1
|
Tang Y, Wang N, Liu W, Ding Q, Yang J, Wu X, Cheng Z, Hong B, Ding C. The ASB@HNTs-PVA nanofiber membrane, possessing both anti-inflammatory and hemostatic activities, promotes the healing of T2D skin wounds. Int Immunopharmacol 2024; 140:112780. [PMID: 39111148 DOI: 10.1016/j.intimp.2024.112780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/14/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024]
Abstract
The healing of diabetic wounds has long been a significant challenge in the field of medicine. The elevated sugar levels surrounding diabetic wounds create a conducive environment for harmful bacterial growth, resulting in purulent infections that impede the healing process. Thus, the development of a biomaterial that can enhance the healing of diabetic wounds holds great importance. This study developed electrospun dressings for wound healing by combining traditional Chinese medicine and clay. The study utilized electrospinning technology to prepare polyvinyl alcohol (PVA) nanofiber membranes containing ASB and HNTs. These ASB@HNTs-PVA nanofiber membranes demonstrated rapid hemostasis, along with antibacterial and anti-inflammatory properties, facilitating the recovery of type 2 diabetic (T2D) wounds. Various analyses were conducted to assess the performance of the composite nanofiber membrane, including investigations into its biocompatibility and hemostatic abilities through antibacterial experiments, cell experiments, and mouse liver tail bleeding experiments. Western blot analysis confirmed that the composite nanofiber membrane could decrease the levels of inflammatory factors IL-1β and TNF-α. A type 2 diabetic mouse model was utilized, with wounds artificially induced on the backs of mice. Application of the nanofiber membrane to the wounds further confirmed its anti-inflammatory effects and ability to enhance wound healing in vivo.
Collapse
Affiliation(s)
- Yan Tang
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Changchun 130118, China
| | - Ning Wang
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Changchun 130118, China
| | - Wencong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China
| | - Qiteng Ding
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Changchun 130118, China
| | - Junran Yang
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Changchun 130118, China
| | - Xiaoyu Wu
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Changchun 130118, China
| | - Zhiqiang Cheng
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Changchun 130118, China
| | - Bo Hong
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Changchun 130118, China.
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Changchun 130118, China.
| |
Collapse
|
2
|
Liu J, Wei F, Liu J, Sun W, Liu S, Chen S, Zhang D, Xu B, Ma S. Protective effects and mechanisms of HuDiChangRong capsule on TNBS-induced ulcerative colitis in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118879. [PMID: 39369923 DOI: 10.1016/j.jep.2024.118879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE UC, characterized by chronic inflammation primarily affecting the colon and rectum, follows a protracted relapsing course marked by inflammation and an abundance of free radicals at the onset. Hudichangrong Capsule (HDCRC), a traditional Chinese medicinal formula, has long been employed in the treatment of UC and chronic bacillary dysentery, exhibiting positive therapeutic outcomes and a high rate of cure in clinical practice. AIM OF THE STUDY The precise mechanism underlying its efficacy for UC remains elusive. Our objective was to investigate the anti-inflammatory effect and underlying mechanisms of HDCRC on TNBS-induced UC. MATERIALS AND METHODS Here, we introduced HDCRC and induced UC using TNBS. SPF BALB/c mice were divided into 6 groups as follows: control group, colitis model group, colitis treated with sulfasalazine (400 mg/kg) group, and colitis treated with HDCRC (156, 312, and 624 mg/kg) groups. To assess the effects of HDCRC on colitis, we measured body weight loss, disease activity index (DAI), colon length, tissue damage, degree of inflammation, immune capacity, and oxidative stress. Additionally, we evaluated the TLR-4/MyD88 pathway and its downstream signaling using immunohistochemistry, real-time qPCR, and Western blot. Network pharmacology was used for main target prediction. 16s rRNA was employed for gut microbiota detechtion and UPLC-QTOF-MS was used for its and its metabonomics. RESULTS HDCRC significantly slowed weight loss, ameliorated DAI, restored colon length, alleviated TNBS-induced tissue damage. It exerted the therapeutic effects via reducing oxidative stress, restoring immune balance, normalizing the inflammatory mediator levels and restoring intestinal barrier integrity. Furthermore, HDCRC mainly alleviate UC via suppressing the TLR-4/MyD88 pathway and its downstream signaling. The key components of the downstream pathway, including TLR-4, MyD88, NF-κB p65, ERK, p-JNK, p38, p-JAK1, JAK1, p-STAT3, and STAT3, were improved, thereby ameliorating the TNBS-induced injury. In addition, HDCRC could regulate gut microbiota (eg. Erysipelaloclostridium,etc.) and its metabonomics (eg. Vitamin B6 metabolism) in UC mice. CONCLUSIONS In conclusion, HDCRC exerts a protective effect against TNBS-induced UC in mice by inhibiting the TLR-4/MyD88 pathway and its downstream signaling, and partially JAK1/STAT3, suppressing oxidative stress, regulating immunity, restoring intestinal barrier integrity, and regulating gut microbiota and its metabonomics.
Collapse
Affiliation(s)
- Jingjing Liu
- National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Feng Wei
- National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Jing Liu
- National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Wenbin Sun
- School of Pharmacy, Harbin University of Commerce, Harbin, 150076, China
| | - Shusen Liu
- School of Pharmacy, Harbin University of Commerce, Harbin, 150076, China
| | - Shengnan Chen
- School of Pharmacy, Harbin University of Commerce, Harbin, 150076, China
| | - Dongqi Zhang
- School of Pharmacy, Harbin University of Commerce, Harbin, 150076, China
| | - Beilei Xu
- School of Pharmacy, Harbin University of Commerce, Harbin, 150076, China; Engineering Research Center of Natural Anti-cancer Drugs, Ministry of Education, Harbin, 150076, China; Engineering Research Center of Chinese Medicine Production and New Drug Development, Beijing, 102488, China.
| | - Shuangcheng Ma
- Chinese Pharmacopoeia Commission, Beijing, 100061, China.
| |
Collapse
|
3
|
Li J, Zhang J, Zhao X, Tian L. MSU crystallization promotes fibroblast proliferation and renal fibrosis in diabetic nephropathy via the ROS/SHP2/TGFβ pathway. Sci Rep 2024; 14:20251. [PMID: 39215017 PMCID: PMC11364842 DOI: 10.1038/s41598-024-67324-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024] Open
Abstract
Monosodium urate (MSU) crystallisation deposited in local tissues and organs induce inflammatory reactions, resulting in diseases such as gout. MSU has been recognized as a common and prevalent pathology in various clinical conditions. In this study, we investigated the role of MSU in the pathogenesis of diabetic kidney disease (DKD). We induced renal injury in diabetic kidney disease mice using streptozotocin (STZ) and assessed renal histopathological damage using Masson's trichrome staining and Collagen III immunofluorescence staining. We measured the levels of malondialdehyde (MDA), superoxide dismutase (SOD), and uric acid (UA) using ELISA. Protein expression levels of NLRP3, p-NF-κB, SHP2, p-STAT3, and p-ERK1/2 were analyzed by Western blot. To further investigate the role of MSU in diabetic kidney disease, we conducted in vitro experiments. In our in vivo experiments, we found that compared to the Model group, there was a significant increase in interstitial fibrosis in the kidneys of mice after treatment with MSU, accompanied by elevated levels of MDA, SOD, and UA. Furthermore, the protein expression of NLRP3, p-NF-NB, SHP2, p-STAT3, and p-ERK1/2 was upregulated. In our subsequent studies on mouse fibroblasts (L929 cells), we discovered that high glucose, MSU, and TGF-β could promote the expression of P22, GP91, NLRP3, NF-κB, p-NF-κB, p-SHP2, p-EGFR, p-STAT3, and Collagen-III proteins. Additionally, we found that SHP2 could counteract the upregulation trend induced by MSU on the expression of p-SHP2, p-EGFR, p-STAT3, and Collagen-III proteins, and inhibitors YQ128, NAC, and Cetuximab exhibited similar effects. Furthermore, immunofluorescence results indicated that SHP2 could inhibit the expression of the fibrosis marker α-SMA in L929 cells. These findings suggest that MSU can promote renal fibroblast SHP2 expression, induce oxidative stress, activate the NLRP3/NF-κB pathway, and enhance diabetic kidney disease fibroblast proliferation through the TGFβ/STAT3/ERK1/2 signaling pathway, leading to renal fibrosis.
Collapse
Affiliation(s)
- Jing Li
- Department of Nephrology, Affiliated Hospital of Hebei University, 212 Yuhua East Road, Baoding, China
| | - Jiwei Zhang
- Department of Cardiovascular Medicine, Affiliated Hospital of Hebei University, Baoding, China
| | - Xuying Zhao
- Department of Endocrinology, Affiliated Hospital of Hebei University, 212 Yuhua East Road, Baoding, China.
| | - Ling Tian
- Department of Nephrology, Affiliated Hospital of Hebei University, 212 Yuhua East Road, Baoding, China.
| |
Collapse
|
4
|
Qian Q, Pan J, Yang J, Wang R, Luo K, Wu Z, Ma S, Wang Y, Li M, Gao Y. Syringin: a naturally occurring compound with medicinal properties. Front Pharmacol 2024; 15:1435524. [PMID: 39104400 PMCID: PMC11298447 DOI: 10.3389/fphar.2024.1435524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024] Open
Abstract
Syringin, a phenylpropanoid glycoside, is widely distributed in various plants, such as Acanthopanax senticosus (Rupr. et Maxim.) Harms, Syringa reticulata (BL) Hara var. mandshurica (Maxim.) Hara, and Ilex rotunda Thumb. It serves as the main ingredient in numerous listed medicines, health products, and foods with immunomodulatory, anti-tumor, antihyperglycemic, and antihyperlipidemic effects. This review aims to systematically summarize syringin, including its physicochemical properties, plant sources, extraction and separation methods, total synthesis approaches, pharmacological activities, drug safety profiles, and preparations and applications. It will also cover the pharmacokinetics of syringin, followed by suggestions for future application prospects. The information on syringin was obtained from internationally recognized scientific databases through the Internet (PubMed, CNKI, Google Scholar, Baidu Scholar, Web of Science, Medline Plus, ACS Elsevier, and Flora of China) and libraries. Syringin, extraction and separation, pharmacological activities, preparations and applications, and pharmacokinetics were chosen as the keywords. According to statistics, syringin can be found in 23 families more than 60 genera, and over 100 species of plants. As a key component in many Chinese herbal medicines, syringin holds significant research value due to its unique sinapyl alcohol structure. Its diverse pharmacological effects include immunomodulatory activity, tumor suppression, hypoglycemic action, and hypolipidemic effects. Additionally, it has been shown to provide neuroprotection, liver protection, radiation protection, cardioprotection, and bone protection. Related preparations such as Aidi injection, compound cantharidin capsule, and Tanreqing injection have been widely used in clinical settings. Other studies on syringin such as extraction and isolation, total synthesis, safety profile assessment, and pharmacokinetics have also made progress. It is crucial for medical research to deeply explore its mechanism of action, especially regarding immunity and tumor therapy. Meanwhile, more robust support is needed to improve the utilization of plant resources and to develop extraction means adapted to the needs of industrial biochemistry to further promote economic development while protecting people's health.
Collapse
Affiliation(s)
- Qingyuan Qian
- College of Pharmacy, Lanzhou University, Lanzhou, China
- Institute of Radiation Medicine Sciences, Beijing, China
| | - Jinchao Pan
- Institute of Radiation Medicine Sciences, Beijing, China
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Jun Yang
- Institute of Radiation Medicine Sciences, Beijing, China
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Renjie Wang
- Institute of Radiation Medicine Sciences, Beijing, China
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Kai Luo
- Institute of Radiation Medicine Sciences, Beijing, China
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhenhui Wu
- Institute of Radiation Medicine Sciences, Beijing, China
| | - Shuhe Ma
- Institute of Radiation Medicine Sciences, Beijing, China
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yuguang Wang
- Institute of Radiation Medicine Sciences, Beijing, China
| | - Maoxing Li
- College of Pharmacy, Lanzhou University, Lanzhou, China
- Institute of Radiation Medicine Sciences, Beijing, China
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yue Gao
- Institute of Radiation Medicine Sciences, Beijing, China
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| |
Collapse
|
5
|
曾 凡, 沈 平, 郭 伟, 何 国. [Exploring the Causal Relationship Between Coagulation Function and Gestational Diabetes Mellitus Through Mendelian Randomization]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:939-946. [PMID: 39170013 PMCID: PMC11334286 DOI: 10.12182/20240760301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Indexed: 08/23/2024]
Abstract
Objective To explore the causal association between coagulation function, including von Willebrand factor (vWF), a disintegrin and metalloproteinase with thrombospondin type 1 motif, member 13 (ADAMTS13), activated partial thromboplastin time (aPTT), coagulation factor Ⅷ (FⅧ), coagulation factor Ⅺ (FⅪ), coagulation factor Ⅶ (FⅦ), coagulation factor Ⅹ (FⅩ), endogenous thrombin potential (ETP), plasminogen activator inhibitor-1 (PAI-1), protein C, and plasmin, and gestational diabetes mellitus (GDM) using two-sample two-way Mendelian randomization (MR), and to provide genetic evidence for the association between coagulation function and the pathogenesis of GDM. Methods The IEU OpenGWAS database was accessed using the R package TwoSampleMR (v 0.5.6) to obtain the statistical data of the genome-wide association study (GWAS) summary of GDM. MR analysis of the causal association between 11 coagulation function and GDM was performed by the inverse-variance weighted method (IVW), the MR-Egger method, and the weighted median method (WM). Results In this study, the GWAS summary statistics of GDM (covering 5 687 cases and 117 892 controls) were used for MR analysis. It was found that there was a causal relationship between the predicted plasma FⅧ level and the risk for GDM (IVW: [odds ratio, OR]=0.28, 95% confidence interval [CI]: 0.10-0.75, P<0.001; WM: OR=0.30, 95% CI: 0.09-0.98, P<0.001). There was no causal relationship between other coagulation function and the risk for GDM (P>0.05). Conclusion There is a significant causal relationship between the plasma FⅧ level and the risk for GDM. This finding highlights the complex interaction between coagulation function and glucose metabolism during pregnancy, but further research on this finding is warranted.
Collapse
Affiliation(s)
- 凡英 曾
- 四川大学华西第二医院 产科 出生缺陷与相关妇儿疾病教育部重点实验室 (成都 610041)Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 6100041, China
- 四川大学华西空港医院 妇产科 (成都 610200)West China Airport Hospital, Sichuan University, Chengdu 610200, China
| | - 平 沈
- 四川大学华西第二医院 产科 出生缺陷与相关妇儿疾病教育部重点实验室 (成都 610041)Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 6100041, China
| | - 伟杰 郭
- 四川大学华西第二医院 产科 出生缺陷与相关妇儿疾病教育部重点实验室 (成都 610041)Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 6100041, China
| | - 国琳 何
- 四川大学华西第二医院 产科 出生缺陷与相关妇儿疾病教育部重点实验室 (成都 610041)Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 6100041, China
| |
Collapse
|
6
|
Fan QQ, Zhai BT, Zhang D, Zhang XF, Cheng JX, Guo DY, Tian H. Study on the Underlying Mechanism of Yinhua Gout Granules in the Treatment of Gouty Arthritis by Integrating Transcriptomics and Network Pharmacology. Drug Des Devel Ther 2024; 18:3089-3112. [PMID: 39050804 PMCID: PMC11268870 DOI: 10.2147/dddt.s475442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024] Open
Abstract
Purpose Yinhua Gout Granules (YGG) is a traditional Chinese medicine preparation with a variety of pharmacological effects, and its clinical efficacy in the treatment of gouty arthritis (GA) has been fully confirmed. However, the pharmacodynamic basis of YGG and its anti-inflammatory mechanism of action in GA are unknown. The objective of this study was to identify the active components and molecular mechanisms of YGG in the treatment of GA. Methods Ultra-performance liquid chromatography-electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS) and network pharmacology were used to identify and predict the potential active ingredients and related signaling pathways. Then, we revealed the anti-GA effects of YGG based on pharmacodynamic experiments in GA rats. Finally, we integrated transcriptomics and network pharmacology to elucidate the potential mechanism of action and verified the putative mechanism by molecular docking, immunohistochemical (IHC) and Western blot. Results We have identified 10 major active components of YGG that may have anti-GA effects, such as ferulic acid, rutin, luteolin, etc. Using molecular docking, we found that 10 major compounds could bind well to TNF, PTGS2, IL-6, IL1β, NOS2 and PTGS1, and the binding energies were all less than -5 kcal/mol. Animal studies have shown that YGG can improve joint inflammation and inflammatory cell infiltration, reduce serum UA, BUN and Cr levels (p<0.01), and decrease IL-1β, IL-6, TNF-α, COX-2 and PGE2 levels in synovial tissue (p<0.01), which are associated with the pathogenesis of GA. IHC and Western blot results showed that YGG could regulate TLR4/MYD88/NF-κB pathway to inhibit the inflammatory response induced by GA. Conclusion This study found that YGG could not only improve the disease of GA by inhibiting the production of UA in the body, but also target the regulation of TLR4/MYD88/NF-κB signaling pathway through a variety of active components to achieve effective therapeutic effects on GA.
Collapse
Affiliation(s)
- Qiang-qiang Fan
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Bing-tao Zhai
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Dan Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Xiao-fei Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Jiang-xue Cheng
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Dong-yan Guo
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Huan Tian
- Xi’an Hospital of Traditional Chinese Medicine, Xi’an, 712046, People’s Republic of China
| |
Collapse
|
7
|
Wang M, Zhang TH, Li Y, Chen X, Zhang Q, Zheng Y, Long D, Cheng X, Hong A, Yang X, Wang G. Atractylenolide-I Alleviates Hyperglycemia-Induced Heart Developmental Malformations through Direct and Indirect Modulation of the STAT3 Pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155698. [PMID: 38728919 DOI: 10.1016/j.phymed.2024.155698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Gestational diabetes could elevate the risk of congenital heart defects (CHD) in infants, and effective preventive and therapeutic medications are currently lacking. Atractylenolide-I (AT-I) is the active ingredient of Atractylodes Macrocephala Koidz (known as Baizhu in China), which is a traditional pregnancy-supporting Chinese herb. PURPOSE In this study, we investigated the protective effect of AT-I on the development of CHD in embryos exposed to high glucose (HG). STUDY DESIGN AND METHODS First, systematic review search results revealed associations between gestational diabetes mellitus (GDM) and cardiovascular malformations. Subsequently, a second systematic review indicated that heart malformations were consistently associated with oxidative stress and cell apoptosis. We assessed the cytotoxic impacts of Atractylenolide compounds (AT-I, AT-II, and AT-III) on H9c2 cells and chick embryos, determining an optimal concentration of AT-I for further investigation. Second, immunofluorescence, western blot, Polymerase Chain Reaction (PCR), and flow cytometry were utilized to delve into the mechanisms through which AT-I mitigates oxidative stress and apoptosis in cardiac cells. Molecular docking was employed to investigate whether AT-I exerts cardioprotective effects via the STAT3 pathway. Then, we developed a streptozotocin-induced diabetes mellitus (PGDM) mouse model to evaluate AT-I's protective efficacy in mammals. Finally, we explored how AT-I protects hyperglycemia-induced abnormal fetal heart development through microbiota analysis and untargeted metabolomics analysis. RESULTS The study showed the protective effect of AT-I on embryonic development using a chick embryo model which rescued the increase in the reactive oxygen species (ROS) and decrease in cell survival induced by HG. We also provided evidence suggesting that AT-I might directly interact with STAT3, inhibiting its phosphorylation. Further, in the PGDM mouse model, we observed that AT-I not only partially alleviated PGDM-related blood glucose issues and complications but also mitigated hyperglycemia-induced abnormal fetal heart development in pregnant mice. This effect is hypothesized to be mediated through alterations in gut microbiota composition. We proposed that dysregulation in microbiota metabolism could influence the downstream STAT3 signaling pathway via EGFR, consequently impacting cardiac development and formation. CONCLUSIONS This study marks the first documented instance of AT-I's effectiveness in reducing the risk of early cardiac developmental anomalies in fetuses affected by gestational diabetes. AT-I achieves this by inhibiting the STAT3 pathway activated by ROS during gestational diabetes, significantly reducing the risk of fetal cardiac abnormalities. Notably, AT-I also indirectly safeguards normal fetal cardiac development by influencing the maternal gut microbiota and suppressing the EGFR/STAT3 pathway.
Collapse
Affiliation(s)
- Mengwei Wang
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, China
| | - Tong-Hua Zhang
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, China
| | - Yunjin Li
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, Jinan University, Guangzhou 510632, China
| | - Xiaofeng Chen
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, Jinan University, Guangzhou 510632, China
| | - Qiongyin Zhang
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, Jinan University, Guangzhou 510632, China
| | - Ying Zheng
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, Jinan University, Guangzhou 510632, China
| | - Denglu Long
- The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Xin Cheng
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
| | - An Hong
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, China
| | - Xuesong Yang
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; Clinical Research Center, Clifford Hospital, Guangzhou 511495, China.
| | - Guang Wang
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, Jinan University, Guangzhou 510632, China; Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, School of Medicine, Jinan University, Guangzhou 510317.
| |
Collapse
|
8
|
Zheng S, Jiang L, Qiu L. The effects of fine particulate matter on the blood-testis barrier and its potential mechanisms. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:233-249. [PMID: 36863426 DOI: 10.1515/reveh-2022-0204] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/13/2022] [Indexed: 02/17/2024]
Abstract
With the rapid expansion of industrial scale, an increasing number of fine particulate matter (PM2.5) has bringing health concerns. Although exposure to PM2.5 has been clearly associated with male reproductive toxicity, the exact mechanisms are still unclear. Recent studies demonstrated that exposure to PM2.5 can disturb spermatogenesis through destroying the blood-testis barrier (BTB), consisting of different junction types, containing tight junctions (TJs), gap junctions (GJs), ectoplasmic specialization (ES) and desmosomes. The BTB is one of the tightest blood-tissue barriers among mammals, which isolating germ cells from hazardous substances and immune cell infiltration during spermatogenesis. Therefore, once the BTB is destroyed, hazardous substances and immune cells will enter seminiferous tubule and cause adversely reproductive effects. In addition, PM2.5 also has shown to cause cells and tissues injury via inducing autophagy, inflammation, sex hormones disorder, and oxidative stress. However, the exact mechanisms of the disruption of the BTB, induced by PM2.5, are still unclear. It is suggested that more research is required to identify the potential mechanisms. In this review, we aim to understand the adverse effects on the BTB after exposure to PM2.5 and explore its potential mechanisms, which provides novel insight into accounting for PM2.5-induced BTB injury.
Collapse
Affiliation(s)
- Shaokai Zheng
- School of Public Health, Nantong University, Nantong, P. R. China
| | - Lianlian Jiang
- School of Public Health, Nantong University, Nantong, P. R. China
| | - Lianglin Qiu
- School of Public Health, Nantong University, Nantong, P. R. China
| |
Collapse
|
9
|
Singh VK, Thakur DC, Rajak N, Giri R, Garg N. Immunomodulatory potential of bioactive glycoside syringin: a network pharmacology and molecular modeling approach. J Biomol Struct Dyn 2024; 42:3906-3919. [PMID: 37243678 DOI: 10.1080/07391102.2023.2216299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/15/2023] [Indexed: 05/29/2023]
Abstract
Many diseases, such as rheumatoid arthritis, neurodegenerative disease, lupus, autoimmune disease, and cancer, are described by chronic inflammation following tissue damage. Anti-inflammatory drugs like non-steroidal anti-inflammatory drugs and other steroids cause many side effects and generally need careful consideration and monitoring during usage. In recent years, a significant interest in plant-derived approaches has been warranted. The bioactive glycoside syringin might be one of the effective immunomodulatory agents. However, its immunomodulatory potential needs to be better known. In this study, we evaluated the immunomodulatory potential of syringin using network pharmacology, molecular docking, and molecular dynamics simulation-based approaches. First, we applied the GeneCards and OMIM databases to acquire the immunomodulatory agents. Then, the STRING database was utilized to get the hub genes. Interaction analysis and molecular docking described strong binding of the active site of immunomodulatory proteins with the bioactive syringin. Molecular dynamics simulations (200 ns) showed a very stable interaction of syringin with the immunomodulatory protein. Further, the optimized structure and molecular electrostatic potential of the syringin were calculated by a density-functional theory utilizing basis levels of B3LYP/6-31. Syringin investigated in this study holds the required drug-likeness characteristics and follows Lipinski's rule of five. However, quantum-chemical estimations show the syringin has potent reactivity, demonstrating a lower energy gap. Furthermore, the gap between ELUMO and EHOMO was low, suggesting the excellent affinity of syringin towards the immunomodulatory proteins. The present study shows that syringin might be an effective immunomodulatory agent and can be further explored using different experimental methods.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vipendra Kumar Singh
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, VPO Kamand, HP, India
| | - D C Thakur
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, VPO Kamand, HP, India
| | - Naina Rajak
- Faculty of Ayurveda, Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Rajanish Giri
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, VPO Kamand, HP, India
| | - Neha Garg
- Faculty of Ayurveda, Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
10
|
Zhao Y, Luo X, Hu J, Panga MJ, Appiah C, Du Z, Zhu L, Retyunskiy V, Gao X, Ma B, Zhang Q. Syringin alleviates bisphenol A-induced spermatogenic defects and testicular injury by suppressing oxidative stress and inflammation in male zebrafish. Int Immunopharmacol 2024; 131:111830. [PMID: 38520788 DOI: 10.1016/j.intimp.2024.111830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/21/2024] [Accepted: 03/06/2024] [Indexed: 03/25/2024]
Abstract
Syringin (SRG) is a bioactive principle possessing extensive activities including scavenging of free radicals, inhibition of apoptosis, and anti-inflammatory properties. However, its effects on spermatogenic defects and testicular injury as well as the underlying mechanisms are still unclear. This study aims to investigate the protective effect of SRG on testis damage in zebrafish and explore its potential molecular events. Zebrafish testicular injury was induced by exposure to bisphenol A (BPA) (3000 μg/L) for two weeks. Fish were treated with intraperitoneal injection of SRG at different doses (5 and 50 mg/kg bodyweight) for two more weeks under BPA induction. Subsequently, the testis and sperm were collected for morphological, histological, biochemical and gene expression examination. It was found that the administration of SRG resulted in a significant protection from BPA-caused impact on sperm concentration, morphology, motility, fertility rate, testosterone level, spermatogenic dysfunction and resulted in increased apoptotic and reactive oxygen species' levels. Furthermore, testicular transcriptional profiling alterations revealed that the regulation of inflammatory response and oxidative stress were generally enriched in differentially expressed genes (DEGs) after SRG treatment. Additionally, it was identified that SRG prevented BPA-induced zebrafish testis injury through upregulation of fn1a, krt17, fabp10a, serpina1l and ctss2. These results indicate that SRG alleviated spermatogenic defects and testicular injury by suppressing oxidative stress and inflammation in male zebrafish.
Collapse
Affiliation(s)
- Ye Zhao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Xu Luo
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Jinyuan Hu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Mogellah John Panga
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Clara Appiah
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Zhanxiang Du
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Lin Zhu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Vladimir Retyunskiy
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Xing Gao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Bo Ma
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Qi Zhang
- School of Food Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
11
|
Kemse N, Chhetri S, Joshi S. Beneficial effects of dietary omega 3 polyunsaturated fatty acids on offspring brain development in gestational diabetes mellitus. Prostaglandins Leukot Essent Fatty Acids 2024; 202:102632. [PMID: 39029386 DOI: 10.1016/j.plefa.2024.102632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/09/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
Various mechanisms through which maternal diet influences offspring brain development in gestational diabetes mellitus (GDM) remains unclear. We speculate that prenatal omega 3 fatty acids will improve the levels of brain neurotrophins and vascular endothelial growth factor (VEGF), an angiogenic factor leading to improved cognitive performance in the offspring. GDM was induced in Wistar rats using streptozotocin. They were assigned to either control, GDM or GDM+O (GDM + omega-3 fatty acid supplementation). The offspring were followed till 3 mo of age and cognitive assessment was undertaken. Data analysis was carried out using one-way ANOVA followed by LSD test. GDM induction increased (p < 0.01) dam glucose levels and lowered brain derived neurotrophic factor (BDNF) levels (p = 0.056) in the offspring at birth. At 3 months, GDM group showed significantly lower levels of neurotrophic tyrosine kinase receptor-2 (NTRK-2) and VEGF, lower mRNA levels of NTRK-2 and cAMP response element-binding protein (CREB) (P < 0.05 for all) as compared to control. The GDM offspring had a higher escape latency (p < 0.01), made lesser % correct choices and more errors (p < 0.05 for both). Prenatal supplementation with omega 3 polyunsaturated fatty acids was beneficial since it ameliorated some of the adverse effects of GDM.
Collapse
Affiliation(s)
- Nisha Kemse
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be) University, Pune - 411043, India
| | - Sunaina Chhetri
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be) University, Pune - 411043, India
| | - Sadhana Joshi
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be) University, Pune - 411043, India.
| |
Collapse
|
12
|
Zhang X, Yin T, Wang Y, Du J, Dou J, Zhang X. Effects of scutellarin on the mechanism of cardiovascular diseases: a review. Front Pharmacol 2024; 14:1329969. [PMID: 38259289 PMCID: PMC10800556 DOI: 10.3389/fphar.2023.1329969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Cardiovascular diseases represent a significant worldwide problem, jeopardizing individuals' physical and mental wellbeing as well as their quality of life as a result of their widespread incidence and fatality. With the aging society, the occurrence of Cardiovascular diseases is progressively rising each year. However, although drugs developed for treating Cardiovascular diseases have clear targets and proven efficacy, they still carry certain toxic and side effect risks. Therefore, finding safe, effective, and practical treatment options is crucial. Scutellarin is the primary constituent of Erigeron breviscapus (Vant.) Hand-Mazz. This article aims to establish a theoretical foundation for the creation and use of secure, productive, and logical medications for Scutellarin in curing heart-related illnesses. Additionally, the examination and analysis of the signal pathway and its associated mechanisms with regard to the employment of SCU in treating heart diseases will impart innovative resolving concepts for the treatment and prevention of Cardiovascular diseases.
Collapse
Affiliation(s)
- Xinyu Zhang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Tong Yin
- First Clinical Medical School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yincang Wang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiazhe Du
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jinjin Dou
- Department of Cardiovascular, The First Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiwu Zhang
- Experimental Training Centre, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
13
|
Wang S, Ma L, Ji J, Huo R, Dong S, Bai Y, Hua L, Lei J, Tian S, Wang M, Yu Y. Protective effect of soy isolate protein against streptozotocin induced gestational diabetes mellitus via TLR4/MyD88/NF-κB signaling pathway. Biomed Pharmacother 2023; 168:115688. [PMID: 37890205 DOI: 10.1016/j.biopha.2023.115688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is a serious complication of pregnancy that is characterized by high blood sugar levels that occur due to insulin resistance and dysfunction in glucose metabolism during pregnancy. It usually develops in the second or third trimester of pregnancy and affects about 7 % of all pregnancies worldwide. In this experimental study, we scrutinized the GDM protective effect of soy isolate protein against streptozotocin (STZ) induced GDM in rats and explore the underlying mechanism. MATERIAL AND METHODS Sprague-Dawley (SD) rats were used in this experimental study. A 55 mg/kg intraperitoneal injection of streptozotocin (STZ) was administered to induce diabetes in female rats, followed by oral administration of soy isolate protein for 18 days. Body weight, glucose levels, and insulin were measured at different time intervals (0, 9, and 18 days). Lipid profiles, antioxidant levels, inflammatory cytokines, apoptosis parameters, and mRNA expression were also assessed. Pancreatic and liver tissues were collected for histopathological examination during the experimental study. RESULTS Soy isolate protein significantly (P < 0.001) reduced the glucose level and enhanced the insulin level and body weight. Soy isolate protein remarkably decreased the placental weight and increased the fetal weight. Soy isolate protein significantly (P < 0.001) decreased the HbA1c, hepatic glycogen, serum C-peptide and increased the level of free fatty acid. Soy isolate protein significantly (P < 0.001) altered the level of lipid, antioxidant and inflammatory cytokines. Soy isolate protein significantly (P < 0.001) improved the level of adiponectin, visfatin and suppressed the level of leptin and ICAM-1. Soy isolate protein significantly (P < 0.001) altered the mRNA expression and also restored the alteration of histopathology. CONCLUSION Based on the result, soy isolate protein exhibited the GDM protective effect against the STZ induced GDM in rats via alteration of TLR4/MyD88/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Shuijing Wang
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Shaanxi SANZ Pharmaceutical Co., Ltd, Xi'an, Shaanxi 710086, China
| | - Liangkun Ma
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, PUMC Hospital, CAMS and PUMC, Beijing100730, China
| | - Jing Ji
- Northwest Women's and Children's Hospital, Xi'an, Shaanxi 710061, China
| | - Ruichao Huo
- Pingyao Agriculture and Rural Bureau, Pingyao, Shanxi 031100, China
| | - Shan Dong
- Nutritional Department, Maternal and Child Health Care Hospital of HaiDian District, Beijing 100000, China
| | - Yunfeng Bai
- School of Public Health, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Linlin Hua
- Department of Advanced Medical Research, The Second Affiliated Hospital of Zhengzhou University, Jingba road, Jinshui district, Zhengzhou 450014, China
| | - Jiao Lei
- Shaanxi SANZ Pharmaceutical Co., Ltd, Xi'an, Shaanxi 710086, China
| | - Sasa Tian
- Shaanxi SANZ Pharmaceutical Co., Ltd, Xi'an, Shaanxi 710086, China
| | - Manning Wang
- Shaanxi SANZ Pharmaceutical Co., Ltd, Xi'an, Shaanxi 710086, China
| | - Yan Yu
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
14
|
Wang Y, Ding C, Zhao Y, Zhang J, Ding Q, Zhang S, Wang N, Yang J, Xi S, Zhao T, Zhao C, Liu W. Sodium alginate/poly(vinyl alcohol)/taxifolin nanofiber mat promoting diabetic wound healing by modulating the inflammatory response, angiogenesis, and skin flora. Int J Biol Macromol 2023; 252:126530. [PMID: 37634780 DOI: 10.1016/j.ijbiomac.2023.126530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
Diabetes-related ulcers are still a therapeutic problem because of their susceptibility to infection, ongoing inflammation, and diminished vascularization. The design and development of novel dressings are clinically urgent for the treatment of chronic wounds due to diabetic ulcers. In this study, we made taxifolin (TAX) loaded sodium alginate (SA)/poly(vinyl alcohol) (PVA) nanofibers for the treatment of chronic wounds. The SA/PVA/TAX nanofibers that have been created are smooth and bead-free, with good thermal stability, hydrophilicity, and mechanical properties. The release profile indicated a sustained drug release, with a cumulative release rate of 64.6 ± 3.7 % at 24 h. In vitro experiments have shown that SA/PVA/TAX has good antibacterial activity, antioxidant activity, and biocompatibility. In vivo experiments have shown that SA/PVA/TAX exhibits desirable biochemical properties and is involved in the diabetic wound healing process by promoting cell proliferation (Ki67), angiogenesis (CD31, VEGFA), and alleviating inflammation (CD68). Western blotting experiments suggest that SA/PVA/TAX may promote diabetic wound healing by inhibiting the TLR4/NF-κB/NLRP3 signaling pathway and upregulating the expression of VEGFA and PDGFA. The 16S rRNA sequencing results showed that SA/PVA/TAX increased the wound surface flora's diversity and reversed the skin microbiota's structural imbalance. Therefore, SA/PVA/TAX can promote diabetic wound healing by modulating the inflammatory response, angiogenesis, and skin flora and has the potential to be an excellent wound dressing.
Collapse
Affiliation(s)
- Yue Wang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Yingchun Zhao
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Jinping Zhang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Qiteng Ding
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Shuai Zhang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Ning Wang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Jiali Yang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Siyu Xi
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Ting Zhao
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Chunli Zhao
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China.
| | - Wencong Liu
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China.
| |
Collapse
|
15
|
Ramalingam V. NLRP3 inhibitors: Unleashing their therapeutic potential against inflammatory diseases. Biochem Pharmacol 2023; 218:115915. [PMID: 37949323 DOI: 10.1016/j.bcp.2023.115915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
The NOD-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome has been linked to the release of pro-inflammatory cytokines and is essential for innate defence against infection and danger signals. These secreted cytokines improve the inflammatory response caused by tissue damage and associated inflammation. Consequently, the development of NLRP3 inflammasome inhibitors are viable option for the treatment of diverse inflammatory disorders. The significant anti-inflammatory effects of the NLRP3 inhibitors have severe side effects. Hence, the application of NLRP3 inhibitors against inflammatory disease has not yet been understood and most of the developed inhibitors are unsuccessful in clinical trials. The processes behind the NLRP3 complex, priming, and activation are the main emphasis of this review, which also covers therapeutical inhibitors of the NLRP3 inflammasome and potential therapeutic strategies for directing the NLRP3 inflammasome towards clinical development.
Collapse
Affiliation(s)
- Vaikundamoorthy Ramalingam
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
16
|
Mao J, Tan L, Tian C, Wang W, Zhang H, Zhu Z, Li Y. Hepatoprotective effect of syringin combined with costunolide against LPS-induced acute liver injury in L-02 cells via Rac1/AKT/NF-κB signaling pathway. Aging (Albany NY) 2023; 15:11994-12020. [PMID: 37916984 PMCID: PMC10683587 DOI: 10.18632/aging.205161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023]
Abstract
Acute liver injury (ALI) leads to abnormal liver function and damage to liver cells. Syringin (syr) and costunolide (cos) are the major extracts from Dolomiaea souliei (Franch.) C.Shih (D. souliei), showing diverse biological functions in various biological processes. We explored the underlying hepatoprotective effects of syr+cos against LPS-induced ALI. Cell viability and proliferation were assessed using an MTT assay and immunofluorescence staining. Flow cytometry analysis was used to detect cell cycle distribution and apoptosis. ELISA was utilized to measure liver function and antioxidant stress indexes. qRT-PCR and western blotting was performed to determine mRNA and protein levels respectively. Using shRNA approach to Rac1 analyzed transcriptional targets. The results showed that syr+cos promoted L-02 cell proliferation, inhibiting the cell apoptosis and blocking cell cycle in G1 and G2/M phase. Syr+cos decreased the production of ALT, AST, LDH, MDA and ROS while increased SOD and CAT activities. Pretreated with syr+cos may decrease expressions of caspase-3,7,9, NF-κB, TNF-α proteins, Cyclin B, CDK1 and p-IκB proteins while p-IκB increased. Silencing of Rac-1 may protect the liver by increasing AKT, S473, T308 and reducing p-AKT proteins. Syr+cos exhibits anti-ALI activity via Rac1/AKT/NF-κB signaling pathway which might act as an effective candidate drug for the treatment of ALI.
Collapse
Affiliation(s)
- Jingxin Mao
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Lihong Tan
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China
| | - Cheng Tian
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China
| | - Wenxiang Wang
- Chongqing Three Gorges Medical College, Chongqing 404120, China
| | - Hao Zhang
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China
| | - Zhaojing Zhu
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China
| | - Yan Li
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China
| |
Collapse
|
17
|
Singh VK, Thakur DC, Rajak N, Mishra A, Kumar A, Giri R, Garg N. The multi-protein targeting potential of bioactive syringin in inflammatory diseases: using molecular modelling and in-silico analysis of regulatory elements. J Biomol Struct Dyn 2023:1-12. [PMID: 37882327 DOI: 10.1080/07391102.2023.2273440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/14/2023] [Indexed: 10/27/2023]
Abstract
Inflammation plays a crucial role in the onset or progression of a variety of acute and chronic diseases. Non-steroidal anti-inflammatory drugs (NSAIDs) are the only available FDA-approved therapy. The therapeutic outcome of NSAIDs is still finite due to off-target effects and extreme side effects on other vital organs. Bioactive syringin has been manifested to hold anti-osteoporosis, cardiac hypertrophy, alter autophagy, anti-cancer, neuro-preventive effects, etc. However, its multi-protein targeting potential in inflammation mostly remains unexplored. In the present work, we have checked the multi-protein targeting potential of bioactive glycoside syringin in inflammatory diseases. Based on the binding score of protein-ligand complexes, glycoside syringin scored greater than -7 kcal/mol against 12 inflammatory proteins. Our molecular dynamic simulation study (200 ns) confirmed that bioactive syringin remained inside the binding cavity of inflammatory proteins (JAK1, TYK2, and COX1) in a stable conformation. Further, our co-expression analysis suggests that these genes play an essential role in multiple pathways and are regulated by multiple miRNAs. Our study demonstrates that bioactive glycoside syringin might be a multi-protein targeting potential against inflammatory diseases and could be further investigated utilizing different preclinical approaches.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vipendra Kumar Singh
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, India
| | - D C Thakur
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, India
| | - Naina Rajak
- Faculty of Ayurveda, Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Anand Mishra
- Molecular Plant Pathology Laboratory, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Ankur Kumar
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, India
| | - Rajanish Giri
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, India
| | - Neha Garg
- Faculty of Ayurveda, Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
18
|
Lu Y, Gao X, Nan Y, Mohammed SA, Fu J, Wang T, Wang C, Yuan C, Lu F, Liu S. Acanthopanax senticosus Harms improves Parkinson's disease by regulating gut microbial structure and metabolic disorders. Heliyon 2023; 9:e18045. [PMID: 37496895 PMCID: PMC10366437 DOI: 10.1016/j.heliyon.2023.e18045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, with an increasing prevalence as the population ages, posing a serious threat to human health, but the pathogenesis remains uncertain. Acanthopanax senticosus (Rupr. et Maxim.) Harms (ASH) (aqueous ethanol extract), a Chinese herbal medicine, provides obvious and noticeable therapeutic effects on PD. To further investigate the ASH's mechanism of action in treating PD, the structural and functional gut microbiota, as well as intestinal metabolite before and after ASH intervention in the PD mice model, were examined utilizing metagenomics and fecal metabolomics analysis. α-syn transgenic mice were randomly divided into a model and ASH groups, with C57BL/6 mice as a control. The ASH group was gavaged with ASH (45.5 mg/kg/d for 20d). The time of pole climbing and autonomous activity were used to assess motor ability. The gut microbiota's structure, composition, and function were evaluated using Illumina sequencing. Fecal metabolites were identified using UHPLC-MS/MS to construct intestinal metabolites. The findings of this experiment demonstrate that ASH may reduce the climbing time of PD model mice while increasing the number of autonomous movements. The results of metagenomics analysis revealed that ASH could up-regulated Firmicutes and down-regulated Actinobacteria at the phylum level, while Clostridium was up-regulated and Akkermansia was down-regulated at the genus level; it could also recall 49 species from the phylum Firmicutes, Actinobacteria, and Tenericutes. Simultaneously, metabolomics analysis revealed that alpha-Linolenic acid metabolism might be a key metabolic pathway for ASH to impact in PD. Furthermore, metagenomics function analysis and metabolic pathway enrichment analysis revealed that ASH might influence unsaturated fatty acid synthesis and purine metabolism pathways. These metabolic pathways are connected to ALA, Palmitic acid, Adenine, and 16 species of Firmicutes, Actinobacteria, and Tenericutes. Finally, these results indicate that ASH may alleviate the movement disorder of the PD model, which may be connected to the regulation of gut microbiota structure and function as well as the modulation of metabolic disorders by ASH.
Collapse
Affiliation(s)
- Yi Lu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xin Gao
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yang Nan
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Shadi A.D. Mohammed
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
- School of Pharmacy, Lebanese International University, 18644, Sana’a, Yemen
| | - Jiaqi Fu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Tianyu Wang
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Chongzhi Wang
- Tang Center for Herbal Medicine Research, and Department of Anesthesia and Critical Care, University of Chicago, Chicago, USA
| | - Chunsu Yuan
- Tang Center for Herbal Medicine Research, and Department of Anesthesia and Critical Care, University of Chicago, Chicago, USA
| | - Fang Lu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Shumin Liu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
19
|
Cordyceps militaris polysaccharide alleviates diabetic symptoms by regulating gut microbiota against TLR4/NF-κB pathway. Int J Biol Macromol 2023; 230:123241. [PMID: 36641024 DOI: 10.1016/j.ijbiomac.2023.123241] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
The relationship between gut microbiota and type 2 diabetes mellitus (T2DM) has attracted increasing attention. In our work, one purified fraction a (AEPSa) was obtained from Cordyceps militaris polysaccharides, and its hypoglycemic activity and underlying mechanisms were investigated in high-fat diet (HFD)- and streptozotocin (STZ)-induced T2DM mice. The results revealed that AEPSa reshaped gut microbiota by increasing Allobaculum, Alistipes, Lachnospiraceae_NK4A136_group and norank_f_Muribaculaceae and decreasing Enterococcus and Ruminococcus_torques_group to inhibit the colonic toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) pathway and upregulate intestinal tight junction protein expression, thereby improving glucose and serum lipid metabolism, hormone secretion and complications. Fecal microbiota transplantation (FMT) also confirmed these findings. These results indicated that symptomatic relief of T2DM might be related to AEPSa regulating the gut microbiota against the TLR4/NF-κB pathway to protect the intestinal barrier. Therefore, AEPSa might be developed as a prebiotic agent against T2DM by regulating gut microbiota.
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Epidemiological and mechanistic studies have reported relationships between blood lipids, mostly measured by traditional method in clinical settings, and gestational diabetes mellitus (GDM). Recent advances of high-throughput lipidomics techniques have made available more comprehensive lipid profiling in biological samples. This review aims to summarize evidence from prospective studies in assessing relations between blood lipids and GDM, and discuss potential underlying mechanisms. RECENT FINDINGS Mass spectrometry and nuclear magnetic resonance spectroscopy-based analytical platforms are extensively used in lipidomics research. Epidemiological studies have identified multiple novel lipidomic biomarkers that are associated with risk of GDM, such as certain types of fatty acids, glycerolipids, glycerophospholipids, sphingolipids, cholesterol, and lipoproteins. However, the findings are inconclusive mainly due to the heterogeneities in study populations, sample sizes, and analytical platforms. Mechanistic evidence indicates that abnormal lipid metabolism may be involved in the pathogenesis of GDM by impairing pancreatic β-cells and inducing insulin resistance through several etiologic pathways, such as inflammation and oxidative stress. SUMMARY Lipidomics is a powerful tool to study pathogenesis and biomarkers for GDM. Lipidomic biomarkers and pathways could help to identify women at high risk for GDM and could be potential targets for early prevention and intervention of GDM.
Collapse
Affiliation(s)
- Yi Wang
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Xiong-Fei Pan
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University
- Shuangliu Institute of Women's and Children's Health, Shuangliu Maternal and Child Health Hospital, Chengdu, China
| | - An Pan
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| |
Collapse
|
21
|
Salimi HR, Jalili S, Griffiths MD, Alimoradi Z. Fear of hypoglycemia and its predictive factors among diabetic pregnant women. Prim Care Diabetes 2023; 17:68-72. [PMID: 36460590 DOI: 10.1016/j.pcd.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The purpose of the present study was to investigate the fear of hypoglycemia (FoH) and its predictors among diabetic pregnant women. STUDY DESIGN Cross-sectional conducted between January to August 2022. METHODS In the present study, 250 diabetic pregnant women from Qazvin province participated. Demographic and fertility characteristics, FoH, adherence to treatment, self-efficacy, anxiety and depression were assessed. Data were analyzed using univariable and multivariable linear regression models. RESULTS The participants' mean age was 31.02 years (SD=4.72). The FoH mean score was 32.88 (out of 72). Based on the multivariable linear regression model, having a history of hypoglycemia (β = 0.44, p < 0.001), lower education (β = 0.17, p = 0.001), being treated with insulin (β = 0.22, p < 0.001), being treated with both insulin and diet (β = 0.16 p = 0.003), being of younger age (β = -0.13, p = 0.008), and depression (β = 0.16, p = 0.002) were independent predictors of FoH among pregnant women. CONCLUSION Diabetic pregnant women experience FoH, particularly those with a history of hypoglycemia. Therefore, providing education and counseling concerning hypoglycemia, complications, and necessary measures for this group of diabetic pregnant women are needed along with those who are younger, less educated, and have comorbid mental health conditions.
Collapse
Affiliation(s)
- Hamid Reza Salimi
- Social Determinants of Health Research Center, Research Institute for prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Sahar Jalili
- Students' Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Mark D Griffiths
- International Gaming Research Unit, Psychology Department, Nottingham Trent University, Nottingham, UK.
| | - Zainab Alimoradi
- Social Determinants of Health Research Center, Research Institute for prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
22
|
UPLC-QTOF-MS-Based Metabolomics and Antioxidant Capacity of Codonopsis lanceolata from Different Geographical Origins. Foods 2023; 12:foods12020267. [PMID: 36673357 PMCID: PMC9858319 DOI: 10.3390/foods12020267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Codonopsis lanceolata (C. lanceolata) has been commonly utilized as a therapeutic plant in traditional medicine. In this study, we examined variations in metabolites in C. lanceolata roots grown in different regions using ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS). Multivariate analysis showed that the metabolite profiles of plants grown in Hoengseong and Jeongseon were more similar to each other than to that of C. lanceolata grown in Jeju. Most primary metabolites were present at higher levels in C. lanceolata grown in Jeju. In contrast, C. lanceolata grown in Hoengseong and Jeongseon had high levels of secondary metabolites such as phenylpropanoids and triterpenoid saponins, respectively. In addition, the bioactive compound content and antioxidant capacity of in C. lanceolata grown in Hoengseong and Jeongseon were observed to be higher than those of C. lanceolata grown in Jeju. This study suggests that metabolomics is an effective approach to investigate the difference of metabolite profiling in C. lanceolata from different geographical origins, and is useful for evaluating its pharmacological potential.
Collapse
|
23
|
Eleutheroside B ameliorated high altitude pulmonary edema by attenuating ferroptosis and necroptosis through Nrf2-antioxidant response signaling. Biomed Pharmacother 2022; 156:113982. [DOI: 10.1016/j.biopha.2022.113982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
|
24
|
Zeng W, Cui H, Yang W, Zhao Z. A systematic review: Botany, phytochemistry, traditional uses, pharmacology, toxicology, quality control and pharmacokinetics of Ilex rotunda Thunb. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115419. [PMID: 35781006 DOI: 10.1016/j.jep.2022.115419] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/18/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ilex rotunda Thunb. (I. rotunda) is an Ilex species of Aquifoliaceae, widely distributed in East Asia. Its dried bark is commonly used as a medicinal part in the field of traditional Chinese medicine (TCM), named Ilicis Rotundae Cortex. This medicinal plant is commonly used for clearing heat and removing toxin, draining dampness and relieving pain in TCM to treat tonsillitis, acute gastroenteritis, gastric and duodenal ulcer, rheumatism, traumatic injury, and so on. It also has significant development value on lipid-lowering, hepatoprotection and anti-inflammation, but the potential mechanism needs to be further explored. AIM OF THE REVIEW More and more medicinal substances are being discovered in I. rotunda with multiple biological activities, which help to advance the ethno-pharmacological research in I. rotunda. However, to date there is a lack of a systematic summary of research progress on I. rotunda. This review aims to provide a critical summary of the current studies on I. rotunda. The progress in research on botany, phytochemistry, traditional uses, pharmacology, toxicology, quality control and pharmacokinetics of the plant is discussed. It hopes to provide useful references and guidance for the future directions of research on I. rotunda. MATERIALS AND METHODS Studies of I. rotunda were collected via Google Scholar and Baidu Scholar, PubMed, ScienceDirect, SciFinder, Web of Science, China National Knowledge Infrastructure (CNKI), WANFANG DATA and libraries. Some local books, official websites, PhD or MS's dissertations were also included. The literature cited in this review covered the period from 1956 to January 2022. RESULTS Analysis of the literature indicates that I. rotunda is a potentially valuable herbal medicine for the therapeutic of various diseases. To date, 120 compounds were found and identified in I. rotunda, mainly including triterpenoids, phenylpropanoids, etc. Modern pharmacological studies also found that the plant has the activities of protecting the cardiovascular system, lowering lipids and protecting the liver, as well as being an anti-inflammatory, anti-tumor and antibacterial. CONCLUSIONS This review summarizes the results from current studies of I. rotunda. However, the current explanation seems insufficient and unsatisfactory, in terms of the relationships between the traditional uses and the modern pharmacological activities, the mechanisms and the material basis. Thus, a critical and comprehensive evaluation is necessary to explore its future research prospects and development direction.
Collapse
Affiliation(s)
- Wei Zeng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Hui Cui
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Weiqun Yang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhongxiang Zhao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
25
|
Kong X, Zhu Q, Dong Y, Li Y, Liu J, Yan Q, Huang M, Niu Y. Analysis of serum fatty acid, amino acid, and organic acid profiles in gestational hypertension and gestational diabetes mellitus via targeted metabolomics. Front Nutr 2022; 9:974902. [PMID: 36091252 PMCID: PMC9458889 DOI: 10.3389/fnut.2022.974902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/08/2022] [Indexed: 12/04/2022] Open
Abstract
This study aimed to characterize metabolite differences and correlations between hypertensive disorders of pregnancy (HP) and gestational diabetes mellitus (GDM) using univariate, multivariate analyses, RF, and pathway analyses in a cross-sectional study. Dietary surveys were collected and targeted metabolomics was applied to measure levels of serum fatty acids, amino acids, and organic acids in 90 pregnant women at 24–28 weeks gestation at the First Affiliated Hospital of Harbin Medical University. Principal components analysis (PCA) and partial least squares-discriminatory analysis (PLS-DA) models were established to distinguish HP, GDM, and healthy, pregnant control individuals. Univariate and multivariate statistical analyses and Random Forest (RF) were used to identify and map co-metabolites to corresponding pathways in the disease states. Finally, risk factors for the disease were assessed by receiver operating characteristics (ROC) analysis. Dietary survey results showed that HP and GDM patients consumed a high-energy diet and the latter also consumed a high-carbohydrate and high-fat diet. Univariate analysis of clinical indices revealed HP and GDM patients had glycolipid disorders, with the former possessing more severe organ dysfunction. Subsequently, co-areas with significant differences identified by basic discriminant analyses and RF revealed lower levels of pyroglutamic acid and higher levels of 2-hydroxybutyric acid and glutamic acid in the GDM group. The number of metabolites increased in the HP group as compared to the healthy pregnant control group, including pyroglutamic acid, γ-aminobutyric acid (GABA), glutamic acid, oleic acid (C18:1), and palmitic acid (C16:0). ROC curves indicated that area under curve (AUC) for pyroglutamic acid in the GDM group was 0.962 (95% CI, 0.920–1.000), and the AUC of joint indicators, including pyroglutamic acid and GABA, in the HP group was 0.972 (95% CI, 0.938–1.000). Collectively, these results show that both GDM and HP patients at mid-gestation possessed dysregulated glucose and lipid metabolism, which may trigger oxidative stress via glutathione metabolism and biosynthesis of unsaturated fatty acids.
Collapse
Affiliation(s)
- Xiangju Kong
- Department of Gynaecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qiushuang Zhu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Yuanjie Dong
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Yuqiao Li
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Jinxiao Liu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Qingna Yan
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Mingli Huang
- Department of Gynaecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Mingli Huang,
| | - Yucun Niu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
- *Correspondence: Yucun Niu,
| |
Collapse
|
26
|
Ma Y, Xu S, Meng J, Li L. Protective effect of nimbolide against streptozotocin induced gestational diabetes mellitus in rats via alteration of inflammatory reaction, oxidative stress, and gut microbiota. ENVIRONMENTAL TOXICOLOGY 2022; 37:1382-1393. [PMID: 35212444 DOI: 10.1002/tox.23491] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/17/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is a significant pregnancy-related condition, which showed effect on the development of fetal. Anti-inflammatory and antioxidant therapy commonly used for the treatment of GDM. Nimbolide already confirmed their anti-inflammatory and anti-oxidant effect against various animal disease model. Our objective in this research is to investigate the protective effect of nimbolide against STZ induced GDM and elucidate the mechanism. METHODS In this experimental study, pregnant female Wistar rats were used and STZ (40 mg/kg) was used to induce the GDM. Blood glucose level (BGL), body weight and plasma insulin were assessed at regular time (gestational day 0, 9, and 18). Water intake, food intake, fecal and urine output were also estimated. In the female rats, hemoglobin (Hb), glycalated hemoglobin (HbA1c), hepatic glycogen, fructosamine, adiponectin, leptin, lipid, antioxidant and inflammatory cytokines parameters were estimated. In the fetuses, the fetues weight, implementation loss, and fetal weight were estimated. At the completion of the protocol, biochemical parameters were calculated. Gut microbiota was estimated in end of the study. RESULTS Nimbolide treatment significantly (p < .001) improved the fetuses level and suppressed the fetal weight and implantation loss. Nimbolide treatment significantly (p < .001) suppressed the BGL and enhanced the body weight, insulin level. Nimbolide treatment suppressed the water intake, food intake, urinary and fecal output. Nimbolide significantly (p < .001) suppressed the fructosamine, leptin and enhanced the adiponectin level. Nimbolide treatment significantly (p < .001) decreased the malonaldehyde (MDA) level and boosted the total antioxidant capacity (TAC), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione S-transferase (GST) and catalase (CAT); suppressed the level of TNF-α, IL-1β, IL-6, and boosted the level of IL-10. Furthermore, nimbolide treatment reversed the gut microbiota alteration induced via STZ in female rats. At the phylum level, the Firmicutes and Bacteroidetes relative abundance was altered via nimbolide treatment. The ratio of F/B boosted in GDM group and nimbolide treatment significantly (p < .001) suppressed. Nimbolide considerably suppressed the firmicutes and enhanced the Bacteroidetes, CAG-352, Lacnospirace. CONCLUSION Based on the findings, we may conclude that nimbolide protects the pregnant rats from GDM via alteration of inflammation, oxidative stress, and gut microbiota.
Collapse
Affiliation(s)
- Yifei Ma
- Department of Obstetrics, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shan Xu
- Department of Obstetrics, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Juan Meng
- Department of Obstetrics, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lu Li
- Department of Obstetrics, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
27
|
Guo HY, Zhang J, Lin LM, Song X, Zhang DD, Cui MH, Long CW, Long YH, Xing ZB. Metabolome and transcriptome analysis of eleutheroside B biosynthesis pathway in Eleutherococcus senticosus. Heliyon 2022; 8:e09665. [PMID: 35706960 PMCID: PMC9190005 DOI: 10.1016/j.heliyon.2022.e09665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/15/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022] Open
Abstract
Eleutheroside B (syringin) is a medicinal active ingredient extracted from Eleutherococcus senticosus (Ruper. et Maxim.) Maxim with high clinical application value. However, its synthesis pathway remains unknown. Here, we analyzed the eleutheroside B biosynthesis pathway in E. senticosus. Consequently, metabolomic and transcriptomic analyses identified 461 differentially expressed genes (DEGs) and 425 metabolites. Further, we identified 7 DEGs and 67 metabolites involved in the eleutheroside B biosynthetic pathway in the eleutheroside B high and low plants. The correlation between the gene and metabolites was explored using the pearson correlation coefficient (PCC) analysis. Caffeoyl-CoA O-methyltransferase, caffeic acid-O-methyltransferase, β-amyrin synthase (β-AS) genes, NAC5, and HB5 transcription factors were identified as candidate genes and transcription factors related to the eleutheroside B synthesis. Eleutheroside B content was the highest at the young stage of the leaves both in the high and low eleutheroside B plants. Quantitative real-time polymerase chain reaction revealed that phenylalanine ammonia-lyase1, cinnamate 4-hydroxylase, β-AS, and leucoanthocyanidin reductase gene had higher expression levels at the young stage of the leaves in the low eleutheroside B plants but lower expression levels in the high eleutheroside B plants. In the present study, we complemented the eleutheroside B biosynthetic pathway by analyzing the expression levels of relevant genes and metabolite accumulation patterns.
Collapse
Affiliation(s)
- Hong-Yu Guo
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Jie Zhang
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Li-Mei Lin
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Xin Song
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Duo-Duo Zhang
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Ming-Hui Cui
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | | | - Yue-Hong Long
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
- Corresponding author.
| | - Zhao-Bin Xing
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
- Corresponding author.
| |
Collapse
|
28
|
miR-340-5p Alleviates Oxidative Stress Injury by Targeting MyD88 in Sepsis-Induced Cardiomyopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2939279. [PMID: 35571255 PMCID: PMC9095363 DOI: 10.1155/2022/2939279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/07/2022] [Accepted: 03/26/2022] [Indexed: 11/17/2022]
Abstract
Background Sepsis-induced cardiomyopathy (SIC) is a sort of severe disease in the intensive care unit. This research focuses on exploring the influence of miR-340-5p on SIC and its specific mechanism. Methods Mice were administered with lipopolysaccharide (LPS) to construct a SIC animal model. Mice were intramyocardially injected with Adenoassociated Virus- (AAV-) 9 containing the miR-340-5p precursor to make the miR-340-5p overexpression in the myocardium. The expression level of myocardial miR-340-5p was evaluated by qRT-PCR. The cardiac function was measured by echocardiography, the myocardial morphology was observed by hematoxylin-eosin (HE) staining, and the oxidative stress level was detected by 4-hydroxynonenal (4-HNE) immunohistochemical staining and malondialdehyde (MDA) assay in mice. The cells were pretreated with miR-340-5p mimic, mimic-NC, miR-340-5p inhibitor, inhibitor-NC, MyD88 siRNA, or si-NC and then administered with LPS or PBS. The cell viability was measured with the CCK-8 assay. The level of intracellular oxidative stress was evaluated using reactive oxygen species (ROS), MDA, and glutathione (GSH) detection. The MyD88 level was assessed via Western blotting analysis. The interaction of miR-340-5p with the MyD88 mRNA was confirmed via dual-luciferase reporter assay and RNA pull-down assay. Results The miR-340-5p overexpression partially alleviated the increase of the MyD88 level, impairment of cardiac function, and oxidative stress injury in the SIC animal model. In the SIC cell model, miR-340-5p mimic pretreatment partially relieved oxidative stress injury, while the miR-340-5p inhibitor had the opposite effect. Besides, the miR-340-5p mimic and inhibitor could reduce and further increase the MyD88 level in the SIC cell model, respectively. Dual-luciferase reporter and RNA pull-down experiments confirmed the interaction between the MyD88 mRNA and miR-340-5p. Finally, it was found that MyD88 siRNA pretreatment also partially alleviates the oxidative stress injury in the SIC cell model. Conclusion In sum, our study demonstrated that miR-340-5p can improve myocardial oxidative stress injury by targeting MyD88 in SIC.
Collapse
|
29
|
Zhao W, Meng X, Liang J. Analysis of circRNA-mRNA expression profiles and functional enrichment in diabetes mellitus based on high throughput sequencing. Int Wound J 2022; 19:1253-1262. [PMID: 35504843 PMCID: PMC9284653 DOI: 10.1111/iwj.13838] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 12/26/2022] Open
Abstract
To study the pathogenesis of diabetes mellitus (DM) and identify new biomarkers, high‐throughput RNA sequencing provides a technical means to explore the regulatory network of MD gene expression. To better elucidate the genetic basis of DM, we analysed the circRNA and mRNA expression profiles in serum samples from diabetic patients. The circRNAs and mRNAs with abnormal expression in the DM group and non‐diabetic group (NDM) were classified by RNA sequencing and differential expression analysis. The circRNA‐miRNA‐mRNA regulatory network reveals the mechanism by which competitive endogenous RNAs (ceRNAs) regulate gene expression. The biological functions and interactions of circRNA and mRNA were analysed by gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Differential expression analysis showed that 441 circRNAs (366 up‐regulated, 75 down‐regulated) and 683 mRNAs (354 up‐regulated, 329 down‐regulated) were significantly differentially expressed in the DM group compared with the NDM group. Screening of the differential genes at the nodes of the interaction network showed that a single circRNA could interact with multiple miRNAs and then jointly regulate more mRNAs. In addition, the expressions of circRNA CNOT6 and AXIN1 as well as mRNA STAT3, MYD88, and B2M were associated with the progression of diabetes. Enrichment pathway analysis indicated that differentially expressed circRNA and mRNA may participate in Nod‐like receptor signalling pathway, insulin signalling pathway, sphinolipid metabolism pathway, and ribosome pathway, and play a role in the pathogenesis of diabetes. This study provides a theoretical basis for elucidating the molecular mechanism of DM occurrence and development at circRNA and mRNA levels.
Collapse
Affiliation(s)
- Wanni Zhao
- Department of Gastrointestinal Surgery/Clinical Nutrition, Key Laboratory of Cancer FSMP for State Market Regulation, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Department of General Surgery, Beijing Hospital, National Center of Gerontology, Beijing, China.,Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xue Meng
- Department of Neurology, Peking University International Hospital, Beijing, China
| | - Jianfeng Liang
- Department of Neurosurgery, Peking University International Hospital, Beijing, China
| |
Collapse
|
30
|
Zhang Y, Xu Y, Zhang L, Chen Y, Wu T, Liu R, Sui W, Zhu Q, Zhang M. Licorice extract ameliorates hyperglycemia through reshaping gut microbiota structure and inhibiting TLR4/NF-κB signaling pathway in type 2 diabetic mice. Food Res Int 2022; 153:110945. [DOI: 10.1016/j.foodres.2022.110945] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 02/08/2023]
|
31
|
Xm S, Cc L, C L, Yf L, L C, Yz Z, Sj Y. TLR4 inhibition ameliorated glucolipotoxicity-induced differentiation suppression in osteoblasts via RIAM regulation of NF-κB nuclear translocation. Mol Cell Endocrinol 2022; 543:111539. [PMID: 34929310 DOI: 10.1016/j.mce.2021.111539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/03/2021] [Accepted: 12/15/2021] [Indexed: 11/26/2022]
Abstract
TLR4 is a key innate immune signal that mediates glucolipid toxicity through yet unclear mechanisms. Here, TLR4 truncation ameliorated bone metabolism disorders in diabetic rats, and the underlying mechanisms were explored by proteomics. Our study showed that TLR4 truncation inhibited bone loss induced by diabetes in rats. In addition, a proteomic analysis screen exposed the differential proteins associated with immune reactivity and T cell activation (RIAM and Class II histocompatibility antigen, M β1 chain). Further cellular experiments showed that TLR4 mediated the inhibition of osteoblast differentiation induced by glucolipotoxicity and promoted an increase in the nuclear level of RIAM-NF-κB. Mechanistic studies showed that TLR4 mediated glucolipotoxicity induced damage in bone metabolism primarily by regulating RIAM-NF-κB interactions, which promoted RIAM-NF-κB nuclear translocation. In conclusion, we confirmed that TLR4 inhibition could delay bone metabolism disorders induced by glycolipid toxicity via RIAM regulation of NF-κB nuclear translocation.
Collapse
Affiliation(s)
- Shen Xm
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China; Diabetes Research Institute of Fujian Province, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China; Metabolic Diseases Research Institute, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China; Clinical Research Center for Metabolic Diseases of Fujian Province, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China
| | - Li Cc
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China; Department of Cardiology, Affiliated Fuzhou First Hospital of Fujian Medical University, 190 Da Dao Road, Fuzhou, Fujian, 350009, China
| | - Lan C
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China
| | - Lin Yf
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China
| | - Cheng L
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China
| | - Zhang Yz
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China; Diabetes Research Institute of Fujian Province, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China; Metabolic Diseases Research Institute, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China; Clinical Research Center for Metabolic Diseases of Fujian Province, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China
| | - Yan Sj
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China; Diabetes Research Institute of Fujian Province, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China; Metabolic Diseases Research Institute, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China; Clinical Research Center for Metabolic Diseases of Fujian Province, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China.
| |
Collapse
|
32
|
Cao J, Peng Q. NLRP3 Inhibitor Tranilast Attenuates Gestational Diabetes Mellitus in a Genetic Mouse Model. Drugs R D 2022; 22:105-112. [PMID: 35124792 PMCID: PMC8885922 DOI: 10.1007/s40268-022-00382-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2022] [Indexed: 12/16/2022] Open
Abstract
Background and Objective Methods Results Conclusions
Collapse
Affiliation(s)
- Jing Cao
- Department of Endocrinology, Tianjin First Central Hospital, No. 24 Fukang Road, Nankai District, Tianjin, 300192, China.
| | - Qian Peng
- School of Medicine, Nankai University, Nankai District, Tianjin, China
| |
Collapse
|
33
|
Isolation of phytochemical constituents from Stevia rebaudiana (Bert.) and evaluation of their anticancer, antimicrobial and antioxidant properties via in vitro and in silico approaches. Heliyon 2021; 7:e08475. [PMID: 34917793 PMCID: PMC8645449 DOI: 10.1016/j.heliyon.2021.e08475] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/15/2021] [Accepted: 11/22/2021] [Indexed: 12/15/2022] Open
Abstract
The current study was designed to isolate and characterize some bioactive secondary metabolites by using repeated chromatographic and spectroscopic techniques, targeting their anticancer, antimicrobial, and antioxidant properties through in vitro and in silico approaches. Six compounds were isolated and analyzed by thin layer chromatographic technique and the compounds were identified as 5-O-caffeoyl quinic acid (1), syringin (2), luteolin (3), apigenin (4), jhanol (5), and jhanidiol (6) based on spectroscopic methods. The cytotoxic effect of each compound was dose-dependent, and compound 1 showed a higher anti-proliferative effect (IC50 = 181.3 μg/ml) than other compounds (compound 2, 4, 5, and 6). Besides, compound 1 showed the most promising antibacterial activity with a zone of inhibition ranges from 12-15 mm against different strains compared to ciprofloxacin (14-22 mm). In contrast, compound 3 exerted the highest scavenging property against DPPH free radical. Finally, the in vitro bioactivities were also supported by molecular docking studies. The computational study demonstrated that the isolated compounds exerted stronger affinity compared to the standard drugs towards the binding sites of dihydrofolate reductase (DHFR), glutathione reductase, and urase oxidase.
Collapse
|
34
|
Mahmoud MF, Abdelaal S, Mohammed HO, El-Shazly AM, Daoud R, Abdelfattah MAO, Sobeh M. Syzygium aqueum (Burm.f.) Alston Prevents Streptozotocin-Induced Pancreatic Beta Cells Damage via the TLR-4 Signaling Pathway. Front Pharmacol 2021; 12:769244. [PMID: 34912223 PMCID: PMC8667316 DOI: 10.3389/fphar.2021.769244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022] Open
Abstract
Although several treatments are available for the treatment of type 2 diabetes mellitus, adverse effects and cost burden impose the search for safe, efficient, and cost-effective alternative herbal remedies. Syzygium aqueum (Burm.f.) Alston, a natural anti-inflammatory, antioxidant herb, may suppress diabetes-associated inflammation and pancreatic beta-cell death. Here, we tested the ability of the bioactive leaf extract (SA) to prevent streptozotocin (STZ)-induced oxidative stress and inflammation in pancreatic beta cells in rats and the involvement of the TLR-4 signaling pathway. Non-fasted rats pretreated with 100 or 200 mg kg-1 SA 2 days prior to the STZ challenge and for 14 days later had up to 52 and 39% reduction in the glucose levels, respectively, while glibenclamide, the reference standard drug (0.5 mg kg-1), results in 70% reduction. Treatment with SA extract was accompanied by increased insulin secretion, restoration of Langerhans islets morphology, and decreased collagen deposition as demonstrated from ELISA measurement, H and E, and Mallory staining. Both glibenclamide and SA extract significantly decreased levels of TLR-4, MYD88, pro-inflammatory cytokines TNF-α, and TRAF-6 in pancreatic tissue homogenates, which correlated well with minimal pancreatic inflammatory cell infiltration. Pre-treatment with SA or glibenclamide decreased malondialdehyde, a sensitive biomarker of ROS-induced lipid peroxidation, and restored depleted reduced glutathione in the pancreas. Altogether, these data indicate that S. aqueum is effective in improving STZ-induced pancreatic damage, which could be beneficial in treating type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Mona F. Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Shimaa Abdelaal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Heba Osama Mohammed
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Assem M. El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Rachid Daoud
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | | | - Mansour Sobeh
- AgroBioSciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| |
Collapse
|
35
|
Wang Y, Huang Y, Wu P, Ye Y, Sun F, Yang X, Lu Q, Yuan J, Liu Y, Zeng H, Song X, Yan S, Qi X, Yang CX, Lv C, Wu JHY, Liu G, Pan XF, Chen D, Pan A. Plasma lipidomics in early pregnancy and risk of gestational diabetes mellitus: a prospective nested case-control study in Chinese women. Am J Clin Nutr 2021; 114:1763-1773. [PMID: 34477820 DOI: 10.1093/ajcn/nqab242] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/28/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Lipid metabolism plays an important role in the pathogenesis of diabetes. There is little evidence regarding the prospective association of the maternal lipidome with gestational diabetes mellitus (GDM), especially in Chinese populations. OBJECTIVES We aimed to identify novel lipid species associated with GDM risk in Chinese women, and assess the incremental predictive capacity of the lipids for GDM. METHODS We conducted a nested case-control study using the Tongji-Shuangliu Birth Cohort with 336 GDM cases and 672 controls, 1:2 matched on age and week of gestation. Maternal blood samples were collected at 6-15 wk, and lipidomes were profiled by targeted ultra-HPLC-tandem MS. GDM was diagnosed by oral-glucose-tolerance test at 24-28 wk. The least absolute shrinkage and selection operator is a regression analysis method that was used to select novel biomarkers. Multivariable conditional logistic regression was used to estimate the associations. RESULTS Of 366 detected lipids, 10 were selected and found to be significantly associated with GDM independently of confounders: there were positive associations with phosphatidylinositol 40:6, alkylphosphatidylcholine 36:1, phosphatidylethanolamine plasmalogen 38:6, diacylglyceride 18:0/18:1, and alkylphosphatidylethanolamine 40:5 (adjusted ORs per 1 log-SD increment range: 1.34-2.86), whereas there were inverse associations with sphingomyelin 34:1, dihexosyl ceramide 24:0, mono hexosyl ceramide 18:0, dihexosyl ceramide 24:1, and phosphatidylcholine 40:7 (adjusted ORs range: 0.48-0.68). Addition of these novel lipids to the classical GDM prediction model resulted in a significant improvement in the C-statistic (discriminatory power of the model) to 0.801 (95% CI: 0.772, 0.829). For every 1-point increase in the lipid risk score of the 10 lipids, the OR of GDM was 1.66 (95% CI: 1.50, 1.85). Mediation analysis suggested the associations between specific lipid species and GDM were partially explained by glycemic and insulin-related indicators. CONCLUSIONS Specific plasma lipid biomarkers in early pregnancy were associated with GDM in Chinese women, and significantly improved the prediction for GDM.
Collapse
Affiliation(s)
- Yi Wang
- Department of Epidemiology & Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yichao Huang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, China
| | - Ping Wu
- Department of Epidemiology & Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi Ye
- Department of Epidemiology & Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fengjiang Sun
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, China
| | - Xue Yang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qi Lu
- Department of Epidemiology & Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiaying Yuan
- Department of Science and Education, Shuangliu Maternal and Child Health Hospital, Chengdu, Sichuan, China
| | - Yan Liu
- Department of Obstetrics and Gynecology, Shuangliu Maternal and Child Health Hospital, Chengdu, Sichuan, China
| | - Huayan Zeng
- Nutrition Department, Shuangliu Maternal and Child Health Hospital, Chengdu, Sichuan, China
| | - Xingyue Song
- Department of Emergency, Hainan Clinical Research Center for Acute and Critical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China.,Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, Hainan, China
| | - Shijiao Yan
- Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences, Hainan Medical University, Haikou, Hainan, China.,School of Public Health, Hainan Medical University, Haikou, Hainan, China
| | - Xiaorong Qi
- Department of Gynecology and Obstetrics, West China Second Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Chun-Xia Yang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chuanzhu Lv
- Department of Emergency, Hainan Clinical Research Center for Acute and Critical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China.,Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, Hainan, China.,Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Jason H Y Wu
- The George Institute for Global Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Gang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiong-Fei Pan
- Department of Epidemiology & Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,The George Institute for Global Health, University of New South Wales, Sydney, New South Wales, Australia.,Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Da Chen
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, China
| | - An Pan
- Department of Epidemiology & Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
36
|
Li Y, Xie H, Zhang H. Protective effect of sinomenine against inflammation and oxidative stress in gestational diabetes mellitus in female rats via TLR4/MyD88/NF-κB signaling pathway. J Food Biochem 2021; 45:e13952. [PMID: 34636046 DOI: 10.1111/jfbc.13952] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/08/2021] [Accepted: 08/15/2021] [Indexed: 01/15/2023]
Abstract
Gestational diabetes mellitus (GDM) is a dangerous complication of pregnancy which is induced via dysfunction in glucose metabolism during pregnancy. Sinomenine (SM) has already proved an antidiabetic effect against streptozotocin (STZ)-induced diabetes mellitus (DM) in rats. In this protocol, we examined the protective effect of SM against STZ-induced GDM in rats. Wistar rats were divided into three groups and STZ (40 mg/kg) was used to induce GDM. At the end of the experimental protocol, bodyweight, pub weight, and survival rate were estimated. Blood glucose level (BGL), fasting insulin (FINS), free fatty acid (FFA), Hemoglobin A1C (HbA1c), and C-peptide were measured. Lipid, antioxidant, inflammatory cytokines, and inflammatory mediators were also determined. RT-PCR was used for estimation of the role of TLR4/MyD88/NF-κB signaling pathway. SM treatment significantly (p < .001) reduced BGL, hepatic glycogen, and improved the levels of FINS, C-peptide, FFA, and HbA1c. SM significantly (p < .001) suppressed the levels of total cholesterol (TC), low-density lipoprotein (LDL), triglycerides (TG), coronary artery index (CAI), very low-density lipoprotein (VLDL), atherogenic index (AI), and boosted high-density lipoprotein (HDL) levels. SM significantly (p < .001) decreased the lipid peroxidation (LPO) level and enhanced glutathione peroxidase (GPx), total antioxidant capacity (TAC), glutathione S-transferase (GST), superoxide dismutase (SOD), respectively. It reduced the levels of inflammatory cytokines including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and inflammatory mediators viz., nuclear kappa B factors (NF-κB). SM significantly (p < .001) reduced the mRNA expression of Myd88, NLRP3, TLR4, and NF-κB, which were boosted in the GDM group rats. These findings suggest that SM could be a probable drug to be used for treating GDM via inhibition of the TLR4 signaling pathway. PRACTICAL APPLICATIONS: It is well known that gestational diabetes mellitus (GDM) is a dangerous health problem during the pregnancy. SM reduced the glucose level; boosted the level of fasting insulin (FINS) and bodyweight. SM significantly improved the number of pubs and their survival rates. SM suppressed oxidative stress and inflammation via activation of TLR4/MyD88/NF-κB signaling pathway. According to our research, SM can be used as a preventive drug in the treatment of GDM during pregnancy.
Collapse
Affiliation(s)
- Yanbing Li
- Department of obstetrics, The Third Hospital of Jinan, Jinan, China
| | - Hongqin Xie
- Department of obstetrics, The Third Hospital of Jinan, Jinan, China
| | - Huiya Zhang
- Department of Obstetrics and Gynecology, Xian XD Group Hospital, Xi'an, China
| |
Collapse
|
37
|
Huo Y, Mijiti A, Cai R, Gao Z, Aini M, Mijiti A, Wang Z, Qie R. Scutellarin alleviates type 2 diabetes (HFD/low dose STZ)-induced cardiac injury through modulation of oxidative stress, inflammation, apoptosis and fibrosis in mice. Hum Exp Toxicol 2021; 40:S460-S474. [PMID: 34610774 DOI: 10.1177/09603271211045948] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Diabetes is a serious global health concern which severely affected public health as well as socio-economic growth worldwide. Scutellarin (SCU), a bioactive flavonoid, is known for its efficacious action against a range of ailments including cardiovascular problems. The present study was conducted to find out possible protective effect and its associated mechanisms of SCU on experimental type 2 diabetes-induced cardiac injury. METHODS Type 2 diabetes was induced by treating animals with high fat diet for 4 weeks and a single intraperitoneal dose (35 mg/kg body weight) of streptozotocin and diabetic animals received SCU (10 or 20 mg/kg/day) for 6 weeks. RESULTS Scutellarin attenuated type 2 diabetes-induced hyperglycemia, bodyweight loss, hyperlipidaemia, cardiac functional damage with histopathological alterations and fibrosis. Scutellarin treatment to type 2 diabetic mice ameliorated oxidative stress, inflammatory status and apoptosis in heart. Furthermore, the underlying mechanisms for such mitigation of oxidative stress, inflammation and apoptosis in heart involved modulation of Nrf2/Keap1 pathway, TLR4/MyD88/NF-κB mediated inflammatory pathway and intrinsic (mitochondrial) apoptosis pathway, respectively. CONCLUSIONS The current findings suggest that SCU is effective in protecting type 2 diabetes-induced cardiac injury by attenuating oxidative stress and inflammatory responses and apoptosis, and it is also worth considering the efficacious potential of SCU to treat diabetic cardiomyopathy patients.
Collapse
Affiliation(s)
- Yan Huo
- Department of Endocrinology, 38044Xuzhou first People's Hospital (The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University), Xuzhou, Jiangsu, China
| | - Abudureheman Mijiti
- Department of Cardiac electrophysiology group, The Second People's Hospital in Kashgar, Kashgar, Xinjiang, China
| | - Ruonan Cai
- Department of Endocrinology, 38044Xuzhou first People's Hospital (The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University), Xuzhou, Jiangsu, China
| | - Zhaohua Gao
- Department of Endocrinology, 38044Xuzhou first People's Hospital (The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University), Xuzhou, Jiangsu, China
| | - Maierpu Aini
- Department of Cardiac electrophysiology group, The Second People's Hospital in Kashgar, Kashgar, Xinjiang, China
| | - Abudukadier Mijiti
- Department of Emergency Medicine, The First People's Hospital in Kashgar, Kashgar, Xinjiang, China
| | - Zhaoling Wang
- Department of Endocrinology, 38044Xuzhou first People's Hospital (The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University), Xuzhou, Jiangsu, China
| | - Rui Qie
- Department of Emergency, 118437First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Haerbin, Heilongjiang, China
| |
Collapse
|
38
|
Choudhury AA, Devi Rajeswari V. Gestational diabetes mellitus - A metabolic and reproductive disorder. Biomed Pharmacother 2021; 143:112183. [PMID: 34560536 DOI: 10.1016/j.biopha.2021.112183] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023] Open
Abstract
Maternal health associated with Gestational Diabetes Mellitus (GDM) has been gaining significant research attention due to its severe risk and adverse health effects. GDM is the leading health disease in pregnant women. It is the most common metabolic disease and it can affect up to 25% of women during pregnancy. Pregnancy is a sensitive period that impacts both pregnant women and their unborn children's long-term health. It is a well-known fact that the leading causes of disease and mortality worldwide are diabetes mellitus and cancer, and specifically, women with diabetes mellitus are at a higher risk of developing breast cancer (BC). Women who have diabetes are equally vulnerable to reproductive diseases. Reproductive dysfunctions with diabetes are mainly attributed to coexisting polycystic ovarian syndrome (PCOS), obesity, and hyperinsulinemia, etc. Moreover, India has long been recognized as the world's diabetic capital, and it is widely acknowledged that particularly pregnant and lactating women are among the most affected by diabetes. In India, one-third (33%) of women with GDM had a history of maternal diabetes. Nevertheless, the latest research suggests that gestational diabetes is also a risk factor for cardiometabolic diseases of the mother and offspring. Therefore, in the 21st century, GDM imposes a major challenge for healthcare professionals. We intend to explore the role of diabetes on female reproductive function throughout various stages of life in the perspective of the changing prognosis, prevalence, and prevention of GDM.
Collapse
Affiliation(s)
- Abbas Alam Choudhury
- Department of Bio-Medical Sciences, School of Biosciences and Technology, VIT University, Vellore 632 014, Tamil Nadu, India
| | - V Devi Rajeswari
- Department of Bio-Medical Sciences, School of Biosciences and Technology, VIT University, Vellore 632 014, Tamil Nadu, India.
| |
Collapse
|
39
|
Synergistic cardioptotection by tilianin and syringin in diabetic cardiomyopathy involves interaction of TLR4/NF-κB/NLRP3 and PGC1a/SIRT3 pathways. Int Immunopharmacol 2021; 96:107728. [PMID: 33971494 DOI: 10.1016/j.intimp.2021.107728] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/13/2021] [Accepted: 04/25/2021] [Indexed: 02/06/2023]
Abstract
Diabetic cardiomyopathy (DCM) is a chronic multifactorial complication of type-2 diabetes mellitus, leading to heart failure. A combination of multifaceted therapeutics for the management of DCM is needed. Here, we investigated the combined effect of syringin and tilianin on DCM by evaluating cardiac function, inflammation, oxidative stress, apoptosis and mitochondrial function, and explored the contribution of TLR4/NF-κB/NLRP3 and PGC1α/SIRT3 pathways in diabetic rats and hyperglycemic-H9c2 cells. Syringin and tilianin (50 and 60 mg/kg, i.p, respectively) were administered for eight weeks, individually or in combination, to healthy and type-2 diabetic Sprague-Dawley rats. Myocardial function was recorded using a carotid catheter, mitochondrial and histopathological changes were evaluated by fluorometric and staining methods, cardiac markers and signaling pathways' proteins expression were measured through ELISA and immunoblotting. In comparison to individual treatments, combination of syringin and tilianin effectively exerted antidiabetic effects and improved cardiac function and DCM markers, reduced NLRP3/IL-6/IL-1β/TNF-α expression, and suppressed diabetes/hyperglycemia‑induced oxidative stress in rats' heart and H9c2 cells, as demonstrated by decreased 8-isoprostane, and increased superoxide dismutase-2 levels. Mitochondrial membrane depolarization and ROS production were inhibited, and caspase-3 and Bax/Bcl2 expression downregulated by combination therapy. Combined treatment markedly inhibited up-regulation of TLR4, MyD88 and NF-κB in diabetic rats. Finally, inhibition of PGC1α/SIRT3 pathway by 3-TYP in hyperglycemic H9c2-cells reversed the beneficial effects of combination therapy on cardiomyocytes injury and NF-κB/NLRP3/IL-1β expression, without affecting TLR4/MyD88 expression. Syringin plus tilianin synergistically inhibited the diabetes-induced cardiac functional, biochemical and histopathological changes in DCM. Crosstalk between TLR4/NF-κB/NLRP3 and PGC1α/SIRT3/mitochondrial pathways contributed to this protection.
Collapse
|
40
|
Liu Y, Zhu X, Tong X, Tan Z. Syringin protects against cerebral ischemia/reperfusion injury via inhibiting neuroinflammation and TLR4 signaling. Perfusion 2021; 37:562-569. [PMID: 33832376 DOI: 10.1177/02676591211007025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Cerebral ischemia/reperfusion injury (CI/R) is associated with high mortality and remains a large challenge in the clinic. Syringin is a bioactive compound with anti-inflammation, antioxidant, as well as neuroprotective effects. Nevertheless, whether syringin could protect against CI/R injury and its potential mechanism was still unclear. METHODS Rats were randomly divided into five groups: sham group, syringin group, CI/R group, CI/R + syringin group, and CI/R + syringin + LPS (TLR4 agonist) group. The CI/R injury rat model was established by the middle cerebral artery occlusion (MCAO). The learning and memory ability of rats was estimated by the Morris water maze test. Modified neurological severity score test (mNSS) and infarct volume were detected to assess the neuroprotective effect of syringin. ELISA and RT-qPCR were used to analyze the concentration of proinflammation cytokines and the expression of TLR4. RESULTS CI/R injury induced increased mNSS scores and decreased learning and memory ability of rats. Syringin could significantly protect against CI/R injury as it decreased the cerebral damage and improved the cognitive ability of CI/R rats. Moreover, syringin also reduced neuroinflammation of CI/R injury rats. Additionally, TLR4 was significantly upregulated in CI/R injury rats, which was suppressed by syringin. The activation of TLR4 reversed the neuroprotective effect of syringin in CI/R rats. CONCLUSION Syringin decreased the inflammation reaction and cerebral damage in CI/R injury rats. The neuroprotective effect of syringin may be correlated with the inhibition of TLR4.
Collapse
Affiliation(s)
- Yan Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Mudanjiang University, Mudanjiang, Heilongjiang, China
| | - Xuyao Zhu
- Department of Imaging, Hongqi Hospital affiliated to Mudanjiang Medical College, Mudanjiang, Heilongjiang, China
| | - Xiuxia Tong
- Department of Emergency, The Second Affliated Hospital of Mudanjiang University, Mudanjiang, Heilongjiang, China
| | - Ziqiang Tan
- Department of Pharmacy, The Second Affliated Hospital of Mudanjiang University, Mudanjiang, Heilongjiang, China
| |
Collapse
|
41
|
Chen X, Famurewa AC, Tang J, Olatunde OO, Olatunji OJ. Hyperoside attenuates neuroinflammation, cognitive impairment and oxidative stress via suppressing TNF-α/NF-κB/caspase-3 signaling in type 2 diabetes rats. Nutr Neurosci 2021; 25:1774-1784. [PMID: 33722183 DOI: 10.1080/1028415x.2021.1901047] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Literature findings have instituted the role of hyperglycemia-induced oxidative stress and inflammation in the pathogenesis of cognitive derangement in diabetes mellitus (DM). Hyperoside (HYP) is a flavanone glycoside reported to possess diverse pharmacological benefits such as antioxidant and anti-inflammatory properties. The study explored whether HYP could mitigate DM-induced cognitive dysfunction and further elucidate on potential molecular mechanism in rats. METHODS Streptozotocin/high-fat diet-induced diabetic rats were treated orally with HYP (50, 200 and 400 mg/kg/day) for six consecutive weeks. The blood glucose and serum insulin levels, Morris water maze test, intraperitoneal glucose tolerance test, and brain acetylcholinesterase (AChE) activity were determined. The brain expression of inflammatory nuclear factor-kappa B (NF-κB), tumour necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6), as well as superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH), total antioxidant capacity (TAC), malondialdehyde (MDA), lipid profile and caspase-3 activity were estimated. RESULTS DM evoked hyperlipidemia, hypoinsulinemia, cognitive dysfunction by markedly increased AChE and reduction in learning and memory capacity. Brain activities of SOD and CAT, and levels of TAC and GSH were considerably depressed, whereas levels of IL-1β, IL-6, TNF-α, NF-κB, caspase-3 and MDA were prominently increased. Interestingly, the HYP treatment dose-dependently abrogated the altered cognitive and biochemical parameters. DISCUSSION The results suggested that hyperoside prevents DM-induced cognitive dysfunction, neuroinflammation and oxidative stress via antioxidant, anti-inflammatory and antiapoptotic mechanisms in rats.
Collapse
Affiliation(s)
- Xiao Chen
- Second Department of Encephalopathy, Xi'an Encephalopathy Hospital of Traditional Chinese Medicine, Xi'an, People's Republic of China
| | - Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Alex Ekwueme Federal University, Ndufu-Alike, Ikwo, Nigeria
| | - Jian Tang
- School of Chinese Medicine, Bozhou University, Anhui, People's Republic of China
| | - Oladipupo Odunayo Olatunde
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | | |
Collapse
|
42
|
Hossin AY, Inafuku M, Takara K, Nugara RN, Oku H. Syringin: A Phenylpropanoid Glycoside Compound in Cirsium brevicaule A. GRAY Root Modulates Adipogenesis. Molecules 2021; 26:molecules26061531. [PMID: 33799634 PMCID: PMC7999402 DOI: 10.3390/molecules26061531] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 11/16/2022] Open
Abstract
Cirsium brevicaule A. GRAY is a wild perennial herb, and its roots (CbR) have traditionally been used as both food and medicine on the Japanese islands of Okinawa and Amami. The present study evaluated the antiadipogenic effect of CbR using mouse embryonic fibroblast cell line 3T3-L1 from JCRB cell bank. Dried CbR powder was serially extracted with solvents of various polarities, and these crude extracts were tested for antiadipogenic activity. Treatment with the methanol extract of CbR showed a significant suppression of lipid accumulation in 3T3-L1 cells. Methanol extract of CbR was then fractionated and subjected to further activity analyses. The phenylpropanoid glycosidic molecule syringin was identified as an active compound. Syringin dose dependently suppressed lipid accumulation of 3T3-L1 cells without cytotoxicity, and significantly reduced the expressions of peroxisome proliferator-activated receptor gamma, the master regulator of adipogenesis, and other differentiation markers. It was demonstrated that syringin effectively enhanced the phosphorylation of the AMP-activated protein kinase and acetyl-CoA carboxylase. These results indicate that syringin attenuates adipocyte differentiation, adipogenesis, and promotes lipid metabolism; thus, syringin may potentially serve as a therapeutic candidate for treatment of obesity.
Collapse
Affiliation(s)
- Abu Yousuf Hossin
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (A.Y.H.); (K.T.); (H.O.)
- Tropical Biosphere Research Center, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan;
| | - Masashi Inafuku
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (A.Y.H.); (K.T.); (H.O.)
- Faculty of Agriculture, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan
- Correspondence: ; Tel.: +81-98-895-8978; Fax: +81-98895-8944
| | - Kensaku Takara
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (A.Y.H.); (K.T.); (H.O.)
- Faculty of Agriculture, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan
| | - Ruwani N. Nugara
- Tropical Biosphere Research Center, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan;
- Faculty of Technology, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka
| | - Hirosuke Oku
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (A.Y.H.); (K.T.); (H.O.)
- Tropical Biosphere Research Center, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan;
| |
Collapse
|
43
|
Dai R, Niu M, Wang N, Wang Y. Syringin alleviates ovalbumin-induced lung inflammation in BALB/c mice asthma model via NF-κB signaling pathway. ENVIRONMENTAL TOXICOLOGY 2021; 36:433-444. [PMID: 33146439 DOI: 10.1002/tox.23049] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
Asthma is an allergic chronic inflammatory disease of the pulmonary airways, characterized by the infiltration of white blood cells and release of inflammatory cytokines of complex pathways linked to its pathogenesis. Syringin extracted from various medicinal plants has been used extensively for the treatment of inflammatory diseases. Hence, this study was conducted to further explore the protective effects of the syringin in ovalbumin (OVA) induced-asthma mice model. OVA-sensitized BALB mice were treated intraperitonealy with three doses (25, 50 and 100 mg/kg) of the syringin which was validated by the alteration in the immunoglobulin E (IgE) levels, cytokines levels, histopathological evaluation inflammatory cell count, lung weight, nitrite (NO) levels, oxidative stress biomarkers and gene markers. The treatment of syringin intensely reduced the increased IgE, inflammatory cytokines, WBC count and restored the antioxidant stress markers OVA stimulated animals. In addition, a significant reduction in inflammation and mucus production was evidenced in histopathological analysis which was further validated by suppression NF-κB pathway activation by syringin. These results suggest that syringin may improve asthma symptoms in OVA-induced mice by modulating NF-κB pathway activation.
Collapse
Affiliation(s)
- Rui Dai
- Department of Pediatric, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Manman Niu
- Department of Pediatric, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ningling Wang
- Department of Pediatric, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yan Wang
- Department of Pediatric, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
44
|
Mei F, Meng K, Gu Z, Yun Y, Zhang W, Zhang C, Zhong Q, Pan F, Shen X, Xia G, Chen H. Arecanut ( Areca catechu L.) Seed Polyphenol-Ameliorated Osteoporosis by Altering Gut Microbiome via LYZ and the Immune System in Estrogen-Deficient Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:246-258. [PMID: 33382620 DOI: 10.1021/acs.jafc.0c06671] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Polyphenol can improve osteoporosis and is closely associated with gut microbiota, while the mechanism and the relationship among polyphenol, osteoporosis, and gut microbiota colonization remain unclear. Here, an osteoporosis rat model established by ovariectomy was employed to investigate the improving mechanism of arecanut (Areca catechu L.) seed polyphenol (ACP) on osteoporosis by regulating gut microbiota. We analyzed the bone microstructure, Paneth cells, regulating microbial protein (lysozyme (LYZ)), proinflammatory cytokines, macrophage infiltration levels, and gut microbial communities in a rat. ACP improved the trabecular microstructure compared to OVX, including the increased trabecular number (Tb.N) (P < 0.01) and trabecular thickness (Tb.Th) (P < 0.001) and decreased trabecular separation (Tb.Sp) (P < 0.01). At the phylum level, Bacteroidetes was increased after ovariectomy (P < 0.001) and Firmicutes and Proteobacteria were increased in ACP (P < 0.001). Antiosteoporosis groups with lower LYZ and Paneth cells (P < 0.001) showed that the microbiota Alistipes, which have a negative effect on bone metabolism were decreased in ACP (P < 0.001). Altogether, these studies showed that the estrogen deficiency could induce the shedding of Paneth cells, which leads to the decrease of LYZ, while ACP could increase the LYZ expression by maintaining the population of Paneth cells in an estrogen-deficient host, which were implicated in gut microbiota regulation and improved osteoporosis by controlling the inflammatory reaction.
Collapse
Affiliation(s)
- Fengfeng Mei
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, China
- College of Food Science and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Keke Meng
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, China
- College of Food Science and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Zhipeng Gu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, China
- College of Food Science and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Yonghuan Yun
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Haikou 570228, China
| | - Weimin Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Haikou 570228, China
| | - Chenghui Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Haikou 570228, China
| | - Qiuping Zhong
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Haikou 570228, China
| | - Feibing Pan
- Huachuang Institute of Areca Research-Hainan, Haikou, Hainan 570228, China
| | - Xuanri Shen
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Haikou 570228, China
- College of Food Science and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Guanghua Xia
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Haikou 570228, China
- College of Food Science and Technology, Hainan University, Haikou, Hainan 570228, China
- Huachuang Institute of Areca Research-Hainan, Haikou, Hainan 570228, China
| | - Haiming Chen
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Haikou 570228, China
- College of Food Science and Technology, Hainan University, Haikou, Hainan 570228, China
- Huachuang Institute of Areca Research-Hainan, Haikou, Hainan 570228, China
| |
Collapse
|