1
|
Wei S, Li Y, Zhou J, Xia Y. Exploring MAP3K genes in gastric cancer: biomarkers, tumor microenvironment dynamics, and chemotherapy resistance. Hereditas 2025; 162:15. [PMID: 39901302 PMCID: PMC11789369 DOI: 10.1186/s41065-025-00364-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/06/2025] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND Gastric cancer (GC) presents a significant global health burden, necessitating a deeper understanding of its molecular underpinnings for improved diagnostics and therapeutics. METHODS In this study, we investigated the expression profiles and clinical implications of MAP3K genes in GC using in silico and in vitro experiments. RESULTS Utilizing RT-qPCR analysis, we observed significant up-regulation of MAP3K1, MAP3K4, MAP3K5, MAP3K6, MAP3K7, MAP3K8, MAP3K9, and MAP3K10 in GC cell lines, while MAP3K2, MAP3K3, MAP3K11, MAP3K12, MAP3K13, MAP3K14, and MAP3K15 exhibited down-regulation. Prognostic evaluation revealed that elevated expression of MAP3K1, MAP3K4, MAP3K7, MAP3K8, MAP3K9, and MAP3K10 was associated with shorter overall survival (OS), emphasizing their clinical significance. Furthermore, the diagnostic potential was demonstrated through robust Receiver operating characteristics (ROC) curve analysis, indicating the strong discriminatory power of these genes in distinguishing GC patients. Proteomic analysis further confirmed the higher expression of MAP3K1, MAP3K4, MAP3K7, MAP3K8, MAP3K9, and MAP3K10 genes in GC. Methylation profiling further supported the idea that promoter hypomethylation of MAP3K1, MAP3K4, MAP3K7, MAP3K8, MAP3K9, and MAP3K10 genes was associated with their up-regulation. Single-cell functional analysis elucidated the involvement of MAP3K genes in shaping the tumor microenvironment. miRNA-mRNA network analysis revealed intricate regulatory mechanisms, with hsa-mir-200b-3p emerging as a key regulator. Finally, the MAP3K1 knockdown has shown significant impacts on the cellular behavior of the BGC823 cells. CONCLUSION This comprehensive assessment provides valuable insights into the role of MAP3K genes in GC, offering avenues for further research and therapeutic exploration.
Collapse
Affiliation(s)
- Senhui Wei
- Department of Gastroenterolog, Shenzhen Guangming District People's Hospital, Shenzhen City, 518107, P.R. China
| | - Ying Li
- Department of Gastroenterolog, Shenzhen Guangming District People's Hospital, Shenzhen City, 518107, P.R. China
| | - Jing Zhou
- Department of Gastroenterolog, Shenzhen Guangming District People's Hospital, Shenzhen City, 518107, P.R. China
| | - Yongming Xia
- Department of Hepatobiliary Gastrointestinal Surgery, Shenzhen Guangming District People's Hospital, Shenzhen City, 518107, P. R. China.
| |
Collapse
|
2
|
Yamazaki T, Tokiwa T. Suppressive effect of isofraxidin on the overexpression of IL-6 and its molecular mechanism in a TPA-treated human hepatocellular carcinoma cell line, HuH-7. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1735-1745. [PMID: 39172147 DOI: 10.1007/s00210-024-03394-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Interleukin-6 (IL-6) is a pleiotropic cytokine that has many biological activities, including inflammation, hematopoiesis, bone metabolism, embryonic development, and other fundamental processes. Recently, IL-6 has been widely recognized as an important pro-inflammatory cytokine involved in cytokine storm pathogenesis during severe inflammatory diseases, such as coronavirus disease 2019 (COVID-19). Therefore, IL-6 is considered to be a therapeutic target for inhibiting cytokine storm. In the present study, we investigated the suppressive effect of isofraxidin, a major coumarin compound of Acanthopanax senticosus, on the overexpression of IL-6 and its molecular mechanism. The expression of IL-6 mRNA was measured using quantitative real-time PCR, and intracellular signaling molecules were detected using western blotting. When the HuH-7 human hepatocellular carcinoma cell line and HepG2 human hepatoblastoma cell line were treated with 12-O-tetradecanoylphorbol 13-acetate (TPA), a marked induction of IL-6 mRNA expression was observed in HuH-7 cells compared with HepG2 cells. Isofraxidin significantly suppressed TPA-induced IL-6 mRNA expression in HuH-7 cells in a dose-dependent manner. Furthermore, isofraxidin inhibited TPA-induced phosphorylation of ERK1/2 in a dose-dependent manner. Similarly, the MAPK/ERK inhibitor U0126 suppressed TPA-induced IL-6 mRNA expression. However, isofraxidin had no effects on TPA-induced phosphorylation of SAPK/JNK, Akt (Ser473), and STAT3 (Tyr705), nuclear translocation of NF-κB p65, and degradation of IκB. Taken together, isofraxidin suppresses TPA-induced overexpression of IL-6 mRNA by selectively inhibiting the activation of the MAPK/ERK pathway in HuH-7 cells, indicating that isofraxidin may be an effective anti-inflammatory agent for treating cytokine storm.
Collapse
Affiliation(s)
- Taisuke Yamazaki
- Department of Liver Cell Biology, Kohno Clinical Medicine Research Institute, 3-4-4 Kita-Shinagawa, Shinagawa-Ku, 140-0001, Tokyo, Japan.
| | - Takayoshi Tokiwa
- Department of Liver Cell Biology, Kohno Clinical Medicine Research Institute, 3-4-4 Kita-Shinagawa, Shinagawa-Ku, 140-0001, Tokyo, Japan
| |
Collapse
|
3
|
Iyer A, Vaasjo LO, Siththanandan VB, K C R, Thurmon A, Akumuo M, Lu V, Nnebe C, Nair R, Galazo MJ, Tharin S. miR-193b-365 microcluster downstream of Fezf2 coordinates neuron-subtype identity and dendritic morphology in cortical projection neurons. iScience 2024; 27:111500. [PMID: 39759000 PMCID: PMC11697703 DOI: 10.1016/j.isci.2024.111500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/30/2024] [Accepted: 11/26/2024] [Indexed: 01/07/2025] Open
Abstract
Different neuron types develop characteristic axonal and dendritic arborizations that determine their inputs, outputs, and functions. Expression of fate-determinant transcription factors is essential for specification of their distinct identities. However, the mechanisms downstream of fate-determinant factors coordinating different aspects of neuron identity are not understood. Specifically, how distinct projection neurons develop appropriate dendritic arbors that determine their inputs is unknown. Here, we investigate this question in corticospinal and callosal projection neurons. We identified a mechanism linking the corticospinal/corticofugal identity gene Fezf2 with the regulation of dendritic development. We show that miR-193b∼365 microRNA cluster is regulated by Fezf2 and enriched in corticospinal neurons. miR-193b∼365 represses mitogen-activated protein kinase 8 (MAPK8) to regulate corticospinal dendritic development. miR-193b∼365 overexpression in callosal neurons abnormally reduces MAPK8 signal and dendritic complexity. Our findings show that regulation of MAPK8 via miR-193b∼365 cluster regulates dendritic development, providing a mechanism that coordinates projection neuron identity, specified by Fezf2, and neuron-specific dendritic morphology.
Collapse
Affiliation(s)
- Asha Iyer
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Lee O. Vaasjo
- Neuroscience program, Tulane Brain Institute, Tulane University, New Orleans, LA 70118 USA
| | | | - Rajan K C
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118 USA
| | - Abbigail Thurmon
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118 USA
| | - Mauren Akumuo
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118 USA
| | - Victoria Lu
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Chelsea Nnebe
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
- Neurosciences PhD program, Stanford University, Stanford, CA 94305, USA
| | - Ramesh Nair
- Stanford Center for Genomics and Personalized Medicine, Stanford, CA 94305, USA
| | - Maria J. Galazo
- Neuroscience program, Tulane Brain Institute, Tulane University, New Orleans, LA 70118 USA
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118 USA
| | - Suzanne Tharin
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
- Division of Neurosurgery, Palo Alto Veterans Affairs Health Care System, Palo Alto, CA 94304, USA
- Neurosciences PhD program, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
4
|
Akbarin MM, Rezaee SA, Farjami Z, Rahimi H, Rafatpanah H. The role of CREB and MAPK signaling pathways in ATLL patients. AIDS Res Ther 2024; 21:81. [PMID: 39529101 PMCID: PMC11552329 DOI: 10.1186/s12981-024-00664-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND HTLV-1 is a worldwide distribution retrovirus with 10-20 million infected individuals. ATLL is an Adult T-cell leukaemia lymphoma caused by aggressive T-cell proliferation that is infected by HTLV-1 and is associated with an inferior prognosis. The exact molecular pathogenesis has yet to be fully understood. CREB, a transcription factor, acts as a molecular switch that controls the expression of numerous genes in response to various extracellular signals. Its activation is primarily mediated through phosphorylation by multiple kinases, including MAPKs. MAPKs, a family of serine/threonine kinases, serve as crucial mediators of intracellular signaling cascades. METHOD AND MATERIAL This study investigated, 38 HTLV-I-infected individuals, including 18 HTLV-1 asymptomatic carriers (ACs) and 20 ATLL subjects. mRNA was extracted and converted to cDNA from Peripheral blood mononuclear cells (PBMCs), and then the expression of TAX, HBZ, CREB, and MAPK was analyzed by TaqMan qPCR. The genomic HTLV-1 Proviral loads were examined among the study group. RESULTS The data analysis showed a significant difference in the mean of CREB expression amongst study groups (ATLL and carriers, (p = 0.002). There is no statistical difference between the MAPK gene expression (p = 0.35). HBZ, TAX, and HTLV-1 proviral load weree significantly higher in ATLL subjects compared to ACs (p = 0.002, 0.000, and 0.000), respectively. Moreover, our results, demonstrated a direct positive correlation among HBZ, CREB, and TAX gene expression in ATLL patients (p = 0.001), whilst between the ACs, TAX gene expression had a positive significant correlation with HBZ and HTLV-1 proviral load (p = 0.007 and p = 0.004, respectively). CONCLUSION The present study demonstrated that CREB gene expression was higher in the ATLL group than ACs, while there was no difference for MAPK. Therefore, this pathway may not strongly involve in the activation of CREB. The CREB may be a prognostic factor for the development of HTLV-I-associated diseases and can be used as a monitoring marker for the efficiency of the therapeutic regime and prognosis.
Collapse
Affiliation(s)
- Mohammad Mehdi Akbarin
- Immuology Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Azadi Square, Mashhad, Iran
- Mashhad Medical Sciences-Medical School-Islamic Azad University, Mashhad, Iran
| | - Seyed Abdolrahim Rezaee
- Immuology Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Azadi Square, Mashhad, Iran
| | - Zahra Farjami
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical, Mashhad, Iran
| | - Hossein Rahimi
- Hematology Department, Faculty of Medicine, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Immuology Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Azadi Square, Mashhad, Iran.
| |
Collapse
|
5
|
Fang JY, Ayyadurai S, Pybus AF, Sugimoto H, Qian MG. Exploring the diagnostic potential of miRNA signatures in the Fabry disease serum: A comparative study of automated and manual sample isolations. PLoS One 2024; 19:e0301733. [PMID: 39466827 PMCID: PMC11515968 DOI: 10.1371/journal.pone.0301733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/19/2024] [Indexed: 10/30/2024] Open
Abstract
Fabry disease, an X-linked lysosomal storage disorder caused by galactosidase α (GLA) gene mutations, exhibits diverse clinical manifestations, and poses significant diagnostic challenges. Early diagnosis and treatment are crucial for improved patient outcomes, pressing the need for reliable biomarkers. In this study, we aimed to identify miRNA candidates as potential biomarkers for Fabry disease using the KingFisher™ automated isolation method and NanoString nCounter® miRNA detection assay. Clinical serum samples were collected from both healthy subjects and Fabry disease patients. RNA extraction from the samples was performed using the KingFisher™ automated isolation method with the MagMAX mirVanaTM kit or manually using the Qiagen miRNeasy kit. The subsequent NanoString nCounter® miRNA detection assay showed consistent performance and no correlation between RNA input concentration and raw count, ensuring reliable and reproducible results. Interestingly, the detection range and highly differential miRNA between the control and disease groups were found to be distinct depending on the isolation method employed. Nevertheless, enrichment analysis of miRNA-targeting genes consistently revealed significant associations with angiogenesis pathways in both isolation methods. Additionally, our investigation into the impact of enzyme replacement therapy on miRNA expression indicated that some differential miRNAs may be sensitive to treatment. Our study provides valuable insights to identify miRNA biomarkers for Fabry disease. While different isolation methods yielded various detection ranges and highly differential miRNAs, the consistent association with angiogenesis pathways suggests their significance in disease progression. These findings lay the groundwork for further investigations and validation studies, ultimately leading to the development of non-invasive and reliable biomarkers to aid in early diagnosis and treatment monitoring for Fabry disease.
Collapse
Affiliation(s)
- Josephine Y. Fang
- Takeda Development Center Americas Inc., Cambridge, MA, United States of America
| | - Saravanan Ayyadurai
- Takeda Development Center Americas Inc., Cambridge, MA, United States of America
| | - Alyssa F. Pybus
- Takeda Development Center Americas Inc., Cambridge, MA, United States of America
| | - Hiroshi Sugimoto
- Takeda Development Center Americas Inc., Cambridge, MA, United States of America
| | - Mark G. Qian
- Takeda Development Center Americas Inc., Cambridge, MA, United States of America
| |
Collapse
|
6
|
Yu X, Pu X, Xi Y, Li X, Jiang W, Chen X, Xu Y, Xie J, Li H, Zheng D. Integrating network analysis and experimental validation to reveal the mechanism of si-jun-zi decoction in the treatment of renal fibrosis. Heliyon 2024; 10:e35489. [PMID: 39220912 PMCID: PMC11365329 DOI: 10.1016/j.heliyon.2024.e35489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/21/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Treating kidney diseases from the perspective of spleen is an important clinical method in traditional Chinese medicine (TCM) for anti-renal fibrosis (RF). Si-jun-zi decoction (SJZD), a classic formula for qi-invigorating and spleen-invigorating, has been reported to alleviate RF. This study aims to investigate the potential mechanism by which SJZD attenuates RF. The results demonstrated notable improvements in renal function levels, inflammation and fibrosis indices in UUO-mice following SJZD intervention. The main active ingredients identified were Quercetin, Kaempferol, Naringenin and 7-Methoxy-2-methyl isoflavone. Furthermore, STAT3, MAPK3, MYC were confirmed as key targets. Additionally, GO enrichment analysis demonstrated that SJZD delayed RF primarily by regulating oxidative stress and other biological mechanisms. KEGG enrichment analysis revealed the involvement of pathways such as Lipid and atherosclerosis signaling pathway, MAPK signaling pathway and other pathways in the reno-protective effects of SJZD. The molecular docking results revealed that the active ingredients of SJZD were well-bound and stable to the core targets. The experiments results revealed that Quercetin, Kaempferol, and Naringenin not only improved the morphology of TGF-β-induced HK-2 cells but also reversed the expression of α-SMA, COL1A1 and MAPK, thereby delaying the progression of RF. The anti-RF effects of SJZD were exerted through multi-components, multi-targets and multi-pathways.
Collapse
Affiliation(s)
| | | | | | - Xiang Li
- Department of Nephrology, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, 223002, PR China
| | - Wei Jiang
- Department of Nephrology, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, 223002, PR China
| | - Xiaoling Chen
- Department of Nephrology, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, 223002, PR China
| | - Yong Xu
- Department of Nephrology, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, 223002, PR China
| | - Juan Xie
- Department of Nephrology, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, 223002, PR China
| | - Hailun Li
- Department of Nephrology, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, 223002, PR China
| | - Donghui Zheng
- Department of Nephrology, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, 223002, PR China
| |
Collapse
|
7
|
Alsharoh H, Chiroi P, Isachesku E, Tanasa RA, Pop OL, Pirlog R, Berindan-Neagoe I. Personalizing Therapy Outcomes through Mitogen-Activated Protein Kinase Pathway Inhibition in Non-Small Cell Lung Cancer. Biomedicines 2024; 12:1489. [PMID: 39062063 PMCID: PMC11275062 DOI: 10.3390/biomedicines12071489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/18/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Lung cancer (LC) is a highly invasive malignancy and the leading cause of cancer-related deaths, with non-small cell lung cancer (NSCLC) as its most prevalent histological subtype. Despite all breakthroughs achieved in drug development, the prognosis of NSCLC remains poor. The mitogen-activated protein kinase signaling cascade (MAPKC) is a complex network of interacting molecules that can drive oncogenesis, cancer progression, and drug resistance when dysregulated. Over the past decades, MAPKC components have been used to design MAPKC inhibitors (MAPKCIs), which have shown varying efficacy in treating NSCLC. Thus, recent studies support the potential clinical use of MAPKCIs, especially in combination with other therapeutic approaches. This article provides an overview of the MAPKC and its inhibitors in the clinical management of NSCLC. It addresses the gaps in the current literature on different combinations of selective inhibitors while suggesting two particular therapy approaches to be researched in NSCLC: parallel and aggregate targeting of the MAPKC. This work also provides suggestions that could serve as a potential guideline to aid future research in MAPKCIs to optimize clinical outcomes in NSCLC.
Collapse
Affiliation(s)
- Hasan Alsharoh
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (H.A.); (P.C.); (E.I.); (I.B.-N.)
| | - Paul Chiroi
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (H.A.); (P.C.); (E.I.); (I.B.-N.)
| | - Ekaterina Isachesku
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (H.A.); (P.C.); (E.I.); (I.B.-N.)
| | | | - Ovidiu-Laurean Pop
- Department of Morphology Sciences, University of Oradea, 410087 Oradea, Romania;
| | - Radu Pirlog
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (H.A.); (P.C.); (E.I.); (I.B.-N.)
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (H.A.); (P.C.); (E.I.); (I.B.-N.)
| |
Collapse
|
8
|
Li W, Si Y, Wang Y, Chen J, Huo X, Xu P, Jiang B, Li Z, Shang K, Luo Q, Xiong Y. hUCMSC-derived exosomes protect against GVHD-induced endoplasmic reticulum stress in CD4 + T cells by targeting the miR-16-5p/ATF6/CHOP axis. Int Immunopharmacol 2024; 135:112315. [PMID: 38805908 DOI: 10.1016/j.intimp.2024.112315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/18/2024] [Accepted: 05/19/2024] [Indexed: 05/30/2024]
Abstract
Exosomes generated from mesenchymal stem cells (MSCs) are thought to be a unique therapeutic strategy for several autoimmune deficiency illnesses. The purpose of this study was to elucidate the protective effects of human umbilical cord mesenchymal stem cell-derived exosomes (hUCMSC-Exo) on CD4+ T cells dysfunction during graft-versus-host disease (GVHD) and to identify the underlying processes involved. Here, we showed that hUCMSC-Exo treatment can effectively attenuate GVHD injury by alleviating redox metabolism disorders and inflammatory cytokine bursts in CD4+ T cells. Furthermore, hUCMSC-Exo ameliorate ER stress and ATF6/CHOP signaling-mediated apoptosis in CD4+ T cells and promote the development of CD4+IL-10+ T cells during GVHD. Moreover, downregulating miR-16-5p in hUCMSC-Exo impaired their ability to prevent CD4+ T cells apoptosis and weakened their ability to promote the differentiation of CD4+IL-10+ T cells. Collectively, the obtained data suggested that hUCMSC-Exo suppress ATF6/CHOP signaling-mediated ER stress and apoptosis in CD4+ T cells, enhance the differentiation of CD4+IL-10+ T cells, and reverse the imbalance of immune homeostasis in the GVHD process by transferring miR-16-5p. Our study provided further evidence that GVHD patients can benefit from hUCMSC-Exo-mediated therapy.
Collapse
Affiliation(s)
- Weihan Li
- Xu Rongxiang Regenerative Medicine Research Center, Binzhou Medical University, Yantai, PR China; Shanghai Mebo Life Science & Technology Co., Shanghai, PR China
| | - Yaru Si
- Department of Histology and Embryology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Yueming Wang
- Xu Rongxiang Regenerative Medicine Research Center, Binzhou Medical University, Yantai, PR China
| | - Juntong Chen
- Department of Histology and Embryology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Xingyu Huo
- Department of Histology and Embryology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Pengzhan Xu
- Department of Histology and Embryology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Bingzhen Jiang
- Department of Histology and Embryology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Zile Li
- Department of Histology and Embryology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Kangdi Shang
- Department of Histology and Embryology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Qianqian Luo
- Department of Histology and Embryology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China.
| | - Yanlian Xiong
- Xu Rongxiang Regenerative Medicine Research Center, Binzhou Medical University, Yantai, PR China; Department of Histology and Embryology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China.
| |
Collapse
|
9
|
Kongsui R, Jittiwat J. In vivo protective effects of 6‑gingerol in cerebral ischemia involve preservation of antioxidant defenses and activation of anti‑apoptotic pathways. Biomed Rep 2024; 20:85. [PMID: 38665422 PMCID: PMC11040226 DOI: 10.3892/br.2024.1773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Stroke is an important medical problem in developing countries, characterized by a sudden disruption of blood supply to the brain, either through occlusion or hemorrhage. It is a major cause of neurological impairment, resulting in high medical costs. The present study examined the effect of 6-gingerol on morphological changes, antioxidant defenses, and the anti-apoptotic factors p38 mitogen-activated protein kinase (MAPK) and mitofusin (Mfn)2, in a rat model of focal cerebral ischemia. A total of 60 healthy male Wistar rats were randomly allocated into six groups: Control, right middle cerebral artery occlusion (Rt.MCAO) + vehicle, Rt.MCAO + piracetam, and Rt.MCAO + 6-Gin 5, 10 and 20 mg/kg BW groups. The results indicated that 6-gingerol treatment for a duration of 7 days reverses morphological alterations, enhances catalase and glutathione peroxidase activities, reduces Bax, caspase-3 and MAPK expression, and increases Bcl-xL and Mfn2 expression in the cortex and hippocampus. In conclusion, 6-gingerol demonstrated significant in vivo effectiveness in mitigating pathological changes induced by cerebral ischemia. This beneficial effect is attributed, at least in part, to preservation of antioxidant defenses and activation of anti-apoptotic pathways.
Collapse
Affiliation(s)
- Ratchaniporn Kongsui
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Jinatta Jittiwat
- Faculty of Medicine, Mahasarakham University, Mahasarakham 44000, Thailand
| |
Collapse
|
10
|
Chen T, Gu Y, Bai GH, Liu X, Chen B, Fan Q, Liu JG, Tian Y. MiR-1a-3p Inhibits Apoptosis in Fluoride-exposed LS8 Cells by Targeting Map3k1. Biol Trace Elem Res 2024; 202:2720-2729. [PMID: 37782397 PMCID: PMC11052812 DOI: 10.1007/s12011-023-03869-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/13/2023] [Indexed: 10/03/2023]
Abstract
Dental fluorosis is a common chemical disease. It is currently unclear how fluorosis occurs at the molecular level. We used miRNA-seq to look at the differences between miRNAs in the cell line of ameloblasts LS8 that had been treated with 3.2 mmol/L NaF. We also performed gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. miR-1a-3p levels were significantly lower in mouse LS8 cells treated with 3.2 mmol/L NaF, and miR-1a-3p-targeted genes were significantly enriched in the MAPK pathway. LS8 cells were divided into four groups: control, NaF, NaF+miR-1a-3p mimics, and NaF+miR-1a-3p mimics normal control groups. Cellular morphology was observed by an inverted microscope, and the proliferation activity of LS8 cells was assessed by Cell Counting Kit-8 (CCK-8). Using the real-time quantitative polymerase chain reaction (RT-qPCR), transcription levels of miR-1a-3p and Map3k1 were detected. The expressions of Bax, Bcl-2, Map3k1, p38MAPK, ERK1/2, p-p38MAPK, and p-ERK1/2 were measured by Western blot. After bioinformatics analysis, we used a luciferase reporter assay (LRA) to validate the target of miR-1a-3p, showing that miR-1a-3p could inhibit apoptosis while increasing proliferation in fluoride-exposed LS8 cells. Generally, miR-1a-3p might directly inhibit Map3k1, reduce MAPK signal pathway activation, and promote phosphorylation. Thus, our findings revealed that the interaction of miR-1a-3p with its target gene Map3k1 and MAPK signal pathway might decrease the apoptosis of LS8 cells treated with 3.2 mmol/L NaF.
Collapse
Affiliation(s)
- Ting Chen
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, 563000, China
- Loudi Central Hospital, Loudi, China
| | - Yu Gu
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, 563000, China
| | - Guo-Hui Bai
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, 563000, China
| | - Xia Liu
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, 563000, China
| | - Bin Chen
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, 563000, China
| | - Qin Fan
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, 563000, China
| | - Jian-Guo Liu
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, 563000, China
| | - Yuan Tian
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
11
|
Muolokwu CE, Chaulagain B, Gothwal A, Mahanta AK, Tagoe B, Lamsal B, Singh J. Functionalized nanoparticles to deliver nucleic acids to the brain for the treatment of Alzheimer's disease. Front Pharmacol 2024; 15:1405423. [PMID: 38855744 PMCID: PMC11157074 DOI: 10.3389/fphar.2024.1405423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/03/2024] [Indexed: 06/11/2024] Open
Abstract
Brain-targeted gene delivery across the blood-brain barrier (BBB) is a significant challenge in the 21st century for the healthcare sector, particularly in developing an effective treatment strategy against Alzheimer's disease (AD). The Internal architecture of the brain capillary endothelium restricts bio-actives entry into the brain. Additionally, therapy with nucleic acids faces challenges like vulnerability to degradation by nucleases and potential immune responses. Functionalized nanocarrier-based gene delivery approaches have resulted in safe and effective platforms. These nanoparticles (NPs) have demonstrated efficacy in protecting nucleic acids from degradation, enhancing transport across the BBB, increasing bioavailability, prolonging circulation time, and regulating gene expression of key proteins involved in AD pathology. We provided a detailed review of several nanocarriers and targeting ligands such as cell-penetrating peptides (CPPs), endogenous proteins, and antibodies. The utilization of functionalized NPs extends beyond a singular system, serving as a versatile platform for customization in related neurodegenerative diseases. Only a few numbers of bioactive regimens can go through the BBB. Thus, exploring functionalized NPs for brain-targeted gene delivery is of utmost necessity. Currently, genes are considered high therapeutic potential molecules for altering any disease-causing gene. Through surface modification, nanoparticulate systems can be tailored to address various diseases by replacing the target-specific molecule on their surface. This review article presents several nanoparticulate delivery systems, such as lipid NPs, polymeric micelles, exosomes, and polymeric NPs, for nucleic acids delivery to the brain and the functionalization strategies explored in AD research.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jagdish Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
12
|
Bao L. Roles, underlying mechanisms and clinical significances of LINC01503 in human cancers. Pathol Res Pract 2024; 254:155125. [PMID: 38241778 DOI: 10.1016/j.prp.2024.155125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/05/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
Long intergenic non-coding RNA 01503 (LINC01503) is a long non-coding RNA (lncRNA) located on human chromosome 9q34.11. There is compelling evidence indicating that LINC01503 is upregulated in multiple types of tumors and functions as a tumor stimulator. The upregulation of LINC01503 was significantly associated with the risk of 12 tumors and showed a strong correlation with clinicopathological characteristics and poor prognosis in 9 tumors. The expression of LINC01503 is regulated by transcription factors such as TP63, EGR1, c-MYC, GATA1 and AR. The downstream regulatory mechanisms of LINC01503 are complex and multifaceted. LINC01503, as a competing endogenous RNA (ceRNA), regulates gene expression by competitively inhibiting miRNA. LINC01503 may also regulate gene expression via interacting with biomolecules or recruiting chromatin-modifying complexes. In addition, LINC01503 can abnormally activate the ERK/MAPK, PI3K/AKT and Wnt/β-catenin signaling pathways to enhance tumor progression. Here, this review presents an overview of the latest research progress of LINC01503 in the field of oncology, summarizes its comprehensive network involved in multiple cancer molecular mechanisms, and explores its potential applications in cancer diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Lei Bao
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
13
|
Lv T, Chen J, He Z, Chen W, Zong Y, Du R. Studies of the Immunomodulatory Activity of Polysaccharides from the Stem of Cynomorium songaricum Based on Intestinal Microbial Analysis. Molecules 2023; 29:143. [PMID: 38202727 PMCID: PMC10779936 DOI: 10.3390/molecules29010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Polysaccharides are the main effective components of Cynomorium songaricum's stem that perform biological activities and have positive impacts on immune enhancement. In this study, the polysaccharide CSP-III of Cynomorium songaricum's stem was isolated using a DEAE-52 cellulose column through Sephadex G-100 gel column chromatography. Upon analysis, the monosaccharide composition of CSP-III included Mannose (Man), Glucuronic acid (GlcA), Galacturonic acid (GalA), Rhamnose (Rha), Glucose (Glc), Galactose (Gal), and Arabinose (Ara), at a molar ratio of 0.01:0.11:0.03:0.57:0.02:0.32:1. The molecular weight of CSP-III was 4018234 Da. Meanwhile, the capacity of CSP-III, at various concentrations, to stimulate the proliferation of mouse spleen lymphocytes in vitro was compared, and the influence of CSP-III on cell proliferation was examined using RAW264.7 mouse mononuclear macrophages as a model. The influence of CSP-III on the expression of important phosphorylating proteins in the MAPK signaling pathway was initially analyzed by Western blotting. In RAW264.7 cells, CSP-III promoted the phosphorylation of JNK proteins, which thus activated the MAPK signaling cascade and exerted immunomodulatory effects. Moreover, according to in vivo studies using cyclophosphamide (CTX)-induced immunosuppression mouse models, CSP-III improved the CTX-induced histopathological damage, promoted T and B lymphocyte proliferation, upregulated CD4+ and CD8+ T-lymphocyte counts in the spleen, increased the serum levels of IgG and IgM, and activated three essential proteins of the MAPK signaling pathway. As revealed by analysis of intestinal flora, CSP-III improved the immune function by maintaining the homeostasis of the bacterial flora by boosting the relative abundances of some beneficial bacterial groups, such as Bacteroidetes, Desmodium, and Actinomyces, and reducing the relative abundance of Aspergillus phylum. Through in vitro and in vivo experiments, our present study demonstrates that polysaccharides from the stem of Cynomorium songaricum possess strong immunoregulatory effects. Findings in this work provide theoretical support for the potential application of Cynomorium songaricum in the field of health food.
Collapse
Affiliation(s)
- Tong Lv
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (T.L.); (J.C.); (Z.H.); (W.C.)
| | - Jiarong Chen
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (T.L.); (J.C.); (Z.H.); (W.C.)
| | - Zhongmei He
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (T.L.); (J.C.); (Z.H.); (W.C.)
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun 130118, China
| | - Weijia Chen
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (T.L.); (J.C.); (Z.H.); (W.C.)
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun 130118, China
| | - Ying Zong
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (T.L.); (J.C.); (Z.H.); (W.C.)
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun 130118, China
| | - Rui Du
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (T.L.); (J.C.); (Z.H.); (W.C.)
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun 130118, China
| |
Collapse
|
14
|
Riemann A, Rauschner M, Reime S, Thews O. The Role of microRNAs in Gene Expression and Signaling Response of Tumor Cells to an Acidic Environment. Int J Mol Sci 2023; 24:16919. [PMID: 38069241 PMCID: PMC10707721 DOI: 10.3390/ijms242316919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Many tumors are characterized by marked extracellular acidosis due to increased glycolytic metabolism, which affects gene expression and thereby tumor biological behavior. At the same time, acidosis leads to altered expression of several microRNAs (Mir7, Mir183, Mir203, Mir215). The aim of this study was to analyze whether the acidosis-induced changes in cytokines and tumor-related genes are mediated via pH-sensitive microRNAs. Therefore, the expression of Il6, Nos2, Ccl2, Spp1, Tnf, Acat2, Aox1, Crem, Gls2, Per3, Pink1, Txnip, and Ypel3 was examined in acidosis upon simultaneous transfection with microRNA mimics or antagomirs in two tumor lines in vitro and in vivo. In addition, it was investigated whether microRNA expression in acidosis is affected via known pH-sensitive signaling pathways (MAPK, PKC, PI3K), via ROS, or via altered intracellular Ca2+ concentration. pH-dependent microRNAs were shown to play only a minor role in modulating gene expression. Individual genes (e.g., Ccl2, Txnip, Ypel3) appear to be affected by Mir183, Mir203, or Mir215 in acidosis, but these effects are cell line-specific. When examining whether acid-dependent signaling affects microRNA expression, it was found that Mir203 was modulated by MAPK and ROS, Mir7 was affected by PKC, and Mir215 was dependent on the intracellular Ca2+ concentration. Mir183 could be increased by ROS scavenging. These correlations could possibly result in new therapeutic approaches for acidotic tumors.
Collapse
Affiliation(s)
| | | | | | - Oliver Thews
- Julius Bernstein Institute of Physiology, University of Halle-Wittenberg, 06108 Halle, Germany
| |
Collapse
|
15
|
Dziechciowska I, Dąbrowska M, Mizielska A, Pyra N, Lisiak N, Kopczyński P, Jankowska-Wajda M, Rubiś B. miRNA Expression Profiling in Human Breast Cancer Diagnostics and Therapy. Curr Issues Mol Biol 2023; 45:9500-9525. [PMID: 38132441 PMCID: PMC10742292 DOI: 10.3390/cimb45120595] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Breast cancer is one of the most commonly diagnosed cancer types worldwide. Regarding molecular characteristics and classification, it is a heterogeneous disease, which makes it more challenging to diagnose. As is commonly known, early detection plays a pivotal role in decreasing mortality and providing a better prognosis for all patients. Different treatment strategies can be adjusted based on tumor progression and molecular characteristics, including personalized therapies. However, dealing with resistance to drugs and recurrence is a challenge. The therapeutic options are limited and can still lead to poor clinical outcomes. This review aims to shed light on the current perspective on the role of miRNAs in breast cancer diagnostics, characteristics, and prognosis. We discuss the potential role of selected non-coding RNAs most commonly associated with breast cancer. These include miR-21, miR-106a, miR-155, miR-141, let-7c, miR-335, miR-126, miR-199a, miR-101, and miR-9, which are perceived as potential biomarkers in breast cancer prognosis, diagnostics, and treatment response monitoring. As miRNAs differ in expression levels in different types of cancer, they may provide novel cancer therapy strategies. However, some limitations regarding dynamic alterations, tissue-specific profiles, and detection methods must also be raised.
Collapse
Affiliation(s)
- Iga Dziechciowska
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (I.D.); (M.D.); (A.M.)
| | - Małgorzata Dąbrowska
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (I.D.); (M.D.); (A.M.)
| | - Anna Mizielska
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (I.D.); (M.D.); (A.M.)
| | - Natalia Pyra
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (I.D.); (M.D.); (A.M.)
| | - Natalia Lisiak
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (I.D.); (M.D.); (A.M.)
| | - Przemysław Kopczyński
- Centre for Orthodontic Mini-Implants, Department and Clinic of Maxillofacial Orthopedics and Orthodontics, Poznan University of Medical Sciences, Bukowska 70 Str., 60-812 Poznan, Poland
| | - Magdalena Jankowska-Wajda
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8 Str., 61-614 Poznan, Poland;
| | - Błażej Rubiś
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (I.D.); (M.D.); (A.M.)
| |
Collapse
|
16
|
Wu Y, Weng Z, Yan H, Yao Z, Li Z, Sun Y, Ma K, Hull JJ, Zhang D, Ma W, Hua H, Lin Y. The microRNA-7322-5p/p38/Hsp19 axis modulates Chilo suppressalis cell-defences against Cry1Ca: an effective target for a stacked transgenic rice approach. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1827-1838. [PMID: 37353991 PMCID: PMC10440986 DOI: 10.1111/pbi.14095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/08/2023] [Accepted: 05/16/2023] [Indexed: 06/25/2023]
Abstract
Bacillus thuringiensis (Bt)-secreted crystal (Cry) toxins form oligomeric pores in host cell membranes and are a common element in generating insect-resistant transgenic crops. Although Cry toxin function has been well documented, cellular defences against pore-formation have not been as well developed. Elucidation of the processes underlying this defence, however, could contribute to the development of enhanced Bt crops. Here, we demonstrate that Cry1Ca-mediated downregulation of microRNA-7322-5p (miR-7322-5p), which binds to the 3' untranslated region of p38, negatively regulates the susceptibility of Chilo suppressalis to Cry1Ca. Moreover, Cry1Ca exposure enhanced phosphorylation of Hsp19, and hsp19 downregulation increased susceptibility to Cry1Ca. Further, Hsp19 phosphorylation occurs downstream of p38, and pull-down assays confirmed the interactions between Hsp19 and Cry1Ca, suggesting that activation of Hsp19 by the miR-7322-5p/p38/Hsp19 pathway promotes Cry1Ca sequestration. To assess the efficacy of targeting this pathway in planta, double-stranded RNA (dsRNA) targeting C. suppressalis p38 (dsp38) was introduced into a previously generated cry1Ca-expressing rice line (1CH1-2) to yield a single-copy cry1Ca/dsp38 rice line (p38-rice). Feeding on this rice line triggered a significant reduction in C. suppressalis p38 expression and the line was more resistant to C. suppressalis than 1CH1-2 in both short term (7-day) and continuous feeding bioassays as well as field trials. These findings provide new insights into invertebrate epithelium cellular defences and demonstrate a potential new pyramiding strategy for Bt crops.
Collapse
Affiliation(s)
- Yan Wu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubeiChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Zijin Weng
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubeiChina
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Haixia Yan
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubeiChina
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Zhuotian Yao
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubeiChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Zhenzhen Li
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Yajie Sun
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Kangsheng Ma
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - J. Joe Hull
- U.S. Arid Land Agricultural Research Center, Department of AgricultureU.S. Agricultural Research ServiceMaricopaArizonaUSA
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubeiChina
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Weihua Ma
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubeiChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Hongxia Hua
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubeiChina
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| |
Collapse
|
17
|
Ghafouri-Fard S, Safarzadeh A, Hussen BM, Taheri M, Eghbali A. Expression of LINC00174 in different cancers: Review of the literature and bioinformatics analyses. Pathol Res Pract 2023; 248:154617. [PMID: 37320864 DOI: 10.1016/j.prp.2023.154617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/17/2023]
Abstract
LINC00174 is an example of long intergenic non-coding RNAs with important functions in the development of human cancers. The gene encoding this lincRNA is located on 7q11.21. LINC00174 has been demonstrated to play an oncogenic role in a variety of cancers, including colorectal carcinoma, thymic carcinoma, glioma, glioblastoma, hepatocellular carcinoma, kidney renal clear cell carcinoma, breast cancer and non-functioning pituitary adenoma. In lung cancer, there is an obvious discrepancy between different studies regarding the role of this lincRNA. This lincRNA is also involved in the determination of prognosis of different cancers, particularly colorectal cancer. In the current review, we discuss the role of this lincRNA in human carcinogenesis based on the available data in the literature and bioinformatics tools.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Arash Safarzadeh
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan, Islamic Republic of Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Ahmad Eghbali
- Anesthesiology Research Center, Mofid Children Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran.
| |
Collapse
|
18
|
Liu Y, Chang D, Zhou X. Development of Novel Herbal Compound Formulations Targeting Neuroinflammation: Network Pharmacology, Molecular Docking, and Experimental Verification. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:2558415. [PMID: 37266321 PMCID: PMC10232107 DOI: 10.1155/2023/2558415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/05/2023] [Accepted: 04/20/2023] [Indexed: 06/03/2023]
Abstract
Neuroinflammation plays an important role in the onset and progression of neurodegenerative diseases. The multicomponent and multitarget approach may provide a practical strategy to address the complex pathological mechanisms of neuroinflammation. This study aimed to develop synergistic herbal compound formulas to attenuate neuroinflammation using integrated network pharmacology, molecular docking, and experimental bioassays. Eight phytochemicals with anti-neuroinflammatory potential were selected in the present study. A compound-gene target-signaling pathway network was constructed to illustrate the mechanisms of action of each phytochemical and the interactions among them at the molecular level. Molecular docking was performed to verify the binding affinity of each phytochemical and its key gene targets. An experimental study was conducted to identify synergistic interactions among the eight phytochemicals, and the associated molecular mechanisms were examined by immunoblotting based on the findings from the network pharmacology analysis. Two paired combinations, andrographolide and 6-shogaol (AN-SG) (IC50 = 2.85 μg/mL), and baicalein-6-shogaol (BA-SG) (IC50 = 3.28 μg/mL), were found to synergistically (combination index <1) inhibit the lipopolysaccharides (LPS)-induced nitric oxide production in microglia N11 cells. Network pharmacology analysis suggested that MAPK14, MAPK8, and NOS3 were the top three relevant gene targets for the three phytochemicals, and molecular docking demonstrated strong binding affinities of the phytochemicals to their coded proteins. Immunoblotting suggested that the AN-SG and BA-SG both showed prominent effects in inhibiting inducible nitric oxide synthase (iNOS) (p < 0.01 and p < 0.05, respectively) and MAPKp-p38 (both p < 0.05) compared with those induced by the LPS stimulation only. The AN-SG combination exhibited greater inhibitions of the protein expressions of iNOS (p < 0.05 vs. individual components), which may partly explain the mechanisms of the synergy observed. This study established a practical approach to developing novel herbal-compound formulations using integrated network pharmacology analysis, molecular docking, and experimental bioassays. The study provides a scientific basis and new insight into the two synergistic combinations against neuroinflammation.
Collapse
Affiliation(s)
- Yang Liu
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| |
Collapse
|
19
|
Li Y, Shi W, Dai J, Jia Q, Guo G, Zhang Y, Zhang W. Upregulated TNF-α and lactate following ERK-SGK1 activation in the spinal dorsal horn underlies chronic postsurgical pain. CHINESE J PHYSIOL 2023; 66:144-152. [PMID: 37322625 DOI: 10.4103/cjop.cjop-d-22-00085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
Skin/muscle incision and retraction (SMIR) during surgeries can lead to chronic postsurgical pain (CPSP). The underlying mechanisms are still unclear. In the present study, we showed that SMIR of the thigh induced phosphorylation of extracellular signal-regulated kinase (ERK), followed by serum- and glucocorticoid-inducible kinase-1 (SGK1) activation in the spinal dorsal horn. Intrathecal injection of PD98059, an ERK inhibitor, or GSK650394, a SGK1 inhibitor, significantly attenuated mechanical pain hypersensitivity in SMIR rats. The level of tumor necrosis factor α and lactate in spinal cord was significantly decreased by PD98059 or GSK650394 injection. Furthermore, PD98059 decreased the activation of SGK1 in the spinal dorsal horn. These results indicate that ERK-SGK1 activation followed by proinflammatory mediator release in the spinal dorsal horn underlies CPSP.
Collapse
Affiliation(s)
- Yuying Li
- School of Medical Technology and Nursing, Shenzhen Polytechnic, Shenzhen, Guangdong, China
| | - Wenjuan Shi
- Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Juanli Dai
- Department of Neurology, Xiehe Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, Guangdong, China
| | - Qi Jia
- School of Medical Technology and Nursing, Shenzhen Polytechnic, Shenzhen, Guangdong, China
| | - Gang Guo
- School of Medical Technology and Nursing, Shenzhen Polytechnic, Shenzhen, Guangdong, China
| | | | - Weihong Zhang
- School of Medical Technology and Nursing, Shenzhen Polytechnic, Shenzhen, Guangdong, China
| |
Collapse
|
20
|
Ghafouri-Fard S, Askari A, Behzad Moghadam K, Hussen BM, Taheri M, Samadian M. A review on the role of ZEB1-AS1 in human disorders. Pathol Res Pract 2023; 245:154486. [PMID: 37120907 DOI: 10.1016/j.prp.2023.154486] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023]
Abstract
ZEB1 Antisense RNA 1 (ZEB1-AS1) is a type of RNA characterized as long non-coding RNA (lncRNA). This lncRNA has important regulatory roles on its related gene, Zinc Finger E-Box Binding Homeobox 1 (ZEB1). In addition, role of ZEB1-AS1 has been approved in diverse malignancies such as colorectal cancer, breast cancer, glioma, hepatocellular carcinoma and gastric cancer. ZEB1-AS1 serves as a sponge for a number of microRNAs, namely miR-577, miR-335-5p, miR-101, miR-505-3p, miR-455-3p, miR-205, miR-23a, miR-365a-3p, miR-302b, miR-299-3p, miR-133a-3p, miR-200a, miR-200c, miR-342-3p, miR-214, miR-149-3p and miR-1224-5p. In addition to malignant conditions, ZEB1-AS1 has functional role in non-malignant conditions like diabetic nephropathy, diabetic lung, arthrosclerosis, Chlamydia trachomatis infection, pulmonary fibrosis and ischemic stroke. This review outlines different molecular mechanisms of ZEB1-AS1 in a variety of disorders and highlights its importance in their pathogenesis.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arian Askari
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammad Taheri
- Institue of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Samadian
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Liu J, Tao Y, Zou X, Liu Q, Meng X, Zhang Y, Su J. In vitro and in vivo exploration of the anti-atopic dermatitis mechanism of action of Tibetan medicine Qi-Sai-Er-Sang-Dang-Song decoction. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116155. [PMID: 36634726 DOI: 10.1016/j.jep.2023.116155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tibetan medicine Qi-Sai-Er-Sang-Dang-Song Decoction(QSD, ཆུ་སེར་སེང་ལྡེང་སུམ་ཐང་།)is a traditional Tibetan medical formulation with demonstrated clinical benefits in atopic dermatitis (AD). However, its potential mechanism and molecular targets remain to be elucidated. AIM OF THE STUDY This study aims to explore the activity and mechanism of QSD on AD in multiple dimensions by combining in vitro and in vivo experiments with network pharmacology. MATERIALS AND METHODS The AD effect of QSD was investigated by evaluating the levels of nitric oxide (NO) and interleukin-6 (IL-6) in the lipopolysaccharide (LPS) stimulated RAW264.7 cells. AD-like skin lesions in female BALB/c mice were induced by 2,4-dinitrochlorobenzene (DNCB). QSD or dexamethasone (positive control) were gavagely administered daily for 15 consecutive days. The body weight and skin lesion severity were recorded throughout the study. Enzyme-linked immunosorbent assay (ELISA) and Western blot (WB) analysis were used to illuminate the molecular targets associated with the anti-AD effects of QSD. Meanwhile, the ingredients of QSD in the blood were revealed and analyzed by Ultra performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) method. Network pharmacology was used to predict the targets and mechanism of active ingredient therapy for AD. In addition, the network pharmacology outcomes were further verified by molecular docking. RESULT After treatment with QSD, the levels of NO and IL-6 were decreased in the cell supernatant. Herein, QSD markedly decreased the eosinophil and mast cells infiltration in the dorsal skin of the 2,4-dinitrochlorobenzene. Moreover, QSD reconstructed the epidermal barrier by increasing the content of collagen fibers and changing the arrangement of DNCB-treated mice. QSD not only inhibited the levels of tumor necrosis factor-α (TNF-α) and interleukin-12 (IL-12) but also inhibited phosphorylation of p38, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK) proteins in the dorsal skin. Four active ingredients were identified through UPLC-Q-TOF/MS, including (-)-epicatechin, kaempferol-7-O-glucoside, cassiaside, and questin. After the network pharmacological analysis, six core targets of QSD closely related to AD were obtained, including TNF-α, IL-6, Caspase-3 (CASP3), Epidermal growth factor (EGFR), Peroxisome proliferator-activated receptor gamma (PPARG), and Neurotrophic Receptor Tyrosine Kinase 1 (NTRK1). Meanwhile, through Gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, the Mitogen-activated protein kinase (MAPK) signaling pathway occupies an important position in the QSD treatment of AD. The molecular docking results showed that the six core targets are stable in binding to the four active ingredients as indicated by the molecular docking results. CONCLUSIONS The anti-AD effect of QSD might be related to the reconstruction of the epidermal barrier and inhibition of inflammation, which regulated the MAPK pathway. Hence, it provided a promising idea for the study of Tibetan medicine prescriptions for the treatment of AD.
Collapse
Affiliation(s)
- Jia Liu
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yiwen Tao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xuemei Zou
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qian Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xianli Meng
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Zhang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jinsong Su
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
22
|
Guo S, Yang H, Liu J, Meng Z, Sui L. Heat Shock Proteins in Tooth Development and Injury Repair. Int J Mol Sci 2023; 24:ijms24087455. [PMID: 37108621 PMCID: PMC10138928 DOI: 10.3390/ijms24087455] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Heat shock proteins (HSPs) are a class of molecular chaperones with expression increased in response to heat or other stresses. HSPs regulate cell homeostasis by modulating the folding and maturation of intracellular proteins. Tooth development is a complex process that involves many cell activities. During tooth preparation or trauma, teeth can be damaged. The damaged teeth start their repair process by remineralizing and regenerating tissue. During tooth development and injury repair, different HSPs have different expression patterns and play a special role in odontoblast differentiation and ameloblast secretion by mediating signaling pathways or participating in protein transport. This review explores the expression patterns and potential mechanisms of HSPs, particularly HSP25, HSP60 and HSP70, in tooth development and injury repair.
Collapse
Affiliation(s)
- Shuling Guo
- School of Stomatology, Tianjin Medical University, Tianjin 300014, China
| | - Haosun Yang
- School of Stomatology, Tianjin Medical University, Tianjin 300014, China
| | - Jiacheng Liu
- School of Stomatology, Tianjin Medical University, Tianjin 300014, China
| | - Zhaosong Meng
- School of Stomatology, Tianjin Medical University, Tianjin 300014, China
| | - Lei Sui
- School of Stomatology, Tianjin Medical University, Tianjin 300014, China
| |
Collapse
|
23
|
Ghafouri-Fard S, Harsij A, Hussen BM, Taheri M, Ayatollahi SA. A review on the role of SNHG8 in human disorders. Pathol Res Pract 2023; 245:154458. [PMID: 37043963 DOI: 10.1016/j.prp.2023.154458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/01/2023] [Accepted: 04/07/2023] [Indexed: 04/14/2023]
Abstract
Small nucleolar RNA host gene 8 (SNHG8) is a long non-coding RNA that has physiological roles in epithelial and muscle satellite cells. This lncRNA has been reported to be over-expressed in a variety of cancer cell lines. Its silencing has attenuated tumor growth in animal models of cancers. SNHG8 can be served as a molecular sponge for some miRNAs to regulate their target genes. miR-634/ZBTB20, miR-335-5p/PYGO2, miR588/ATG7, miR-152/c-MET, miR-1270/BACH1, miR-491/PDGFRA, miR-512-5p/TRIM28, miR-149-5p/PPM1F, miR-542-3p/CCND1/CDK6, miR-656-3p/SERBP1, miR-656-3p/SATB1, miR-1270/S100A11 and miR-384/HOXB7 are examples of molecular axes being regulated by SNHG8 in the context of cancer. Moreover, it can affect pathogenesis of atherosclerosis, chronic cerebral ischemia, acute gouty arthritis, ischemic stroke and myocardial infarction through modulation of a number of molecular axes such as SNHG8/miR-384/Hoxa13/FAM3A and miR-335/RASA1 as well as NF-κB signaling pathway. The current review aims at summarization of the role of SNHG8 in diverse human disorders.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefeh Harsij
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan, Erbil, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
24
|
Kongsui R, Jittiwat J. Ameliorative effects of 6‑gingerol in cerebral ischemia are mediated via the activation of antioxidant and anti‑inflammatory pathways. Biomed Rep 2023; 18:26. [PMID: 36909941 PMCID: PMC9996095 DOI: 10.3892/br.2023.1608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/01/2023] [Indexed: 02/17/2023] Open
Abstract
Focal ischemia occurs when an embolus or thrombus occludes an artery, causing the rapid obstruction of cerebral blood flow. Although stroke represents a main cause of disability and mortality in developing countries, therapeutic approaches available for this condition remain very limited. The aim of the present study was to examine the effects of the phytochemical, 6-gingerol, on the brain infarct volume, neuronal loss and on the oxidative stress parameters, cyclooxygenase-2 (COX-2) and interleukin (IL)-6, in an animal model of focal ischemic stroke. Male Wistar rats, weighing 250-300 g, were divided into the following six groups: i) The control; ii) right middle cerebral artery occlusion (Rt.MCAO) + vehicle; iii) Rt.MCAO + piracetam; iv) Rt.MCAO + 6-gingerol (6-Gin) at 5 mg/kg body weight (BW); v) Rt.MCAO + 6-Gin at 10 mg/kg BW; and vi) the Rt.MCAO + 6-Gin at 20 mg/kg BW group. The rats in each group received the vehicle or piracetam or 6-gingerol intraperitoneally for 7 days following Rt.MCAO. The brain infarct volume, neuronal loss and alterations in antioxidant and anti-inflammatory levels were assessed in the cortex and hippocampus. The results revealed that the brain infarct volume, malondialdehyde level and the density ratio of COX-2 and IL-6 to β-actin were significantly decreased following treatment with 6-gingerol. In addition, neuronal density and superoxide dismutase activity in the cortex and hippocampus were increased. On the whole, the findings of the present study suggest that 6-gingerol exerts antioxidant and anti-inflammatory effects in vivo, which effectively ameliorate the brain damage induced by focal cerebral ischemic strok.
Collapse
Affiliation(s)
- Ratchaniporn Kongsui
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand.,The Unit of Excellence in Translational Neurosciences Initiative, University of Phayao, Phayao 56000, Thailand
| | - Jinatta Jittiwat
- Faculty of Medicine, Mahasarakham University, Mahasarakham 44000, Thailand
| |
Collapse
|
25
|
Han X, Li B, Zhang S. MIR503HG: A potential diagnostic and therapeutic target in human diseases. Biomed Pharmacother 2023; 160:114314. [PMID: 36736276 DOI: 10.1016/j.biopha.2023.114314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
LncRNAs are involved in many physiological and pathological processes, including chromatin remodeling, transcription, posttranscriptional gene expression, mRNA stability, translation, and posttranslational modification, and their functions depend on subcellular localization. MIR503HG is a lncRNA as well as a host gene for the miRNAs miR-503 and miR-424. MIR503HG functions independently or synergistically with miR-503. MIR503HG affects cell proliferation, invasion, metastasis, apoptosis, angiogenesis, and other biological behaviors. The mechanism of MIR503HG in disease includes interaction with protein, sponging miRNA to regulate downstream target gene, and participation in NF-κB, TGF-β, ERK/MAPK, and PI3K/AKT signaling pathways. In this review, we summarize the molecular mechanisms of MIR503HG in disease and its potential applications in diagnosis, prognosis, and treatment. We also raise some unanswered questions in this area, providing insights for future research.
Collapse
Affiliation(s)
- Xue Han
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Shenyang, Liaoning Province, China.
| | - Bo Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Shenyang, Liaoning Province, China. libo--
| | - Shitai Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Shenyang, Liaoning Province, China.
| |
Collapse
|
26
|
Wang Y, Deng X, Liu Y, Wang Y, Luo X, Zhao T, Wang Z, Cheng G. Protective effect of Anneslea fragrans ethanolic extract against CCl4-induced liver injury by inhibiting inflammatory response, oxidative stress and apoptosis. Food Chem Toxicol 2023; 175:113752. [PMID: 37004906 DOI: 10.1016/j.fct.2023.113752] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/09/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Anneslea Fragrans Wall. (AF) is a medicinal and edible plant distributed in China. Its leaves and bark generally used for the treatments of diarrhea, fever, and liver diseases. While its ethnopharmacological application against liver diseases has not been fully studied. This study was aimed to evaluate the hepatoprotective effect of ethanolic extract from A. fragrans (AFE) on CCl4 induced liver injury in mice. The results showed that AFE could effectively reduce plasma activities of ALT and AST, increase antioxidant enzymes activities (SOD and CAT) and GSH level, and decrease MDA content in CCl4 induced mice. AFE effectively decreased the expressions of inflammatory cytokines (IL-1β, IL-6, TNF-α, COX-2 and iNOS), cell apoptosis-related proteins (Bax, caspase-3 and caspase-9) and increased Bcl-2 protein expression via inhibiting MAPK/ERK pathway. Additionally, TUNEL staining, Masson and Sirius red staining, immunohistochemical analyses revealed that AFE could inhibit the CCl4-induced hepatic fibrosis formation via reducing depositions of α-SMA, collagen I and collagen III. Conclusively, the present study demonstrated that AFE had an hepatoprotective effect by MAPK/ERK pathway to inhibit oxidative stress, inflammatory response and apoptosis in CCl4-induced liver injury mice, suggesting that AFE might be served as a hepatoprotective ingredient in the prevention and treatment of liver injury.
Collapse
Affiliation(s)
- Yudan Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China; National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming, 650500, China
| | - Xiaocui Deng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yaping Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yifen Wang
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Xiaodong Luo
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China
| | - Tianrui Zhao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zhengxuan Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Guiguang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
27
|
Tsubaki M, Takeda T, Koumoto Y, Usami T, Matsuda T, Seki S, Sakai K, Nishio K, Nishida S. Activation of ERK1/2 by MOS and TPL2 leads to dasatinib resistance in chronic myeloid leukaemia cells. Cell Prolif 2023:e13420. [PMID: 36847709 DOI: 10.1111/cpr.13420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/21/2023] [Accepted: 01/27/2023] [Indexed: 03/01/2023] Open
Abstract
The development of BCR::ABL1 tyrosine kinase inhibitors (TKIs), such as dasatinib, has dramatically improved survival in cases of chronic myeloid leukaemia (CML). However, the development of resistance to BCR::ABL1 TKIs is a clinical problem. BCR::ABL1 TKI resistance is known to have BCR::ABL1-dependent or BCR::ABL1-independent mechanisms, but the mechanism of BCR::ABL1 independence is not well understood. In the present study, we investigated the mechanism of BCR::ABL1-independent dasatinib resistance. The expression and activation level of genes or proteins were evaluated using array CGH, real time PCR, or western blot analysis. Gene expression was modulated using siRNA-mediated knockdown. Cell survival was assessed by using trypan blue dye method. We found that dasatinib-resistant K562/DR and KU812/DR cells did not harbour a BCR::ABL1 mutation but had elevated expression and/or activation of MOS, TPL2 and ERK1/2. In addition, MOS siRNA, TPL2 siRNA and trametinib resensitized dasatinib-resistant cells to dasatinib. Moreover, expression levels of MOS in dasatinib non-responder patients with CML were higher than those in dasatinib responders, and the expression of TPL2 tended to increase in dasatinib non-responder patients compared with that in responder patients. Our results indicate that activation of ERK1/2 by elevated MOS and TPL2 expression is involved in dasatinib resistance, and inhibition of these proteins overcomes dasatinib resistance. Therefore, MOS, TPL2 and ERK1/2 inhibitors may be therapeutically useful for treating BCR::ABL1-independent dasatinib-resistant CML.
Collapse
Affiliation(s)
- Masanobu Tsubaki
- Division of Pharmacotherapy, Kindai University School of Pharmacy, Higashi-Osaka, Osaka, Japan
| | - Tomoya Takeda
- Division of Pharmacotherapy, Kindai University School of Pharmacy, Higashi-Osaka, Osaka, Japan
| | - Yuuichi Koumoto
- Division of Pharmacotherapy, Kindai University School of Pharmacy, Higashi-Osaka, Osaka, Japan
| | - Takehiro Usami
- Division of Pharmacotherapy, Kindai University School of Pharmacy, Higashi-Osaka, Osaka, Japan
| | - Takuya Matsuda
- Division of Pharmacotherapy, Kindai University School of Pharmacy, Higashi-Osaka, Osaka, Japan
| | - Shiori Seki
- Division of Pharmacotherapy, Kindai University School of Pharmacy, Higashi-Osaka, Osaka, Japan
| | - Kazuko Sakai
- Department of Genome Biology, Kindai University School of Medicine, Osakasayama, Osaka, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Kindai University School of Medicine, Osakasayama, Osaka, Japan
| | - Shozo Nishida
- Division of Pharmacotherapy, Kindai University School of Pharmacy, Higashi-Osaka, Osaka, Japan
| |
Collapse
|
28
|
Qi Y, Huang C, Zhao M, Wu X, Li G, Zhang Y, Zhang L. milR20 negatively regulates the development of fruit bodies in Pleurotus cornucopiae. Front Microbiol 2023; 14:1177820. [PMID: 37213518 PMCID: PMC10192896 DOI: 10.3389/fmicb.2023.1177820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/10/2023] [Indexed: 05/23/2023] Open
Abstract
The mechanism underlying the development of fruit bodies in edible mushroom is a widely studied topic. In this study, the role of milRNAs in the development of fruit bodies of Pleurotus cornucopiae was studied by comparative analyses of the mRNAs and milRNAs at different stages of development. The genes that play a crucial role in the expression and function of milRNAs were identified and subsequently expressed and silenced at different stages of development. The total number of differentially expressed genes (DEGs) and differentially expressed milRNAs (DEMs) at different stages of development was determined to be 7,934 and 20, respectively. Comparison of the DEGs and DEMs across the different development stages revealed that DEMs and its target DEGs involved in the mitogen-activated protein kinase (MAPK) signaling pathway, protein processing in endoplasmic reticulum, endocytosis, aminoacyl-tRNA biosynthesis, RNA transport, and other metabolism pathways, which may play important roles in the development of the fruit bodies of P. cornucopiae. The function of milR20, which targeted pheromone A receptor g8971 and was involved in the MAPK signaling pathway, was further verified by overexpression and silencing in P. cornucopiae. The results demonstrated that the overexpression of milR20 reduced the growth rate of mycelia and prolonged the development of the fruit bodies, while milR20 silencing had an opposite effect. These findings indicated that milR20 plays a negative role in the development of P. cornucopiae. This study provides novel insights into the molecular mechanism underlying the development of fruit bodies in P. cornucopiae.
Collapse
Affiliation(s)
- Yuhui Qi
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, China
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Beijing, China
| | - Chenyang Huang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, China
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Beijing, China
| | - Mengran Zhao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, China
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Beijing, China
| | - Xiangli Wu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, China
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Beijing, China
| | - Guangyu Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, China
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Beijing, China
| | - Yingjie Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, China
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Beijing, China
- College of Life Sciences, Shanxi Normal University, Taiyuan, China
| | - Lijiao Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, China
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Beijing, China
- *Correspondence: Lijiao Zhang,
| |
Collapse
|
29
|
MiR-302a Regenerates Human Corneal Endothelial Cells against IFN-γ-Induced Cell Death. Cells 2022; 12:cells12010036. [PMID: 36611829 PMCID: PMC9818234 DOI: 10.3390/cells12010036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/08/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Damage to human corneal endothelial cells (hCECs) leads to bullous keratopathy because these cells cannot be regenerated in vivo. In this study, we investigated the protective role of microRNA (miR)-302a against interferon-γ (IFN-γ)-induced senescence and cell death of hCECs. Cultured hCECs were transfected with miR-302a and treated with IFN-γ (20 ng/mL) to evaluate the protective effect of miR-302a on IFN-γ-induced cell death. Senescence was evaluated by the senescence-associated β-galactosidase (SA-β-gal) assay, and the secretion of senescence-associated secretory phenotype (SASP) factors was analyzed. Mitochondrial function and endoplasmic reticulum (ER) stress were assessed. We revealed that miR-302a enhanced the cell viability and proliferation of hCECs and that IFN-γ increased the cell size, the number of SA-β-gal-positive cells, and SASP factors, and arrested the cell cycle, which was eliminated by miR-302a. miR-302a ameliorated mitochondrial oxidative stress and ER stress levels which were induced by IFN-γ. IFN-γ decreased the mitochondrial membrane potential and promoted autophagy, which was eliminated by miR-302a. The in vivo study showed that regeneration of rat CECs was promoted in the miR-302a group by inhibiting IFN-γ and enhancing mitochondrial function. In conclusion, miR-302a eliminated IFN-γ-induced senescence and cellular damage by regulating the oxidative and ER stress, and promoting the proliferation of CECs. Therefore, miR-302a may be a therapeutic option to protect hCECs against IFN-γ-induced stress.
Collapse
|
30
|
Sultonov D, Kim YH, Park H, Kim KS. Intermittent Hypoxia on the Attenuation of Induced Nasal Allergy and Allergic Asthma by MAPK Signaling Pathway Downregulation in a Mice Animal Model. Int J Mol Sci 2022; 23:ijms23169235. [PMID: 36012500 PMCID: PMC9408847 DOI: 10.3390/ijms23169235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Intermittent hypoxia (IH) has been an issue of considerable research in recent years and triggers a bewildering array of both detrimental and beneficial effects in several physiological systems. However, the mechanisms leading to the effect are not yet clear. Consequently, we investigated the effects of IH on allergen-induced allergic asthma via the mitogen-activated protein kinase (MAPK) signaling pathway. Forty BALB/c mice were dived into four groups. We evaluated the influence of IH on the cell signaling system of the airway during the allergen-induced challenge in an animal model, especially through the MAPK (mitogen-activated protein kinase) pathway. The protein concentrations of p-ERK/ERK, p-JNK/JNK, p-p38/p38, and pMEK/MEK were significantly reduced in the allergen-induced+IH group, compared to the allergen-induced group (p-value < 0.05 as considered statistically significant). The number of eosinophils, neutrophils, macrophages, and lymphocytes in the bronchoalveolar lavage fluid and Dp (Dermatophagoides pteronyssinus)-specific IgG2a and interleukins 4, 5, 13, and 17 were significantly reduced in the Dp+IH group, compared to the Dp group. These findings suggest that the MAPK pathway might be associated with the beneficial effect of IH on the attenuation of allergic response in an allergen-induced mouse model.
Collapse
Affiliation(s)
- Doston Sultonov
- Department of Otolaryngology Head & Neck Surgery, Inha University Hospital, Incheon 22332, Korea
- Inha Research Institute for Aerospace Medicine, Inha University College of Medicine, Incheon 22332, Korea
| | - Young Hyo Kim
- Kimyounghyo ENT Clinic, 161 Shin-song-ro, Yeonsu-gu, Incheon 22002, Korea
| | - Hyelim Park
- Inha Research Institute for Aerospace Medicine, Inha University College of Medicine, Incheon 22332, Korea
- Correspondence: (H.P.); (K.-S.K.)
| | - Kyu-Sung Kim
- Department of Otolaryngology Head & Neck Surgery, Inha University Hospital, Incheon 22332, Korea
- Inha Research Institute for Aerospace Medicine, Inha University College of Medicine, Incheon 22332, Korea
- Correspondence: (H.P.); (K.-S.K.)
| |
Collapse
|
31
|
Wang W, Xu L, Zhou L, Wan S, Jiang L. Dioscorea nipponica Makino Relieves Ovalbumin-Induced Asthma in Mice through Regulating RKIP-Mediated Raf-1/MEK/MAPK/ERK Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8077058. [PMID: 35757465 PMCID: PMC9217531 DOI: 10.1155/2022/8077058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 05/26/2022] [Indexed: 11/24/2022]
Abstract
Purpose Dioscorea nipponica Makino (DNM) is a traditional herb with multiple medicinal functions. This study is aimed at exploring the therapeutic effects of DNM on asthma and the underlying mechanisms involving RKIP-mediated MAPK signaling pathway. Methods An ovalbumin-induced asthma model was established in mice, which was further administrated with DNM and/or locostatin (RKIP inhibitor). ELISA was performed to detect the serum titers of OVA-IgE and OVA-IgG1, bronchoalveolar lavage fluid (BALF) levels of inflammation-related biomarkers, and tissue levels of oxidative stress-related biomarkers. The expression of RKIP was measured by quantitative real-time PCR, Western blot, immunohistochemistry, and immunofluorescence. HE staining was used to observe the pathological morphology of lung tissues. The protein expression of MAPK pathway-related proteins was detected by Western blot. Results Compared with the controls, the model mice exhibited significantly higher serum titers of OVA-IgE and OVA-IgG1, BALF levels of IL-6, IL-8, IL-13, TGF-β1, and MCP-1, tissue levels of MDA and ROS, lower BALF levels of IL-10 and IFN-γ, and tissue level of GSH. DNM relieved the allergic inflammatory response and oxidative stress in the model mice. DNM also recovered the downregulation of RKIP and the pathological injury of lung tissues in asthma mice. In addition, the Raf-1/MEK/MAPK/ERK pathway in the model mice was blocked by DNM. Silencing of RKIP by locostatin weakened the relieving effects of DNM on asthma through activating the Raf-1/MEK/MAPK/ERK pathway. Conclusion DNM relieves asthma via blocking the Raf-1/MEK/MAPK/ERK pathway that mediated by RKIP upregulation.
Collapse
Affiliation(s)
- Weiyi Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou 310003, China
| | - Liying Xu
- Department of Emergency, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou 310003, China
| | - Lingming Zhou
- Department of Respiratory Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shanhong Wan
- Department of Respiratory Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Libin Jiang
- Department of Geriatric Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou 310003, China
| |
Collapse
|
32
|
Ying TH, Lin CL, Chen PN, Wu PJ, Liu CJ, Hsieh YH. Angelol-A exerts anti-metastatic and anti-angiogenic effects on human cervical carcinoma cells by modulating the phosphorylated-ERK/miR-29a-3p that targets the MMP2/VEGFA axis. Life Sci 2022; 296:120317. [PMID: 35026214 DOI: 10.1016/j.lfs.2022.120317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 01/15/2023]
Abstract
AIMS Angelol-A (Ang-A), a kind of coumarins, is isolated from the roots of Angelica pubescens f. biserrata. However, AA exerts antitumor effects and molecular mechanism on cervical cancer cells is unknown. MAIN METHODS Cell viability was determined using the MTT assay, and the cell cycle phase was assessed by PI staining with flow cytometry. Ang-A-treated cells with/without Antago-miR-29a-3p (miR-29a-3p inhibitor) or U0126 (MEK inhibitor) were assessed for the expression of miR-29a-3p, in vitro migration/invasion, and angiogenesis using qRT-PCR, a chemotaxis assay, and tube formation assay, respectively. The expression of mitogen-activated protein kinases/MMP2/MMP9/VEGFA was determined by western blot analysis with applicable antibodies. KEY FINDINGS Ang-A significantly inhibited MMP2 and VEGFA expression, cell migration, and invasive motility in human cervical cancer cells. Conditioned medium inhibited tube formation in HUVECs. Ang-A principally inhibited invasive motility and angiogenesis by upregulating the expression of miR-29a-3p that targets the VEGFA-3' UTR. The role of miR-29a-3p was confirmed using Antago-miR-29a-3p, which reversed the Ang-A-inhibited expression of MMP2 and VEGFA, invasive motility, and angiogenesis in human cervical cancer cells. The ERK pathway was implicated in mediating the metastatic and angiogenic action of Ang-A. Combined treatment with Ang-A treated and U0126 exerted a synergistic inhibitory effect on the expression of MMP2 and VEGFA and the metastatic and angiogenic properties of human cervical cancer cells. SIGNIFICANCE These findings are the first to indicate that in human cervical cancer cells, Ang-A exerts anti-metastatic and anti-angiogenic effects via targeting the miR-29a-3p/MMP2/VEGFA axis, mediated through the ERK pathway.
Collapse
Affiliation(s)
- Tsung-Ho Ying
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chia-Liang Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, New Taipei City, Taiwan
| | - Pei-Ni Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Pei-Ju Wu
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan; Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chung-Jung Liu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Regenetative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
33
|
El-Mahdy HA, Sallam AAM, Ismail A, Elkhawaga SY, Elrebehy MA, Doghish AS. miRNAs inspirations in hepatocellular carcinoma: Detrimental and favorable aspects of key performers. Pathol Res Pract 2022; 233:153886. [PMID: 35405621 DOI: 10.1016/j.prp.2022.153886] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/23/2022] [Accepted: 04/01/2022] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related deaths worldwide. HCC initiation, progression, and therapy failure are all influenced by various variables, including microRNAs (miRNAs). miRNAs are short non-coding RNA sequences that modulate target mRNA expression by deteriorating or repressing translation. miRNAs play an imperative role in HCC pathogenesis by triggering the induction of cancer stem cells (CSCs) and their proliferation, while also delaying apoptosis, sustaining the cell cycle, and inspiring angiogenesis, invasion, and metastasis. Additionally, miRNAs modulate crucial HCC-related molecular pathways such as the p53 pathway, the Wnt/β-catenin pathway, VEGFR2, and PTEN/PI3K/AKT pathway. Consequently, the goal of this review was to give an up-to-date overview of oncogenic and tumor suppressor (TS) miRNAs, as well as their potential significance in HCC pathogenesis and treatment responses, highlighting their underpinning molecular pathways in HCC initiation and progression. Similarly, the biological importance and clinical application of miRNAs in HCC are summarized.
Collapse
Affiliation(s)
- Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| |
Collapse
|
34
|
Lara-Velazquez M, Mehkri Y, Panther E, Hernandez J, Rao D, Fiester P, Makary R, Rutenberg M, Tavanaiepour D, Rahmathulla G. Current Advances in the Management of Adult Craniopharyngiomas. Curr Oncol 2022; 29:1645-1671. [PMID: 35323338 PMCID: PMC8946973 DOI: 10.3390/curroncol29030138] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 12/23/2022] Open
Abstract
Craniopharyngiomas (CPs) are slow growing, histologically benign intracranial tumors located in the sellar–suprasellar region. Although known to have low mortality, their location and relationship to the adjacent neural structures results in patients having significant neurologic, endocrine, and visual comorbidities. The invasive nature of this tumor makes complete resection a challenge and contributes to its recurrence. Additionally, these tumors are bimodally distributed, being treated with surgery, and are followed by other adjuncts, such as focused radiation therapy, e.g., Gamma knife. Advances in surgical techniques, imaging tools, and instrumentations have resulted in the evolution of surgery using endoscopic techniques, with residual components being treated by radiotherapy to target the residual tumor. Advances in molecular biology have elucidated the main pathways involved in tumor development and recurrence, but presently, no other treatments are offered to patients, besides surgery, radiation, and endocrine management, as the disease and tumor evolve. We review the contemporary management of these tumors, from the evolution of surgical treatments, utilizing standard open microscopic approaches to the more recent endoscopic surgery, and discuss the current recommendations for care of these patients. We discuss the developments in radiation therapy, such as radiosurgery, being used as treatment strategies for craniopharyngioma, highlighting their beneficial effects on tumor resections while decreasing the rates of adverse outcomes. We also outline the recent chemotherapy modalities, which help control tumor growth, and the immune landscape on craniopharyngiomas that allow the development of novel immunotherapies.
Collapse
Affiliation(s)
- Montserrat Lara-Velazquez
- Department of Neurosurgery, College of Medicine, University of Florida, 653 8th St W., Jacksonville, FL 32209, USA; (M.L.-V.); (Y.M.); (E.P.); (J.H.); (D.T.)
| | - Yusuf Mehkri
- Department of Neurosurgery, College of Medicine, University of Florida, 653 8th St W., Jacksonville, FL 32209, USA; (M.L.-V.); (Y.M.); (E.P.); (J.H.); (D.T.)
| | - Eric Panther
- Department of Neurosurgery, College of Medicine, University of Florida, 653 8th St W., Jacksonville, FL 32209, USA; (M.L.-V.); (Y.M.); (E.P.); (J.H.); (D.T.)
| | - Jairo Hernandez
- Department of Neurosurgery, College of Medicine, University of Florida, 653 8th St W., Jacksonville, FL 32209, USA; (M.L.-V.); (Y.M.); (E.P.); (J.H.); (D.T.)
| | - Dinesh Rao
- Department of Neuroradiology, College of Medicine, University of Florida, 653 8th St W., Jacksonville, FL 32209, USA; (D.R.); (P.F.)
| | - Peter Fiester
- Department of Neuroradiology, College of Medicine, University of Florida, 653 8th St W., Jacksonville, FL 32209, USA; (D.R.); (P.F.)
| | - Raafat Makary
- Department of Pathology, College of Medicine, University of Florida, 653 8th St W., Jacksonville, FL 32209, USA;
| | - Michael Rutenberg
- Department of Radiation Oncology, College of Medicine, University of Florida, 653 8th St W., Jacksonville, FL 32209, USA;
| | - Daryoush Tavanaiepour
- Department of Neurosurgery, College of Medicine, University of Florida, 653 8th St W., Jacksonville, FL 32209, USA; (M.L.-V.); (Y.M.); (E.P.); (J.H.); (D.T.)
| | - Gazanfar Rahmathulla
- Department of Neurosurgery, College of Medicine, University of Florida, 653 8th St W., Jacksonville, FL 32209, USA; (M.L.-V.); (Y.M.); (E.P.); (J.H.); (D.T.)
- Correspondence: ; Tel.: +1-904-244-1418; Fax: +1-888-939-4093
| |
Collapse
|
35
|
The Antiemetic Mechanisms of Gingerols against Chemotherapy-Induced Nausea and Vomiting. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1753430. [PMID: 35251202 PMCID: PMC8893993 DOI: 10.1155/2022/1753430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/14/2021] [Accepted: 02/02/2022] [Indexed: 02/08/2023]
Abstract
Chemotherapy-induced nausea and vomiting (CINV) is a common and painful side effect that occurs in cancer patients receiving chemotherapeutic drugs. Although an abundance of agents are applied to prevent CINV, there is still lack of effective control in delayed nausea and vomiting. Ginger (Zingiber officinale Rosc.), a traditional antiemetic herb, draws attention due to its therapeutic effect in treating acute and delayed CINV. Its main bioactive pungent constituents, gingerols, contribute to the antiemetic effect against CINV primarily. A growing number of reports have made progress in investigating the mechanisms of gingerols and their single ingredients against CINV. In this review, we searched for relevant studies in PubMed database to summarize the mechanism of gingerols in the prevention of CINV and provided a preliminary prediction on the potential targets and signaling pathways using network pharmacology, laying a foundation for further researches.
Collapse
|
36
|
Sun R, Wang X, Sun X, Zhao B, Zhang X, Gong X, Wong SH, Chan MTV, Wu WKK. Emerging Roles of Long Non-Coding RNAs in Ankylosing Spondylitis. Front Immunol 2022; 13:790924. [PMID: 35222376 PMCID: PMC8866863 DOI: 10.3389/fimmu.2022.790924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/19/2022] [Indexed: 12/16/2022] Open
Abstract
Ankylosing spondylitis (AS) is a chronic systemic autoimmune disease characterized by inflammation, bone erosion, spur formation of the spine and the sacroiliac joints. However, the etiology and molecular pathogenesis of AS remain largely unclear. Recently, a growing number of studies showed that long non-coding RNAs (lncRNAs) played critical roles in the development and progression of autoimmune and orthopedic conditions, including AS. Studies demonstrated that a myriad of lncRNAs (e.g. H19, MEG3, LOC645166) pertinent to regulation of inflammatory signals were deregulated in AS. A number of lncRNAs might also serve as new biomarkers for the diagnosis and predicting the outcomes of AS. In this review, we summarize lncRNA profiling studies on AS and the functional roles and mechanism of key lncRNAs relevant to AS pathogenesis. We also discuss their potential values as biomarkers and druggable targets for this potentially disabling condition.
Collapse
Affiliation(s)
- Ruifu Sun
- Department Spinal of Qingdao Hospital Central, Qingdao Hospital Central, Qingdao, China
| | - Xuesong Wang
- Department Spinal of Qingdao Hospital Central, Qingdao Hospital Central, Qingdao, China
| | - Xiaohong Sun
- Department Obstetrics and Gynecology of Qingdao Hospital Central, Central Qingdao Hospital, Qingdao, China
| | - Bing Zhao
- Department Spinal of Qingdao Hospital Central, Qingdao Hospital Central, Qingdao, China
| | - Xiugong Zhang
- Department Spinal of Qingdao Hospital Central, Qingdao Hospital Central, Qingdao, China
| | - Xiaojin Gong
- Department Spinal of Qingdao Hospital Central, Qingdao Hospital Central, Qingdao, China
| | - Sunny Hei Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- State Key Laboratory of Digestive Disease and LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Matthew Tak Vai Chan
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - William Ka Kei Wu
- State Key Laboratory of Digestive Disease and LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
37
|
Peng C, Li J. Editorial: MicroRNAs in endocrinology and cell signaling. Front Endocrinol (Lausanne) 2022; 13:1118426. [PMID: 36601018 PMCID: PMC9806391 DOI: 10.3389/fendo.2022.1118426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Affiliation(s)
- Chun Peng
- Department of Biology, York University, Toronto, ON, Canada
- *Correspondence: Chun Peng,
| | - Julang Li
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
38
|
Hamidi AA, Zangoue M, Kashani D, Zangouei AS, Rahimi HR, Abbaszadegan MR, Moghbeli M. MicroRNA-217: a therapeutic and diagnostic tumor marker. Expert Rev Mol Diagn 2021; 22:61-76. [PMID: 34883033 DOI: 10.1080/14737159.2022.2017284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Cancer as one of the most common causes of death has always been one of the major health challenges globally. Since, the identification of tumors in the early tumor stages can significantly reduce mortality rates; it is required to introduce novel early detection tumor markers. MicroRNAs (miRNAs) have pivotal roles in regulation of cell proliferation, migration, apoptosis, and tumor progression. Moreover, due to the higher stability of miRNAs than mRNAs in body fluids, they can be considered as non-invasive diagnostic or prognostic markers in cancer patients. AREAS COVERED In the present review we have summarized the role of miR-217 during tumor progressions. The miR-217 functions were categorized based on its target molecular mechanisms and signaling pathways. EXPERT OPINION It was observed that miR-217 mainly exerts its function by regulation of the transcription factors during tumor progressions. The WNT, MAPK, and PI3K/AKT signaling pathways were also important molecular targets of miR-217 in different cancers. The present review clarifies the molecular biology of miR-217 and paves the way of introducing miR-217 as a non-invasive diagnostic marker and therapeutic target in cancer therapy.
Collapse
Affiliation(s)
- Amir Abbas Hamidi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Zangoue
- Department of Anesthesiology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Daniel Kashani
- Department of Internal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Rahimi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
39
|
Golhani V, Ray SK, Mukherjee S. Role of MicroRNAs and Long Non-Coding RNAs in Regulating Angiogenesis in Human Breast Cancer- A Molecular Medicine Perspective. Curr Mol Med 2021; 22:882-893. [PMID: 34923940 DOI: 10.2174/1566524022666211217114527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 10/26/2021] [Accepted: 11/05/2021] [Indexed: 11/22/2022]
Abstract
MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are proficient in regulating gene expression post-transcriptionally. Considering the recent trend in exploiting non-coding RNAs (ncRNAs) as cancer therapeutics, the potential use of miRNAs and lncRNAs as biomarkers and novel therapeutic agents against angiogenesis is an important scientific aspect. An estimated 70% of the genome is actively transcribed, only 2% of which codes for known protein-coding genes. Long noncoding RNAs (lncRNAs) are a large and diverse class of RNAs > 200 nucleotides in length, and not translated into protein, and are of utmost importance and it governs the expression of genes in a temporal, spatial, and cell context-dependent manner. Angiogenesis is an essential process for organ morphogenesis and growth during development, and it is relevant during the repair of wounded tissue in adults. It is coordinated by an equilibrium of pro-and anti-angiogenic factors; nevertheless, when affected, it promotes several diseases, including breast cancer. Signaling pathways involved here are tightly controlled systems that regulate the appropriate timing of gene expression required for the differentiation of cells down a particular lineage essential for proper tissue development. Lately, scientific reports are indicating that ncRNAs, such as miRNAs, and lncRNAs, play critical roles in angiogenesis related to breast cancer. The specific roles of various miRNAs and lncRNAs in regulating angiogenesis in breast cancer, with particular focus on the downstream targets and signaling pathways regulated by these ncRNAs with molecular medicine perspective, are highlighted in this write-up.
Collapse
Affiliation(s)
- Vandana Golhani
- Department of Biochemistry. All India Institute of Medical Sciences. Bhopal, Madhya Pradesh-462020, India
| | | | - Sukhes Mukherjee
- Department of Biochemistry. All India Institute of Medical Sciences. Bhopal, Madhya Pradesh-462020, India
| |
Collapse
|
40
|
Saltarella I, Lamanuzzi A, Desantis V, Di Marzo L, Melaccio A, Curci P, Annese T, Nico B, Solimando AG, Bartoli G, Tolomeo D, Storlazzi CT, Mariggiò MA, Ria R, Musto P, Vacca A, Frassanito MA. Myeloma cells regulate
miRNA
transfer from fibroblast‐derived exosomes by expression of
lncRNAs. J Pathol 2021; 256:402-413. [DOI: 10.1002/path.5852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/29/2021] [Accepted: 12/14/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Ilaria Saltarella
- Department of Biomedical Sciences and Human Oncology Unit of Internal Medicine "Guido Baccelli", University of Bari Medical School, Piazza Giulio Cesare 11, 70124 Bari Italy
| | - Aurelia Lamanuzzi
- Department of Biomedical Sciences and Human Oncology Unit of Internal Medicine "Guido Baccelli", University of Bari Medical School, Piazza Giulio Cesare 11, 70124 Bari Italy
| | - Vanessa Desantis
- Department of Biomedical Sciences and Human Oncology Unit of Internal Medicine "Guido Baccelli", University of Bari Medical School, Piazza Giulio Cesare 11, 70124 Bari Italy
- Department of Biomedical Sciences and Human Oncology Pharmacology Section, University of Bari Medical School, Piazza Giulio Cesare 11, 70124 Bari Italy
| | - Lucia Di Marzo
- Department of Biomedical Sciences and Human Oncology Unit of Internal Medicine "Guido Baccelli", University of Bari Medical School, Piazza Giulio Cesare 11, 70124 Bari Italy
| | - Assunta Melaccio
- Department of Biomedical Sciences and Human Oncology Unit of Internal Medicine "Guido Baccelli", University of Bari Medical School, Piazza Giulio Cesare 11, 70124 Bari Italy
| | - Paola Curci
- Unit of Hematology and Stem Cell Transplantation, AOUC Policlinico Bari Italy
| | - Tiziana Annese
- Department of Basic Medical Sciences Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School Bari Italy
| | - Beatrice Nico
- Department of Basic Medical Sciences Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School Bari Italy
| | - Antonio Giovanni Solimando
- Department of Biomedical Sciences and Human Oncology Unit of Internal Medicine "Guido Baccelli", University of Bari Medical School, Piazza Giulio Cesare 11, 70124 Bari Italy
- IRCCS Istituto Tumori "Giovanni Paolo II", 70124 Bari Italy
| | - Giulia Bartoli
- Department of Biomedical Sciences and Human Oncology Unit of Internal Medicine "Guido Baccelli", University of Bari Medical School, Piazza Giulio Cesare 11, 70124 Bari Italy
| | - Doron Tolomeo
- Department of Biology University of Bari "Aldo Moro", Via E. Orabona no. 4, 70125 Bari Italy
| | | | - Maria Addolorata Mariggiò
- Department of Biomedical Sciences and Human Oncology Unit of General Pathology, University of Bari "Aldo Moro", 70124 Bari Italy
| | - Roberto Ria
- Department of Biomedical Sciences and Human Oncology Unit of Internal Medicine "Guido Baccelli", University of Bari Medical School, Piazza Giulio Cesare 11, 70124 Bari Italy
| | - Pellegrino Musto
- Unit of Hematology and Stem Cell Transplantation, AOUC Policlinico Bari Italy
- Department of Emergency and Organ Transplantation "Aldo Moro", University School of Medicine Bari Italy
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology Unit of Internal Medicine "Guido Baccelli", University of Bari Medical School, Piazza Giulio Cesare 11, 70124 Bari Italy
| | - Maria Antonia Frassanito
- Department of Biomedical Sciences and Human Oncology Unit of General Pathology, University of Bari "Aldo Moro", 70124 Bari Italy
| |
Collapse
|
41
|
Xiong Y, Xiong Y, Zhang H, Zhao Y, Han K, Zhang J, Zhao D, Yu Z, Geng Z, Wang L, Wang Y, Luan X. hPMSCs-Derived Exosomal miRNA-21 Protects Against Aging-Related Oxidative Damage of CD4 + T Cells by Targeting the PTEN/PI3K-Nrf2 Axis. Front Immunol 2021; 12:780897. [PMID: 34887868 PMCID: PMC8649962 DOI: 10.3389/fimmu.2021.780897] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs)-derived exosomes were considered a novel therapeutic approach in many aging-related diseases. This study aimed to clarify the protective effects of human placenta MSCs-derived exosomes (hPMSC-Exo) in aging-related CD4+ T cell senescence and identified the underlying mechanisms using a D-gal induced mouse aging model. Senescent T cells were detected SA-β-gal stain. The degree of DNA damage was evaluated by detecting the level of 8-OH-dG. The superoxide dismutase (SOD) and total antioxidant capacity (T-AOC) activities were measured. The expression of aging-related proteins and senescence-associated secretory phenotype (SASP) were detected by Western blot and RT-PCR. We found that hPMSC-Exo treatment markedly decreased oxidative stress damage (ROS and 8-OH-dG), SA-β-gal positive cell number, aging-related protein expression (p53 and γ-H2AX), and SASP expression (IL-6 and OPN) in senescent CD4+ T cells. Additionally, hPMSC-Exo containing miR-21 effectively downregulated the expression of PTEN, increased p-PI3K and p-AKT expression, and Nrf2 nuclear translocation and the expression of downstream target genes (NQO1 and HO-1) in senescent CD4+ T cells. Furthermore, in vitro studies uncovered that hPMSC-Exo attenuated CD4+ T cell senescence by improving the PTEN/PI3K-Nrf2 axis by using the PTEN inhibitor bpV (HOpic). We also validated that PTEN was a target of miR-21 by using a luciferase reporter assay. Collectively, the obtained results suggested that hPMSC-Exo attenuates CD4+ T cells senescence via carrying miRNA-21 and activating PTEN/PI3K-Nrf2 axis mediated exogenous antioxidant defenses.
Collapse
Affiliation(s)
- Yanlian Xiong
- Department of Anatomy, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Yanlei Xiong
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hengchao Zhang
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Yaxuan Zhao
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Kaiyue Han
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Jiashen Zhang
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Dongmei Zhao
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Zhenhai Yu
- Department of Anatomy, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Ziran Geng
- Department of Anatomy, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Longfei Wang
- Department of Anatomy, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Yueming Wang
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Xiying Luan
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| |
Collapse
|
42
|
Liu R, Yang X. LncRNA LINC00342 promotes gastric cancer progression by targeting the miR-545-5p/CNPY2 axis. BMC Cancer 2021; 21:1163. [PMID: 34715819 PMCID: PMC8556989 DOI: 10.1186/s12885-021-08829-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/30/2021] [Indexed: 12/29/2022] Open
Abstract
Background This study aimed to explore the role and underlying molecular mechanisms of long non-coding RNA (lncRNA) LINC00342 in gastric cancer (GC). Methods The expression of LINC00342 in GC tissues was evaluated by Quantitative reverse transcription polymerase chain reaction (qRT-PCR). Silencing of LINC00342 was conducted to investigate the effect of LINC00342 in vitro and in vivo. The underlying molecular mechanisms of LINC00342 were determined by dual luciferase reporter assay, Western blotting analysis and rescue experiments. Biological functions of LINC00342 were evaluated by cell counting kit-8 (CCK-8) assay, colony formation assay, wound healing assay and Transwell assays. In addition, a tumor model was used to verify the effect of LINC00342 in tumorigenesis in vivo. Results LINC00342 was significantly upregulated in GC tissues and cell lines. Silencing of LINC00342 efficiently inhibited proliferation, migration and invasion of AGS cells in vitro, and also suppressed the tumorigenesis of GC in vivo. Functional experiments showed that LINC00342 regulated the expression of canopy fibroblast growth factor signaling regulator 2 (CNPY2) by competitively sponging miR-545-5p. Rescue experiments showed that inhibition of miR-545-5p and overexpression of CNPY2 significantly reversed cell phenotypes caused by silencing of LINC00342. Conclusion LINC00342 plays a potential oncogenic role in GC by targeting the miR545-5p/CNPY2 axis, and might act as a novel therapeutic target for GC.
Collapse
Affiliation(s)
- Run Liu
- Department of Gastroenterology, The Shijiazhuang People's Hospital, 365 Jianhuanan street, Yuhua District, Shijiazhuang, 050000, Hebei, China
| | - Xianwu Yang
- Department of Gastroenterology, The Shijiazhuang People's Hospital, 365 Jianhuanan street, Yuhua District, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
43
|
Song X, Guo Y, Song P, Duan D, Guo W. Non-coding RNAs in Regulating Tumor Angiogenesis. Front Cell Dev Biol 2021; 9:751578. [PMID: 34616746 PMCID: PMC8488154 DOI: 10.3389/fcell.2021.751578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are RNAs that do not encode proteins, but perform biological functions in various physiological and pathological processes, including cancer formation, inflammation, and neurological diseases. Tumor blood vessels are a key target for cancer management. A number of factors regulate the angiogenesis of malignant tumors. NcRNAs participate in the regulation of tumor angiogenesis. Abnormal expression of ncRNAs act as tumor suppressors or oncogenes to affect the development of tumors. In this review we summarized the biological functions of ncRNAs, and discussed its regulatory mechanisms in tumor angiogenesis. This article will provide new insights for the research of ncRNAs in tumor angiogenesis.
Collapse
Affiliation(s)
- Xin Song
- School of Life Sciences and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Yanan Guo
- School of Traditional Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Peng Song
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China.,Key Laboratory of Prevention and Treatment for Chronic Diseases by TCM, Lanzhou, China
| | - Dongzhu Duan
- Shaanxi Key Laboratory of Phytochemistry and College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, China
| | - Wenjing Guo
- School of Traditional Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| |
Collapse
|
44
|
Hu L, Wei S, Wu Y, Li S, Zhu P, Wang X. MicroRNA regulation of the proliferation and apoptosis of Leydig cells in diabetes. Mol Med 2021; 27:104. [PMID: 34496750 PMCID: PMC8425090 DOI: 10.1186/s10020-021-00370-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/31/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The number of patients with diabetes is increasing worldwide. Diabetic testicular damage can cause spermiogenesis disorders and sexual dysfunction. We thus explored the role of miRNAs in diabetic testicular damage, and revealed that they could serve as effective prevention and treatment therapeutic targets. METHODS Streptozotocin (STZ) was used to generate a rat model of type 2 diabetes. Rat testicular tissues were used for miRNA and mRNA sequencing. Through bioinformatics analysis, we constructed an miRNA-mRNA diabetic testicular damage regulatory network and screened for key miRNAs. We also used Leydig cells to generate a diabetic cell model and detected the downstream target genes of miRNAs, secretion of testosterone, and proliferation and apoptotic levels to elucidate the role and mechanism of the selected miRNAs in diabetic testicular damage. RESULTS Using second-generation sequencing, we identified 19 differentially expressed miRNAs and 555 mRNAs in the testes of diabetic rats. Based on computational prediction of targets and negative regulation relationships, we constructed a miRNA-mRNA regulatory network, including 12 miRNAs and 215 mRNAs. KEGG enrichment analysis revealed that genes were more concentrated on the survival signalling pathway. Based on this, we screened 2 key miRNAs, miR-504 and miR-935. In vitro, glucose could induce an increase in miR-504 and miR-935, whereas a decrease in MEK5 and MEF2C in a dose-dependent manner. Overexpression of miR-504 and miR-935 led to the decreased expression of MEK5 and MEF2C, decreased proliferation rate of Leydig cells, increased apoptotic rate, and decreased secretion of testosterone. Whereas, knockdown of miR-504 and miR-935 displayed opposite tendencies. CONCLUSIONS miRNAs play important roles in diabetic testicular damage. miR-504 and miR-935 might regulate testicular damage through the classic survival pathway of MEK5-ERK5-MEF2C. Targeted inhibition of miR-504 and miR-935 could reverse the high-glucose-induced testicular complications, thus posing as a potential therapeutic approach in diabetic testicular injury.
Collapse
Affiliation(s)
- Li Hu
- Shenzhen University South China Hospital, Shenzhen University, Shenzhen, 518111, People's Republic of China
- Department of Physiology, Shantou University of Medical College, Shantou, 515041, People's Republic of China
| | - Shaochai Wei
- Department of Physiology, Shantou University of Medical College, Shantou, 515041, People's Republic of China
| | - Yuqi Wu
- Department of Urology & Carson International Cancer Center, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy Center, Shenzhen University, NO.1098, Xueyuan Road, Shenzhen University City, Nanshan District, Shenzhen, 518055, People's Republic of China
| | - Shulin Li
- Department of Urology & Carson International Cancer Center, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy Center, Shenzhen University, NO.1098, Xueyuan Road, Shenzhen University City, Nanshan District, Shenzhen, 518055, People's Republic of China
| | - Pei Zhu
- Department of Urology & Carson International Cancer Center, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy Center, Shenzhen University, NO.1098, Xueyuan Road, Shenzhen University City, Nanshan District, Shenzhen, 518055, People's Republic of China.
| | - Xiangwei Wang
- Department of Urology & Carson International Cancer Center, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy Center, Shenzhen University, NO.1098, Xueyuan Road, Shenzhen University City, Nanshan District, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
45
|
Tong Xie Yao Fang: A Classic Chinese Medicine Prescription with Potential for the Treatment of Ulcerative Colitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5548764. [PMID: 34211567 PMCID: PMC8208878 DOI: 10.1155/2021/5548764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/05/2021] [Accepted: 05/21/2021] [Indexed: 02/06/2023]
Abstract
The prescription of Tong Xie Yao Fang (TXYF) was derived from the Yuan dynasty “Dan Brook Heart Law,” which was a representative formula for treating liver-spleen disharmony, diarrhea, and abdominal pain. The prescription is composed of four herbs for soothing the liver and strengthening the spleen. TXYF is reportedly capable of eliminating discomfort in ulcerative colitis (UC). This classic formula has been widely used for regulating gastrointestinal motor dysfunction and repairing colon mucosa. This review aims to provide current information on the pharmacology and clinical research of TXYF in the treatment of UC, and to critically appraise that information, in order to guide the future clinical use and experimental study of TXYF in the treatment of UC. We searched online databases including PubMed, CNKI, and Google Scholar for research published between 2010 and 2020 on TXYF and its efficacy in the treatment of UC. The findings indicated that TXYF has anti-inflammatory and immunomodulatory effects, regulates cell signal transduction, brain-gut axis, and intestinal flora in UC, and may promote targeting of bone mesenchymal stem cells (BMSCs) to the colonic mucosa and accelerate healing of the colonic mucosal barrier. In addition, the results of clinical studies showed that TXYF has good efficacy and few adverse reactions in the treatment of UC. Although it has achieved some success, the research is limited by deficiencies; there is a lack of unified standards for the construction of UC animal models and for administration regimen. In addition, the dosage of TXYF is not consistent and lacks pharmacological verification, and clinical trial data are not detailed or sufficiently rigorous. Therefore, a more rigorous, comprehensive, and in-depth study of TXYF in the treatment of UC is needed.
Collapse
|
46
|
Sabnis RW. Novel Substituted Exomethylene-oxindoles as HPK1 Inhibitors. ACS Med Chem Lett 2021; 12:681-682. [PMID: 34055207 DOI: 10.1021/acsmedchemlett.1c00172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Indexed: 01/18/2023] Open
Affiliation(s)
- Ram W. Sabnis
- Smith, Gambrell & Russell LLP, 1230 Peachtree Street NE, Suite 3100, Atlanta, Georgia 30309, United States
| |
Collapse
|
47
|
Ghafouri-Fard S, Abak A, Bahroudi Z, Shoorei H, Abbas Raza SH, Taheri M. The interplay between non-coding RNAs and Twist1 signaling contribute to human disorders. Biomed Pharmacother 2021; 135:111220. [PMID: 33433357 DOI: 10.1016/j.biopha.2021.111220] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/23/2020] [Accepted: 12/31/2020] [Indexed: 12/14/2022] Open
Abstract
Twist-related protein 1 (Twist1) is a basic helix-loop-helix (bHLH) transcription factor (TF) being coded by the TWIST1 gene. This TF has a fundamental effect on the normal development and in the pathogenesis of various diseases especially cancer. Twist1 has interactions with some long non-coding RNAs and miRNAs. The interactions between this TF and various miRNAs such as miR-16, miR-26b-5p, miR-1271, miR-539, miR-214, miR-200b/c, miR-335, miR-10b, and miR-381 are implicated in the carcinogenic processes. TP73-AS1, LINC01638, ATB, NONHSAT101069, CASC15, H19, PVT1, LINC00339, LINC01385, TANAR, SNHG5, DANCR, CHRF, and TUG1 are among long non-coding RNAs which interact with Twist1 and participate in the carcinogenesis. This review aims at depicting the interaction between these non-coding transcripts and Twist1 and the consequence of these interactions in human neoplasms.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Bahroudi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Biranjd University of Medical Sciences, Birjand, Iran
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, China
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
48
|
De Novo Profiling of Long Non-Coding RNAs Involved in MC-LR-Induced Liver Injury in Whitefish: Discovery and Perspectives. Int J Mol Sci 2021; 22:ijms22020941. [PMID: 33477898 PMCID: PMC7833382 DOI: 10.3390/ijms22020941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 12/18/2022] Open
Abstract
Microcystin-LR (MC-LR) is a potent hepatotoxin for which a substantial gap in knowledge persists regarding the underlying molecular mechanisms of liver toxicity and injury. Although long non-coding RNAs (lncRNAs) have been extensively studied in model organisms, our knowledge concerning the role of lncRNAs in liver injury is limited. Given that lncRNAs show low levels of sequence conservation, their role becomes even more unclear in non-model organisms without an annotated genome, like whitefish (Coregonus lavaretus). The objective of this study was to discover and profile aberrantly expressed polyadenylated lncRNAs that are involved in MC-LR-induced liver injury in whitefish. Using RNA sequencing (RNA-Seq) data, we de novo assembled a high-quality whitefish liver transcriptome. This enabled us to find 94 differentially expressed (DE) putative evolutionary conserved lncRNAs, such as MALAT1, HOTTIP, HOTAIR or HULC, and 4429 DE putative novel whitefish lncRNAs, which differed from annotated protein-coding transcripts (PCTs) in terms of minimum free energy, guanine-cytosine (GC) base-pair content and length. Additionally, we identified DE non-coding transcripts that might be 3′ autonomous untranslated regions (3′UTRs) of mRNAs. We found both evolutionary conserved lncRNAs as well as novel whitefish lncRNAs that could serve as biomarkers of liver injury.
Collapse
|