1
|
Khawas S, Dhara TK, Sharma N. Efficacy of umbelliferone-loaded nanostructured lipid carrier in the management of bleomycin-induced idiopathic pulmonary fibrosis: experimental and network pharmacology insight. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03744-x. [PMID: 39718612 DOI: 10.1007/s00210-024-03744-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a severe and progressive lung disorder with an average survival rate of 3 to 5 years. IPF presents a significant challenge in clinical management, necessitating novel therapeutic approaches. Nanostructured lipid carriers (NLCs) have proven to be promising vehicles for targeted drug delivery to the lung tissues. This research focuses on formulating and evaluating umbelliferone (UMB)-loaded NLCs for the treatment of IPF. UMB-NLC was formulated using the hot emulsion ultrasonication method and was characterized. The formulation was then tested for its efficacy in a bleomycin-induced IPF mice model. Leukocyte infiltration and interleukin-6 were estimated in the bronchoalveolar lavage fluid (BALF). Various antioxidant activities were also assessed for the formulation, followed by histopathological analysis. Furthermore, an in silico mechanistic approach using network pharmacology was carried out to obtain genes of interest. Particle size analysis revealed a mean size of 174.9 ± 3.66 nm for UMB-NLC, ideal for lung tissue targeting. Zeta potential measurements indicated good stability (-34.3 ± 1.35 mV) for long-term storage. Fourier transform infrared spectroscopy (FTIR) confirmed the successful encapsulation of UMB within the lipid matrix of NLCs. X-ray diffraction (XRD) and differential scanning calorimetry (DSC) demonstrated the amorphous state of UMB-NLC, indicating enhanced solubility and bioavailability. Field emission scanning electron microscopy (FESEM) revealed uniform, spherical particles in the nanometer range. Drug entrapment efficiency (EE%) and loading capacity (DL%) were found to be 85.03 ± 2.36% and 17.01 ± 0.48%, respectively, indicating efficient drug incorporation. In vitro release study showed uniform sustained drug release over 48 h, indicating the potential for prolonged therapeutic effect. In vivo studies using UMB-NLC demonstrated significant improvements in bleomycin-induced IPF. A restoration in body weight and lung/body-weight (L/B) ratio was observed compared to disease controls. BALF analysis revealed reduced leukocyte infiltration and decreased inflammatory cytokine IL-6 levels (**p < 0.01). Biochemical assays showed enhanced antioxidant status and reduced oxidative stress in lung tissues. Hydroxyproline content (HPO, **p < 0.01), malondialdehyde (MDA, ***p < 0.001), and total protein content (**p < 0.01) were significantly reduced, while glutathione (GSH, ***p < 0.001), superoxide dismutase (SOD, **p < 0.01), and catalase (CAT, **p < 0.01) were elevated. Histopathological analysis confirmed the attenuation of lung fibrosis with maintained alveolar architecture and reduced fibrotic deposition. Furthermore, network pharmacology identified UMB targets and IPF-related genes with a Venn diagram, and cytoHubba analysis revealed key hub genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment demonstrated UMB's involvement in IPF-related pathways, highlighting its therapeutic potential. Therefore, UMB-NLC may exhibit promising therapeutic potential in the treatment of IPF, offering targeted drug delivery, enhanced bioavailability, and improved efficacy in alleviating pulmonary inflammation and fibrosis.
Collapse
Affiliation(s)
- Sayak Khawas
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Tushar Kanti Dhara
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Neelima Sharma
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India.
| |
Collapse
|
2
|
Huang W, Zheng J, Wang M, Du LY, Bai L, Tang H. The potential therapeutic role of melatonin in organ fibrosis: a comprehensive review. Front Med (Lausanne) 2024; 11:1502368. [PMID: 39735699 PMCID: PMC11681627 DOI: 10.3389/fmed.2024.1502368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/30/2024] [Indexed: 12/31/2024] Open
Abstract
Organ fibrosis is a pathological process characterized by the inability of normal tissue cells to regenerate sufficiently to meet the dynamic repair demands of chronic injury, resulting in excessive extracellular matrix deposition and ultimately leading to organ dysfunction. Despite the increasing depth of research in the field of organ fibrosis and a more comprehensive understanding of its pathogenesis, effective treatments for fibrosis-related diseases are still lacking. Melatonin, a neuroendocrine hormone synthesized by the pineal gland, plays a crucial role in regulating biological rhythms, sleep, and antioxidant defenses. Recent studies have shown that melatonin may have potential in inhibiting organ fibrosis, possibly due to its functions in anti-oxidative stress, anti-inflammation, remodeling the extracellular matrix (ECM), inhibiting epithelial-mesenchymal transition (EMT), and regulating apoptosis, thereby alleviating fibrosis. This review aims to explore the therapeutic potential of melatonin in fibrosis-related human diseases using findings from various in vivo and in vitro studies. These discoveries should provide important insights for the further development of new drugs to treat fibrosis.
Collapse
Affiliation(s)
- Wei Huang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Juan Zheng
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Ming Wang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Ling-Yao Du
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Lang Bai
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Zhang N, Wang M, Nambiar D, Iyer S, Kadakia P, Luo Q, Pang S, Qu A, Bharadwaj NS, Qiu P, Coskun AF. High cell throughput, programmable fixation reveals the RNA and protein co-regulation with spatially resolved NFκB pseudo-signaling. APL Bioeng 2024; 8:046108. [PMID: 39606710 PMCID: PMC11601099 DOI: 10.1063/5.0227054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
RNA translation to protein is paramount to creating life, yet RNA and protein correlations vary widely across tissues, cells, and species. To investigate these perplexing results, we utilize a time-series fixation method that combines static stimulation and a programmable formaldehyde perfusion to map pseudo-Signaling with Omics signatures (pSigOmics) of single-cell data from hundreds of thousands of cells. Using the widely studied nuclear factor kappa B (NFκB) mammalian signaling pathway in mouse fibroblasts, we discovered a novel asynchronous pseudotime regulation (APR) between RNA and protein levels in the quintessential NFκB p65 protein using single molecule spatial imaging. Prototypical NFκB dynamics are successfully confirmed by the rise and fall of NFκB response as well as A20 negative inhibitor activity by 90 min. The observed p65 translational APR is evident in both statically sampled timepoints and dynamic response gradients from programmable formaldehyde fixation, which successfully creates continuous response measurements. Finally, we implement a graph neural network model capable of predicting APR cell subpopulations from GAPDH RNA spatial expression, which is strongly correlated with p65 RNA signatures. Successful decision tree classifiers on Potential of Heat-diffusion for Affinity-based Trajectory Embedding embeddings of our data, which illustrate partitions of APR cell subpopulations in latent space, further confirm the APR patterns. Together, our data suggest an RNA-protein regulatory framework in which translation adapts to signaling events and illuminates how immune signaling is timed across various cell subpopulations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Aaron Qu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, USA
| | - Nivik Sanjay Bharadwaj
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
4
|
Kashkooe A, Jalali A, Zarshenas MM, Hamedi A. Exploring the Phytochemistry, Signaling Pathways, and Mechanisms of Action of Tanacetum parthenium (L.) Sch.Bip.: A Comprehensive Literature Review. Biomedicines 2024; 12:2297. [PMID: 39457613 PMCID: PMC11505096 DOI: 10.3390/biomedicines12102297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The traditional use of Tanacetum parthenium (L.) Sch.Bip., commonly known as feverfew, extends across various medical conditions, notably those associated with pain and inflammation. In alignment with the growing trend towards developing medications that target specific signaling pathways for enhanced efficacy and reduced side effects, extensive research has been conducted to investigate and validate the pharmacological effects of feverfew. Among its bioactive compounds, parthenolide stands out as the most potent, categorized as a germacranolide-type sesquiterpene lactone, and has been extensively studied in multiple investigations. Significantly, the anti-inflammatory properties of feverfew have been primarily attributed to its capacity to inhibit nuclear factor-kappa B (NF-κB), resulting in a reduction in pro-inflammatory cytokines like tumor necrosis factor-alpha (TNF-α). Furthermore, the anticancer properties of feverfew have been associated with the modulation of Mitogen-Activated Protein Kinase (MAPK) and NF-κB signaling pathways. This study further delves into the neuroprotective potential of feverfew, specifically in the management of conditions such as migraine headaches, epilepsy, and neuropathic pain through various mechanisms. The core objective of this study is to elucidate the phytochemical composition of feverfew, with a particular emphasis on understanding the molecular mechanisms and examining the signaling pathways that contribute to its pharmacological and therapeutic effects. Additionally, the safety, toxicity, and potential adverse effects of feverfew are comprehensively evaluated, with an overarching goal of providing valuable insights into the plant's potential for targeted and effective treatments.
Collapse
Affiliation(s)
- Ali Kashkooe
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran; (A.K.)
| | - Atefeh Jalali
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran; (A.K.)
| | - Mohammad M. Zarshenas
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran; (A.K.)
- Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345-1583, Iran
| | - Azadeh Hamedi
- Department of Pharmacognosy, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran
| |
Collapse
|
5
|
Zhao X, Yang L. Pharmacological targets and validation of remdesivir for the treatment of COVID-19-associated pulmonary fibrosis: A network-based pharmacology and bioinformatics study. Medicine (Baltimore) 2024; 103:e39062. [PMID: 39331891 PMCID: PMC11441881 DOI: 10.1097/md.0000000000039062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/29/2024] Open
Abstract
The objective of this study was to employ bioinformatics and network pharmacology methodologies to investigate the targets and molecular mechanisms of remdesivir in the treatment of coronavirus disease 2019 (COVID-19)-associated pulmonary fibrosis (PF). Several open-source databases were utilized to confirm the shared targets of remdesivir, COVID-19, and PF. Following this, a comprehensive analysis incorporating function enrichment, protein-protein interaction (PPI), transcription factor (TF), and molecular docking was conducted to investigate the potential mechanisms underlying the effectiveness of remdesivir in the treatment of COVID-19-associated PF. The initial validation of these findings was performed using publicly available histological and single-cell sequencing databases. The functional enrichment analysis revealed a strong association between remdesivir and viral defense, inflammatory response, and immune response. The key pathways identified in the study were transforming growth factor (TGF-β), PI3K-Akt, mTOR, MAPK, epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor resistance, HIF-1, and Toll-like receptor signaling pathways. Additionally, the PPI analysis demonstrated the network relationships of 13 important targets, while the TF analysis provided valuable insights into the regulatory networks of these targets. Among the identified TFs, RELA was found to be the most significant. To validate our findings, we utilized publicly available histological and single-cell sequencing databases, successfully confirming the involvement of 8 key targets, including AKT1, EGFR, RHOA, MAPK1, PIK3R1, MAPK8, MAPK14, and MTOR. Furthermore, molecular docking studies were conducted to assess the interaction between remdesivir and the identified key targets, thus confirming its effective targeting effects. Remdesivir has the potential to exert antiviral, anti-inflammatory, and immunomodulatory effects in the context of COVID-19-associated PF.
Collapse
Affiliation(s)
- Xueping Zhao
- Department of Pharmacy, The First People's Hospital of Hangzhou Lin'an District, Hangzhou, China
| | - Liping Yang
- Department of Pharmacy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Key Laboratory of Drug Clinical Risk and Personalized Medication Evaluation, Beijing, China
| |
Collapse
|
6
|
Liu Z, Wang G, Liu H, Ding K, Song J, Fu R. ACT001 inhibits primary central nervous system lymphoma tumor growth by enhancing the anti-tumor effect of T cells. Biomed Pharmacother 2024; 178:117133. [PMID: 39024837 DOI: 10.1016/j.biopha.2024.117133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/06/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
Primary central nervous system lymphoma (PCNSL) is a group of malignant brain tumors with a poor prognosis, and new therapeutic approaches for this tumor urgently need to be investigated. Formulated from a long-standing anti-inflammatory drugs, ACT001 has demonstrated in clinical research to be able to pass through the blood-brain barrier (BBB) and affect the central nervous system. The effects of ACT001 on PCNSL cell apoptosis, proliferation and immune-related indexes were detected by flow cytometry, and the efficacy of ACT001 was verified in vivo by constructing a mouse PCNSL tumor model. ACT001 significantly inhibited PCNSL cell proliferation and induced apoptosis in vitro. In addition, ACT001 can significantly inhibit the PD-1/PD-L1 expression and restore the function of T cells, so that the immune system cannot allow tumor cells to escape. In vivo experiments show that co-infusion of ACT001 and T cells effectively inhibits PCNSL tumor growth in NSG mice. Our work describes the inhibitory effect of ACT001 on the PCNSL cell line and demonstrated the inhibitory effect of ACT001 on immune checkpoints.
Collapse
Affiliation(s)
- Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin 300052, PR China; Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control,Tianjin 300052, PR China; Tianjin Institute of Hematology, Tianjin 300052, PR China.
| | - Guanrou Wang
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin 300052, PR China; Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control,Tianjin 300052, PR China; Tianjin Institute of Hematology, Tianjin 300052, PR China
| | - Hui Liu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin 300052, PR China; Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control,Tianjin 300052, PR China; Tianjin Institute of Hematology, Tianjin 300052, PR China
| | - Kai Ding
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin 300052, PR China; Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control,Tianjin 300052, PR China; Tianjin Institute of Hematology, Tianjin 300052, PR China
| | - Jia Song
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin 300052, PR China; Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control,Tianjin 300052, PR China; Tianjin Institute of Hematology, Tianjin 300052, PR China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin 300052, PR China; Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control,Tianjin 300052, PR China; Tianjin Institute of Hematology, Tianjin 300052, PR China.
| |
Collapse
|
7
|
Aribindi K, Liu GY, Albertson TE. Emerging pharmacological options in the treatment of idiopathic pulmonary fibrosis (IPF). Expert Rev Clin Pharmacol 2024; 17:817-835. [PMID: 39192604 PMCID: PMC11441789 DOI: 10.1080/17512433.2024.2396121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a progressive-fibrosing lung disease with a median survival of less than 5 years. Currently, two agents, pirfenidone and nintedanib are approved for this disease, and both have been shown to reduce the rate of decline in lung function in patients with IPF. However, both have significant adverse effects and neither completely arrest the decline in lung function. AREAS COVERED Thirty experimental agents with unique mechanisms of action that are being evaluated for the treatment of IPF are discussed. These agents work through various mechanisms of action, these include inhibition of transcription nuclear factor k-B on fibroblasts, reduced expression of metalloproteinase 7, the generation of more lysophosphatidic acids, blocking the effects of transforming growth factor ß, and reducing reactive oxygen species as examples of some unique mechanisms of action of these agents. EXPERT OPINION New drug development has the potential to expand the treatment options available in the treatment of IPF patients. It is expected that the adverse drug effect profiles will be more favorable than current agents. It is further anticipated that these new agents or combinations of agents will arrest the fibrosis, not just slow the fibrotic process.
Collapse
Affiliation(s)
- Katyayini Aribindi
- Department of Internal Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, University of California Davis, School of Medicine, Sacramento, CA, USA
- Department of Medicine, Department of Veterans Affairs Northern California Health Care System, Mather, CA, USA
| | - Gabrielle Y Liu
- Department of Internal Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, University of California Davis, School of Medicine, Sacramento, CA, USA
| | - Timothy E Albertson
- Department of Internal Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, University of California Davis, School of Medicine, Sacramento, CA, USA
- Department of Medicine, Department of Veterans Affairs Northern California Health Care System, Mather, CA, USA
| |
Collapse
|
8
|
Wei X, Jin C, Li D, Wang Y, Zheng S, Feng Q, Shi N, Kong W, Ma X, Wang J. Single-cell transcriptomics reveals CD8 + T cell structure and developmental trajectories in idiopathic pulmonary fibrosis. Mol Immunol 2024; 172:85-95. [PMID: 38936318 DOI: 10.1016/j.molimm.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024]
Abstract
Immune cells in the human lung are associated with idiopathic pulmonary fibrosis. However, the contribution of different immune cell subpopulations to the pathogenesis of pulmonary fibrosis remains unclear. We used single-cell RNA sequencing data to investigate the transcriptional profiles of immune cells in the lungs of 5 IPF patients and 3 subjects with non-fibrotic lungs. In an identifiable population of immune cells, we found increased percentage of CD8+ T cells in the T cell subpopulation in IPF. Monocle analyzed the dynamic immune status and cell transformation of CD8+ T cells, as well as the cytotoxicity and exhausted status of CD8+ T cell subpopulations at different stages. Among CD8+ T cells, we found differences in metabolic pathways in IPF and Ctrl, including lipid, amino acid and carbohydrate metabolic. By analyzing the metabolites of CD8+ T cells, we found that different populations of CD8+ T cells in IPF have unique metabolic characteristics, but they also have multiple identical up-regulated or down-regulated metabolites. In IPF, signaling pathways associated with fibrosis were enriched in CD8+ T cells, suggesting that CD8+ T cells may have an important contribution to fibrosis. Finally, we analyzed the interactions between CD8+ T cells and other cells. Together, these studies highlight key features of CD8+ T cells in the pathogenesis of IPF and help to develop effective therapeutic targets.
Collapse
Affiliation(s)
- Xuemei Wei
- Center of Respiratory and Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi 830000, China
| | - Chengji Jin
- Department of Respiratory Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou 570100, China
| | - Dewei Li
- Center of Respiratory and Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, China
| | - Yujie Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou 570100, China
| | - Shaomao Zheng
- Department of Respiratory Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou 570100, China
| | - Qiong Feng
- Department of Respiratory Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou 570100, China
| | - Ning Shi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi 830000, China
| | - Weina Kong
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi 830000, China
| | - Xiumin Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi 830000, China.
| | - Jing Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou 570100, China; NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou 571199, China.
| |
Collapse
|
9
|
Fu Q, Shen N, Fang T, Zhang H, Di Y, Liu X, Du C, Guo J. ACT001 alleviates inflammation and pyroptosis through the PPAR-γ/NF-κB signaling pathway in LPS-induced alveolar macrophages. Genes Genomics 2024; 46:323-332. [PMID: 37831404 DOI: 10.1007/s13258-023-01455-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/04/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND ACT001 is an anti-inflammatory agent that has been widely investigated for its role in tumors, intracranial diseases, and fibrotic diseases, but its effect on acute lung injury is less known. OBJECTIVE The purpose of this study was to investigate the effect and mechanism of ACT001 on regulating inflammation and pyroptosis in lipopolysaccharide (LPS)-induced alveolar macrophages. METHODS NR8383 alveolar macrophages treated with LPS were used to replicate the proinflammatory macrophage phenotype observed during acute lung injury. After ACT001 treatment, we measured the secretion and expression levels of critical inflammatory cytokines, the rate of pyroptosis, and the expression of NLRP3 inflammasome-associated proteins and pyroptosis-associated proteins. In addition, we assessed the role of the PPAR-γ/NF-κB signaling pathways and further validated the results with a PPAR-γ inhibitor. RESULTS Our findings confirmed that ACT001 reduced the expression and release of inflammatory factors, attenuated cell pyroptosis, and downregulated the expression of NLRP3, ASC, caspase-1 p20, and GSDMD-N. These effects may be achieved by activating PPAR-γ expression and then inhibiting the NF-κB signaling pathway. When macrophages were treated with the PPAR-γ inhibitor, the protective effects of ACT001 were reversed. CONCLUSION ACT001 significantly ameliorated inflammation and pyroptosis via the PPAR-γ/NF-κB signaling pathways in LPS-induced NR8383 alveolar macrophages.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Intensive Care Unit, Tianjin 4th Central Hospital, No.1 Zhongshan Road, Tianjin, 300140, China.
| | - Na Shen
- Central Laboratory, Tianjin 4th Central Hospital, Tianjin, 300140, China
| | - Tao Fang
- Central Laboratory, Tianjin 4th Central Hospital, Tianjin, 300140, China
| | - Hewei Zhang
- Department of Intensive Care Unit, Tianjin 4th Central Hospital, No.1 Zhongshan Road, Tianjin, 300140, China
| | - Yanbo Di
- Central Laboratory, Tianjin 4th Central Hospital, Tianjin, 300140, China
| | - Xuan Liu
- Pharmacy Department, Tianjin 4th Central Hospital, Tianjin, 300140, China
| | - Chao Du
- Emergency Surgical Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Jianshuang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| |
Collapse
|
10
|
Duan X, Liu N, Lv K, Wang J, Li M, Zhang Y, Huo X, Bao S, Shen Z, Zhang X. Synthesis and Anti-Inflammatory Activity of Ferulic Acid-Sesquiterpene Lactone Hybrids. Molecules 2024; 29:936. [PMID: 38474447 DOI: 10.3390/molecules29050936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/17/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
Acute lung injury (ALI) is a respiratory failure disease associated with high mortality rates in patients. The primary pathological damage is attributed to the excessive release of pro-inflammatory mediators in pulmonary tissue. However, specific therapy for ALI has not been developed. In this study, a series of novel ferulic acid-parthenolide (FA-PTL) and ferulic acid-micheliolide (FA-MCL) hybrid derivatives were designed, synthesized, and evaluated for their anti-inflammatory activities in vitro. Compounds 2, 4, and 6 showed pronounced anti-inflammatory activity against LPS-induced expression of pro-inflammatory cytokines in vitro. Importantly, compound 6 displayed good water solubility, and treatment of mice with compound 6 (10 mg/kg) significantly prevented weight loss and ameliorated inflammatory cell infiltration and edema in lung tissue, as well as improving the alveolar structure. These results suggest that compound 6 (((1aR,7aS,8R,10aS,10bS,E)-8-((dimethylamino)methyl)-1a-methyl-9-oxo-1a,2,3,6,7,7a,8,9,10a,10b-decahydrooxireno[2',3':9,10]cyclodeca[1,2-b]furan-5-yl)methyl (E)-3-(4-hydroxy-3-methoxyphenyl)acrylate 2-hydroxypropane-1,2,3-tricarboxylate) might be considered as a lead compound for further evaluation as a potential anti-ALI agent.
Collapse
Affiliation(s)
- Xiyan Duan
- School of Chemistry & Chemical Engineering, Henan University of Science and Technology, Luoyang 471003, China
| | - Ning Liu
- School of Nursing, Henan University of Science and Technology, Luoyang 471003, China
| | - Ke Lv
- The State Key Laboratory of Medicinal Chemical Biology & College of Chemistry, Nankai University, Tianjin 300071, China
| | - Junqi Wang
- School of Chemistry & Chemical Engineering, Henan University of Science and Technology, Luoyang 471003, China
| | - Mingyue Li
- College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Yanwei Zhang
- Accendatech Company, Ltd., Tianjin 300384, China
| | | | - Shiqi Bao
- Accendatech Company, Ltd., Tianjin 300384, China
| | - Zhuo Shen
- Accendatech Company, Ltd., Tianjin 300384, China
| | - Xuemei Zhang
- Accendatech Company, Ltd., Tianjin 300384, China
| |
Collapse
|
11
|
Wan R, Wang L, Zhu M, Li W, Duan Y, Yu G. Cellular Senescence: A Troy Horse in Pulmonary Fibrosis. Int J Mol Sci 2023; 24:16410. [PMID: 38003600 PMCID: PMC10671822 DOI: 10.3390/ijms242216410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Pulmonary fibrosis (PF) is a chronic interstitial lung disease characterized by myofibroblast abnormal activation and extracellular matrix deposition. However, the pathogenesis of PF remains unclear, and treatment options are limited. Epidemiological studies have shown that the average age of PF patients is estimated to be over 65 years, and the incidence of the disease increases with age. Therefore, PF is considered an age-related disease. A preliminary study on PF patients demonstrated that the combination therapy of the anti-senescence drugs dasatinib and quercetin improved physical functional indicators. Given the global aging population and the role of cellular senescence in tissue and organ aging, understanding the impact of cellular senescence on PF is of growing interest. This article systematically summarizes the causes and signaling pathways of cellular senescence in PF. It also objectively analyzes the impact of senescence in AECs and fibroblasts on PF development. Furthermore, potential intervention methods targeting cellular senescence in PF treatment are discussed. This review not only provides a strong theoretical foundation for understanding and manipulating cellular senescence, developing new therapies to improve age-related diseases, and extending a healthy lifespan but also offers hope for reversing the toxicity caused by the massive accumulation of senescence cells in humans.
Collapse
Affiliation(s)
- Ruyan Wan
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China; (R.W.); (L.W.); (M.Z.); (W.L.); (Y.D.)
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Lan Wang
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China; (R.W.); (L.W.); (M.Z.); (W.L.); (Y.D.)
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Miaomiao Zhu
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China; (R.W.); (L.W.); (M.Z.); (W.L.); (Y.D.)
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Wenwen Li
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China; (R.W.); (L.W.); (M.Z.); (W.L.); (Y.D.)
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Yudi Duan
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China; (R.W.); (L.W.); (M.Z.); (W.L.); (Y.D.)
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Guoying Yu
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China; (R.W.); (L.W.); (M.Z.); (W.L.); (Y.D.)
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
12
|
Young ON, Bourke JE, Widdop RE. Catch your breath: The protective role of the angiotensin AT 2 receptor for the treatment of idiopathic pulmonary fibrosis. Biochem Pharmacol 2023; 217:115839. [PMID: 37778444 DOI: 10.1016/j.bcp.2023.115839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease whereby excessive deposition of extracellular matrix proteins (ECM) ultimately leads to respiratory failure. While there have been advances in pharmacotherapies for pulmonary fibrosis, IPF remains an incurable and irreversible disease. There remains an unmet clinical need for treatments that reverse fibrosis, or at the very least have a more tolerable side effect profile than currently available treatments. Transforming growth factor β1(TGFβ1) is considered the main driver of fibrosis in IPF. However, as our understanding of the role of the pulmonary renin-angiotensin system (PRAS) in the pathogenesis of IPF increases, it is becoming clear that targeting angiotensin receptors represents a potential novel treatment strategy for IPF - in particular, via activation of the anti-fibrotic angiotensin type 2 receptor (AT2R). This review describes the current understanding of the pathophysiology of IPF and the mediators implicated in its pathogenesis; focusing on TGFβ1, angiotensin II and related peptides in the PRAS and their contribution to fibrotic processes in the lung. Preclinical and clinical assessment of currently available AT2R agonists and the development of novel, highly selective ligands for this receptor will also be described, with a focus on compound 21, currently in clinical trials for IPF. Collectively, this review provides evidence of the potential of AT2R as a novel therapeutic target for IPF.
Collapse
Affiliation(s)
- Olivia N Young
- Department of Pharmacology and Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Jane E Bourke
- Department of Pharmacology and Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Robert E Widdop
- Department of Pharmacology and Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
13
|
Zhou H, Niu B, Wu X, Chu W, Zhou Y, Chen Z, Mi Y, Liu Y, Li P. iTRAQ-based quantitative proteomics analysis of the effect of ACT001 on non-alcoholic steatohepatitis in mice. Sci Rep 2023; 13:11336. [PMID: 37443174 PMCID: PMC10345009 DOI: 10.1038/s41598-023-38448-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/08/2023] [Indexed: 07/15/2023] Open
Abstract
ACT001 is a novel sesquiterpene lactone derivative that has been shown to have significant antitumor and anti-inflammatory effects. However, the effect of ACT001 on nonalcoholic steatohepatitis (NASH) is unknown. Methionine and choline deficient (MCD) diet induced NASH model in C57BL/6J mice. Steatosis, inflammation and fibrosis-related indices of serum and liver tissues were detected by fully automated biochemical analyzer, enzyme-linked immunosorbent assay (ELISA) kit, flow cytometry, hematoxylin and eosin (H&E), Masson and immunohistochemical staining. The results showed that ACT001 reduced serum lipid and inflammatory factor levels, attenuated hepatic steatosis, inflammation and fibrosis, and inhibited hepatic oxidative stress and activation of NOD-like receptor protein 3 (NLRP3) inflammatory vesicles in NASH mice. In addition, 381 differentially expressed proteins (DEPs), including 162 up-regulated and 219 down-regulated proteins, were identified in the MCD group and ACT001 high-dose group using isotope labeling relative and absolute quantification (iTRAQ) technique analysis. Among these DEPs, five proteins associated with NAFLD were selected for real-time fluorescence quantitative PCR (RT-qPCR) validation, and the results were consistent with proteomics. In conclusion, ACT001 has a therapeutic effect on NASH, and the results of proteomic analysis will provide new ideas for the mechanism study of ACT001 for NASH treatment.
Collapse
Affiliation(s)
- Hui Zhou
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Niu
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China
- Department of Infectious Diseases, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xue Wu
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China
| | - Weike Chu
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China
| | - Yibing Zhou
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China
| | - Ze Chen
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China
| | - Yuqiang Mi
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China
- Department of Hepatology, Tianjin Second People's Hospital, Tianjin, China
- Tianjin Research Institute of Liver Diseases, Tianjin, China
| | - Yonggang Liu
- Department of Pathology, Tianjin Second People's Hospital, Tianjin, China
| | - Ping Li
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China.
- Department of Hepatology, Tianjin Second People's Hospital, Tianjin, China.
- Tianjin Research Institute of Liver Diseases, Tianjin, China.
| |
Collapse
|
14
|
Luo H, Liu X, Liu H, Wang Y, Xu K, Li J, Liu M, Guo J, Qin X. ACT001 Ameliorates ionizing radiation-induced lung injury by inhibiting NLRP3 inflammasome pathway. Biomed Pharmacother 2023; 163:114808. [PMID: 37146417 DOI: 10.1016/j.biopha.2023.114808] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 05/07/2023] Open
Abstract
Radiotherapy is a prevalent treatment modality for thoracic tumors; however, it can lead to radiation-induced lung injury (RILI), which currently lacks effective interventions. ACT001, a prodrug of micheliolide, has demonstrated promising clinical application potential, yet its impact on RILI requires further validation. This study aims to investigate the radioprotective effects of ACT001 on RILI and elucidate its underlying mechanism. Sprague-Dawley rats were utilized to induce RILI following 20 Gy X-ray chest irradiation, and lung tissue inflammation and fibrosis were assessed using hematoxylin and eosin (H&E) and Masson staining. Lung injury, inflammation, and oxidative stress markers were evaluated employing commercial kits. Pyroptosis-related differentially expressed genes (DEGs) were analyzed using a microarray dataset from the Gene Expression Omnibus (GEO) database, and their functions and hub genes were identified through protein-protein interaction networks. Pyroptosis-related genes were detected via RT-qPCR, western blotting, immunofluorescence, and immunohistochemistry. The results demonstrated that ACT001 ameliorated RILI, diminished pro-inflammatory cytokine release and fibrosis, and mitigated the activation of the NLRP3 inflammasome while inhibiting pyroptosis in lung tissue. In conclusion, our study reveals that ACT001 can suppress NLRP3 inflammasome-mediated pyroptosis and improve RILI, suggesting its potential as a novel protective agent for RILI.
Collapse
Affiliation(s)
- Hao Luo
- Shanxi Provincial Key Laboratory of Drug Toxicology and Radiation Damage Drugs, Department of Radiology and Environmental Medicine, China Institute For Radiation Protection, Taiyuan, China
| | - Xiaoming Liu
- Shanxi Provincial Key Laboratory of Drug Toxicology and Radiation Damage Drugs, Department of Radiology and Environmental Medicine, China Institute For Radiation Protection, Taiyuan, China
| | - Huan Liu
- Shanxi Provincial Key Laboratory of Drug Toxicology and Radiation Damage Drugs, Department of Radiology and Environmental Medicine, China Institute For Radiation Protection, Taiyuan, China
| | - Yong Wang
- Shanxi Provincial Key Laboratory of Drug Toxicology and Radiation Damage Drugs, Department of Radiology and Environmental Medicine, China Institute For Radiation Protection, Taiyuan, China; School of Forensics, Shanxi Medical University, Taiyuan, China
| | - Kai Xu
- Shanxi Provincial Key Laboratory of Drug Toxicology and Radiation Damage Drugs, Department of Radiology and Environmental Medicine, China Institute For Radiation Protection, Taiyuan, China
| | - Jianhua Li
- Shanxi Provincial Key Laboratory of Drug Toxicology and Radiation Damage Drugs, Department of Radiology and Environmental Medicine, China Institute For Radiation Protection, Taiyuan, China
| | - Mengya Liu
- Shanxi Provincial Key Laboratory of Drug Toxicology and Radiation Damage Drugs, Department of Radiology and Environmental Medicine, China Institute For Radiation Protection, Taiyuan, China
| | - Jianshuang Guo
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.
| | - Xiujun Qin
- Shanxi Provincial Key Laboratory of Drug Toxicology and Radiation Damage Drugs, Department of Radiology and Environmental Medicine, China Institute For Radiation Protection, Taiyuan, China.
| |
Collapse
|
15
|
Li H, Yang M, Song H, Sun M, Zhou H, Fu J, Zhou D, Bai W, Chen B, Lai M, Kang H, Wei S. ACT001 Relieves NMOSD Symptoms by Reducing Astrocyte Damage with an Autoimmune Antibody. Molecules 2023; 28:molecules28031412. [PMID: 36771078 PMCID: PMC9918908 DOI: 10.3390/molecules28031412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is a central nervous system inflammatory demyelinating disease, the pathogenesis of which involves autoantibodies targeting the extracellular epitopes of aquaporin-4 on astrocytes. We neutralized the AQP4-IgG from NMOSD patient sera using synthesized AQP4 extracellular epitope peptides and found that the severe cytotoxicity produced by aquaporin-4 immunoglobin (AQP4-IgG) could be blocked by AQP4 extracellular mimotope peptides of Loop A and Loop C in astrocyte protection and animal models. ACT001, a natural compound derivative, has shown anti-tumor activity in various cancers. In our study, the central nervous system anti-inflammatory effect of ACT001 was investigated. The results demonstrated the superior astrocyte protection activity of ACT001 at 10 µM. Furthermore, ACT001 decreases the behavioral score in the mouse NMOSD model, which was not inferior to Methylprednisolone Sodium Succinate, the first-line therapy of NMOSD in clinical practice. In summary, our study showed that astrocytes are protected by specific peptides, or small molecular drugs, which is a new strategy for the treatment of NMOSD. It is possible for ACT001 to be a promising therapy for NMOSD.
Collapse
Affiliation(s)
- Hongen Li
- Department of Ophthalmology, The Chinese People’s Liberation Army General Hospital & The Chinese People’s Liberation Army Medical School, Beijing 100853, China
| | - Mo Yang
- Department of Neuro-Ophthalmology, Eye Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Honglu Song
- Department of Ophthalmology, The Chinese People’s Liberation Army General Hospital & The Chinese People’s Liberation Army Medical School, Beijing 100853, China
- Department of Ophthalmology, The 980th Hospital of the Chinese PLA Joint Logistics Support Force, Shijiazhuang 050082, China
| | - Mingming Sun
- Department of Ophthalmology, The Chinese People’s Liberation Army General Hospital & The Chinese People’s Liberation Army Medical School, Beijing 100853, China
| | - Huanfen Zhou
- Department of Ophthalmology, The Chinese People’s Liberation Army General Hospital & The Chinese People’s Liberation Army Medical School, Beijing 100853, China
| | - Junxia Fu
- Department of Ophthalmology, The Chinese People’s Liberation Army General Hospital & The Chinese People’s Liberation Army Medical School, Beijing 100853, China
| | - Di Zhou
- Department of Ophthalmology, The Chinese People’s Liberation Army General Hospital & The Chinese People’s Liberation Army Medical School, Beijing 100853, China
| | - Wenhao Bai
- Department of Ophthalmology, The Chinese People’s Liberation Army General Hospital & The Chinese People’s Liberation Army Medical School, Beijing 100853, China
| | - Biyue Chen
- Department of Ophthalmology, The Chinese People’s Liberation Army General Hospital & The Chinese People’s Liberation Army Medical School, Beijing 100853, China
| | - Mengying Lai
- Department of Ophthalmology, The Chinese People’s Liberation Army General Hospital & The Chinese People’s Liberation Army Medical School, Beijing 100853, China
- Department of Public Health and Preventive Medicine, Shantou University Medical College, Shantou 515041, China
| | - Hao Kang
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
- Correspondence: (H.K.); (S.W.)
| | - Shihui Wei
- Department of Ophthalmology, The Chinese People’s Liberation Army General Hospital & The Chinese People’s Liberation Army Medical School, Beijing 100853, China
- Correspondence: (H.K.); (S.W.)
| |
Collapse
|
16
|
Identification of circRNA expression profiles and the potential role of hsa_circ_0006916 in silicosis and pulmonary fibrosis. Toxicology 2023; 483:153384. [PMID: 36403901 DOI: 10.1016/j.tox.2022.153384] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/21/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
Circular RNAs (circRNAs) are emerging as novel regulators in the biological development of various diseases, but their expression profiles, functions and mechanisms in silicosis and pulmonary fibrosis remain largely unexplored. In this study, we constructed a mouse model of pulmonary fibrosis by intratracheal injection of silica particles and then performed transcriptome RNA sequencing of lung tissues. The results showed that 78 circRNAs, 39 miRNAs and 262 mRNAs were differentially expressed. Among them, five circRNAs, three miRNAs and four mRNAs were further selected, and their abnormal expression was verified in mouse fibrotic lung tissues by RT-qPCR assay. The circRNA-associated ceRNA network including 206 ceRNA triplets was constructed based on abnormally expressed circRNAs, miRNAs and mRNAs, and miR-199b-5p, miR-296-5p and miR-708-5p were identified as hub miRNAs connected to circRNAs and mRNAs. Subsequently, GO and KEGG pathway enrichment analyses were performed to detect the potential roles of differentially expressed mRNAs in pulmonary fibrosis, which were mainly involved in immune response, Th17 cell differentiation, NF-κB signaling pathway and PI3K-Akt signaling pathway. Furthermore, we identified that hsa_circ_0006916 was up-regulated in pulmonary fibrosis. To characterize the potential role of hsa_circ_0006916, we transfected siRNA targeting hsa_circ_0006916 into alveolar macrophages and found that knockdown of hsa_circ_0006916 significantly increased the expression levels of M1 molecules IL-1β and TNF-α and reduced the expression level of M2 molecule TGF-β1, indicating that hsa_circ_0006916 may play an important role in the activation of M1-M2 polarization effect in macrophages. Our results provided important evidence on the possible contribution of these abnormal circRNAs to the development of silicosis and pulmonary fibrosis.
Collapse
|
17
|
Jiang Y, Xie YZ, Peng CW, Yao KN, Lin XY, Zhan SF, Zhuang HF, Huang HT, Liu XH, Huang XF, Li H. Modeling Kaempferol as a Potential Pharmacological Agent for COVID-19/PF Co-Occurrence Based on Bioinformatics and System Pharmacological Tools. Front Pharmacol 2022; 13:865097. [PMID: 35754492 PMCID: PMC9214245 DOI: 10.3389/fphar.2022.865097] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: People suffering from coronavirus disease 2019 (COVID-19) are prone to develop pulmonary fibrosis (PF), but there is currently no definitive treatment for COVID-19/PF co-occurrence. Kaempferol with promising antiviral and anti-fibrotic effects is expected to become a potential treatment for COVID-19 and PF comorbidities. Therefore, this study explored the targets and molecular mechanisms of kaempferol against COVID-19/PF co-occurrence by bioinformatics and network pharmacology. Methods: Various open-source databases and Venn Diagram tool were applied to confirm the targets of kaempferol against COVID-19/PF co-occurrence. Protein-protein interaction (PPI), MCODE, key transcription factors, tissue-specific enrichment, molecular docking, Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were used to clarify the influential molecular mechanisms of kaempferol against COVID-19 and PF comorbidities. Results: 290 targets and 203 transcription factors of kaempferol against COVID-19/PF co-occurrence were captured. Epidermal growth factor receptor (EGFR), proto-oncogene tyrosine-protein kinase SRC (SRC), mitogen-activated protein kinase 3 (MAPK3), mitogen-activated protein kinase 1 (MAPK1), mitogen-activated protein kinase 8 (MAPK8), RAC-alpha serine/threonine-protein kinase (AKT1), transcription factor p65 (RELA) and phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform (PIK3CA) were identified as the most critical targets, and kaempferol showed effective binding activities with the above critical eight targets. Further, anti-COVID-19/PF co-occurrence effects of kaempferol were associated with the regulation of inflammation, oxidative stress, immunity, virus infection, cell growth process and metabolism. EGFR, interleukin 17 (IL-17), tumor necrosis factor (TNF), hypoxia inducible factor 1 (HIF-1), phosphoinositide 3-kinase/AKT serine/threonine kinase (PI3K/AKT) and Toll-like receptor signaling pathways were identified as the key anti-COVID-19/PF co-occurrence pathways. Conclusion: Kaempferol is a candidate treatment for COVID-19/PF co-occurrence. The underlying mechanisms may be related to the regulation of critical targets (EGFR, SRC, MAPK3, MAPK1, MAPK8, AKT1, RELA, PIK3CA and so on) and EGFR, IL-17, TNF, HIF-1, PI3K/AKT and Toll-like receptor signaling pathways. This study contributes to guiding development of new drugs for COVID-19 and PF comorbidities.
Collapse
Affiliation(s)
- Yong Jiang
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
| | - Yi-Zi Xie
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chen-Wen Peng
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kai-Nan Yao
- Shenzhen Bao'an District Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xue-Ying Lin
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shao-Feng Zhan
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hong-Fa Zhuang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui-Ting Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Hong Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiu-Fang Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hang Li
- Shenzhen Bao'an District Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
18
|
Guo H, Song Y, Li F, Fan Y, Li Y, Zhang C, Hou H, Shi M, Zhao Z, Chen Z. ACT001 suppressing M1 polarization against inflammation via NF-κB and STAT1 signaling pathways alleviates acute lung injury in mice. Int Immunopharmacol 2022; 110:108944. [PMID: 35728304 DOI: 10.1016/j.intimp.2022.108944] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 12/12/2022]
Abstract
ACT001 has been shown to exhibit excellent antitumor and anti-fibrosis activities. However, the role of ACT001 in acute lung injury (ALI) and the underlying mechanism remains largely unclear. The present study aimed to investigate the protective effects of ACT001 on ALI and explore the potential mechanisms. Herein, we firstly established the ALI mouse model induced by intratracheal instillation of lipopolysaccharide (LPS). ACT001 treatment significantly alleviated histopathological changes of lung tissues with lower infiltration of pulmonary M1 macrophages in ALI mice. Then, we performed in vitro experiment and found that ACT001 treatment effectively inhibited the M1 phenotype of RAW264.7 and THP-1.. Next, we performed pull-down and mass spectrometry analysis to screen the interacting proteins of ACT001, identifying IKKβ and STAT1 as the critical target proteins of ACT001. And ACT001 treatment significantly suppressed the NF-κB and STAT1 pathways, thereby inhibiting the M1 polarization against inflammation in vivo and in vitro. Finally, we used IMD 0354 (IMD) and Fludarabine (Flud) to specifically block the activity of IKKβ and STAT1, and stimulated macrophages through IKKβ and STAT1 overexpression. Our data clearly showed that ACT001-induced decrease of the M1 polarization was blocked by IMD and Flud treatment, and reversed by IKKβ and STAT1 overexpression in RAW264.7 cells. In conclusion, we discovered that ACT001 significantly alleviates inflammation and limits M1 phenotype of pulmonary macrophages via suppressing NF-κB and STAT1 signaling pathways, providing new insights for the development of drugs to treat ALI/ARDS.
Collapse
Affiliation(s)
- Hui Guo
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan Song
- Department of Geriatrics, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Fanjian Li
- Department of Neurosurgery, Tianjin Institute of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan Fan
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yiman Li
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Chaonan Zhang
- Department of Neurosurgery, Tianjin Institute of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Huijie Hou
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Minmin Shi
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Zilong Zhao
- Department of Neurosurgery, Tianjin Institute of Neurology, Tianjin Medical University General Hospital, Tianjin, China.
| | - Zhe Chen
- Department of Geriatrics, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
19
|
Zhang A, Zou Y, Xu Q, Tian S, Wang J, Li Y, Dong R, Zhang L, Jiang J, Wang L, Tao K, Meng Z, Liu Y. Investigation of the Pharmacological Effect and Mechanism of Jinbei Oral Liquid in the Treatment of Idiopathic Pulmonary Fibrosis Using Network Pharmacology and Experimental Validation. Front Pharmacol 2022; 13:919388. [PMID: 35784749 PMCID: PMC9240387 DOI: 10.3389/fphar.2022.919388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/06/2022] [Indexed: 12/02/2022] Open
Abstract
Overview: Idiopathic pulmonary fibrosis (IPF) is a disease caused by many factors, eventually resulting in lung function failure. Jinbei oral liquid (JBOL) is a traditional Chinese clinical medicine used to treat pulmonary diseases. However, the pharmacological effects and mechanism of the action of JBOL on IPF remain unclear. This study investigated the protective effects and mechanism of the action of JBOL on IPF using network pharmacology analysis, followed by in vivo and in vitro experimental validation. Methods: The components of JBOL and their targets were screened using the TCMSP database. IPF-associated genes were obtained using DisGeNET and Drugbank. The common targets of JBOL and IPF were identified with the STRING database, and a protein-protein interaction (PPI) network was constructed. GO and KEGG analyses were performed. Sprague-Dawley rats were injected with bleomycin (BLM) to establish an IPF model and treated orally with JBOL at doses of 5.4, 10.8, and 21.6 ml/kg. A dose of 54 mg/kg of pirfenidone was used as a control. All rats were treated for 28 successive days. Dynamic pulmonary compliance (Cdyn), minute ventilation volume (MVV), vital capacity (VC), and lung resistance (LR) were used to evaluate the efficacy of JBOL. TGF-β-treated A549 cells were exposed to JBOL, and epithelial-to-mesenchymal transition (EMT) changes were assessed. Western blots were performed. Results: Two hundred seventy-eight compounds and 374 targets were screened, and 103 targets related to IPF were identified. Core targets, including MAPK1 (ERK2), MAPK14 (p38), JUN, IL-6, AKT, and others, were identified by constructing a PPI network. Several pathways were involved, including the MAPK pathway. Experimentally, JBOL increased the levels of the pulmonary function indices (Cdyn, MVV, and VC) in a dose-dependent manner and reduced the RL level in the BLM-treated rats. JBOL increased the epithelial marker E-cadherin and suppressed the mesenchymal marker vimentin expression in the TGF-β-treated A549 cells. The suppression of ERK1/2, JNK, and p38 phosphorylation by JBOL was validated. Conclusion: JBOL had therapeutic effects against IPF by regulating pulmonary function and EMT through a systemic network mechanism, thus supporting the need for future clinical trials of JBOL.
Collapse
Affiliation(s)
- Aijun Zhang
- Institute of Chinese Materia Medica, Shandong Hongji-tang Pharmaceutical Group Co., Ltd., Jinan, China
| | - Yixuan Zou
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingcui Xu
- Institute of Chinese Materia Medica, Shandong Hongji-tang Pharmaceutical Group Co., Ltd., Jinan, China
| | - Shuo Tian
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Wang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yilin Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Renchao Dong
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liangzong Zhang
- Institute of Chinese Materia Medica, Shandong Hongji-tang Pharmaceutical Group Co., Ltd., Jinan, China
| | - Juanjuan Jiang
- Institute of Chinese Materia Medica, Shandong Hongji-tang Pharmaceutical Group Co., Ltd., Jinan, China
| | - Lili Wang
- Institute of Chinese Materia Medica, Shandong Hongji-tang Pharmaceutical Group Co., Ltd., Jinan, China
| | - Kai Tao
- Institute of Chinese Materia Medica, Shandong Hongji-tang Pharmaceutical Group Co., Ltd., Jinan, China
| | - Zhaoqing Meng
- Institute of Chinese Materia Medica, Shandong Hongji-tang Pharmaceutical Group Co., Ltd., Jinan, China
| | - Yanqiu Liu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
20
|
Cai L, Gong Q, Qi L, Xu T, Suo Q, Li X, Wang W, Jing Y, Yang D, Xu Z, Yuan F, Tang Y, Yang G, Ding J, Chen H, Tian H. ACT001 attenuates microglia-mediated neuroinflammation after traumatic brain injury via inhibiting AKT/NFκB/NLRP3 pathway. Cell Commun Signal 2022; 20:56. [PMID: 35461293 PMCID: PMC9035258 DOI: 10.1186/s12964-022-00862-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/12/2022] [Indexed: 12/20/2022] Open
Abstract
Abstract
Background
Microglia-mediated neuroinflammatory response following traumatic brain injury (TBI) is considered as a vital secondary injury factor, which drives trauma-induced neurodegeneration and is lack of efficient treatment. ACT001, a sesquiterpene lactone derivative, is reportedly involved in alleviation of inflammatory response. However, little is known regarding its function in regulating innate immune response of central nervous system (CNS) after TBI. This study aimed to investigate the role and underlying mechanism of ACT001 in TBI.
Methods
Controlled cortical impact (CCI) models were used to establish model of TBI. Cresyl violet staining, evans blue extravasation, neurobehavioral function assessments, immunofluorescence and transmission electron microscopy were used to evaluate therapeutic effects of ACT001 in vivo. Microglial depletion was induced by administering mice with colony stimulating factor 1 receptor (CSF1R) inhibitor, PLX5622. Cell-cell interaction models were established as co-culture system to simulate TBI conditions in vitro. Cytotoxic effect of ACT001 on cell viability was assessed by cell counting kit-8 and activation of microglia cells were induced by Lipopolysaccharides (LPS). Pro-inflammatory cytokines expression was determined by Real-time PCR and nitric oxide production. Apoptotic cells were detected by TUNEL and flow cytometry assays. Tube formation was performed to evaluate cellular angiogenic ability. ELISA and western blot experiments were used to determine proteins expression. Pull-down assay was used to analyze proteins that bound ACT001.
Results
ACT001 relieved the extent of blood-brain barrier integrity damage and alleviated motor function deficits after TBI via reducing trauma-induced activation of microglia cells. Delayed depletion of microglia with PLX5622 hindered therapeutic effect of ACT001. Furthermore, ACT001 alleviated LPS-induced activation in mouse and rat primary microglia cells. Besides, ACT001 was effective in suppressing LPS-induced pro-inflammatory cytokines production in BV2 cells, resulting in reduction of neuronal apoptosis in HT22 cells and improvement of tube formation in bEnd.3 cells. Mechanism by which ACT001 functioned was related to AKT/NFκB/NLRP3 pathway. ACT001 restrained NFκB nuclear translocation in microglia cells through inhibiting AKT phosphorylation, resulting in decrease of NLRP3 inflammasome activation, and finally down-regulated microglial neuroinflammatory response.
Conclusions
Our study indicated that ACT001 played critical role in microglia-mediated neuroinflammatory response and might be a novel potential chemotherapeutic drug for TBI.
Collapse
|
21
|
Anticancer Targets and Signaling Pathways Activated by Britannin and Related Pseudoguaianolide Sesquiterpene Lactones. Biomedicines 2021; 9:biomedicines9101325. [PMID: 34680439 PMCID: PMC8533303 DOI: 10.3390/biomedicines9101325] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/15/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022] Open
Abstract
Sesquiterpene lactones (SLs) are abundant in plants and display a large spectrum of bioactivities. The compound britannin (BRT), found in different Inula species, is a pseudoguaianolide-type SL equipped with a typical and highly reactive α-methylene-γ-lactone moiety. The bioproperties of BRT and related pseudoguaianolide SLs, including helenalin, gaillardin, bigelovin and others, have been reviewed. Marked anticancer activities of BRT have been evidenced in vitro and in vivo with different tumor models. Three main mechanisms are implicated: (i) interference with the NFκB/ROS pathway, a mechanism common to many other SL monomers and dimers; (ii) blockade of the Keap1-Nrf2 pathway, with a covalent binding to a cysteine residue of Keap1 via the reactive α-methylene unit of BRT; (iii) a modulation of the c-Myc/HIF-1α signaling axis leading to a downregulation of the PD-1/PD-L1 immune checkpoint and activation of cytotoxic T lymphocytes. The non-specific reactivity of the α-methylene-γ-lactone moiety with the sulfhydryl groups of proteins is discussed. Options to reduce or abolish this reactivity have been proposed. Emphasis is placed on the capacity of BRT to modulate the tumor microenvironment and the immune-modulatory action of the natural product. The present review recapitulates the anticancer effects of BRT, some central concerns with SLs and discusses the implication of the PD1/PD-L1 checkpoint in its antitumor action.
Collapse
|