1
|
Chen Q, Xia Y, Liu HN, Chi Y, Li X, Shan LS, Dai B, Zhu Y, Wang YT, Miao X, Sun Q. Synthetic approaches and clinical application of representative small-molecule inhibitors of phosphodiesterase. Eur J Med Chem 2024; 277:116769. [PMID: 39163778 DOI: 10.1016/j.ejmech.2024.116769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/25/2024] [Accepted: 08/11/2024] [Indexed: 08/22/2024]
Abstract
Phosphodiesterases (PDEs) constitute a family of enzymes that play a pivotal role in the regulation of intracellular levels of cyclic nucleotides, including cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Dysregulation of PDE activity has been implicated in diverse pathological conditions encompassing cardiovascular disorders, pulmonary diseases, and neurological disorders. Small-molecule inhibitors targeting PDEs have emerged as promising therapeutic agents for the treatment of these ailments, some of which have been approved for their clinical use. Despite their success, challenges such as resistance mechanisms and off-target effects persist, urging continuous research for the development of next-generation PDE inhibitors. The objective of this review is to provide an overview of the synthesis and clinical application of representative approved small-molecule PDE inhibitors, with the aim of offering guidance for further advancements in the development of novel PDE inhibitors.
Collapse
Affiliation(s)
- Qingqing Chen
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu Xia
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - He-Nan Liu
- Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuan Chi
- Shengjing Hospital of China Medical University, Shenyang, China
| | - Xun Li
- Shengjing Hospital of China Medical University, Shenyang, China
| | - Li-Shen Shan
- Shengjing Hospital of China Medical University, Shenyang, China
| | - Bing Dai
- Shengjing Hospital of China Medical University, Shenyang, China
| | - Ying Zhu
- Department of Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Ya-Tao Wang
- Rega Institute for Medical Research, Medicinal Chemistry, KU Leuven, Herestraat 49-Box 1041, 3000, Leuven, Belgium.
| | - Xinxin Miao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Qian Sun
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Singh NK, Singh P, Varshney P, Singh A, Bhushan B. Multimodal action of phosphodiesterase 5 inhibitors against neurodegenerative disorders: An update review. J Biochem Mol Toxicol 2024; 38:e70021. [PMID: 39425458 DOI: 10.1002/jbt.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/03/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024]
Abstract
Phosphodiesterase type 5 (PDE5) is an enzyme primarily found in the smooth muscle of the corpus cavernosum and also highly expressed in the substantia nigra, cerebellum, caudate, hippocampal regions and cerebellar purkinje cells, responsible for selectively breaking down cyclic guanosine monophosphate (cGMP) into 5'-GMP and regulate intracellular cGMP levels. As a second messenger, cyclic GMP enhances signals at postsynaptic receptors and triggers downstream effector molecules, leading to changes in gene expression and neuronal responses. Additionally, cGMP signaling transduction cascade, present in the brain, is also essential for learning and memory processes. Mechanistically, PDE5 inhibitors share structural similarities with cGMP, competitively binding to PDE5 and inhibiting cGMP hydrolysis. This action enhances the effects of nitric oxide, resulting in anti-inflammatory and neuroprotective effects. Neurodegenerative disorders entail the progressive loss of neuron structure, culminating in neuronal cell death, with currently available drugs providing only limited symptomatic relief, rendering neurodegeneration considered incurable. PDE5 inhibitors have recently emerged as a potential therapeutic approach for neurodegeneration, neuroinflammation, and diseases involving cognitive impairment. This review elucidates the principal roles of 3',5'-cyclic adenosine monophosphate (cAMP) and cGMP signaling pathways in neuronal functions, believed to play pivotal roles in the pathogenesis of various neurodegenerative disorders. It provides an updated assessment of PDE5 inhibitors as disease-modifying agents for conditions such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, cerebral ischemia, Huntington's disease, and neuroinflammation. The paper aims to review the current understanding of PDE5 inhibitors, which concurrently regulate both cAMP and cGMP signaling pathways, positing that they may exert complementary and synergistic effects in modifying neurodegeneration, thus presenting a novel direction in therapeutic discovery. Moreover, the review provides critical about biological functions, therapeutic potentials, limitations, challenges, and emerging applications of selective PDE5 inhibitors. This comprehensive overview aims to guide future academic and industrial endeavors in this field.
Collapse
Affiliation(s)
- Niraj Kumar Singh
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Chaumuhan, Mathura, India
| | - Pranjul Singh
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Chaumuhan, Mathura, India
| | - Prachi Varshney
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Chaumuhan, Mathura, India
| | - Ashini Singh
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Chaumuhan, Mathura, India
| | - Bharat Bhushan
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Chaumuhan, Mathura, India
| |
Collapse
|
3
|
Crescioli C, Paronetto MP. The Emerging Role of Phosphodiesterase 5 Inhibition in Neurological Disorders: The State of the Art. Cells 2024; 13:1720. [PMID: 39451238 PMCID: PMC11506759 DOI: 10.3390/cells13201720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Growing evidence suggests that neuroinflammation is not just a consequence of neurodegeneration in pathologies such as Alzheimer's disease, Parkinson's disease, Huntington's disease or Amyotrophic lateral sclerosis, but it is rather a determinant factor, which plays a pivotal role in the onset and progression of these disorders. Neuroinflammation can affect cells and processes in the central nervous system (CNS) as well as immune cells, and might precede protein aggregation, which is a hallmark of the neurodegenerative process. Standard treatment methods are far from being able to counteract inflammation and delay neurodegeneration. Remarkably, phosphodiesterase 5 inhibitors (PDE5is), which represent potent vasoactive drugs used as a first-line treatment for erectile dysfunction (ED), display important anti-inflammatory effects through cyclic guanosine monophosphate (cGMP) level stabilization. Since PDE5 hydrolyzes cGMP, several studies positioned PDE5 as a therapeutic target, and more specifically, PDE5is as potential alternative strategies for the treatment of a variety of neurological disorders. Indeed, PDE5is can limit neuroinflammation and enhance synaptic plasticity, with beneficial effects on cognitive function and memory. The aim of this review is to provide an overview of some of the main processes underlying neuroinflammation and neurodegeneration which may be potential targets for PDE5is, focusing on sildenafil, the most extensively studied. Current strategies using PDEis for the treatment of neurodegenerative diseases will be summarized.
Collapse
Affiliation(s)
- Clara Crescioli
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis, 6, 00135 Rome, Italy
| | - Maria Paola Paronetto
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis, 6, 00135 Rome, Italy
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia IRCCS, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| |
Collapse
|
4
|
Kim F, Singh P, Jo H, Xi T, Song DK, Ku SK, Choung JJ. Therapeutic effects of mirodenafil, a phosphodiesterase 5 inhibitor, on stroke models in rats. Neurotherapeutics 2024:e00463. [PMID: 39393981 DOI: 10.1016/j.neurot.2024.e00463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/27/2024] [Accepted: 09/26/2024] [Indexed: 10/13/2024] Open
Abstract
Mirodenafil is a phosphodiesterase 5 (PDE5) inhibitor with high specificity for its target and good blood-brain barrier permeability. The drug, which is currently used for treatment of erectile dysfunction, reduces Aβ and pTau levels and improves cognitive function in mouse models of Alzheimer's disease. In the present study, we investigated the effect of mirodenafil in the transient and permanent middle cerebral artery occlusion (tMCAO and pMCAO) models of stroke in rats. Starting 24 h after cerebral artery occlusion, mirodenafil was administered subcutaneously at doses of 0.5, 1, and 2 mg/kg per day for 9 days in the tMCAO model and for 28 days in the pMCAO model. Mirodenafil significantly increased sensorimotor and cognitive recovery of tMCAO and pMCAO rats compared to saline control rats, and significantly decreased the amount of degenerative cells and cleaved caspase-3 and cleaved PARP immunoreactive cells. Effects were seen in a dose-dependent manner up to 1 mg/kg mirodenafil. The benefits of mirodenafil treatment increased with longer treatment duration, and the largest improvements over control were typically observed on the last assessment day. There was no effect of mirodenafil on infarct volume in both tMCAO and pMCAO rats. In an experiment to determine the treatment window for mirodenafil effects, a protective effect was observed when treatment was delayed 72 h after MCAO, although the most improvement was observed with shorter treatment windows. Using pMCAO and tMCAO rat models of stroke, we determined that mirodenafil improves the recovery of sensorimotor and cognitive functions after MCAO and protects cortical cells from apoptosis and degeneration. Greater benefit was observed with longer duration of treatment, and improvement was seen even when treatment was delayed.
Collapse
Affiliation(s)
- Fred Kim
- AriBio Co. Ltd., Seongnam-si 13535, Republic of Korea
| | | | - Hyunji Jo
- AriBio Co. Ltd., Seongnam-si 13535, Republic of Korea
| | - Tianyang Xi
- AriBio Co. Ltd., Seongnam-si 13535, Republic of Korea
| | | | - Sae Kwang Ku
- College of Korean Medicine, Daegu Haany University, Gyeongsan-si 38610, Republic of Korea.
| | | |
Collapse
|
5
|
Paronetto MP, Crescioli C. Rethinking of phosphodiesterase 5 inhibition: the old, the new and the perspective in human health. Front Endocrinol (Lausanne) 2024; 15:1461642. [PMID: 39355618 PMCID: PMC11442314 DOI: 10.3389/fendo.2024.1461642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/28/2024] [Indexed: 10/03/2024] Open
Abstract
The phosphodiesterases type 5 (PDE5) are catalytic enzymes converting the second messenger cyclic guanosine monophosphate (cGMP) to 5' GMP. While intracellular cGMP reduction is associated with several detrimental effects, cGMP stabilization associates with numerous benefits. The PDE5 specific inhibitors, PDE5i, found their explosive fortune as first-line treatment for erectile dysfunction (ED), due to their powerful vasoactive properties. The favorable effect for ED emerged as side-effect when PDE5i were originally proposed for coronary artery disease (CAD). From that point on, the use of PDE5i captured the attention of researchers, clinicians, and companies. Indeed, PDE5-induced intracellular cGMP stabilization offers a range of therapeutic opportunities associated not only with vasoactive effects, but also with immune regulatory/anti-inflammatory actions. Chronic inflammation is acknowledged as the common link underlying most non-communicable diseases, including metabolic and cardiac diseases, autoimmune and neurodegenerative disorders, cancer. In this scenario, the clinical exploitation of PDE5i is undeniably beyond ED, representing a potential therapeutic tool in several human diseases. This review aims to overview the biological actions exerted by PDE5i, focusing on their ability as modulators of inflammation-related human diseases, with particular attention to inflammatory-related disorders, like cardiac diseases and cancer.
Collapse
Affiliation(s)
- Maria Paola Paronetto
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - Clara Crescioli
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| |
Collapse
|
6
|
Lorenc-Koci E, Kamińska K, Lenda T, Konieczny J. The Effect of Chronic Treatment with the Inhibitor of Phosphodiesterase 5 (PDE5), Sildenafil, in Combination with L-DOPA on Asymmetric Behavior and Monoamine Catabolism in the Striatum and Substantia Nigra of Unilaterally 6-OHDA-Lesioned Rats. Molecules 2024; 29:4318. [PMID: 39339313 PMCID: PMC11434559 DOI: 10.3390/molecules29184318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
The use of phosphodiesterase inhibitors in the treatment of Parkinson's disease is currently widely discussed. The study aimed to investigate the impact of acute and chronic treatment with the phosphodiesterase 5 inhibitor, sildenafil, at low and moderate doses of 2 mg/kg and 6 mg/kg, and L-DOPA (12.5 mg/kg), alone or in combination, on asymmetric behavior and dopamine (DA) and serotonin metabolism in the striatum and substantia nigra of unilaterally 6-OHDA-lesioned rats. Acute administration of sildenafil at both tested doses jointly with L-DOPA significantly increased the number of contralateral rotations during a 2 h measurement compared to L-DOPA alone. The effect of a lower dose of sildenafil combined with L-DOPA was much greater in the second hour of measurement. However, the acute combined administration of a higher dose of sildenafil with L-DOPA resulted in an immediate and much stronger increase in the number of contralateral rotations compared to L-DOPA alone, already visible in the first hour of measurement. Interestingly, the chronic combined administration of 2 mg/kg of sildenafil and L-DOPA significantly reduced the number of contralateral rotations, especially during the first hour of measurement, compared to the long-term treatment with L-DOPA alone. Such an effect was not observed after the long-term combined treatment of a higher dose of sildenafil and L-DOPA compared to L-DOPA alone. The concentration of DA in the ipsilateral striatum and substantia nigra after the last combined chronic dose of sildenafil (2 or 6 mg/kg) and L-DOPA (12.5 mg/kg) was significantly higher than after L-DOPA alone. In spite of much stronger increases in the DA concentration in the ipsilateral striatum and substantia nigra, the number of contralateral rotations was reduced in the group of rats treated with the combination of 2 mg/kg sildenafil and L-DOPA compared to the group receiving L-DOPA alone. Moreover, the combined treatment with a low dose of sildenafil and L-DOPA had an opposite effect on DA catabolism, as assessed by DOPAC/DA and HVA/DA indexes, and these indexes were reduced in the ipsilateral striatum but increased in the contralateral striatum and substantia nigra compared to the treatment with L-DOPA alone. The results of the present study show that the addition of a low dose of a PDE5 inhibitor to the standard L-DOPA therapy differently modulates rotational behavior, the tissue DA concentration and its catabolism in the striatum and substantia nigra.
Collapse
Affiliation(s)
- Elżbieta Lorenc-Koci
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (K.K.); (T.L.); (J.K.)
| | | | | | | |
Collapse
|
7
|
Solé D, Kuschnir FC, Pastorino AC, Constantino CF, Galvão C, Chong E Silva DC, Baptistella E, Goudouris ES, Sakano E, Ejzenbaum F, Matsumoto FY, Mizoguchi FM, Aarestrup FM, Wandalsen GF, Chong Neto HJ, Brito de Oliveira JV, Faibes Lubianca Neto J, Rizzo MCV, Silva Chavarria MLF, Urrutia-Pereira M, Filho NAR, de Paula Motta Rubini N, Mion O, Piltcher OB, Ramos RT, Francesco RD, Roithmann R, Anselmo-Lima WT, Romano FR, de Mello Júnior JF. V Brazilian Consensus on Rhinitis - 2024. Braz J Otorhinolaryngol 2024; 91:101500. [PMID: 39388827 PMCID: PMC11497470 DOI: 10.1016/j.bjorl.2024.101500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 08/17/2024] [Indexed: 10/12/2024] Open
Abstract
Since we published the "IV Brazilian Consensus on Rhinitis", in2017, several advances have been achieved and have enabled a further understanding of the different aspects of "Rhinitis". This new guideline, developed jointly by ASBAI, SBP and SBORL, represents a relevant milestone in the updated and integrated management of the different forms of the disease, and it aims to unify evidence-based approaches to improve the diagnosis and treatment of this common and often underestimated condition. The document covers a wide range of topics, including clear definitions of the different phenotypes and endotypes of rhinitis, risk factors, updated diagnostic criteria, and recommended methods for clinical and laboratory investigation. We stress the importance of detailed clinical history and objective assessment, as well as tools for control and assessing severity tools an accurate diagnostic approach to the disease. Regarding treatment, it emphasizes the treatment customization, considering the severity of symptoms, the presence of comorbidities and the impact on the patient's quality of life. We discuss different drug treatment, in addition to non-pharmacological measures, such as environmental control and specific immunotherapy; and the possible role of immunobiological agents. Furthermore, the consensus addresses issues related to patient education, prevention and management of special situations, such as rhinitis in children, in pregnant women and in the elderly. In short, the "V Brazilian Consensus on Rhinitis" represents a comprehensive and updated guide for healthcare professionals involved in the diagnosis and management of rhinitis, aiming to improve patients' quality of life through an integrated and evidence-based approach.
Collapse
Affiliation(s)
- Dirceu Solé
- Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil; Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil
| | - Fábio Chigres Kuschnir
- Associação Brasileira de Alergia e Imunologia, São Paulo, SP, Brazil; Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Antônio Carlos Pastorino
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Universidade de São Paulo, São Paulo, SP, Brazil
| | - Clóvis F Constantino
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Universidade de Santo Amaro, São Paulo, SP, Brazil
| | - Clóvis Galvão
- Associação Brasileira de Alergia e Imunologia, São Paulo, SP, Brazil; Universidade de São Paulo, São Paulo, SP, Brazil
| | - Débora Carla Chong E Silva
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Universidade Federal do Paraná́, Curitiba, PR, Brazil
| | - Eduardo Baptistella
- Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil
| | - Ekaterini Simões Goudouris
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Eulália Sakano
- Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil; Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Fábio Ejzenbaum
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, SP, Brazil
| | - Fausto Yoshio Matsumoto
- Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil; Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil
| | - Flavio Massao Mizoguchi
- Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil
| | - Fernando Monteiro Aarestrup
- Associação Brasileira de Alergia e Imunologia, São Paulo, SP, Brazil; Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Gustavo F Wandalsen
- Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil; Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil
| | - Herberto José Chong Neto
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Universidade Federal do Paraná́, Curitiba, PR, Brazil
| | | | - José Faibes Lubianca Neto
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Fundação Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | | | | | - Marilyn Urrutia-Pereira
- Associação Brasileira de Alergia e Imunologia, São Paulo, SP, Brazil; Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Nelson Augusto Rosário Filho
- Associação Brasileira de Alergia e Imunologia, São Paulo, SP, Brazil; Universidade Federal do Paraná́, Curitiba, PR, Brazil
| | - Norma de Paula Motta Rubini
- Associação Brasileira de Alergia e Imunologia, São Paulo, SP, Brazil; Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Olavo Mion
- Universidade de São Paulo, São Paulo, SP, Brazil; Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil
| | - Otávio Bejzman Piltcher
- Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil; Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazi
| | - Regina Terse Ramos
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Universidade Federal da Bahia, Salvador, BA, Brazil
| | - Renata Di Francesco
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Universidade de São Paulo, São Paulo, SP, Brazil
| | - Renato Roithmann
- Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil; Universidade Luterana do Brasil, Canos, RS, Brazil
| | - Wilma Terezinha Anselmo-Lima
- Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil; Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Fabrizio Ricci Romano
- Universidade de São Paulo, São Paulo, SP, Brazil; Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil
| | - João Ferreira de Mello Júnior
- Universidade de São Paulo, São Paulo, SP, Brazil; Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil.
| |
Collapse
|
8
|
Ismail EA, El-Sakka AI. An overview of conventional and investigational phosphodiesterase 5 inhibitors for treating erectile dysfunction and other conditions. Expert Opin Investig Drugs 2024; 33:925-938. [PMID: 39096237 DOI: 10.1080/13543784.2024.2388569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/14/2024] [Accepted: 08/01/2024] [Indexed: 08/05/2024]
Abstract
INTRODUCTION There is a rising concern about developing innovative, efficacious PDE5I molecules that provide better safety, efficacy, and tolerability with less adverse effects. Innovative PDE5I with dual targets have also been defined in the literature. Additionally, some of PDE5I are able to selectively inhibit other enzymes such as histone deacetylase, acetylcholine esterase, and cyclooxygenase or act as nitric oxide donors. This review presents knowledge concerning the advanced trends and perspectives in using PDE5I in treatment of ED and other conditions. AREAS COVERED Pre-clinical and early clinical trials that investigated the safety, efficacy, and tolerability of novel PDE5I such as Udenafil, Mirodenafil, Lodenafil, Youkenafil, Celecoxib, and TPN729 in treatment of ED and other conditions. EXPERT OPINION Preclinical and limited early clinical studies of the new molecules of PDE5I have demonstrated encouraging results; however, safety, efficacy, and tolerability are still issues that necessitate further long-term multicenter clinical studies to ensure justification of their uses in treatment of ED and other conditions. Progress in molecular delivery techniques and tailored patient-specific management and additional therapeutic technology will dramatically improve care for ED and other conditions. The dream of ED and many other conditions becoming more effectively managed may be feasible in the near future.
Collapse
Affiliation(s)
- Ezzat A Ismail
- Department of Urology, Suez Canal University, Ismailia, Egypt
| | | |
Collapse
|
9
|
Bailly C. Pharmacological properties of extracts and prenylated isoflavonoids from the fruits of Osage orange (Maclura pomifera (Raf.) C.K.Schneid.). Fitoterapia 2024; 177:106112. [PMID: 38971332 DOI: 10.1016/j.fitote.2024.106112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Osage orange trees (Maclura pomifera (Raf.) C.K.Schneid.) are distributed worldwide, particularly in south-east states of the USA. They produce large quantities of strong yellow fruits, bigger than oranges, but these fruits are inedible, with an acid milky juice which is little consumed by birds and insects. Extracts prepared from Osage orange fruits (hedge apple) have revealed a range of pharmacological properties of interest in human and veterinary medicine. In addition, Osage orange extracts can be used in agriculture and aquaculture, and as dyeing agent for the textile industry. Extracts contain potent antioxidant compounds, notably the isoflavonoids pomiferin and auriculasin, together with other terpenoids and flavonoids. The structural characteristics and pharmacological properties of the major prenylated isoflavones isolated from M. pomifera are discussed here, with a focus on the two phenolic compounds osajin and warangalone, and the two catechol analogues pomiferin and auriculasin. The mechanisms at the origin of their potent antioxidant and anti-inflammatory effects are presented, notably inhibition of xanthine oxidase, phosphodiesterase 5A and kinases such as RKS2 and kRAS. Osajin and auriculasin display marked anticancer properties, owing to their ability to inhibit tumor cell proliferation, migration and tumor angiogenesis. Different molecular mechanisms are discussed, including osajin‑copper complexation and binding to quadruplex DNA. An overview of the mechanism of action of the prenylated isoflavones from Osage orange is presented, with the objective to promote their knowledge and to raise opportunities to better exploit the fruits of Osage orange, abundant but largely neglected at present.
Collapse
Affiliation(s)
- Christian Bailly
- CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, OncoLille Institut, University of Lille, F-59000 Lille, France; Institute of Pharmaceutical Chemistry Albert Lespagnol (ICPAL), Faculty of Pharmacy, University of Lille, F-59006 Lille, France; OncoWitan, Scientific Consulting Office, F-59290 Lille, France.
| |
Collapse
|
10
|
Kaltsas A, Zikopoulos A, Dimitriadis F, Sheshi D, Politis M, Moustakli E, Symeonidis EN, Chrisofos M, Sofikitis N, Zachariou A. Oxidative Stress and Erectile Dysfunction: Pathophysiology, Impacts, and Potential Treatments. Curr Issues Mol Biol 2024; 46:8807-8834. [PMID: 39194738 DOI: 10.3390/cimb46080521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Erectile dysfunction (ED) is a prevalent condition affecting men's sexual health, with oxidative stress (OS) having recently been identified as a significant contributing causative factor. This narrative review aims to elucidate the role of OS in the pathophysiology of ED, focusing on impact, mechanisms, and potential therapeutic interventions. Key findings indicate that OS disrupts endothelial function and nitric oxide (NO) signaling, crucial for erectile function. Various sources of reactive oxygen species (ROS) and their detrimental effects on penile tissue are discussed, including aging, diabetes mellitus, hypertension, hyperlipidemia, smoking, obesity, alcohol consumption, psychological stress, hyperhomocysteinemia, chronic kidney disease, and sickle cell disease. Major sources of ROS, such as NADPH oxidase, xanthine oxidase, uncoupled endothelial NO synthase (eNOS), and mitochondrial electron transport, are identified. NO is scavenged by these ROS, leading to endothelial dysfunction characterized by reduced NO availability, impaired vasodilation, increased vascular tone, and inflammation. This ultimately results in ED due to decreased blood flow to penile tissue and the inability to achieve or maintain an erection. Furthermore, ROS impact the transmission of nitrergic neurotransmitters by causing the death of nitrergic neurons and reducing the signaling of neuronal NO synthase (nNOS), exacerbating ED. Therapeutic approaches targeting OS, including antioxidants and lifestyle modifications, show promise in ameliorating ED symptoms. The review underscores the need for further research to develop effective treatments, emphasizing the interplay between OS and vascular health in ED. Integrating pharmacological and non-pharmacological strategies could enhance clinical outcomes for ED patients, advocating for OS management in ED treatment protocols to improve patient quality of life.
Collapse
Affiliation(s)
- Aris Kaltsas
- Third Department of Urology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | | | - Fotios Dimitriadis
- Department of Urology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Danja Sheshi
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Magdalena Politis
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Efthalia Moustakli
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Evangelos N Symeonidis
- Department of Urology II, European Interbalkan Medical Center, 55535 Thessaloniki, Greece
| | - Michael Chrisofos
- Third Department of Urology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Nikolaos Sofikitis
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Athanasios Zachariou
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
11
|
Li T, Zhang Y, Zhou Z, Guan L, Zhang Y, Zhou Z, Wang W, Zhou X, Cui D, Jiang C, Ruan Y. Phosphodiesterase type 5 inhibitor tadalafil reduces prostatic fibrosis via MiR-3126-3p/FGF9 axis in benign prostatic hyperplasia. Biol Direct 2024; 19:61. [PMID: 39095835 PMCID: PMC11295313 DOI: 10.1186/s13062-024-00504-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024] Open
Abstract
Myofibroblast buildup and prostatic fibrosis play a crucial role in the development of benign prostatic hyperplasia (BPH). Treatments specifically targeting myofibroblasts could be a promising approach for treating BPH. Tadalafil, a phosphodiesterase type 5 (PDE5) inhibitor, holds the potential to intervene in this biological process. This study employs prostatic stromal fibroblasts to induce myofibroblast differentiation through TGFβ1 stimulation. As a result, tadalafil significantly inhibited prostatic stromal fibroblast proliferation and fibrosis process, compared to the control group. Furthermore, our transcriptome sequencing results revealed that tadalafil inhibited FGF9 secretion and simultaneously improved miR-3126-3p expression via TGFβ1 suppression. Overall, TGFβ1 can trigger pro-fibrotic signaling through miR-3126-3p in the prostatic stroma, and the use of tadalafil can inhibit this process.
Collapse
Affiliation(s)
- Tiewen Li
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Wujin Road 85, Shanghai, 200080, China
| | - Yu Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Wujin Road 85, Shanghai, 200080, China
| | - Zeng Zhou
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Wujin Road 85, Shanghai, 200080, China
| | - Lvxin Guan
- Shenzhen Institute of Translational Medicine, the First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Yichen Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Wujin Road 85, Shanghai, 200080, China
| | - Zhiyuan Zhou
- Department of Urology, Shanghai Pudong New Area GongLi Hospital, 219 Miaopu Road, Shanghai, 200135, China
| | - Wenhao Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Wujin Road 85, Shanghai, 200080, China
| | - Xuehao Zhou
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Wujin Road 85, Shanghai, 200080, China
| | - Di Cui
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Wujin Road 85, Shanghai, 200080, China.
| | - Chenyi Jiang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Wujin Road 85, Shanghai, 200080, China.
| | - Yuan Ruan
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Wujin Road 85, Shanghai, 200080, China.
| |
Collapse
|
12
|
Saikia Q, Adhikari K, Sanjeev A, Hazarika A, Sarma K. Isoliquiritigenin: a potential drug candidate for the management of erectile dysfunction. J Pharm Pharmacol 2024; 76:1065-1077. [PMID: 38865360 DOI: 10.1093/jpp/rgae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/23/2024] [Indexed: 06/14/2024]
Abstract
OBJECTIVE This study aimed to assess the erectogenic properties of isoliquiritigenin taking sildenafil (SDF) as the standard. METHODS The binding affinity of isoliquiritigenin (ISL) with the erectile marker proteins (endothelial nitric oxide synthase [eNOS] and enzyme phosphodiesterase type 5 [PDE5]) was investigated using Autodock Vina, which was validated using molecular dynamics simulation. Furthermore, the effect of ISL on the eNOS and PDE5 messenger ribonucleic acid (mRNA) expression and the sexual behavior of mice was investigated, along with the assessment of the pharmacokinetics of ISL. KEY FINDINGS The results revealed that the binding affinity of ISL-eNOS/PDE5 and SDF-eNOS/PDE5 was in the range of -7.5 to -8.6 kcal/mol. The ISL-eNOS/PDE5 complexes remained stable throughout the 100 ns simulation period. Root mean square deviation, Rg, SASA, hydrogen, and hydrophobic interactions were similar between ISL-eNOS/PDE5 and SDF-eNOS/PDE5. Analysis of mRNA expressions in paroxetine (PRX)-induced ED mice showed that the co-administration of PRX with ISL reduced PDE5 and increased eNOS mRNA expression, similar to the co-administered group (PRX+SDF). The sexual behavior study revealed that the results of PRX+ISL were better than those of the PRX+SDF group. Pharmacokinetic evaluation further demonstrated that ISL possesses drug-like properties. CONCLUSIONS The results showed that ISL is equally potent as SDF in terms of binding affinity, specific pharmacological properties, and modulating sexual behavior.
Collapse
Affiliation(s)
- Queen Saikia
- Department of Zoology, Mangaldai College, Mangaldai, Assam 784125, India
| | - Kamal Adhikari
- Department of Zoology, Tihu College, Tihu, Assam 781371, India
| | - Airy Sanjeev
- ACTREC, Sector 22, Utsav Chowk - CISF Rd, Owe Camp, Kharghar, Navi Mumbai, Maharashtra 410210, India
| | - Ajit Hazarika
- Tyagbir Hem Baruah College, Jamugurihat, Sonitpur, Assam 784189, India
| | - Kishore Sarma
- Department of Computational Biology and Biotechnology, Mahapurusha Srimanta Sankardeva Viswavidyalaya (Guwahati Unit), Rupnagar, Guwahati 781032, India
| |
Collapse
|
13
|
Rasheed A, Aslam S, Sadiq HZ, Ali S, Syed R, Panjiyar BK. New and Emerging Therapeutic Drugs for the Treatment of Pulmonary Arterial Hypertension: A Systematic Review. Cureus 2024; 16:e68117. [PMID: 39347150 PMCID: PMC11438555 DOI: 10.7759/cureus.68117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2024] [Indexed: 10/01/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is a serious, progressive, and potentially fatal lung disease characterized by a gradual increase in mean pulmonary arterial pressure to over 20 mmHg at rest. The pathogenesis of PAH is multifactorial. It involves dynamic obstruction of the pulmonary vasculature through vasoconstriction, structural obstruction due to adverse vascular remodeling, and pathological obstruction caused by vascular fibrosis and stiffening, which reduces compliance. PAH often presents with vague initial symptoms and is frequently diagnosed at an advanced stage. The increased pulmonary arterial pressure leads to vascular remodeling, eventually resulting in right ventricular hypertrophy and failure. PAH is a rare condition with a median life expectancy of three years, underscoring the need for effective treatment alternatives. Several FDA-approved therapeutic options are available, including prostacyclin analogs (epoprostenol, iloprost, and treprostinil), the non-prostanoid IP receptor agonist selexipag, selective endothelin receptor antagonists (ERA) (ambrisentan, bosentan, and macitentan), phosphodiesterase 5 inhibitors (sildenafil and tadalafil), and the soluble guanylate cyclase (sGC) stimulator riociguat. Despite these advancements, current medications do not provide a permanent cure. This study presents an overview of current and emerging PAH therapies through a systematic literature review. It involved an analysis of nine studies and a review of 800 papers from reputable journals published between 2013 and June 2023. The research focused on drug effects on the six-minute walk distance (6-MWD) and associated side effects in randomized controlled trials. The review found that while udenafil, imatinib, racecadotril, sotatercept, anastrozole, riociguat, tacrolimus, and ralinepag were evaluated, imatinib was notably associated with adverse side effects. Conversely, udenafil, racecadotril, sotatercept, anastrozole, riociguat, tacrolimus, and ralinepag were found to be safe, well-tolerated, and effective in improving hemodynamic measures and 6-MWDs. This study aims to summarize the developing treatment options currently under clinical trials, highlighting the need for further trials before their application in clinical practice.
Collapse
Affiliation(s)
- Amir Rasheed
- Internal Medicine, Aziz Bhatti Shaheed Teaching Hospital, Gujrat, PAK
| | | | | | - Salamat Ali
- General Surgery, Aziz Bhatti Shaheed Teaching Hospital, Gujrat, PAK
| | - Rizwana Syed
- Internal Medicine, Apollo Institute of Medical Sciences and Research, Chittoor, Chittoor, IND
| | - Binay K Panjiyar
- Research, Ventolini's Lab, Texas Tech University Health Sciences Center, Odessa, USA
- Global Clinical Scholars Research Training, Harvard Medical School, Boston, USA
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
14
|
Chiodi D, Ishihara Y. The role of the methoxy group in approved drugs. Eur J Med Chem 2024; 273:116364. [PMID: 38781921 DOI: 10.1016/j.ejmech.2024.116364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/12/2024] [Accepted: 03/23/2024] [Indexed: 05/25/2024]
Abstract
The methoxy substituent is prevalent in natural products and, consequently, is present in many natural product-derived drugs. It has also been installed in modern drug molecules with no remnant of natural product features because medicinal chemists have been taking advantage of the benefits that this small functional group can bestow on ligand-target binding, physicochemical properties, and ADME parameters. Herein, over 230 methoxy-containing small-molecule drugs, as well as several fluoromethoxy-containing drugs, are presented from the vantage point of the methoxy group. Biochemical mechanisms of action, medicinal chemistry SAR studies, and numerous X-ray cocrystal structures are analyzed to identify the precise role of the methoxy group for many of the drugs and drug classes. Although the methoxy substituent can be considered as the hybridization of a hydroxy and a methyl group, the combination of these functionalities often results in unique effects that can amount to more than the sum of the individual parts.
Collapse
Affiliation(s)
- Debora Chiodi
- Department of Chemistry, Takeda Pharmaceuticals, 9625 Towne Centre Drive, San Diego, CA, 92121, USA
| | - Yoshihiro Ishihara
- Department of Chemistry, Vividion Therapeutics, 5820 Nancy Ridge Drive, San Diego, CA, 92121, USA.
| |
Collapse
|
15
|
Chen G, Zhang L, Zhao ST, Huang H, Fu Z. Differences in ocular adverse events associated with phosphodiesterase-5 inhibitors: a real-world pharmacovigilance study. Expert Opin Drug Saf 2024; 23:877-884. [PMID: 38739482 DOI: 10.1080/14740338.2024.2355335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/28/2024] [Indexed: 05/16/2024]
Abstract
OBJECTIVE Our study aims to characterize the ocular safety profiles of phosphodiesterase type 5 (PDE5) inhibitors and explore the differences among different PDE5 inhibitors. METHODS We analyzed reports on ocular adverse events associated with sildenafil, vardenafil and tadalafil submitted to the FDA Adverse Event Reporting System (FAERS) database from the first quarter of 2004 to the first quarter of 2023. Disproportionality analysis was conducted to evaluate reporting risk profiles. RESULTS Among 61,211 reports qualifying for analysis, 5,127 involved sildenafil, 832 vardenafil, and 3,733 tadalafil. All PDE5 inhibitors showed increased reporting odds ratios (ROR) for ocular adverse events, with vardenafil highest (ROR 4.47) followed by sildenafil and tadalafil. Key ocular adverse events included cyanopsia, optic ischemic neuropathy, visual field defects, unilateral blindness and blindness. Sildenafil showed the highest disproportionality for cyanopsia (ROR 1148.11) while vardenafil and tadalafil showed the highest disproportionality for optic ischemic neuropathy. Time-to-onset analysis also revealed significant differences, with sildenafil having a later median time-to-onset compared to vardenafil and tadalafil. CONCLUSIONS This comprehensive pharmacovigilance study reveals distinct patterns of ocular adverse events associated with PDE5 inhibitors. These findings contribute to a better understanding of the safety profiles of PDE5 inhibitors and may guide healthcare professionals in clinical decision-making.
Collapse
Affiliation(s)
- Guixiang Chen
- Department of Pharmacy, Dongguan Hospital of Traditional Chinese Medicine, Dongguan, Guangdong, China
| | - Li Zhang
- Department of Pharmacy, Dongguan Hospital of Traditional Chinese Medicine, Dongguan, Guangdong, China
| | - Si-Ting Zhao
- Department of Pharmacy, Dongguan Hospital of Traditional Chinese Medicine, Dongguan, Guangdong, China
| | - Hao Huang
- Department of Pharmacy, Dongguan Hospital of Traditional Chinese Medicine, Dongguan, Guangdong, China
| | - Zhiwen Fu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
16
|
Guixé-Muntet S, Quesada-Vázquez S, Gracia-Sancho J. Pathophysiology and therapeutic options for cirrhotic portal hypertension. Lancet Gastroenterol Hepatol 2024; 9:646-663. [PMID: 38642564 DOI: 10.1016/s2468-1253(23)00438-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 04/22/2024]
Abstract
Portal hypertension represents the primary non-neoplastic complication of liver cirrhosis and has life-threatening consequences, such as oesophageal variceal bleeding, ascites, and hepatic encephalopathy. Portal hypertension occurs due to increased resistance of the cirrhotic liver vasculature to portal blood flow and is further aggravated by the hyperdynamic circulatory syndrome. Existing knowledge indicates that the profibrogenic phenotype acquired by sinusoidal cells is the initial factor leading to increased hepatic vascular tone and fibrosis, which cause increased vascular resistance and portal hypertension. Data also suggest that the phenotype of hepatic cells could be further impaired due to the altered mechanical properties of the cirrhotic liver itself, creating a deleterious cycle that worsens portal hypertension in the advanced stages of liver disease. In this Review, we discuss recent discoveries in the pathophysiology and treatment of cirrhotic portal hypertension, a condition with few pharmacological treatment options.
Collapse
Affiliation(s)
- Sergi Guixé-Muntet
- Liver Vascular Biology Research Group, IDIBAPS Biomedical Research Institute, CIBEREHD, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Sergio Quesada-Vázquez
- Liver Vascular Biology Research Group, IDIBAPS Biomedical Research Institute, CIBEREHD, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, IDIBAPS Biomedical Research Institute, CIBEREHD, Hospital Clínic de Barcelona, Barcelona, Spain; Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| |
Collapse
|
17
|
Zhang A, Qin G, Wang J, Li N, Wu S. Application of terahertz Time-Domain spectroscopy and chemometrics-based whale optimization algorithm in PDE5 inhibitor detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123894. [PMID: 38262296 DOI: 10.1016/j.saa.2024.123894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/10/2023] [Accepted: 01/13/2024] [Indexed: 01/25/2024]
Abstract
Combating the illicit use of PDE5 inhibitor drugs is a focal point in forensic science research. In order to achieve rapid identification of such drugs, this study applies terahertz time-domain spectroscopy combined with chemometrics to establish a fast and accurate detection method for PDE5 inhibitors. The optimal detection method is determined by comparing the spectral performance of three optical parameters, namely absorption coefficient, refractive index, and dielectric constant. Linear discriminant models based on different spectral parameters, whale optimization algorithm optimized extreme learning machine models, and whale optimization algorithm optimized random forest models are established. The effectiveness and performance of principal component analysis and competitive adaptive reweighted sampling algorithm for spectral feature data selection are also investigated. The PDE5 inhibitor identification model based on the competitive adaptive reweighted sampling - whale optimization algorithm - random forest (CARS-WOA-RF) model achieves an accuracy of 98.61%, and the identification model for two concentrations of Sildenafil achieves 100% accuracy. The results demonstrate that terahertz time-domain spectroscopy combined with chemometrics can effectively detect various common types of PDE5 inhibitor drugs and different concentrations.
Collapse
Affiliation(s)
- Aolin Zhang
- School of Investigation, People's Public Security University of China, Beijing 102600, China
| | - Ge Qin
- School of Investigation, People's Public Security University of China, Beijing 102600, China
| | - Jifen Wang
- School of Investigation, People's Public Security University of China, Beijing 102600, China.
| | - Na Li
- Material Evidence Authentication and Research Center of Dezhou Public Security Bureau, Dezhou 253000, Shandong, China
| | - Shihao Wu
- School of Investigation, People's Public Security University of China, Beijing 102600, China
| |
Collapse
|
18
|
Rawat SG, Tiwari RK, Kumar A. Blockade of phosphodiesterase 5 by sildenafil reduces tumor growth and potentiates tumor-killing ability of cisplatin in vivo against T cell lymphoma: Implication of modulated apoptosis, reactive oxygen species homeostasis, glucose metabolism, and pH regulation. ENVIRONMENTAL TOXICOLOGY 2024; 39:1909-1922. [PMID: 38059649 DOI: 10.1002/tox.24074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/25/2023] [Accepted: 11/12/2023] [Indexed: 12/08/2023]
Abstract
In the past years, PDE5 has emerged as a promising therapeutic target for many cancers due to its highly upregulated expression. Interestingly, a recent in vitro study by our group has shown the antitumor and chemopotentiating action of sildenafil against T cell lymphoma. Our study showed that lower doses of sildenafil (50 μM) and cisplatin (0.5 μg/mL) exhibited 4% and 23% cytotoxicity against HuT78 cells, respectively, which was dramatically increased up to 50% when treated with both. Hence, the present study was designed to evaluate the antitumor and chemo-potentiating action of sildenafil in a murine model of T cell lymphoma (popularly called as Dalton's lymphoma [DL]). In the present study, DL-bearing mice were administered with vehicle (PBS), sildenafil (5 mg/kg bw), cisplatin (5 mg/kg bw), and sildenafil and cisplatin followed by evaluation of their impact on tumor growth by analyzing various parameters. The apoptosis was assessed by Wright-Giemsa, annexin-V, and DAPI staining. Reactive oxygen species (ROS) level was examined through DCFDA staining. The expression of genes and proteins were estimated by RT-PCR and Western blotting, respectively. The experimental findings of the study demonstrate for the first time that sildenafil inhibits tumor growth and potentiates tumor inhibitory ability of cisplatin by altering apoptosis, glycolysis, ROS homeostasis, and pH regulation in T cell lymphoma-carrying host. In addition, our investigation also showed amelioration of tumor-induced liver and kidney damage by sildenafil. Overall, the experimental data of our study strongly advocate the use and repurposing of SDF in designing promising chemotherapeutic regimens against malignancies of T cells.
Collapse
Affiliation(s)
- Shiv Govind Rawat
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Rajan Kumar Tiwari
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ajay Kumar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
19
|
Checcucci E, Galluzzo A. With great power comes great responsibility: the cardiovascular risk related to PDE5Is assumption. Minerva Urol Nephrol 2024; 76:260-262. [PMID: 38742560 DOI: 10.23736/s2724-6051.24.05877-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Affiliation(s)
- Enrico Checcucci
- Department of Surgery, FPO-IRCCS Candiolo Cancer Institute, Candiolo, Turin, Italy -
| | | |
Collapse
|
20
|
Xie R, Jia B, Cheng L, Zhao N, He X, Wang X, Zhao X, Cui Y. Safety, tolerability, and pharmacokinetics of aildenafil citrate tablets, a novel oral PDE5 inhibitor, in healthy Chinese volunteers after multiple-dose administration. Sex Med 2024; 12:qfae008. [PMID: 38487305 PMCID: PMC10937897 DOI: 10.1093/sexmed/qfae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/30/2023] [Accepted: 01/22/2024] [Indexed: 03/17/2024] Open
Abstract
Background Aildenafil citrate is a potent and selective inhibitor of cyclic guanosine monophosphate-specific phosphodiesterase type 5, developed for the treatment of erectile dysfunction (ED). Aim This study aimed to assess the pharmacokinetics, safety, and tolerability of aildenafil citrate tablets after multiple doses in healthy Chinese males. Methods Twenty participants were divided into 2 groups, 10 participants each. Participants were administered multiple doses of aildenafil citrate tablets at 30 and 60 mg. Outcomes The safety evaluation was based on clinical symptoms and adverse events. Concentrations of aildenafil and its key metabolites (M1, M5, and M12) in human serum were measured by liquid chromatography-tandem mass spectrometry. Results Pharmacokinetic analysis showed rapid absorption and elimination of aildenafil, with a median time to maximum serum concentration of 1 hour and mean terminal half-lives of 2.75 and 3.26 hours in the respective dose groups. The mean maximum concentration was proportional to the aildenafil dose in the range of 30 to 60 mg, although the area under the curve was not proportional for serum concentration vs time 0 to the last measurable time point (24 hours). Multiple doses of aildenafil were well tolerated, with 60.0% of men experiencing treatment-emergent adverse events, notably myalgia and fatigue, particularly in the 60-mg group. Clinical Implications Aildenafil citrate tablets demonstrated favorable tolerability with once-daily administration over the clinical dose range. The occurrence of myalgia and fatigue was more prevalent in the 60-mg group. From a pharmacokinetic perspective, optimal administration of aildenafil citrate tablets appears to be 1 hour before sexual intercourse in men with ED. Strengths and Limitations This study presents robust safety and pharmacokinetic data at expected therapeutic doses, unaffected by clinical factors. The efficacy of aildenafil citrate tablets warrants further validation in individuals with ED. Conclusion Aildenafil citrate tablets exhibited good tolerability in healthy Chinese males following multiple doses at 30 and 60 mg. The 60-mg group showed an increased incidence of myalgia and fatigue, suggesting the need for heightened clinical vigilance. The mean maximum concentration, but not the area under the curve, displayed dose proportionality within the 30- to 60-mg dose range, and no significant drug accumulation was observed with repeated daily administration. Clinical Trial Registration CTR20192473 (http://www.chinadrugtrials.org.cn).
Collapse
Affiliation(s)
- Ran Xie
- Department of Pharmacy, Peking University First Hospital, Beijing 100034, China
| | - Bo Jia
- Department of Pharmacy, Peking University First Hospital, Beijing 100034, China
| | - Lu Cheng
- Department of Pharmacy, Peking University First Hospital, Beijing 100034, China
| | - Nan Zhao
- Department of Pharmacy, Peking University First Hospital, Beijing 100034, China
| | - Xu He
- Department of Pharmacy, Peking University First Hospital, Beijing 100034, China
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100191, China
| | - Xia Wang
- Research and Development Center, Youcare Pharmaceutical Group Co, Ltd, Beijing 100176, China
| | - Xia Zhao
- Department of Pharmacy, Peking University First Hospital, Beijing 100034, China
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, Beijing 100034, China
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100191, China
| |
Collapse
|
21
|
Reimann MJ, Faisst DN, Knold M, Meurs KM, Stern JA, Cremer SE, Møller JE, Ljungvall I, Häggström J, Olsen LH. No impact of polymorphism in the phosphodiesterase 5A gene in Cavalier King Charles Spaniels on pimobendan-induced inhibition of platelet aggregation response. J Vet Intern Med 2023; 37:2145-2156. [PMID: 37743723 PMCID: PMC10658480 DOI: 10.1111/jvim.16871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023] Open
Abstract
BACKGROUND A variant in the canine phosphodiesterase (PDE) 5A gene (PDE5A:E90K) is associated with decreased concentrations of circulating cyclic guanosine monophosphate (cGMP) and response to PDE5 inhibitor treatment. Pimobendan is a PDE inhibitor recommended for medical treatment of certain stages of myxomatous mitral valve disease (MMVD) in dogs. HYPOTHESIS PDE5A:E90K polymorphism attenuates the inhibitory effect of pimobendan on in vitro platelet aggregation and increases basal platelet aggregation in Cavalier King Charles Spaniels (CKCS). Selected clinical variables (MMVD severity, sex, age, hematocrit, platelet count in platelet-rich plasma [PRP], and echocardiographic left ventricular fractional shortening [LV FS]) will not show an association with results. ANIMALS Fifty-two privately owned CKCS with no or preclinical MMVD. METHODS Using blood samples, we prospectively assessed PDE5A genotype using Sanger sequencing and adenosine diphosphate-induced platelet aggregation response (area under the curve [AUC], maximal aggregation [MaxA], and velocity [Vel]) with and without pimobendan using light transmission aggregometry. Dogs also underwent echocardiography. RESULTS Pimobendan inhibited platelet function as measured by AUC, MaxA, and Vel at a concentration of 10 μM (P < .0001) and Vel at 0.03 μM (P < .001). PDE5A:E90K polymorphism did not influence the inhibitory effect of pimobendan or basal platelet aggregation response. CONCLUSIONS AND CLINICAL IMPORTANCE The PDE5A:E90K polymorphism did not influence in vitro basal platelet aggregation response or the inhibitory effect of pimobendan on platelet aggregation in CKCS. Dogs with the PDE5A:E90K polymorphism did not appear to have altered platelet function or response to pimobendan treatment.
Collapse
Affiliation(s)
- Maria J. Reimann
- Department of Veterinary and Animal SciencesUniversity of CopenhagenFrederiksbergDenmark
| | - Daniel N. Faisst
- Department of Veterinary and Animal SciencesUniversity of CopenhagenFrederiksbergDenmark
| | - Mads Knold
- Department of Veterinary and Animal SciencesUniversity of CopenhagenFrederiksbergDenmark
| | - Kathryn M. Meurs
- Department of Clinical SciencesNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Joshua A. Stern
- Department of Medicine and Epidemiology, School of Veterinary MedicineUniversity of California‐DavisDavisCaliforniaUSA
| | - Signe E. Cremer
- Department of Veterinary Clinical SciencesUniversity of CopenhagenFrederiksbergDenmark
| | - Jacob E. Møller
- Department of CardiologyCopenhagen University Hospital RigshospitaletCopenhagenDenmark
| | - Ingrid Ljungvall
- Department of Clinical SciencesSwedish University of Agricultural SciencesUppsalaSweden
| | - Jens Häggström
- Department of Clinical SciencesSwedish University of Agricultural SciencesUppsalaSweden
| | - Lisbeth H. Olsen
- Department of Veterinary and Animal SciencesUniversity of CopenhagenFrederiksbergDenmark
| |
Collapse
|
22
|
Jalil AT, Hassan MM, Ziyad RA, Jasim I, Zabibah R, Fadhil A. PDE5 inhibitors and gastric mucosa: implications for the management of peptic ulcer disease. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2261-2267. [PMID: 37119288 DOI: 10.1007/s00210-023-02503-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/16/2023] [Indexed: 05/01/2023]
Abstract
Peptic ulcer disease (PUD) continues to be a cause of significant morbidity and mortality worldwide. Almost two-thirds of PUD cases are asymptomatic. In symptomatic patients, epigastric pain is the most common presenting symptom of PUD, which is manifested by nausea, abdominal fullness, bloating, and dyspepsia. Most PUD cases are associated with the use of COX inhibitors or Helicobacter pylori infection, or both. The traditional management of PUD includes the use of proton pump inhibitors to reduce the gastric acid secretion and antibacterial drugs to combat H. pylori. Timely diagnosis and treatment of PUD are vital to reduce the risk of associated morbidity and mortality, as is prevention of PUD among patients at high risk, including COX inhibitors users and those infected with H. pylori. PDE5 inhibitors have been used for the management of erectile dysfunction and pulmonary hypertension for decades. In recent years, studies have mentioned tremendous pleiotropic effects of PDE5 inhibitors on gastrointestinal, urogenital, musculoskeletal, reproductive, cutaneous, and neurologic disorders. Recent data shows that PDE5 inhibition augments gastric mucosa protection, and here, we review the most recent findings regarding the use of PDE5 inhibitors for the prevention and management of PUD.
Collapse
Affiliation(s)
- Abduladheem Turki Jalil
- Department of Medical Laboratories Techniques, Al-Mustaqbal University College, Hillah, Babylon, Iraq.
| | | | - Rand Ali Ziyad
- National University of Science and Technology, Nasiriyah, Dhi-Qar, Iraq
| | - Ihsan Jasim
- Department of Pharmacology, Al-Turath University College, Baghdad, Iraq
| | - Rahman Zabibah
- Depaetment of Medical Laboratory Technology, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Ali Fadhil
- College of Medical Technology, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
23
|
Altê GA, Rodrigues ALS. Exploring the Molecular Targets for the Antidepressant and Antisuicidal Effects of Ketamine Enantiomers by Using Network Pharmacology and Molecular Docking. Pharmaceuticals (Basel) 2023; 16:1013. [PMID: 37513925 PMCID: PMC10383558 DOI: 10.3390/ph16071013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Ketamine, a racemic mixture of esketamine (S-ketamine) and arketamine (R-ketamine), has received particular attention for its rapid antidepressant and antisuicidal effects. NMDA receptor inhibition has been indicated as one of the main mechanisms of action of the racemic mixture, but other pharmacological targets have also been proposed. This study aimed to explore the possible multiple targets of ketamine enantiomers related to their antidepressant and antisuicidal effects. To this end, targets were predicted using Swiss Target Prediction software for each ketamine enantiomer. Targets related to depression and suicide were collected by the Gene Cards database. The intersections of targets were analyzed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Network pharmacology analysis was performed using Gene Mania and Cytoscape software. Molecular docking was used to predict the main targets of the network. The results indicated that esketamine and arketamine share some biological targets, particularly NMDA receptor and phosphodiesterases 3A, 7A, and 5A but have specific molecular targets. While esketamine is predicted to interact with the GABAergic system, arketamine may interact with macrophage migration inhibitory factor (MIF). Both ketamine enantiomers activate neuroplasticity-related signaling pathways and show addiction potential. Our results identified novel, poorly explored molecular targets that may be related to the beneficial effects of esketamine and arketamine against depression and suicide.
Collapse
Affiliation(s)
- Glorister A Altê
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis 88037-000, SC, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis 88037-000, SC, Brazil
| |
Collapse
|
24
|
Phua TJ. Understanding human aging and the fundamental cell signaling link in age-related diseases: the middle-aging hypovascularity hypoxia hypothesis. FRONTIERS IN AGING 2023; 4:1196648. [PMID: 37384143 PMCID: PMC10293850 DOI: 10.3389/fragi.2023.1196648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/23/2023] [Indexed: 06/30/2023]
Abstract
Aging-related hypoxia, oxidative stress, and inflammation pathophysiology are closely associated with human age-related carcinogenesis and chronic diseases. However, the connection between hypoxia and hormonal cell signaling pathways is unclear, but such human age-related comorbid diseases do coincide with the middle-aging period of declining sex hormonal signaling. This scoping review evaluates the relevant interdisciplinary evidence to assess the systems biology of function, regulation, and homeostasis in order to discern and decipher the etiology of the connection between hypoxia and hormonal signaling in human age-related comorbid diseases. The hypothesis charts the accumulating evidence to support the development of a hypoxic milieu and oxidative stress-inflammation pathophysiology in middle-aged individuals, as well as the induction of amyloidosis, autophagy, and epithelial-to-mesenchymal transition in aging-related degeneration. Taken together, this new approach and strategy can provide the clarity of concepts and patterns to determine the causes of declining vascularity hemodynamics (blood flow) and physiological oxygenation perfusion (oxygen bioavailability) in relation to oxygen homeostasis and vascularity that cause hypoxia (hypovascularity hypoxia). The middle-aging hypovascularity hypoxia hypothesis could provide the mechanistic interface connecting the endocrine, nitric oxide, and oxygen homeostasis signaling that is closely linked to the progressive conditions of degenerative hypertrophy, atrophy, fibrosis, and neoplasm. An in-depth understanding of these intrinsic biological processes of the developing middle-aged hypoxia could provide potential new strategies for time-dependent therapies in maintaining healthspan for healthy lifestyle aging, medical cost savings, and health system sustainability.
Collapse
Affiliation(s)
- Teow J. Phua
- Molecular Medicine, NSW Health Pathology, John Hunter Hospital, Newcastle, NSW, Australia
| |
Collapse
|
25
|
Perticarrara Ferezin L, Kayzuka C, Rondon Pereira VC, Ferreira de Andrade M, Molina CAF, Tucci S, Tanus-Santos JE, Lacchini R. The rs2682826 Polymorphism of the NOS1 Gene Is Associated with the Degree of Disability of Erectile Dysfunction. Life (Basel) 2023; 13:life13051082. [PMID: 37240727 DOI: 10.3390/life13051082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Erectile dysfunction (ED) is a common male disorder, often associated with cardiovascular disease and ageing. The Sildenafil, a PDE5 inhibitor, can improve the erectile function by prolonging the nitric oxide (NO) downstream effect. NO is a molecule of pivotal importance in erection physiology and is mainly produced by neuronal nitric oxide synthase (nNOS) and endothelial NO synthase (eNOS). While it has been shown that eNOS and nNOS genetic polymorphisms could be associated with Sildenafil responsiveness in ED, no study so far has assessed whether nNOS polymorphisms and PDE5A polymorphism could be associated with increased risk to ED or with intensity of symptoms. A total of 119 ED patients and 114 controls were studied, with evaluation of the clinical disability by the International Index for Erectile Function instrument, plasma assessment of nitrite levels and genomic DNA analysis regarding the rs41279104 and rs2682826 polymorphisms of the NOS1 gene and the rs2389866, rs3733526 and rs13124532 polymorphisms of the PDE5A gene. We have found a significant association of the rs2682826 with lower IIEF scores in the clinical ED group. While this result should be confirmed in other populations, it may be helpful in establishing a genetic panel to better assess disease risk and prognosis on ED therapy.
Collapse
Affiliation(s)
- Leticia Perticarrara Ferezin
- Department of Psychiatric Nursing and Human Sciences, Ribeirão Preto College of Nursing, University of Sao Paulo, Ribeirao Preto 14040-902, Brazil
| | - Cezar Kayzuka
- Department of Pharmacology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14049-902, Brazil
| | - Vitória Carolina Rondon Pereira
- Department of Pharmacology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14049-902, Brazil
| | - Murilo Ferreira de Andrade
- Department of Surgery and Anatomy, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo 05508-090, Brazil
| | | | - Silvio Tucci
- Department of Surgery and Anatomy, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo 05508-090, Brazil
| | - Jose Eduardo Tanus-Santos
- Department of Pharmacology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14049-902, Brazil
| | - Riccardo Lacchini
- Department of Psychiatric Nursing and Human Sciences, Ribeirão Preto College of Nursing, University of Sao Paulo, Ribeirao Preto 14040-902, Brazil
| |
Collapse
|
26
|
Killari KN, Polimati H, Prasanth DSNBK, Singh G, Panda SP, Vedula GS, Tatipamula VB. Salazinic acid attenuates male sexual dysfunction and testicular oxidative damage in streptozotocin-induced diabetic albino rats. RSC Adv 2023; 13:12991-13005. [PMID: 37124014 PMCID: PMC10132129 DOI: 10.1039/d3ra01542d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/21/2023] [Indexed: 05/02/2023] Open
Abstract
Male sexual dysfunctions such as infertility and impotence are recognized as the consequences of diabetes. Salazinic acid (Sa) is a depsidone found in lichen genera of Lobaria, Parmelia, and Usnea, which has prominent free radical and α-glucosidase inhibitory actions. The present study establishes the beneficial role of salazinic acid (Sa) to combat the deleterious effects of streptozotocin-induced diabetes on the male reproductive system of rats. In a dose-dependent manner, Sa significantly restored the reproductive organs weight, sperm characteristics, and testicular histoarchitecture in diabetic rats. Further, a significant recovery of insulin, follicle-stimulating hormone, luteinizing hormone and testosterone levels in serum was recorded in Sa-treated diabetic rats. The malondialdehyde levels were significantly lowered, and the activities of glutathione, superoxide dismutase, glutathione peroxidase and catalase, markedly elevated in the blood serum, as well as testicular tissue after Sa-supplementation. Sa also suppressed the protein expression levels of tumor necrosis factor-α in serum. The high dose of Sa showed significant improvement in glycemia and testicular protection, similar to sildenafil citrate. Moreover, the docking results showed that both Sa and sildenafil have a high affinity toward the target protein, PDE5 with binding affinity values found to be -9.5 and -9.2 kcal mol-1, respectively. Molecularly, both Sa and sildenafil share similar hydrogen bonding patterns with PDE5. Hence, our study clearly showed the protective role of Sa against diabetic-induced spermatogenic dysfunction in rats, possibly by competing with cGMP to bind to the catalytic domain of PDE5 and thereby controlling the oxidative impairment of testes.
Collapse
Affiliation(s)
- Kishore Naidu Killari
- Department of Pharmaceutical Sciences, AU College of Pharmaceutical Sciences, Andhra University Visakhapatnam-530 003 India
| | - Haritha Polimati
- Department of Pharmaceutical Sciences, AU College of Pharmaceutical Sciences, Andhra University Visakhapatnam-530 003 India
| | - D S N B K Prasanth
- Department of Pharmacognosy, KVSR Siddhartha College of Pharmaceutical Sciences Vijayawada AP 520010 India
| | - Gagandeep Singh
- Section of Microbiology, Central Ayurveda Research Institute Jhansi Uttar Pradesh 284003 India
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi New Delhi India
| | - Siva Prasad Panda
- Institute Pharmacology Research Division, Institute of Pharmaceutical Research, GLA University 281406 Mathura Uttar Pradesh India
| | - Girija Sastry Vedula
- Department of Pharmaceutical Sciences, AU College of Pharmaceutical Sciences, Andhra University Visakhapatnam-530 003 India
| | - Vinay Bharadwaj Tatipamula
- Center for Molecular Biology, College of Medicine and Pharmacy, Duy Tan University Danang 550000 Vietnam
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
| |
Collapse
|
27
|
Campolo F, Assenza MR, Venneri MA, Barbagallo F. Once upon a Testis: The Tale of Cyclic Nucleotide Phosphodiesterase in Testicular Cancers. Int J Mol Sci 2023; 24:ijms24087617. [PMID: 37108780 PMCID: PMC10146088 DOI: 10.3390/ijms24087617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Phosphodiesterases are key regulators that fine tune the intracellular levels of cyclic nucleotides, given their ability to hydrolyze cAMP and cGMP. They are critical regulators of cAMP/cGMP-mediated signaling pathways, modulating their downstream biological effects such as gene expression, cell proliferation, cell-cycle regulation but also inflammation and metabolic function. Recently, mutations in PDE genes have been identified and linked to human genetic diseases and PDEs have been demonstrated to play a potential role in predisposition to several tumors, especially in cAMP-sensitive tissues. This review summarizes the current knowledge and most relevant findings regarding the expression and regulation of PDE families in the testis focusing on PDEs role in testicular cancer development.
Collapse
Affiliation(s)
- Federica Campolo
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Maria Rita Assenza
- Faculty of Medicine and Surgery, "Kore" University of Enna, 94100 Enna, Italy
| | - Mary Anna Venneri
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Federica Barbagallo
- Faculty of Medicine and Surgery, "Kore" University of Enna, 94100 Enna, Italy
| |
Collapse
|
28
|
Wise SK, Damask C, Roland LT, Ebert C, Levy JM, Lin S, Luong A, Rodriguez K, Sedaghat AR, Toskala E, Villwock J, Abdullah B, Akdis C, Alt JA, Ansotegui IJ, Azar A, Baroody F, Benninger MS, Bernstein J, Brook C, Campbell R, Casale T, Chaaban MR, Chew FT, Chambliss J, Cianferoni A, Custovic A, Davis EM, DelGaudio JM, Ellis AK, Flanagan C, Fokkens WJ, Franzese C, Greenhawt M, Gill A, Halderman A, Hohlfeld JM, Incorvaia C, Joe SA, Joshi S, Kuruvilla ME, Kim J, Klein AM, Krouse HJ, Kuan EC, Lang D, Larenas-Linnemann D, Laury AM, Lechner M, Lee SE, Lee VS, Loftus P, Marcus S, Marzouk H, Mattos J, McCoul E, Melen E, Mims JW, Mullol J, Nayak JV, Oppenheimer J, Orlandi RR, Phillips K, Platt M, Ramanathan M, Raymond M, Rhee CS, Reitsma S, Ryan M, Sastre J, Schlosser RJ, Schuman TA, Shaker MS, Sheikh A, Smith KA, Soyka MB, Takashima M, Tang M, Tantilipikorn P, Taw MB, Tversky J, Tyler MA, Veling MC, Wallace D, Wang DY, White A, Zhang L. International consensus statement on allergy and rhinology: Allergic rhinitis - 2023. Int Forum Allergy Rhinol 2023; 13:293-859. [PMID: 36878860 DOI: 10.1002/alr.23090] [Citation(s) in RCA: 101] [Impact Index Per Article: 101.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/11/2022] [Accepted: 09/13/2022] [Indexed: 03/08/2023]
Abstract
BACKGROUND In the 5 years that have passed since the publication of the 2018 International Consensus Statement on Allergy and Rhinology: Allergic Rhinitis (ICAR-Allergic Rhinitis 2018), the literature has expanded substantially. The ICAR-Allergic Rhinitis 2023 update presents 144 individual topics on allergic rhinitis (AR), expanded by over 40 topics from the 2018 document. Originally presented topics from 2018 have also been reviewed and updated. The executive summary highlights key evidence-based findings and recommendation from the full document. METHODS ICAR-Allergic Rhinitis 2023 employed established evidence-based review with recommendation (EBRR) methodology to individually evaluate each topic. Stepwise iterative peer review and consensus was performed for each topic. The final document was then collated and includes the results of this work. RESULTS ICAR-Allergic Rhinitis 2023 includes 10 major content areas and 144 individual topics related to AR. For a substantial proportion of topics included, an aggregate grade of evidence is presented, which is determined by collating the levels of evidence for each available study identified in the literature. For topics in which a diagnostic or therapeutic intervention is considered, a recommendation summary is presented, which considers the aggregate grade of evidence, benefit, harm, and cost. CONCLUSION The ICAR-Allergic Rhinitis 2023 update provides a comprehensive evaluation of AR and the currently available evidence. It is this evidence that contributes to our current knowledge base and recommendations for patient evaluation and treatment.
Collapse
Affiliation(s)
- Sarah K Wise
- Otolaryngology-HNS, Emory University, Atlanta, Georgia, USA
| | - Cecelia Damask
- Otolaryngology-HNS, Private Practice, University of Central Florida, Lake Mary, Florida, USA
| | - Lauren T Roland
- Otolaryngology-HNS, Washington University, St. Louis, Missouri, USA
| | - Charles Ebert
- Otolaryngology-HNS, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Joshua M Levy
- Otolaryngology-HNS, Emory University, Atlanta, Georgia, USA
| | - Sandra Lin
- Otolaryngology-HNS, University of Wisconsin, Madison, Wisconsin, USA
| | - Amber Luong
- Otolaryngology-HNS, McGovern Medical School of the University of Texas, Houston, Texas, USA
| | - Kenneth Rodriguez
- Otolaryngology-HNS, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Ahmad R Sedaghat
- Otolaryngology-HNS, University of Cincinnati, Cincinnati, Ohio, USA
| | - Elina Toskala
- Otolaryngology-HNS, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | - Baharudin Abdullah
- Otolaryngology-HNS, Universiti Sains Malaysia, Kubang, Kerian, Kelantan, Malaysia
| | - Cezmi Akdis
- Immunology, Infectious Diseases, Swiss Institute of Allergy and Asthma Research, Davos, Switzerland
| | - Jeremiah A Alt
- Otolaryngology-HNS, University of Utah, Salt Lake City, Utah, USA
| | | | - Antoine Azar
- Allergy/Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Fuad Baroody
- Otolaryngology-HNS, University of Chicago, Chicago, Illinois, USA
| | | | | | - Christopher Brook
- Otolaryngology-HNS, Harvard University, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Raewyn Campbell
- Otolaryngology-HNS, Macquarie University, Sydney, NSW, Australia
| | - Thomas Casale
- Allergy/Immunology, University of South Florida College of Medicine, Tampa, Florida, USA
| | - Mohamad R Chaaban
- Otolaryngology-HNS, Cleveland Clinic, Case Western Reserve University, Cleveland, Ohio, USA
| | - Fook Tim Chew
- Allergy/Immunology, Genetics, National University of Singapore, Singapore, Singapore
| | - Jeffrey Chambliss
- Allergy/Immunology, University of Texas Southwestern, Dallas, Texas, USA
| | - Antonella Cianferoni
- Allergy/Immunology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | | | | | - Anne K Ellis
- Allergy/Immunology, Queens University, Kingston, ON, Canada
| | | | - Wytske J Fokkens
- Otorhinolaryngology, Amsterdam University Medical Centres, Amsterdam, Netherlands
| | | | - Matthew Greenhawt
- Allergy/Immunology, Pediatrics, University of Colorado, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Amarbir Gill
- Otolaryngology-HNS, University of Michigan, Ann Arbor, Michigan, USA
| | - Ashleigh Halderman
- Otolaryngology-HNS, University of Texas Southwestern, Dallas, Texas, USA
| | - Jens M Hohlfeld
- Respiratory Medicine, Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover Medical School, German Center for Lung Research, Hannover, Germany
| | | | - Stephanie A Joe
- Otolaryngology-HNS, University of Illinois Chicago, Chicago, Illinois, USA
| | - Shyam Joshi
- Allergy/Immunology, Oregon Health and Science University, Portland, Oregon, USA
| | | | - Jean Kim
- Otolaryngology-HNS, Johns Hopkins University, Baltimore, Maryland, USA
| | - Adam M Klein
- Otolaryngology-HNS, Emory University, Atlanta, Georgia, USA
| | - Helene J Krouse
- Otorhinolaryngology Nursing, University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Edward C Kuan
- Otolaryngology-HNS, University of California Irvine, Orange, California, USA
| | - David Lang
- Allergy/Immunology, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | | - Matt Lechner
- Otolaryngology-HNS, University College London, Barts Health NHS Trust, London, UK
| | - Stella E Lee
- Otolaryngology-HNS, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Victoria S Lee
- Otolaryngology-HNS, University of Illinois Chicago, Chicago, Illinois, USA
| | - Patricia Loftus
- Otolaryngology-HNS, University of California San Francisco, San Francisco, California, USA
| | - Sonya Marcus
- Otolaryngology-HNS, Stony Brook University, Stony Brook, New York, USA
| | - Haidy Marzouk
- Otolaryngology-HNS, State University of New York Upstate, Syracuse, New York, USA
| | - Jose Mattos
- Otolaryngology-HNS, University of Virginia, Charlottesville, Virginia, USA
| | - Edward McCoul
- Otolaryngology-HNS, Ochsner Clinic, New Orleans, Louisiana, USA
| | - Erik Melen
- Pediatric Allergy, Karolinska Institutet, Stockholm, Sweden
| | - James W Mims
- Otolaryngology-HNS, Wake Forest University, Winston Salem, North Carolina, USA
| | - Joaquim Mullol
- Otorhinolaryngology, Hospital Clinic Barcelona, Barcelona, Spain
| | - Jayakar V Nayak
- Otolaryngology-HNS, Stanford University, Palo Alto, California, USA
| | - John Oppenheimer
- Allergy/Immunology, Rutgers, State University of New Jersey, Newark, New Jersey, USA
| | | | - Katie Phillips
- Otolaryngology-HNS, University of Cincinnati, Cincinnati, Ohio, USA
| | - Michael Platt
- Otolaryngology-HNS, Boston University, Boston, Massachusetts, USA
| | | | | | - Chae-Seo Rhee
- Rhinology/Allergy, Seoul National University Hospital and College of Medicine, Seoul, Korea
| | - Sietze Reitsma
- Otolaryngology-HNS, University of Amsterdam, Amsterdam, Netherlands
| | - Matthew Ryan
- Otolaryngology-HNS, University of Texas Southwestern, Dallas, Texas, USA
| | - Joaquin Sastre
- Allergy, Fundacion Jiminez Diaz, University Autonoma de Madrid, Madrid, Spain
| | - Rodney J Schlosser
- Otolaryngology-HNS, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Theodore A Schuman
- Otolaryngology-HNS, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Marcus S Shaker
- Allergy/Immunology, Dartmouth Geisel School of Medicine, Lebanon, New Hampshire, USA
| | - Aziz Sheikh
- Primary Care, University of Edinburgh, Edinburgh, Scotland
| | - Kristine A Smith
- Otolaryngology-HNS, University of Utah, Salt Lake City, Utah, USA
| | - Michael B Soyka
- Otolaryngology-HNS, University of Zurich, University Hospital of Zurich, Zurich, Switzerland
| | - Masayoshi Takashima
- Otolaryngology-HNS, Houston Methodist Academic Institute, Houston, Texas, USA
| | - Monica Tang
- Allergy/Immunology, University of California San Francisco, San Francisco, California, USA
| | | | - Malcolm B Taw
- Integrative East-West Medicine, University of California Los Angeles, Westlake Village, California, USA
| | - Jody Tversky
- Allergy/Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Matthew A Tyler
- Otolaryngology-HNS, University of Minnesota, Minneapolis, Minnesota, USA
| | - Maria C Veling
- Otolaryngology-HNS, University of Texas Southwestern, Dallas, Texas, USA
| | - Dana Wallace
- Allergy/Immunology, Nova Southeastern University, Ft. Lauderdale, Florida, USA
| | - De Yun Wang
- Otolaryngology-HNS, National University of Singapore, Singapore, Singapore
| | - Andrew White
- Allergy/Immunology, Scripps Clinic, San Diego, California, USA
| | - Luo Zhang
- Otolaryngology-HNS, Beijing Tongren Hospital, Beijing, China
| |
Collapse
|
29
|
Hao S, Jin Y, Yu Y, Wang J, Zou J, Wang Y. Identification of potential molecular mechanisms and candidate drugs for radiotherapy- and chemotherapy-induced mucositis. Support Care Cancer 2023; 31:223. [PMID: 36939936 DOI: 10.1007/s00520-023-07686-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 03/12/2023] [Indexed: 03/21/2023]
Abstract
BACKGROUND Radiotherapy-induced oral mucositis (RIOM) and chemotherapy-induced oral mucositis (CIOM) are common complications in cancer patients, leading to negative clinical manifestations, reduced quality of life, and unsatisfactory treatment outcomes. OBJECTIVE The present study aimed to identify potential molecular mechanisms and candidate drugs by data mining. METHODS We obtained a preliminary list of genes associated with RIOM and CIOM. In-depth information on these genes was explored by functional and enrichment analyses. Then, the drug-gene interaction database was used to determine the interaction of the final enriched gene list with known drugs and analyze the drug candidates. RESULTS AND CONCLUSION This study identified 21 hub genes that may play an important role in RIOM and CIOM, respectively. Through our data mining, bioinformatics survey, and candidate drug selection, TNF, IL-6, and TLR9 could play an important role in disease progression and treatment. In addition, eight candidate drugs (olokizumab, chloroquine, hydroxychloroquine, adalimumab, etanercept, golimumab, infliximab, and thalidomide) were selected by the drug-gene interaction literature search additionally, as candidates for treating RIOM and CIOM.
Collapse
Affiliation(s)
- Siyuan Hao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, S. Renmin Road, Chengdu, 610041, People's Republic of China
| | - Yixin Jin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, S. Renmin Road, Chengdu, 610041, People's Republic of China
| | - Yue Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, S. Renmin Road, Chengdu, 610041, People's Republic of China
| | - Jiantao Wang
- State Key Laboratory of Biotherapy and Department of Lung Cancer Center and Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Zou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, S. Renmin Road, Chengdu, 610041, People's Republic of China
| | - Yan Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, S. Renmin Road, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
30
|
Xiao M, Lai D, Yu Y, Wu Q, Zhang C. Pathogenesis of pulmonary hypertension caused by left heart disease. Front Cardiovasc Med 2023; 10:1079142. [PMID: 36937903 PMCID: PMC10020203 DOI: 10.3389/fcvm.2023.1079142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Pulmonary hypertension has high disability and mortality rates. Among them, pulmonary hypertension caused by left heart disease (PH-LHD) is the most common type. According to the 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension, PH-LHD is classified as group 2 pulmonary hypertension. PH-LHD belongs to postcapillary pulmonary hypertension, which is distinguished from other types of pulmonary hypertension because of its elevated pulmonary artery wedge pressure. PH-LHD includes PH due to systolic or diastolic left ventricular dysfunction, mitral or aortic valve disease and congenital left heart disease. The primary strategy in managing PH-LHD is optimizing treatment of the underlying cardiac disease. Recent clinical studies have found that mechanical unloading of left ventricle by an implantable non-pulsatile left ventricular assist device with continuous flow properties can reverse pulmonary hypertension in patients with heart failure. However, the specific therapies for PH in LHD have not yet been identified. Treatments that specifically target PH in LHD could slow its progression and potentially improve disease severity, leading to far better clinical outcomes. Therefore, exploring the current research on the pathogenesis of PH-LHD is important. This paper summarizes and classifies the research articles on the pathogenesis of PH-LHD to provide references for the mechanism research and clinical treatment of PH-LHD, particularly molecular targeted therapy.
Collapse
Affiliation(s)
- Mingzhu Xiao
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Disheng Lai
- Department of Cardiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yumin Yu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Qingqing Wu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Caojin Zhang
- Department of Cardiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
31
|
Philip AM, Ahmed WS, Biswas KH. Reversal of the unique Q493R mutation increases the affinity of Omicron S1-RBD for ACE2. Comput Struct Biotechnol J 2023; 21:1966-1977. [PMID: 36936816 PMCID: PMC10006685 DOI: 10.1016/j.csbj.2023.02.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/28/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
The SARS-CoV-2 Omicron variant containing 15 mutations, including the unique Q493R, in the spike protein receptor binding domain (S1-RBD) is highly infectious. While comparison with previously reported mutations provide some insights, the mechanism underlying the increased infections and the impact of the reversal of the unique Q493R mutation seen in BA.4, BA.5, BA.2.75, BQ.1 and XBB lineages is not yet completely understood. Here, using structural modelling and molecular dynamics (MD) simulations, we show that the Omicron mutations increases the affinity of S1-RBD for ACE2, and a reversal of the unique Q493R mutation further increases the ACE2-S1-RBD affinity. Specifically, we performed all atom, explicit solvent MD simulations using a modelled structure of the Omicron S1-RBD-ACE2 and compared the trajectories with the WT complex revealing a substantial reduction in the Cα-atom fluctuation in the Omicron S1-RBD and increased hydrogen bond and other interactions. Residue level analysis revealed an alteration in the interaction between several residues including a switch in the interaction of ACE2 D38 from S1-RBD Y449 in the WT complex to the mutated R residue (Q493R) in Omicron complex. Importantly, simulations with Revertant (Omicron without the Q493R mutation) complex revealed further enhancement of the interaction between S1-RBD and ACE2. Thus, results presented here not only provide insights into the increased infectious potential of the Omicron variant but also a mechanistic basis for the reversal of the Q493R mutation seen in some Omicron lineages and will aid in understanding the impact of mutations in SARS-CoV-2 evolution.
Collapse
Affiliation(s)
- Angelin M. Philip
- Division of Genomics and Translational Biomedicine, College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
| | - Wesam S. Ahmed
- Division of Biological and Biomedical Sciences, College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
| | - Kabir H. Biswas
- Division of Biological and Biomedical Sciences, College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
| |
Collapse
|
32
|
Chen Z, Huang Y, Cao D, Qiu S, Chen B, Li J, Bao Y, Wei Q, Han P, Liu L. Function of sildenafil on diseases other than urogenital system: An umbrella review. Front Pharmacol 2023; 14:1033492. [PMID: 36814496 PMCID: PMC9939646 DOI: 10.3389/fphar.2023.1033492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023] Open
Abstract
Background: To investigate the function of sildenafil on diseases other than urogenital system, an umbrella review was conducted. Methods: Meta-analysis and systematic reviews on this topic were comprehensively evaluated in this umbrella review. Quality of evidence was evaluated through AMSTAR and the Grading of Recommendations, Assessment, Development and Evaluation system to generate a reliable and valid conclusion. Results: 77 out of 1164 meta-analysis were enrolled. 33 significant outcomes and 41 non-significant outcomes were extracted from all eligible articles. We found sildenafil did significant help in reducing arterial systolic pressure, mean pulmonary arterial pressure, pulmonary arterial pressure, systolic pulmonary arterial pressure in patients with pulmonary and cardiovascular diseases. Besides, sildenafil also improved exercise capacity or performance in patients with pulmonary and cardiovascular diseases. Other than these patients, this drug contributed great help in pregnant women with fetal growth restriction and preeclampsia by increasing the weight of newborns and lowering uterine and umbilical pulsatility indices. Additionally, it was reported that utilization of sildenafil has brought increased risk of melanoma. Conclusion: We can conclude from our study that sildenafil played an important role in many fields, especially in vascular protection. This finding provides a strong evidence for further expansion of sildenafil utilization in other diseases.
Collapse
Affiliation(s)
- Zeyu Chen
- Department of Urology and Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China,West China School of Clinical Medicine, Sichuan University, Chengdu, China
| | - Yin Huang
- Department of Urology and Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China,West China School of Clinical Medicine, Sichuan University, Chengdu, China
| | - Dehong Cao
- Department of Urology and Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Shi Qiu
- Department of Urology and Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Bo Chen
- Department of Urology and Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China,West China School of Clinical Medicine, Sichuan University, Chengdu, China
| | - Jin Li
- Department of Urology and Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China,West China School of Clinical Medicine, Sichuan University, Chengdu, China
| | - Yige Bao
- Department of Urology and Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qiang Wei
- Department of Urology and Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Han
- Department of Urology and Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Ping Han, ; Liangren Liu,
| | - Liangren Liu
- Department of Urology and Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Ping Han, ; Liangren Liu,
| |
Collapse
|
33
|
Gui X, Chu X, Du Y, Wang Y, Zhang S, Ding Y, Tong H, Xu M, Li Y, Ju W, Sun Z, Li Z, Zeng L, Xu K, Qiao J. Impaired Platelet Function and Thrombus Formation in PDE5A-Deficient Mice. Thromb Haemost 2023; 123:207-218. [PMID: 36252813 DOI: 10.1055/a-1962-1613] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Intracellular cyclic GMP (cGMP) inhibits platelet function. Platelet cGMP levels are controlled by phosphodiesterase 5A (PDE5A)-mediated degradation. However, the exact role of PDE5A in platelet function and thrombus formation remains poorly understood. In this study, we characterized the role of PDE5A in platelet activation and function. Platelets were isolated from wild type or PDE5A-/- mice to measure platelet aggregation, activation, phosphatidylserine exposure (annexin-V binding), reactive oxygen species (ROS) generation, platelet spreading as well as clot retraction. Cytosolic calcium mobilization was measured using Fluo-4 AM by a microplate reader. Western blot was used to measure the phosphorylation of VASP, ERK1/2, p38, JNK, and AKT. FeCl3-induced arterial thrombosis and venous thrombosis were assessed to evaluate the in vivo hemostatic function and thrombus formation. Additionally, in vitro thrombus formation was assessed in a microfluidic whole-blood perfusion assay. PDE5A-deficient mice presented significantly prolonged tail bleeding time and delayed arterial and venous thrombus formation. PDE5A deficiency significantly inhibited platelet aggregation, ATP release, P-selectin expression, and integrin aIIbb3 activation. In addition, an impaired spreading on collagen or fibrinogen and clot retraction was observed in PDE5A-deficient platelets. Moreover, PDE5A deficiency reduced phosphatidylserine exposure, calcium mobilization, ROS production, and increased intracellular cGMP level along with elevated VASP phosphorylation and reduced phosphorylation of ERK1/2, p38, JNK, and AKT. In conclusion, PDE5A modulates platelet activation and function and thrombus formation, indicating that therapeutically targeting it might be beneficial for the treatment of thrombotic diseases.
Collapse
Affiliation(s)
- Xiang Gui
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, People's Republic of China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, People's Republic of China
| | - Xiang Chu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, People's Republic of China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, People's Republic of China
| | - Yuwei Du
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, People's Republic of China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, People's Republic of China
| | - Yuhan Wang
- School of Medical Technology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Sixuan Zhang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, People's Republic of China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, People's Republic of China
| | - Yangyang Ding
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, People's Republic of China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, People's Republic of China
| | - Huan Tong
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, People's Republic of China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, People's Republic of China
| | - Mengdi Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, People's Republic of China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, People's Republic of China
| | - Yue Li
- School of Medical Technology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Wen Ju
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, People's Republic of China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, People's Republic of China
| | - Zengtian Sun
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, People's Republic of China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, People's Republic of China
| | - Zhenyu Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, People's Republic of China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, People's Republic of China
| | - Lingyu Zeng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, People's Republic of China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, People's Republic of China.,School of Medical Technology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, People's Republic of China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, People's Republic of China
| | - Jianlin Qiao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, People's Republic of China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, People's Republic of China
| |
Collapse
|
34
|
El-Kawy OA, Ibrahim IT, Abd-Elhaliem SM, Attallah KM. 99mTc-Avanafil as a Potential Tracer for Erectile Dysfunction: Synthesis, Characterization, and Evaluation. RADIOCHEMISTRY 2023; 65:91-100. [DOI: 10.1134/s1066362223010149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 09/02/2023]
|
35
|
Zhang L, Bao B, Guo J, Qin Z, Huang H, Chen L, Liu B. Current status and prospects of diabetes mellitus induced erectile dysfunction: A bibliometric and visualization study. Front Endocrinol (Lausanne) 2023; 14:1168744. [PMID: 37065751 PMCID: PMC10100080 DOI: 10.3389/fendo.2023.1168744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 03/21/2023] [Indexed: 04/18/2023] Open
Abstract
BACKGROUND The prevalence of diabetes mellitus-induced erectile dysfunction (DMED) has recently increased, which has prompted numerous DMED studies. Here, we conduct a bibliometric analysis of relevant literature in the field of DMED and to discuss the research hotspots and future development directions. METHODS The Web of Science Core Collection database was searched for literature on DMED, and literature characterization including the number of articles, journals, countries/regions, institutions, authors, keywords, and other information was performed using VOS viewer and CiteSpace software. In addition, Pajek software was used for visual map adjustment, and GraphPad Prism was used to generate line graphs. RESULTS A total of 804 articles concerning DMED were included in this study. The Journal of Sexual Medicine issued the most documents(92 articles). The United States and China were in the leading position in the field of DMED research, and cross-institutional collaboration on DMED research worldwide needs to be further strengthened. Ryu JK were the authors with the highest number of documents issued (22 articles) while Bivalacqua TJ was the author with the most co-citated(249 co-citated). The keywords analysis shows that the main research hotspots in the field of DMED were mechanism discussions and disease treatment and management. CONCLUSIONS Global research on DMED is expected to increase further. The investigation of the mechanism of DMED and the exploration of new therapeutic means and targets are the focus of future research.
Collapse
Affiliation(s)
- Lei Zhang
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
- Department of Andrology, China-Japan Friendship Hospital, Beijing, China
| | - Binghao Bao
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
- Department of Andrology, China-Japan Friendship Hospital, Beijing, China
| | - Jianqiang Guo
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
- Department of Andrology, China-Japan Friendship Hospital, Beijing, China
| | - Zhongjian Qin
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
- Department of Andrology, China-Japan Friendship Hospital, Beijing, China
| | - Haonan Huang
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
- Department of Andrology, China-Japan Friendship Hospital, Beijing, China
| | - Lu Chen
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
- Department of Andrology, China-Japan Friendship Hospital, Beijing, China
| | - Baoxing Liu
- Department of Andrology, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Baoxing Liu,
| |
Collapse
|
36
|
Chew NWS, Loong SSE, Foo R. Progress in molecular biology and translational science: Epigenetics in cardiovascular health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 197:105-134. [PMID: 37019589 DOI: 10.1016/bs.pmbts.2023.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Conrad Waddington's epigenetics landscape has provided a metaphorical framework for how cells progress from undifferentiated states to one of several discrete, distinct, differentiated cell fates. The understanding of epigenetics has evolved over time, with DNA methylation being the most studied epigenetic modification, followed by histone modifications and non-coding RNA. Cardiovascular diseases (CVD) are leading contributors to death worldwide, with the prevalence of CVDs increasing across the last couple of decades. Significant amount of resources being poured into researching key mechanisms and underpinnings of the various CVDs. These molecular studies looked at the genetics, epigenetics as well as the transcriptomics of various cardiovascular conditions, aiming to provide mechanistic insights. It has paved the way for therapeutics to be developed and in recent years, epi-drugs for the treatment of CVDs. This chapter aims to cover the various roles of epigenetics in the context of cardiovascular health and disease. The following will be examined in detail: the developments in basic experimental techniques used to study epigenetics, the role of epigenetics in various CVDs (hypertension, atrial fibrillation, atherosclerosis, and heart failure), and current advances in epi-therapeutics, providing a holistic view of the current concerted efforts in advancing the field of epigenetics in CVDs.
Collapse
Affiliation(s)
- Nicholas W S Chew
- Department of Cardiology, National University Heart Centre, National University Health System, Singapore, Singapore.
| | - Shaun S E Loong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Roger Foo
- Department of Cardiology, National University Heart Centre, National University Health System, Singapore, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
37
|
Olawale F, Olofinsan K, Ogunyemi OM, Karigidi KO, Gyebi GA, Ibrahim IM, Iwaloye O. Deciphering the therapeutic role of Kigelia africana fruit in erectile dysfunction through metabolite profiling and molecular modelling. INFORMATICS IN MEDICINE UNLOCKED 2023. [DOI: 10.1016/j.imu.2023.101190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
|
38
|
Basile L, Marino M, La Vignera S. Is sildenafil a doping drug in hypoxic conditions? Aging Male 2022; 25:156-158. [PMID: 35612871 DOI: 10.1080/13685538.2022.2079628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Affiliation(s)
- Livia Basile
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - Marta Marino
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
39
|
Sheng J, Zhang S, Wu L, Kumar G, Liao Y, GK P, Fan H. Inhibition of phosphodiesterase: A novel therapeutic target for the treatment of mild cognitive impairment and Alzheimer's disease. Front Aging Neurosci 2022; 14:1019187. [PMID: 36268188 PMCID: PMC9577554 DOI: 10.3389/fnagi.2022.1019187] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia and is ranked as the 6th leading cause of death in the US. The prevalence of AD and dementia is steadily increasing and expected cases in USA is 14.8 million by 2050. Neuroinflammation and gradual neurodegeneration occurs in Alzheimer's disease. However, existing medications has limitation to completely abolish, delay, or prevent disease progression. Phosphodiesterases (PDEs) are large family of enzymes to hydrolyze the 3'-phosphodiester links in cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) in signal-transduction pathways for generation of 5'-cyclic nucleotides. It plays vital role to orchestrate several pharmacological activities for proper cell functioning and regulating the levels of cAMP and cGMP. Several evidence has suggested that abnormal cAMP signaling is linked to cognitive problems in neurodegenerative disorders like AD. Therefore, the PDE family has become a widely accepted and multipotential therapeutic target for neurodegenerative diseases. Notably, modulation of cAMP/cGMP by phytonutrients has a huge potential for the management of AD. Natural compounds have been known to inhibit phosphodiesterase by targeting key enzymes of cGMP synthesis pathway, however, the mechanism of action and their therapeutic efficacy has not been explored extensively. Currently, few PDE inhibitors such as Vinpocetine and Nicergoline have been used for treatment of central nervous system (CNS) disorders. Considering the role of flavonoids to inhibit PDE, this review discussed the therapeutic potential of natural compounds with PDE inhibitory activity for the treatment of AD and related dementia.
Collapse
Affiliation(s)
- Jianwen Sheng
- Department of Gastroenterology, The People’s Hospital of Yichun City, Yichun, China
| | - Shanjin Zhang
- Department of Gastroenterology, The People’s Hospital of Yichun City, Yichun, China
| | - Lule Wu
- Department of Gastroenterology, The People’s Hospital of Yichun City, Yichun, China
| | - Gajendra Kumar
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Yuanhang Liao
- Department of Gastroenterology, The People’s Hospital of Yichun City, Yichun, China
| | - Pratap GK
- Department of Biochemistry, Davangere University, Davangere, India
| | - Huizhen Fan
- Department of Gastroenterology, The People’s Hospital of Yichun City, Yichun, China
| |
Collapse
|
40
|
Xanthine Analogs Suppress Trypanosoma cruzi Infection In Vitro Using PDEs as Targets. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13040052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Trypanosoma cruzi (T. cruzi), the causative agent of Chagas disease, has infected 6 million people, putting 70 million people at risk worldwide. Presently, very limited drugs are available, and these have severe side effects. Hence, there is an urgency to delve into other pathways and targets for novel drugs. Trypanosoma cruzi (T. cruzi) expresses a number of different cyclic AMP (cAMP)-specific phosphodiesterases (PDEs). cAMP is one of the key regulators of mammalian cell proliferation and differentiation, and it also plays an important role in T. cruzi growth. Very few studies have demonstrated the important role of cyclic nucleotide-specific PDEs in T. cruzi’s survival. T. cruzi phosphodiesterase C (TcrPDEC) has been proposed as a potential new drug target for treating Chagas disease. In the current study, we screen several analogs of xanthine for potency against trypomastigote and amastigote growth in vitro using three different strains of T. cruzi (Tulahuen, Y and CA-1/CL72). One of the potent analogs, GVK14, has been shown to inhibit all three strains of amastigotes in host cells as well as axenic cultures. In conclusion, xanthine analogs that inhibit T. cruzi PDE may provide novel alternative therapeutic options for Chagas disease.
Collapse
|
41
|
De Bie FR, Basurto D, Kumar S, Deprest J, Russo FM. Sildenafil during the 2nd and 3rd Trimester of Pregnancy: Trials and Tribulations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11207. [PMID: 36141480 PMCID: PMC9517616 DOI: 10.3390/ijerph191811207] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 06/16/2023]
Abstract
Sildenafil, a phosphodiesterase 5 inhibitor with a vasodilatory and anti-remodeling effect, has been investigated concerning various conditions during pregnancy. Per indication, we herein review the rationale and the most relevant experimental and clinical studies, including systematic reviews and meta-analyses, when available. Indications for using sildenafil during the second and third trimester of pregnancy include maternal pulmonary hypertension, preeclampsia, preterm labor, fetal growth restriction, oligohydramnios, fetal distress, and congenital diaphragmatic hernia. For most indications, the rationale for administering prenatal sildenafil is based on limited, equivocal data from in vitro studies and rodent disease models. Clinical studies report mild maternal side effects and suggest good fetal tolerance and safety depending on the underlying pathology.
Collapse
Affiliation(s)
| | - David Basurto
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Sailesh Kumar
- Mater Research Institute and School of Medicine, University of Queensland, Brisbane, QLD 4343, Australia
| | - Jan Deprest
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
- Department of Obstetrics and Gynecology, UZ Leuven, 3000 Leuven, Belgium
| | - Francesca Maria Russo
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
- Department of Obstetrics and Gynecology, UZ Leuven, 3000 Leuven, Belgium
| |
Collapse
|
42
|
Aydin P, Magden ZBA, Uzuncakmak SK, Halici H, Akgun N, Mendil AS, Mokhtare B, Cadirci E. Avanafil as a Novel Therapeutic Agent Against LPS-Induced Acute Lung Injury via Increasing CGMP to Downregulate the TLR4-NF-κB-NLRP3 Inflammasome Signaling Pathway. Lung 2022; 200:561-572. [PMID: 36040529 DOI: 10.1007/s00408-022-00564-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/14/2022] [Indexed: 01/16/2023]
Abstract
AIM We demonstrate the effect of PDE5 inhibitors in cases of acute lung injury via the relationship between cGMP/NO and the TLR4-NF-κB-NLRP3 pathway. MATERIALS AND METHODS This study was performed with 30 male Wistar albino rats. Lipopolysaccharide (LPS) was administered intratracheally to the rats and acute lung injury (ALI) was induced. Twelve hours after LPS administration, avanafil, prepared at suitable doses according to the body weights of the animals, was administered by oral gavage. Lung tissue samples of all groups were examined histopathologically and by immunochemical staining (IL-1β, iNOS, TLR4, and NF-κB). The iNOS, NLRP3, and IL-1B mRNA expression levels in the lung tissues were measured by RT-PCR. The left upper lobes of the rat lungs were dried at 70 °C for 48 h and lung water content was calculated. RESULT Statistically significant increases in iNOS, NLRP3, and IL-1β mRNA expressions were observed in the rats with ALI compared to the healthy controls (p < 0.0001). Those increased expressions were reduced at both doses of avanafil (p < 0.0001). This reduction was found to be greater at 20 mg/kg (p < 0.0001). IL-1β, iNOS, TLR4, and NF-κB immunopositivity was moderate/severe in the ALI group and mild in the group with ALI + avanafil at 20 mg/kg (p < 0.05). When the wet/dry lung ratios were calculated, a statistically significant increase was seen in the ALI group compared to the healthy rats (p < 0.05). That increase was decreased with both avanafil doses (p < 0.05). CONCLUSION We suggest that avanafil may prevent the progression of ALI and be effective in its treatment. We hope that this study will be supported by future clinical studies to yield a new indication for avanafil.
Collapse
Affiliation(s)
- Pelin Aydin
- Department of Anesthesiology and Reanimation, Educational and Research Hospital, Erzurum, Turkey. .,Department of Pharmacology, Faculty of Medicine, Ataturk University, Ataturk University Campus, Ataturk District, Erzurum, 25240, Yakutiye, Turkey.
| | - Zeynep Berna Aksakalli Magden
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Ataturk University Campus, Ataturk District, Erzurum, 25240, Yakutiye, Turkey
| | | | - Hamza Halici
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Ataturk University Campus, Ataturk District, Erzurum, 25240, Yakutiye, Turkey.,Department of Hınıs Vocational Training School, Ataturk University, Erzurum, Turkey
| | - Nurullah Akgun
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Ataturk University Campus, Ataturk District, Erzurum, 25240, Yakutiye, Turkey
| | - Ali Sefa Mendil
- Department of Pathology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Behzad Mokhtare
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Elif Cadirci
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Ataturk University Campus, Ataturk District, Erzurum, 25240, Yakutiye, Turkey
| |
Collapse
|
43
|
Crocetti L, Floresta G, Cilibrizzi A, Giovannoni MP. An Overview of PDE4 Inhibitors in Clinical Trials: 2010 to Early 2022. Molecules 2022; 27:4964. [PMID: 35956914 PMCID: PMC9370432 DOI: 10.3390/molecules27154964] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
Since the early 1980s, phosphodiesterase 4 (PDE4) has been an attractive target for the treatment of inflammation-based diseases. Several scientific advancements, by both academia and pharmaceutical companies, have enabled the identification of many synthetic ligands for this target, along with the acquisition of precise information on biological requirements and linked therapeutic opportunities. The transition from pre-clinical to clinical phase was not easy for the majority of these compounds, mainly due to their significant side effects, and it took almost thirty years for a PDE4 inhibitor to become a drug i.e., Roflumilast, used in the clinics for the treatment of chronic obstructive pulmonary disease. Since then, three additional compounds have reached the market a few years later: Crisaborole for atopic dermatitis, Apremilast for psoriatic arthritis and Ibudilast for Krabbe disease. The aim of this review is to provide an overview of the compounds that have reached clinical trials in the last ten years, with a focus on those most recently developed for respiratory, skin and neurological disorders.
Collapse
Affiliation(s)
- Letizia Crocetti
- NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Giuseppe Floresta
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Agostino Cilibrizzi
- Institute of Pharmaceutical Science, King’s College London, Stamford Street, London SE1 9NH, UK
| | - Maria Paola Giovannoni
- NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
44
|
Varela-Chinchilla CD, Sánchez-Mejía DE, Trinidad-Calderón PA. Congenital Heart Disease: The State-of-the-Art on Its Pharmacological Therapeutics. J Cardiovasc Dev Dis 2022; 9:201. [PMID: 35877563 PMCID: PMC9316572 DOI: 10.3390/jcdd9070201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/17/2022] Open
Abstract
Congenital heart disease is one of the most common causes of death derived from malformations. Historically, its treatment has depended on timely diagnosis and early pharmacological and surgical interventions. Survival rates for patients with this disease have increased, primarily due to advancements in therapeutic choices, but mortality remains high. Since this disease is a time-sensitive pathology, pharmacological interventions are needed to improve clinical outcomes. Therefore, we analyzed the applications, dosage, and side effects of drugs currently used for treating congenital heart disease. Angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, beta-blockers, and potassium-sparing diuretics have shown a mortality benefit in most patients. Other therapies, such as endothelin receptor antagonists, phosphodiesterase-5 inhibitors, prostaglandins, and soluble guanylyl cyclase stimulators, have benefited patients with pulmonary artery hypertension. Likewise, the adjunctive symptomatic treatment of these patients has further improved the outcomes, since antiarrhythmics, digoxin, and non-steroidal anti-inflammatory drugs have shown their benefits in these cases. Conclusively, these drugs also carry the risk of troublesome adverse effects, such as electrolyte imbalances and hemodynamic compromise. However, their benefits for survival, symptom improvement, and stabilization outweigh the possible complications from their use. Thus, cases must be assessed individually to accurately identify interventions that would be most beneficial for patients.
Collapse
Affiliation(s)
- Carlos Daniel Varela-Chinchilla
- Tecnológico de Monterrey, School of Medicine and Health Sciences, Ave. Ignacio Morones Prieto 3000 Pte., Col. Los Doctores, Monterrey 64710, N.L., Mexico; (C.D.V.-C.); (D.E.S.-M.)
| | - Daniela Edith Sánchez-Mejía
- Tecnológico de Monterrey, School of Medicine and Health Sciences, Ave. Ignacio Morones Prieto 3000 Pte., Col. Los Doctores, Monterrey 64710, N.L., Mexico; (C.D.V.-C.); (D.E.S.-M.)
| | - Plinio A. Trinidad-Calderón
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, N.L., Mexico
| |
Collapse
|
45
|
Beñaldo FA, Araya-Quijada C, Ebensperger G, Herrera EA, Reyes RV, Moraga FA, Riquelme A, Gónzalez-Candia A, Castillo-Galán S, Valenzuela GJ, Serón-Ferré M, Llanos AJ. Cinaciguat (BAY-582667) Modifies Cardiopulmonary and Systemic Circulation in Chronically Hypoxic and Pulmonary Hypertensive Neonatal Lambs in the Alto Andino. Front Physiol 2022; 13:864010. [PMID: 35733986 PMCID: PMC9207417 DOI: 10.3389/fphys.2022.864010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Neonatal pulmonary hypertension (NPHT) is produced by sustained pulmonary vasoconstriction and increased vascular remodeling. Soluble guanylyl cyclase (sGC) participates in signaling pathways that induce vascular vasodilation and reduce vascular remodeling. However, when sGC is oxidized and/or loses its heme group, it does not respond to nitric oxide (NO), losing its vasodilating effects. sGC protein expression and function is reduced in hypertensive neonatal lambs. Currently, NPHT is treated with NO inhalation therapy; however, new treatments are needed for improved outcomes. We used Cinaciguat (BAY-582667), which activates oxidized and/or without heme group sGC in pulmonary hypertensive lambs studied at 3,600 m. Our study included 6 Cinaciguat-treated (35 ug kg−1 day−1x 7 days) and 6 Control neonates. We measured acute and chronic basal cardiovascular variables in pulmonary and systemic circulation, cardiovascular variables during a superimposed episode of acute hypoxia, remodeling of pulmonary arteries and changes in the right ventricle weight, vasoactive functions in small pulmonary arteries, and expression of NO-sGC-cGMP signaling pathway proteins involved in vasodilation. We observed a decrease in pulmonary arterial pressure and vascular resistance during the acute treatment. In contrast, the pulmonary pressure did not change in the chronic study due to increased cardiac output, resulting in lower pulmonary vascular resistance in the last 2 days of chronic study. The latter may have had a role in decreasing right ventricular hypertrophy, although the direct effect of Cinaciguat on the heart should also be considered. During acute hypoxia, the pulmonary vascular resistance remained low compared to the Control lambs. We observed a higher lung artery density, accompanied by reduced smooth muscle and adventitia layers in the pulmonary arteries. Additionally, vasodilator function was increased, and vasoconstrictor function was decreased, with modifications in the expression of proteins linked to pulmonary vasodilation, consistent with low pulmonary vascular resistance. In summary, Cinaciguat, an activator of sGC, induces cardiopulmonary modifications in chronically hypoxic and pulmonary hypertensive newborn lambs. Therefore, Cinaciguat is a potential therapeutic tool for reducing pulmonary vascular remodeling and/or right ventricular hypertrophy in pulmonary arterial hypertension syndrome.
Collapse
Affiliation(s)
- Felipe A. Beñaldo
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Claudio Araya-Quijada
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Germán Ebensperger
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Emilio A. Herrera
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| | - Roberto V. Reyes
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Fernando A. Moraga
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Alexander Riquelme
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | - Sebastián Castillo-Galán
- Laboratory of Nano-Regenerative Medicine, Research and Innovation Center Biomedical (CIIB), Faculty of Medicine, University of Los Andes, Santiago, Chile
| | - Guillermo J. Valenzuela
- Department of Women’s Health, Arrowhead Regional Medical Center, San Bernardino, CA, United States
| | - María Serón-Ferré
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Aníbal J. Llanos
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
- *Correspondence: Aníbal J. Llanos,
| |
Collapse
|
46
|
White CM. Criminal Action Against Drug Counterfeiters: Assessment of the FDA Office of Criminal Investigation Database 2016 Through 2021. Ann Pharmacother 2022; 56:1333-1338. [PMID: 35502467 DOI: 10.1177/10600280221092482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE The objective of this study was to describe law enforcement oversight of counterfeit drugs by the Food and Drug Administration (FDA) in the United States from 2016 through 2021. METHODS The FDA Office of Criminal Investigation database with hyperlinked press releases of enforcement actions was used to identify legal action against drug counterfeiters. Incidences of counterfeit drugs sold via Internet, how often they were obtained without a prescription, the most prevalent counterfeit drugs, the countries where counterfeit operations occurred, and the scale of counterfeit operations were assessed. RESULTS There were 130 unique enforcement actions against counterfeiting organizations and individuals. Overall, 64.6% of enforcement actions involved counterfeit products sold over the Internet, in 84.6% of actions counterfeit medications could be obtained without a prescription, and in 33.1% of actions the products were sold as dietary supplements. Sexual dysfunction, opioid, stimulant, anabolic muscle building, benzodiazepine, and dermatologic drugs were most counterfeited. China was the most prevalent country to produce counterfeit drugs followed by India, Turkey, Pakistan, and Russia. Counterfeiting operations were large with tens of millions of pills and hundreds of millions of dollars in sales. Health outcomes for counterfeit drugs were rarely discussed in the press releases and not all press releases had data for each parameter of interest. CONCLUSION AND RELEVANCE This is the first report assessing enforcement actions against drug counterfeiters from the FDA Office of Criminal Investigation. The FDA is actively involved in identifying and prosecuting counterfeit drug rings, but the number of enforcement actions is smaller than the size of the problem.
Collapse
Affiliation(s)
- C Michael White
- University of Connecticut School of Pharmacy, Storrs, CT, USA
| |
Collapse
|
47
|
El-Kawy OA, Ibrahim IT, Shewatah HA, El-Azony KM. Preparation and evaluation of radioiodinated avanafil: A novel potential radiopharmaceutical for the diagnostic evaluation of erectile dysfunction. Appl Radiat Isot 2022; 183:110160. [PMID: 35228134 DOI: 10.1016/j.apradiso.2022.110160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/16/2022] [Accepted: 02/21/2022] [Indexed: 11/02/2022]
Abstract
Avanafil, a selective second-generation phosphodiesterase-5 inhibitor, was successfully labeled with iodine-125 via electrophilic and different factors affecting the labeling efficiency were studied. The labeled compound exhibited in-vitro stability of more than 24 h with a maximum labeling yield of up to 98.4 ± 1.9 %. Molecular modeling and in-vitro assessment of tracer inhibitory activity were performed to ensure that radiolabeling did not affect its binding ability to the target. Biodistribution studies were performed in normal rats and models of erectile dysfunction. The tracer specifically accumulated in the penis, and the clearance appeared to take place via the hepatobiliary route. Results suggested the usefulness of radiolabeled avanafil as a promising tracer for erectile dysfunction.
Collapse
Affiliation(s)
- O A El-Kawy
- Egyptian Atomic Energy Authority, 13759, Cairo, Egypt
| | - I T Ibrahim
- Egyptian Atomic Energy Authority, 13759, Cairo, Egypt
| | - H A Shewatah
- Egyptian Atomic Energy Authority, 13759, Cairo, Egypt
| | - K M El-Azony
- Egyptian Atomic Energy Authority, 13759, Cairo, Egypt
| |
Collapse
|
48
|
Nik-Ahd F, Shindel AW. Pharmacotherapy for Erectile Dysfunction in 2021 and Beyond. Urol Clin North Am 2022; 49:209-217. [DOI: 10.1016/j.ucl.2021.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
49
|
Phosphodiesterase 11 A (PDE11A), a potential biomarker for glioblastoma. Toxicol Res 2022; 38:409-415. [DOI: 10.1007/s43188-022-00129-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/04/2022] [Accepted: 03/10/2022] [Indexed: 10/18/2022] Open
|
50
|
Tadalafil and Steroid Hormones Interactions in Adipose, Bone and Prostate Tissues: Focus on Translational Perspectives. Int J Mol Sci 2022; 23:ijms23084191. [PMID: 35457011 PMCID: PMC9024809 DOI: 10.3390/ijms23084191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022] Open
Abstract
Tadalafil is a selective phosphodiesterase type-5 (PDE5) inhibitor that is approved for the treatment of men with erectile dysfunction (ED) and/or benign prostate hyperplasia (BPH) -associated symptoms. Besides its classical actions on PDE5 within the genitourinary tract, where the specific enzyme expression is maximal, it may exert different systemic effects. This is mainly due to the pleiotropic distribution of PDE5 enzyme throughout the human (and animal) body, where it can exert protective effects in different clinical conditions. Recently, it has been demonstrated that tadalafil may display novel actions on androgen receptor (AR) expression and activity and cytochrome P19a1 (Cyp19a1) and estrogen receptor β (ERβ) expression in different in vitro systems, such as adipose, bone and prostate cancer cells, where it can act as a selective modulator of steroid hormone production. This may determine novel potential mechanism(s) of control in pathophysiologic pathways. In this review, we summarize basic research and translational results applicable to the use of tadalafil in the treatment of obesity, bone loss and prostate cancer.
Collapse
|