Nitric Oxide (NO) plays an important role in blood pressure (BP) regulation, acting directly on peripheral vascular resistance through vasodilation. Physical training (via eNOS/NO) and intake of nitrite have been considered major stimuli to increase NO. OBJECTIVE We examined the effects of oral nitrite administration and aerobic exercise training on BP and arterial stiffness in Wistar rats. METHODS Thirty-nine (39) young male Wistar rats were divided into the following groups (n = 9 or 10 per group): Sedentary-Control (SC), Sedentary-Nitrite (SN), Trained-Control (TC), and Trained-Nitrite (TN). They were submitted to aerobic physical training on treadmills for 8 weeks (50-60% of physical capacity, 1h/day, 5 days/week) or kept sedentary. In the last 6 days of training, oral nitrite was administered (15 mg/Kg by gavage). BP, arterial stiffness, and plasma and tissue nitrite concentrations were assessed after the training and oral nitrite administration period. The significant level was defined as p < 0.05. RESULTS Oral administration of nitrite was effective in reducing arterial stiffness values (TN, -23%; and SN, -15%). Both groups that had only one type of intervention showed lower systolic BP compared with control (TC vs. SC, -14.23; and SN vs. SC, - 12.46). CONCLUSION We conclude that short-term oral administration for 6 days and an aerobic physical training program promote several hemodynamic benefits in male Wistar rats, such as improvements in arterial stiffness and BP. These responses suggest that physical training and sodium nitrite supplementation can be alternatives for the prevention and treatment of hypertension.
Collapse
Affiliation(s)
- Thiago Pereira Souza
- Universidade Estadual Paulista (UNESP) - Departamento de Educação Física, Bauru, SP - Brasil
| | - Lidieli Pazin Tardelli
- Universidade Federal de São Carlos (UFSCar) - Programa Interinstitucional de Pós-Graduação em Ciências Fisiológicas, PIPGCF UFSCar/UNESP, São Carlos, SP - Brasil
| | | | - André Mourão Jacomini
- Universidade Estadual Paulista (UNESP) - Departamento de Educação Física, Bauru, SP - Brasil
| | | | - Lucas Cézar Pinheiro
- Universidade Federal de Santa Catarina (UFSC) - Departamento de Farmacologia, Florianópolis, SC - Brasil
| | | | - Sandra Lia do Amaral
- Universidade Estadual Paulista (UNESP) - Departamento de Educação Física, Bauru, SP - Brasil
| | - Anderson Saranz Zago
- Universidade Estadual Paulista (UNESP) - Departamento de Educação Física, Bauru, SP - Brasil
| |
Collapse
|
9
|
Pingitore A, Gaggini M, Mastorci F, Sabatino L, Cordiviola L, Vassalle C. Metabolic Syndrome, Thyroid Dysfunction, and Cardiovascular Risk: The Triptych of Evil. Int J Mol Sci 2024; 25:10628. [PMID: 39408957 PMCID: PMC11477096 DOI: 10.3390/ijms251910628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
The triad formed by thyroid dysfunction, metabolic syndrome (MetS), and cardiovascular (CV) risk forms a network with many connections that aggravates health outcomes. Thyroid hormones (THs) play an important role in glucose and lipid metabolism and hemodynamic regulation at the molecular level. It is noteworthy that a bidirectional association between THs and MetS and their components likely exists as MetS leads to thyroid dysfunction, whereas thyroid alterations may cause a higher incidence of MetS. Thyroid dysfunction increases insulin resistance, the circulating levels of lipids, in particular LDL-C, VLDL-C, and triglycerides, and induces endothelial dysfunction. Furthermore, THs are important regulators of both white and brown adipose tissue. Moreover, the pathophysiological relationship between MetS and TH dysfunction is made even tighter considering that these conditions are usually associated with inflammatory activation and increased oxidative stress. Therefore, the role of THs takes place starting from the molecular level, then manifesting itself at the clinical level, through an increased risk of CV events in the general population as well as in patients with heart failure or acute myocardial infarction. Thus, MetS is frequently associated with thyroid dysfunction, which supports the need to assess thyroid function in this group, and when clinically indicated, to correct it to maintain euthyroidism. However, there are still several critical points to be further investigated both at the molecular and clinical level, in particular considering the need to treat subclinical dysthyroidism in MetS patients.
Collapse
Affiliation(s)
| | - Melania Gaggini
- Clinical Physiology Institute, CNR, 56124 Pisa, Italy; (M.G.); (F.M.); (L.S.)
| | - Francesca Mastorci
- Clinical Physiology Institute, CNR, 56124 Pisa, Italy; (M.G.); (F.M.); (L.S.)
| | - Laura Sabatino
- Clinical Physiology Institute, CNR, 56124 Pisa, Italy; (M.G.); (F.M.); (L.S.)
| | | | | |
Collapse
|
10
|
Gluvic Z, Obradovic M, Manojlovic M, Vincenza Giglio R, Maria Patti A, Ciaccio M, Suri JS, Rizzo M, Isenovic ER. Impact of different hormones on the regulation of nitric oxide in diabetes. Mol Cell Endocrinol 2024; 592:112325. [PMID: 38968968 DOI: 10.1016/j.mce.2024.112325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/10/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Polymetabolic syndrome achieved pandemic proportions and dramatically influenced public health systems functioning worldwide. Chronic vascular complications are the major contributors to increased morbidity, disability, and mortality rates in diabetes patients. Nitric oxide (NO) is among the most important vascular bed function regulators. However, NO homeostasis is significantly deranged in pathological conditions. Additionally, different hormones directly or indirectly affect NO production and activity and subsequently act on vascular physiology. In this paper, we summarize the recent literature data related to the effects of insulin, estradiol, insulin-like growth factor-1, ghrelin, angiotensin II and irisin on the NO regulation in physiological and diabetes circumstances.
Collapse
Affiliation(s)
- Zoran Gluvic
- University Clinical-Hospital Centre Zemun-Belgrade, Clinic of Internal Medicine, Department of Endocrinology and Diabetes, Faculty of Medicine, University of Belgrade, Belgrade, Serbia.
| | - Milan Obradovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Mia Manojlovic
- Faculty of Medicine Novi Sad, University of Novi Sad, Novi Sad, Serbia; Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Rosaria Vincenza Giglio
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Italy; Department of Laboratory Medicine, University Hospital, Palermo, Italy
| | - Angelo Maria Patti
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties, University of Palermo, Italy
| | - Marcello Ciaccio
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Italy; Department of Laboratory Medicine, University Hospital, Palermo, Italy
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, 95661, USA
| | - Manfredi Rizzo
- Internal Medicine Unit, "Vittorio Emanuele II" Hospital, Castelvetrano, Italy
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
11
|
Asiwe JN, Ajayi AM, Ben-Azu B, Fasanmade AA. Vincristine attenuates isoprenaline-induced cardiac hypertrophy in male Wistar rats via suppression of ROS/NO/NF-қB signalling pathways. Microvasc Res 2024; 155:104710. [PMID: 38880384 DOI: 10.1016/j.mvr.2024.104710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Vincristine (VCR), a vinca alkaloid with anti-tumor and anti-oxidant properties, is acclaimed to possess cardioprotective action. However, the molecular mechanism underlying this protective effect remains unknown. This study investigated the effects of VCR on isoprenaline (ISO), a beta-adrenergic receptor agonist, induced cardiac hypertrophy in male Wistar rats. Animals were pre-treated with ISO (1 mg/kg) intraperitoneally for 14 days before VCR (25 μg/kg) intraperitoneal injection from days 1 to 28. Thereafter, mechanical, and electrical activities of the hearts of the rats were measured using a non-invasive blood pressure monitor and an electrocardiograph, respectively. After which, the heart was homogenized, and supernatants were assayed for contractile proteins: endothelin-1, cardiac troponin-1, angiotensin-II, and creatine kinase-MB, with markers of oxidative/nitrergic stress (SOD, CAT, MDA, GSH, and NO), inflammation (TNF-a and IL-6, NF-kB), and caspase-3 indicative of VCR reduced elevated blood pressure and reversed the abnormal electrocardiogram. ISO-induced increased endothelin-1, cardiac troponin-1, angiotensin-II, and creatine phosphokinase-MB, which were reversed by VCR. ISO also increased TNF-α, IL-6, NF-kB expression with increased caspase-3-mediated apoptosis in the heart. However, VCR reduced ISO-induced inflammation and apoptosis, with improved endogenous antioxidant agents (GSH, SOD, CAT) relative to ISO controls. Moreso, VCR, protected against ISO-induced histoarchitectural degeneration of cardiac myofibre. The result of this study revealed that VCR treatment significantly reverses ISO-induced cardiac hypertrophic phenotypes, via mechanisms connected to improved levels of proteins involved in excitation-contraction, and suppression of oxido-inflammatory and apoptotic pathways.
Collapse
Affiliation(s)
- Jerome Ndudi Asiwe
- Department of Physiology, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria; Department of Physiology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria.
| | - Abayomi M Ajayi
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Nigeria
| | - Benneth Ben-Azu
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | | |
Collapse
|
12
|
Marić Đ, Baralić K, Vukelić D, Milošević I, Nikolić A, Antonijević B, Đukić-Ćosić D, Bulat Z, Aschner M, Djordjevic AB. Thyroid under siege: Unravelling the toxic impact of real-life metal mixture exposures in Wistar rats. CHEMOSPHERE 2024; 360:142441. [PMID: 38797200 DOI: 10.1016/j.chemosphere.2024.142441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 04/26/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
This study explored the effect of a toxic metal(oid) mixture (cadmium, lead, arsenic, mercury, chromium, and nickel) on thyroid function in Wistar rats exposed for 28 or 90 days. Dose levels were determined based on prior human-biomonitoring investigation. The experiment included control (male/female rats, 28 and 90 days) and treated groups, reflecting the lower confidence limit of the Benchmark Dose (BMDL) for hormone levels (M1/F1, 28 and 90 days), median concentrations (M2/F2, 28 and 90 days), 95th percentile concentrations (M3/F3, 28 and 90 days) measured in a human study, and reference values for individual metals extracted from the literature (M4/F4, 28 days only). Blood and thyroid gland samples were collected at the experimental termination. Serum TSH, fT3, fT4, T3, and T4 levels were measured, and SPINA-GT and SPINA-GD parameters were calculated. In silico analysis, employing the Comparative Toxicogenomic Database and ToppGene Suite portal, aimed to reveal molecular mechanisms underlying the observed effects. Results showed greater sensitivity in the female rats, with significant effects observed at lower doses. Subacute exposure increased TSH, fT3, and T3 levels in females, while subchronic exposure in males decreased TSH and fT3 levels and increased fT4. Subacute exposure induced changes even at allegedly safe doses, emphasizing potential health risks. Histological abnormalities were observed in all the treated groups. In silico findings suggested that toxic metal exposure contributes to thyroid disorders via oxidative stress, disruption of micronutrients, interference with hormone synthesis, and gene expression dysregulation. These results indicate that seemingly safe doses in single-substance research can adversely affect thyroid structure and function when administered as a mixture. These findings highlight the complex impact of toxic metal exposure on thyroid health, emphasizing that adhering to accepted safety limits for single-substance research fails to account for adverse effects on thyroid structure and function upon exposures to metal mixtures.
Collapse
Affiliation(s)
- Đurđica Marić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia.
| | - Katarina Baralić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Dragana Vukelić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Ivan Milošević
- University of Belgrade, Faculty of Veterinary Medicine, Department of Histology and Embryology, Bulevar oslobođenja 18, Belgrade, Serbia
| | - Anja Nikolić
- University of Belgrade, Faculty of Veterinary Medicine, Department of Histology and Embryology, Bulevar oslobođenja 18, Belgrade, Serbia
| | - Biljana Antonijević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Danijela Đukić-Ćosić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Zorica Bulat
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Aleksandra Buha Djordjevic
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| |
Collapse
|
13
|
Spahia N, Rroji M, Barbullushi M, Spasovski G. Subclinical Hypothyroidism, Kidney, and Heart from Normal to Uremic Milieu. Metab Syndr Relat Disord 2023; 21:415-425. [PMID: 37433213 DOI: 10.1089/met.2023.0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023] Open
Abstract
Thyroid hormone (TH) imbalances, particularly subclinical hypothyroidism (SCHT), are associated with chronic kidney disease (CKD) and end-stage kidney disease (ESKD). SCHT is more prevalent in CKD and ESKD patients than in the general population, and this condition increases the risk of cardiovascular disease (CVD) morbidity and mortality. The risk of CVD is higher in CKD and ESKD patients compared with the general population. Traditional and nontraditional risk factors, including TH abnormalities, contribute to the high CVD burden in CKD and ESKD patients. The review discusses the link between CKD and hypothyroidism, with a focus on SCHT, and the mechanisms that lead to CVD burden.
Collapse
Affiliation(s)
- Nereida Spahia
- Department of Nephrology, University Hospital Center "Mother Teresa," Tirana, Albania
| | - Merita Rroji
- Department of Nephrology, University Hospital Center "Mother Teresa," Tirana, Albania
| | - Myftar Barbullushi
- Department of Nephrology, University Hospital Center "Mother Teresa," Tirana, Albania
| | - Goce Spasovski
- Department of Nephrology, Medical Faculty, University Sts. Cyril and Methodius, Skopje, North Macedonia
| |
Collapse
|
14
|
Abd ZMA, Khinteel Jabbar N. CIRCULATING MICRORNA-22 AS A BIOMARKER RELATED TO OXIDATIVE STRESS IN HYPOTHYROID WOMEN PATIENT. MILITARY MEDICAL SCIENCE LETTERS 2023. [DOI: 10.31482/mmsl.2023.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
15
|
Macvanin MT, Gluvic Z, Zafirovic S, Gao X, Essack M, Isenovic ER. The protective role of nutritional antioxidants against oxidative stress in thyroid disorders. Front Endocrinol (Lausanne) 2023; 13:1092837. [PMID: 36686463 PMCID: PMC9846570 DOI: 10.3389/fendo.2022.1092837] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
An imbalance between pro-oxidative and antioxidative cellular mechanisms is oxidative stress (OxS) which may be systemic or organ-specific. Although OxS is a consequence of normal body and organ physiology, severely impaired oxidative homeostasis results in DNA hydroxylation, protein denaturation, lipid peroxidation, and apoptosis, ultimately compromising cells' function and viability. The thyroid gland is an organ that exhibits both oxidative and antioxidative processes. In terms of OxS severity, the thyroid gland's response could be physiological (i.e. hormone production and secretion) or pathological (i.e. development of diseases, such as goitre, thyroid cancer, or thyroiditis). Protective nutritional antioxidants may benefit defensive antioxidative systems in resolving pro-oxidative dominance and redox imbalance, preventing or delaying chronic thyroid diseases. This review provides information on nutritional antioxidants and their protective roles against impaired redox homeostasis in various thyroid pathologies. We also review novel findings related to the connection between the thyroid gland and gut microbiome and analyze the effects of probiotics with antioxidant properties on thyroid diseases.
Collapse
Affiliation(s)
- Mirjana T. Macvanin
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Zoran Gluvic
- Clinic for Internal Medicine, Department of Endocrinology and Diabetes, Zemun Clinical Hospital, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Sonja Zafirovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Xin Gao
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Magbubah Essack
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Esma R. Isenovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
16
|
Adebayo OG, Aduema W, Iwueke AV, Asiwe JN, Onyeleonu I, Akpotu AE, Wopara I, Adebayo OR, Onuoha OG, Eleazar ES, Onwuka FC. Treatment with Ginkgo biloba supplement modulates oxidative disturbances, inflammation and vascular functions in oxygen deprived hypothyroid mice: Involvement of endothelin-1/NO signaling pathways. J Food Biochem 2022; 46:e14477. [PMID: 36226765 DOI: 10.1111/jfbc.14477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 01/14/2023]
Abstract
A double-hit biological alteration involving exposure to oxygen deprivation in hypothyroid condition may exacerbate cellular oxidative and inflammatory disturbances comparative to a one-hit biological exposure. This study investigated the therapeutic effect of Ginkgo biloba as cardioprotective against aortic oxido-inflammatory disturbances following oxygen deprivation in hypothyroid mice. Male Swiss mice were partitioned into 5 groups (n = 6) for hypothyroidism (Carbimazole 1.2 mg/kg) and hypoxia induction. Group 1 (normal control), group 2 (hypoxic stress control), group 3 (hypoxic and hypothyroid stress), group 4 (hypoxic and hypothyroid stress and Ginkgo biloba 20 mg/kg; p.o) and group 5 (hypoxic and hypothyroid stress and Levothyroxine 10 μg/kg; p.o) for 14 days. Thereafter, serum and aorta was collected for biochemical evaluation. GBS did not up-regulate the serum thyroid hormone imbalances (tri-iodothyronine (T3), thyroxin (T4)) but maintains the TSH levels. The blood glucose level was reduced with decrease oxidative stress and inflammatory mediators in the serum/aorta indicated by inhibited redox status following treatment with GBS. Moreover, endothelin-1/nitric oxide signaling pathways were markedly regulated in the aorta. Conclusively, GBS acts as a therapeutic agent and may be consider as a potential vasodilator candidate in the management and control of hypoxic stress in hypothyroid condition. PRACTICAL APPLICATIONS: Treatment with Gingko biloba supplement abated endothelial abnormalities via elevation of nitric oxide release and suppression of endothelin activity in hypothyroid mice exposed to hypoxic hypoxia. The activity of myeloperoxidase enzyme and redo-inflammatory status was downregulated following treatment with Gingko biloba supplement in hypothyroid mice exposed to hypoxic hypoxia. Treatment with Gingko biloba supplement modulates hypothalamic-pituitary-adrenal (HPA) axis by inhibiting corticosterone release in hypothyroid mice exposed to hypoxic hypoxia.
Collapse
Affiliation(s)
- Olusegun G Adebayo
- Neurophysiology Unit, Department of Physiology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
| | - Wadioni Aduema
- Department of Physiology, Faculty of Basic Medical Sciences, Bayelsa Medical University, Yenagoa, Nigeria
| | - Adaku V Iwueke
- Department of Biochemistry, Faculty of Science and Computing, University of Agriculture and Environmental Sciences, Umuagwo, Nigeria
| | - Jerome N Asiwe
- Cardiorespiratory Unit, Department of Physiology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
| | - Ijeoma Onyeleonu
- Department of Anatomy, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
| | - Ajirioghene E Akpotu
- Department of Pharmacology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
| | - Iheanyichukwu Wopara
- Department of Biochemistry, Faculty of Sciences, University of Port Harcourt, Port Harcourt, Nigeria
| | - Oluwakemi Rachael Adebayo
- Department of Human Nutrition and Dietetics, Faculty of Public Health, University of Ibadan, Ibadan, Nigeria
| | - Ogechukwu G Onuoha
- Neurophysiology Unit, Department of Physiology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
| | - Emeka Spiff Eleazar
- Neurophysiology Unit, Department of Physiology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
| | - Favour C Onwuka
- Neurophysiology Unit, Department of Physiology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
| |
Collapse
|
17
|
Otelea MR, Nartea R, Popescu FG, Covaleov A, Mitoiu BI, Nica AS. The Pathological Links between Adiposity and the Carpal Tunnel Syndrome. Curr Issues Mol Biol 2022; 44:2646-2663. [PMID: 35735622 PMCID: PMC9221759 DOI: 10.3390/cimb44060181] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
An association between obesity and carpal tunnel syndrome is found in many epidemiological studies. Therefore, there is a need to evaluate the physiopathological links that could explain the association between these two entities. Ectopic adipose tissue is responsible for metabolic syndrome and inflammation, and is a major risk factor for diabetes and cardiovascular diseases. Taking these elements into consideration, we conducted an extensive literature revision of the subject, considering as ectopic fat-related mechanisms the following: (a) the direct compression and the association with the metabolic syndrome of the fat deposition around the wrist, (b) the insulin resistance, dyslipidemia, inflammatory, and oxidative mechanisms related to the central deposition of the fat, (c) the impaired muscle contraction and metabolism related to myosteatosis. Each section presents the cellular pathways which are modified by the ectopic deposition of the adipose tissue and the impact in the pathogeny of the carpal tunnel syndrome. In conclusion, the experimental and clinical data support the epidemiological findings. Efforts to reduce the obesity epidemics will improve not only cardio-metabolic health but will reduce the burden of the disability-free life expectancy due to the carpal tunnel syndrome.
Collapse
Affiliation(s)
- Marina Ruxandra Otelea
- Clinical Department 5, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Roxana Nartea
- Clinical Department 9, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.C.); (B.I.M.); (A.S.N.)
- National Institute for Rehabilitation, Physical Medicine and Balneoclimatology, 030079 Bucharest, Romania
- Correspondence:
| | - Florina Georgeta Popescu
- Department V, Internal Medicine, Victor Babeş University of Medicine and Pharmacy, 300041 Timisoara, Romania;
- Emergency Municipal Hospital, 300254 Timisoara, Romania
| | - Anatoli Covaleov
- Clinical Department 9, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.C.); (B.I.M.); (A.S.N.)
| | - Brindusa Ilinca Mitoiu
- Clinical Department 9, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.C.); (B.I.M.); (A.S.N.)
| | - Adriana Sarah Nica
- Clinical Department 9, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.C.); (B.I.M.); (A.S.N.)
- National Institute for Rehabilitation, Physical Medicine and Balneoclimatology, 030079 Bucharest, Romania
| |
Collapse
|
18
|
Stanculescu D, Bergquist J. Perspective: Drawing on Findings From Critical Illness to Explain Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Front Med (Lausanne) 2022; 9:818728. [PMID: 35345768 PMCID: PMC8957276 DOI: 10.3389/fmed.2022.818728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/11/2022] [Indexed: 12/15/2022] Open
Abstract
We propose an initial explanation for how myalgic encephalomyelitis / chronic fatigue syndrome (ME/CFS) could originate and perpetuate by drawing on findings from critical illness research. Specifically, we combine emerging findings regarding (a) hypoperfusion and endotheliopathy, and (b) intestinal injury in these illnesses with our previously published hypothesis about the role of (c) pituitary suppression, and (d) low thyroid hormone function associated with redox imbalance in ME/CFS. Moreover, we describe interlinkages between these pathophysiological mechanisms as well as “vicious cycles” involving cytokines and inflammation that may contribute to explain the chronic nature of these illnesses. This paper summarizes and expands on our previous publications about the relevance of findings from critical illness for ME/CFS. New knowledge on diagnostics, prognostics and treatment strategies could be gained through active collaboration between critical illness and ME/CFS researchers, which could lead to improved outcomes for both conditions.
Collapse
Affiliation(s)
| | - Jonas Bergquist
- Division of Analytical Chemistry and Neurochemistry, Department of Chemistry - Biomedical Center, Uppsala University, Uppsala, Sweden.,The Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Collaborative Research Centre at Uppsala University, Uppsala, Sweden
| |
Collapse
|
19
|
Gluvic Z, Obradovic M, Stewart AJ, Essack M, Pitt SJ, Samardzic V, Soskic S, Gojobori T, Isenovic ER. Levothyroxine Treatment and the Risk of Cardiac Arrhythmias - Focus on the Patient Submitted to Thyroid Surgery. Front Endocrinol (Lausanne) 2021; 12:758043. [PMID: 34803920 PMCID: PMC8600254 DOI: 10.3389/fendo.2021.758043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/11/2021] [Indexed: 02/05/2023] Open
Abstract
Levothyroxine (LT4) is used to treat frequently encountered endocrinopathies such as thyroid diseases. It is regularly used in clinical (overt) hypothyroidism cases and subclinical (latent) hypothyroidism cases in the last decade. Suppressive LT4 therapy is also part of the medical regimen used to manage thyroid malignancies after a thyroidectomy. LT4 treatment possesses dual effects: substituting new-onset thyroid hormone deficiency and suppressing the local and distant malignancy spreading in cancer. It is the practice to administer LT4 in less-than-high suppressive doses for growth control of thyroid nodules and goiter, even in patients with preserved thyroid function. Despite its approved safety for clinical use, LT4 can sometimes induce side-effects, more often recorded with patients under treatment with LT4 suppressive doses than in unintentionally LT4-overdosed patients. Cardiac arrhythmias and the deterioration of osteoporosis are the most frequently documented side-effects of LT4 therapy. It also lowers the threshold for the onset or aggravation of cardiac arrhythmias for patients with pre-existing heart diseases. To improve the quality of life in LT4-substituted patients, clinicians often prescribe higher doses of LT4 to reach low normal TSH levels to achieve cellular euthyroidism. In such circumstances, the risk of cardiac arrhythmias, particularly atrial fibrillation, increases, and the combined use of LT4 and triiodothyronine further complicates such risk. This review summarizes the relevant available data related to LT4 suppressive treatment and the associated risk of cardiac arrhythmia.
Collapse
Affiliation(s)
- Zoran Gluvic
- Clinic for Internal Medicine, Department of Endocrinology and Diabetes, Zemun Clinical Hospital, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Milan Obradovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Alan J. Stewart
- School of Medicine, University of St Andrews, St Andrews, United Kingdom
| | - Magbubah Essack
- King Abdullah University of Science and Technology (KAUST), Computer, Electrical, and Mathematical Sciences and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Samantha J. Pitt
- School of Medicine, University of St Andrews, St Andrews, United Kingdom
| | - Vladimir Samardzic
- Clinic for Internal Medicine, Department of Endocrinology and Diabetes, Zemun Clinical Hospital, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Sanja Soskic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Takashi Gojobori
- King Abdullah University of Science and Technology (KAUST), Computer, Electrical, and Mathematical Sciences and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Esma R. Isenovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
20
|
Liu ZC, Yu WW, Zhou HC, Lan ZC, Wu T, Xiong SM, Yan L, Liu HB. Lycium barbarum polysaccharides ameliorate LPS-induced inflammation of RAW264.7 cells and modify the behavioral score of peritonitis mice. J Food Biochem 2021; 45:e13889. [PMID: 34426988 DOI: 10.1111/jfbc.13889] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/26/2021] [Accepted: 07/19/2021] [Indexed: 01/17/2023]
Abstract
In the present study, the anti-inflammatory effect of Lycium barbarum polysaccharide (LBP) and the possible molecular mechanism thereof were examined, so as to perceive the pharmacological action of LBP. With acute peritonitis in mice as the inflammatory model, the protective effect of LBP on peritonitis mice was evaluated by recording the effect of behavioral scores, studying the pathological damage of intestine and liver, and detecting the levels of inflammatory cytokines. Additionally, by establishing an lipopolysaccharide (LPS)-induced RAW264.7 macrophage model, the effect of LBP on RAW264.7 cell phenotype and culture supernatant inflammatory markers was observed. Finally, the activation of inflammation-related target genes, such as iNOS, Toll-like receptor 4 (TLR4), nuclear factor-κB (NF-κB) p65, and IκBα, were further detected. The results reveal that pretreatment with LBP could decrease the behavioral score of inflammatory mice, inhibit the secretion of pro-inflammatory factors, and reduce liver and intestine injury. LBP can regulate the effect of lipopolysaccharide on the polarization of RAW264.7 cells, and reduce the production of NO and cytokines (TNF-α, IL-1β, IL-6). Further, LBP pretreatment was found to be able to significantly reduce the expression of iNOS, TLR4, NF-κB p65, and IκBα in macrophages. The present research provides evidence that LBP exerts potential anti-inflammatory activity in LPS-induced RAW264.7 macrophages via inhibiting TLR4 and NF-κB inflammatory sites and improving the behavior score of peritonitis mice. PRACTICAL APPLICATIONS: In recent years, the number of deaths worldwide has continued to rise as a result of inflammation. Despite said rise in deaths, many synthetic drugs with anti-inflammatory properties are significantly expensive and also have a host of side effects. Thus, the development of new anti-inflammatory drugs derived from medicinal plants has broad application potential. As such, in the present study, lipopolysaccharide (LPS)-induced macrophages were used to establish inflammatory cell models to verify the anti-inflammatory effect of Lycium barbarum polysaccharides (LBP). Findings were made that LBP could reduce the expression levels of inflammatory cytokines and NO by regulating macrophage polarization and NF-κB translocation, and thus, could exert anti-inflammatory activity. In addition, by intraperitoneal injection of LPS to establish peritonitis mice models, LBP pretreatment was found to have significantly modified the behavioral score of mice, while decreasing the secretion of inflammatory factors and the damage to several organs. The present study provides a basis for further understanding the effects of LBP in acute inflammation.
Collapse
Affiliation(s)
- Zhi-Chang Liu
- Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China.,Gansu Provincial Key Laboratory of Stem Cells and Gene Drugs, Lanzhou, P.R. China
| | - Wen-Wen Yu
- Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Hai-Cun Zhou
- Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China.,Department of General Surgery, Gansu Maternal and Child Health Care Hospital, Lanzhou, P.R. China
| | - Zheng-Cang Lan
- Department of General Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, P.R. China
| | - Tong Wu
- Department of General Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, P.R. China
| | - Shi-Meng Xiong
- Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China.,Gansu Provincial Key Laboratory of Stem Cells and Gene Drugs, Lanzhou, P.R. China
| | - Long Yan
- Department of General Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, P.R. China.,Clinical Medical College, Northwest Minzu University, Lanzhou, P.R. China
| | - Hong-Bin Liu
- Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China.,Clinical Medical College, Northwest Minzu University, Lanzhou, P.R. China
| |
Collapse
|
21
|
El Deib MM, El-Sharkawy NI, Beheiry RR, Abd-Elhakim YM, Ismail SA, Fahmy EM, Saber T, Saber TM. Boldenone undecylenate disrupts the immune system and induces autoimmune clinical hypothyroidism in rats: Vitamin C ameliorative effects. Int Immunopharmacol 2021; 99:107939. [PMID: 34224995 DOI: 10.1016/j.intimp.2021.107939] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/07/2021] [Accepted: 06/28/2021] [Indexed: 12/20/2022]
Abstract
The present study was designed to evaluate the effects of boldenone undecylenate (BL) abuse alone and in combination with vitamin C (VC) on the immune responses and thyroid structure and function in rats. Thirty adult male Wistar rats were randomly divided into five equal groups and were subjected to various treatment regimens for eight weeks as follows: control group, vehicle control group, VC group orally received VC (120 mg/Kg BW/day), BL-treated group intramuscularly injected with BL (5 mg/kg BW, once/week), and BL+VC group received BL and VC. At the end of this experiment, blood and tissue samples (thyroid, thymus, and spleen) were subjected to hematological evaluation, biochemical analysis, histopathological, and immunohistochemical examinations. In comparison to controls, BL significantly increased the levels of serum proinflammatory interleukins (IL-1 β and IL-6), immunoglobulins (IgG and IgM), and complement 3 but reduced anti-inflammatory interleukin-10, lysosome, and nitric oxide. Besides, altered platelet count and leukogram were evident in BL-injected rats. BL notably disturbed thyroid profile as revealed by a significant increase of thyroid-stimulating hormone and thyroid peroxidase antibody. In contrast, both total and free forms of thyroid hormones (tri-iodothyronine and thyroxine), thyroglobulin, and thyroid peroxidase, were significantly decreased. Moreover, BL caused histopathological changes in the thyroid, thymus, and spleen tissues.CD4+ immuno-expression was reduced, but CD8+ immunolabelling was increased in both spleen and thymus. The daily dosing of VC to BL-exposed rats significantly corrected most of the deviations in immune parameters. It restored most of the thyroid architecture and function, revealing a significant protective effect of this vitamin. This experimental study demonstrates that BL abusing disrupts the immune system by different mechanisms and addresses BL, for the first time, as an autoimmune clinical hypothyroidism inducer drug. Additionally, VC is helpful in the management of BL abuse.
Collapse
Affiliation(s)
- Maha M El Deib
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Nabela I El-Sharkawy
- Department of Forensic Medicine and Toxicology Faculty of Veterinary Medicine, Zagazig University, Egypt
| | - Rasha R Beheiry
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology Faculty of Veterinary Medicine, Zagazig University, Egypt.
| | - Shimaa Aa Ismail
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Esraa M Fahmy
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Taisir Saber
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Taghred M Saber
- Department of Forensic Medicine and Toxicology Faculty of Veterinary Medicine, Zagazig University, Egypt
| |
Collapse
|
22
|
Geist D, Hönes GS, Gassen J, Kerp H, Kleinbongard P, Heusch G, Führer D, Moeller LC. Noncanonical Thyroid Hormone Receptor α Action Mediates Arterial Vasodilation. Endocrinology 2021; 162:6276892. [PMID: 33999131 DOI: 10.1210/endocr/bqab099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Indexed: 11/19/2022]
Abstract
CONTEXT Hypothyroidism impairs cardiovascular health and contributes to endothelial dysfunction with reduced vasodilation. How 3,5,3'-triiodothyronine (T3) and its receptors are involved in the regulation of vasomotion is not yet fully understood. In general, thyroid hormone receptors (TRs) either influence gene expression (canonical action) or rapidly activate intracellular signaling pathways (noncanonical action). OBJECTIVE Here we aimed to characterize the T3 action underlying the mechanism of arterial vasodilation and blood pressure (BP) regulation. METHODS Mesenteric arteries were isolated from male rats, wild-type (WT) mice, TRα knockout (TRα 0) mice, and from knockin mice with a mutation in the DNA-binding domain (TRα GS). In this mutant, DNA binding and thus canonical action is abrogated while noncanonical signaling is preserved. In a wire myograph system, the isolated vessels were preconstricted with norepinephrine. The response to T3 was measured, and the resulting vasodilation (Δ force [mN]) was normalized to maximum contraction with norepinephrine and expressed as percentage vasodilation after maximal preconstriction with norepinephrine (%NE). Isolated vessels were treated with T3 (1 × 10-15 to 1 × 10-5 mol/L) alone and in combination with the endothelial nitric oxide-synthase (eNOS) inhibitor L-NG-nitroarginine methyl ester (L-NAME) or the phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin. The endothelium was removed to determine the contribution of T3 to endothelium-dependent vasodilation. The physiological relevance of T3-induced vasodilation was determined by in vivo arterial BP measurements in male and female mice. RESULTS T3 treatment induced vasodilation of mesenteric arteries from WT mice within 2 minutes (by 21.5 ± 1.7%NE). This effect was absent in arteries from TRα 0 mice (by 5.3 ± 0.6%NE, P < .001 vs WT) but preserved in TRα GS arteries (by 17.2 ± 1.1%NE, not significant vs WT). Inhibition of either eNOS or PI3K reduced T3-mediated vasodilation from 52.7 ± 4.5%NE to 28.5 ± 4.1%NE and 22.7 ± 2.9%NE, respectively. Removal of the endothelium abolished the T3-mediated vasodilation in rat mesenteric arteries (by 36.7 ± 5.4%NE vs 3.5 ± 6.2%NE). In vivo, T3 injection led to a rapid decrease of arterial BP in WT (by 13.9 ± 1.9 mm Hg) and TRα GS mice (by 12.4 ± 1.9 mm Hg), but not in TRα 0 mice (by 4.1 ± 1.9 mm Hg). CONCLUSION These results demonstrate that T3 acting through noncanonical TRα action affects cardiovascular physiology by inducing endothelium-dependent vasodilation within minutes via PI3K and eNOS activation.
Collapse
Affiliation(s)
- Daniela Geist
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - G Sebastian Hönes
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Janina Gassen
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Helena Kerp
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Petra Kleinbongard
- Institute of Pathophysiology, West German Heart and Vascular Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Gerd Heusch
- Institute of Pathophysiology, West German Heart and Vascular Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Dagmar Führer
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Lars C Moeller
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
23
|
Hypothyroidism and risks of cerebrovascular complications among patients with head and neck cancer after radiotherapy. BMC Neurol 2021; 21:30. [PMID: 33468088 PMCID: PMC7814701 DOI: 10.1186/s12883-021-02047-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/04/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Hypothyroidism (HT) and carotid artery stenosis (CAS) are complications of radiotherapy (RT) in patients with head and neck cancer (HNC). The impact of post-RT HT on CAS progression remains unclear. METHODS Between 2013 and 2014, HNC patients who had ever received RT and were under regular follow-up in our hospital were initially screened. Patients were categorized into euthyroid (EU) and HT groups. Details of RT and HNC were recorded. Total plaque scores and degrees of CAS were measured during annual extracranial duplex follow-up. Patients were monitored for CAS progression to > 50 % stenosis or ischemic stroke (IS). Cumulative time to CAS progression and IS between the 2 groups were compared. Data were further analyzed based on the use or nonuse of thyroxine of the HT group. RESULTS 333 HNC patients with RT history were screened. Finally, 216 patients were recruited (94 and 122 patients in the EU and HT groups). Patients of the HT group received higher mean RT doses (HT vs. EU; 7021.55 ± 401.67 vs. 6869.69 ± 425.32 centi-grays, p = 0.02). Multivariate Cox models showed comparable CAS progression (p = 0.24) and IS occurrence (p = 0.51) between the 2 groups. Moreover, no significant difference was observed in time to CAS progression (p = 0.49) or IS (p = 0.31) among patients with EU and HT using and not using thyroxine supplement. CONCLUSIONS Our results did not demonstrate significant effects of HT and thyroxine supplementation on CAS progression and IS incidence in patients with HNC after RT.
Collapse
|
24
|
Olichwier A, Balatskyi VV, Wolosiewicz M, Ntambi JM, Dobrzyn P. Interplay between Thyroid Hormones and Stearoyl-CoA Desaturase 1 in the Regulation of Lipid Metabolism in the Heart. Int J Mol Sci 2020; 22:ijms22010109. [PMID: 33374300 PMCID: PMC7796080 DOI: 10.3390/ijms22010109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
Stearoyl-CoA desaturase 1 (SCD1), an enzyme that is involved in the biosynthesis of monounsaturated fatty acids, induces the reprogramming of cardiomyocyte metabolism. Thyroid hormones (THs) activate both lipolysis and lipogenesis. Many genes that are involved in lipid metabolism, including Scd1, are regulated by THs. The present study used SCD1 knockout (SCD1−/−) mice to test the hypothesis that THs are important factors that mediate the anti-steatotic effect of SCD1 downregulation in the heart. SCD1 deficiency decreased plasma levels of thyroid-stimulating hormone and thyroxine and the expression of genes that regulate intracellular TH levels (i.e., Slc16a2 and Dio1-3) in cardiomyocytes. Both hypothyroidism and SCD1 deficiency affected genomic and non-genomic TH pathways in the heart. SCD1 deficiency is known to protect mice from genetic- or diet-induced obesity and decrease lipid content in the heart. Interestingly, hypothyroidism increased body adiposity and triglyceride and diacylglycerol levels in the heart in SCD1−/− mice. The accumulation of triglycerides in cardiomyocytes in SCD1−/− hypothyroid mice was caused by the activation of lipogenesis, which likely exceeded the upregulation of lipolysis and fatty acid oxidation. Lipid accumulation was also observed in the heart in wildtype hypothyroid mice compared with wildtype control mice, but this process was related to a reduction of triglyceride lipolysis and fatty acid oxidation. We also found that simultaneous SCD1 and deiodinase inhibition increased triglyceride content in HL-1 cardiomyocytes, and this process was related to the downregulation of lipolysis. Altogether, the present results suggest that THs are an important part of the mechanism of SCD1 in cardiac lipid utilization and may be involved in the upregulation of energetic metabolism that is associated with SCD1 deficiency.
Collapse
Affiliation(s)
- Adam Olichwier
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.O.); (V.V.B.); (M.W.)
| | - Volodymyr V. Balatskyi
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.O.); (V.V.B.); (M.W.)
| | - Marcin Wolosiewicz
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.O.); (V.V.B.); (M.W.)
| | - James M. Ntambi
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA;
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Pawel Dobrzyn
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.O.); (V.V.B.); (M.W.)
- Correspondence:
| |
Collapse
|