1
|
Xiong J, Lu H, Jiang Y. Mechanisms of Azole Potentiation: Insights from Drug Repurposing Approaches. ACS Infect Dis 2025. [PMID: 39749640 DOI: 10.1021/acsinfecdis.4c00657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The emergence of azole resistance and tolerance in pathogenic fungi has emerged as a significant public health concern, emphasizing the urgency for innovative strategies to bolster the efficacy of azole-based treatments. Drug repurposing stands as a promising and practical avenue for advancing antifungal therapy, with the potential for swift clinical translation. This review offers a comprehensive overview of azole synergistic agents uncovered through drug repurposing strategies, alongside an in-depth exploration of the mechanisms by which these agents augment azole potency. Drawing from these mechanisms, we delineate strategies aimed at enhancing azole effectiveness, such as inhibiting efflux pumps to elevate azole concentrations within fungal cells, intensifying ergosterol synthesis inhibition, mitigating fungal cell resistance to azoles, and disrupting biological processes extending beyond ergosterol synthesis. This review is beneficial for the development of these potentiators, as it meticulously examines instances and provides nuanced discussions on the mechanisms underlying the progression of azole potentiators through drug repurposing strategies.
Collapse
Affiliation(s)
- Juan Xiong
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Hui Lu
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| |
Collapse
|
2
|
Rachel R, Anuradha M, Leela K. Evaluating the Antifungal Potential of Cinnamaldehyde: A Study of its Efficacy against Candida Species. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2024; 18:2438-2445. [DOI: 10.22207/jpam.18.4.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Candida species exist as commensals in nature, colonizing the mucous membranes, gastrointestinal tract, vagina as well as the skin and usually cause infections in immunocompromised patients. C. albicans are known to be the most prevalent Candida species associated with infections, while there has been a significant surge in the incidence of Non-Candida albicans Candida species (NCAC) recently. The recent occurrences of the antifungal resistance in Candida, especially in NCAC species are quite alarming which raises the need for a safe and efficient alternative antimycotic drug. This study analyses the efficacy of cinnamaldehyde against Candida species, which is known to cause the majority of the fungal infections in humans. Cinnamaldehyde is a natural antimicrobial compound derived from cinnamon and has demonstrated significant antimycotic properties. Antifungal susceptibility profiles of cinnamaldehyde against Candida species were studied by disc diffusion as well as by broth microdilution assays. The mean diameter of the inhibition zone (IZ) formed by direct contact and disc volatilization assays were 61.26 mM and 65.20 mM, respectively. Both the minimum inhibitory concentration (MIC) and the minimum fungicidal concentration (MFC) of cinnamaldehyde ranged from 16-256 mg/L with mean MIC of 60.61 mg/L and a mean MFC of 81.94 mg/L. Co-incubation of Candida cells with cinnamaldehyde resulted in the loss of viable cells within 4 hours of incubation. Cinnamaldehyde was found to exhibit both fungistatic and fungicidal properties, making it a potent natural alternative for conventional antifungal agents.
Collapse
|
3
|
Santos AAD, Oliveira-Filho AADE, Teixeira BA, Galvão JLFM, Medeiros MAADE, Alves MS, Barbosa DHX, Mafra RP, Vasconcelos U, Lima EO. Evaluation of (-)-Fenchone antimicrobial activity against oral Candida albicans and toxicological parameters: an in silico, in vitro and ex vivo study. AN ACAD BRAS CIENC 2024; 96:e20240273. [PMID: 39504094 DOI: 10.1590/0001-3765202420240273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/28/2024] [Indexed: 11/08/2024] Open
Abstract
Candida albicans is the primary species causing oral candidiasis. Its increasing drug resistance drives the search for more effective antifungal agents. Therefore, we assessed toxicological parameters and the antimicrobial activity and mechanisms of action of the monoterpene (-)-fenchone against oral C. albicans. We conducted an in silico study using PASS online and AdmetSAR, followed by evaluation of antifungal activity through Minimum Inhibitory Concentration (MIC), Minimum Fungicidal Concentration (MFC), association study with miconazole, and assays with sorbitol and ergosterol. Inhibition of biofilm formation and disruption of preformed biofilm were considered. Toxicity was also assessed through hemolysis assay. The in silico study revealed a higher likelihood of the compound being active for antifungal activity, as well as promising pharmacokinetic and toxicity characteristics. Subsequently, (-)-fenchone exhibited predominantly fungicidal activity (MIC90 = 8 μg/mL; MFC = 16 μg/mL), including against miconazole-resistant C. albicans isolates. The substance does not appear to act by damaging the fungal cell wall or plasma membrane, and exhibited synergy with miconazole. There was activity in inhibiting biofilm formation but not in disrupting preformed biofilm. Finally, the product exerted low hemolytic activity at more than MIC×10. Based on these results, (-)-fenchone may represent a promising therapeutic alternative for oral candidiasis.
Collapse
Affiliation(s)
- André A Dos Santos
- Universidade Federal da Paraíba (UFPB), Centro de Ciências da Saúde (CCS), Departamento de Ciências Farmacêuticas (IPeFarM), Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos (PgPNSB), Campus I, Cidade Universitária, Castelo Branco, 58051-900 João Pessoa, PB, Brazil
| | - Abrahão A DE Oliveira-Filho
- Universidade Federal de Campina Grande (UFCG), Centro de Saúde e Tecnologia Rural (CSTR), Campus Patos, Av. Universitária, s/n, Santa Cecília, 58708-110 Patos, PB, Brazil
| | - Bráulio A Teixeira
- Universidade Federal da Paraíba (UFPB), Centro de Ciências da Saúde (CCS), Departamento de Ciências Farmacêuticas (IPeFarM), Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos (PgPNSB), Campus I, Cidade Universitária, Castelo Branco, 58051-900 João Pessoa, PB, Brazil
| | - José Lucas F M Galvão
- Universidade Federal da Paraíba (UFPB), Centro de Ciências da Saúde (CCS), Departamento de Ciências Farmacêuticas (IPeFarM), Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos (PgPNSB), Campus I, Cidade Universitária, Castelo Branco, 58051-900 João Pessoa, PB, Brazil
| | - Maria Alice A DE Medeiros
- Universidade Federal de Campina Grande (UFCG), Centro de Saúde e Tecnologia Rural (CSTR), Campus Patos, Av. Universitária, s/n, Santa Cecília, 58708-110 Patos, PB, Brazil
| | - Millena S Alves
- Universidade Federal de Campina Grande (UFCG), Centro de Saúde e Tecnologia Rural (CSTR), Campus Patos, Av. Universitária, s/n, Santa Cecília, 58708-110 Patos, PB, Brazil
| | - David Henrique X Barbosa
- Universidade Federal do Rio Grande do Norte (UFRN), Centro de Ciências da Saúde (CCS), Departamento de Odontologia (DOD), Programa de Pós-Graduação em Ciências Odontológicas (PPgCO), Av. Salgado Filho, 1787, Lagoa Nova, 59056-000 Natal, RN, Brazil
| | - Rodrigo P Mafra
- Universidade Federal do Rio Grande do Norte (UFRN), Centro de Ciências da Saúde (CCS), Departamento de Odontologia (DOD), Programa de Pós-Graduação em Ciências Odontológicas (PPgCO), Av. Salgado Filho, 1787, Lagoa Nova, 59056-000 Natal, RN, Brazil
| | - Ulrich Vasconcelos
- Universidade Federal da Paraíba (UFPB), Centro de Ciências da Saúde (CCS), Departamento de Ciências Farmacêuticas (IPeFarM), Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos (PgPNSB), Campus I, Cidade Universitária, Castelo Branco, 58051-900 João Pessoa, PB, Brazil
| | - Edeltrudes O Lima
- Universidade Federal da Paraíba (UFPB), Centro de Ciências da Saúde (CCS), Departamento de Ciências Farmacêuticas (IPeFarM), Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos (PgPNSB), Campus I, Cidade Universitária, Castelo Branco, 58051-900 João Pessoa, PB, Brazil
| |
Collapse
|
4
|
Chamtouri M, Merghni A, Miranda-Cadena K, Sakly N, Gaddour N, de Los Reyes-Gavilán CG, Mastouri M, Eraso E, Quindós G. Characterization of Yeast Isolated from the Gut Microbiota of Tunisian Children with Autism Spectrum Disorder. J Fungi (Basel) 2024; 10:730. [PMID: 39590651 PMCID: PMC11595294 DOI: 10.3390/jof10110730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 11/28/2024] Open
Abstract
Research on the microbiota-gut-brain axis in autism has primarily focused on bacteria, with limited attention to fungi. There is a growing interest in understanding the involvement of fungi, particularly Candida, in patients with autism spectrum disorder. The aim of this study was to assess the prevalence, antifungal susceptibility profiles and virulence factors of Candida isolates from the guts of Tunisian children with autism. Twenty-eight children with autism and forty-six controls were enrolled. Candida isolates from the faecal samples were identified using biochemical and molecular methods; antifungal susceptibility testing was determined by the EUCAST broth microdilution method and virulence factors, including biofilm formation, cell surface hydrophobicity and phospholipase and proteinase activities, were assessed in vitro. As a result, Candida was detected in 13 children with autism (46.4%) and 14 control children (30.4%). Candida albicans was found to be the most common species isolate in the faeces of both groups of children. Antifungal susceptibility profiles showed that one Candida isolate was resistant to amphotericin B and anidulafungin (3.7%), six were resistant to micafungin (22.2%) and five were resistant to fluconazole (18.5%). All Candida isolates were biofilm producers. Of the twenty-seven isolates, only four showed phospholipase activity (14.8%), eight showed aspartyl-proteinase activity (29.6%) and nine were hydrophobic (33.3%). These results highlight the presence of Candida in the guts of children with autism, as well as the ability to express multiple virulence factors and the antifungal resistance, and they emphasize the need for further studies to confirm intestinal Candida colonization and its potential role in autism.
Collapse
Affiliation(s)
- Mariem Chamtouri
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain; (M.C.); (C.G.d.L.R.-G.)
- Laboratory of Transmissible Diseases and Biologically Active Substances LR99ES27, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia;
| | - Abderrahmen Merghni
- Laboratory of Antimicrobial Resistance LR99ES09, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia;
| | - Katherine Miranda-Cadena
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, 48080 Bilbao, Spain; (K.M.-C.); (G.Q.)
| | - Nabil Sakly
- Laboratory of Medical and Molecular Parasitology-Mycology (code LR12ES08), Department of Clinical Biology B, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia;
| | - Naoufel Gaddour
- Unit of Child Psychiatry, Monastir University Hospital, Monastir 5000, Tunisia;
| | - Clara G. de Los Reyes-Gavilán
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain; (M.C.); (C.G.d.L.R.-G.)
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Maha Mastouri
- Laboratory of Transmissible Diseases and Biologically Active Substances LR99ES27, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia;
| | - Elena Eraso
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, 48080 Bilbao, Spain; (K.M.-C.); (G.Q.)
| | - Guillermo Quindós
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, 48080 Bilbao, Spain; (K.M.-C.); (G.Q.)
| |
Collapse
|
5
|
Sharifzadeh A, Fasaei BN, Asadi S, Fatemi N, Houshmandzad M, Ghaffari MH. Evaluation of antifungal and apoptotic effects of linalool, citral, and carvacrol separately and in combination with nystatin against clinical isolates of Pichia kudriavzevii. BMC Microbiol 2024; 24:333. [PMID: 39251899 PMCID: PMC11386228 DOI: 10.1186/s12866-024-03487-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
Pichia kudriavzevii (formerly Candida krusei) poses a significant threat to immunocompromised patients due to its inherent resistance to various antifungal drugs. This study explored the anticandidal potential of citral, linalool, and carvacrol in combination with nystatin against P. kudriavzevii strains.Using the microdilution method following CLSI guidelines, Minimum Inhibitory Concentrations (MICs) and fungicidal concentrations (MFCs) were determined. Citral exhibited MIC values ranging from 50 to 100 µg/ml, averaging 70.24 ± 16.99 µg/ml, while carvacrol had MIC values of 50 to 100 µg/ml, averaging 86.90 ± 16.99 µg/ml. Linalool demonstrated weaker antifungal activity, with MIC values between 100 and 200 µg/ml, averaging 150 ± 38.73 µg/ml. The study assessed the synergistic effectsof these phenols with nystatin through fractional inhibitory concentration indices (FICIS). In addition, flow cytometry was employed to assess apoptosis induction in P. kudriavzevii cells.Carvacrol displayed a remarkable synergistic effect in combination with nystatin against all 21 isolates tested. Conversely, linalool showed synergy in 17 isolates, while citral exhibited synergy in only 2 isolates. These findings highlight distinct patterns of synergy between the different compounds and nystatin against P. kudriavzevii. Also, Carvacrol emerged as the most potent inducer of apoptosis across all P. kudriavzevii strains, followed by citral and linalool. This suggests that carvacrol not only possesses a stronger antifungal effect but also has a more pronounced ability to trigger programmed cell death in P. kudriavzevii. In conclusion, the study supports the potential of carvacrol, citral and linalool, as anticandidal agents, suggesting their supplementation with nystatin for treating P. kudriavzevii infections.
Collapse
Affiliation(s)
- Aghil Sharifzadeh
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Bahar Nayeri Fasaei
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Sepideh Asadi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Narges Fatemi
- DVM, Student of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahdi Houshmandzad
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohammad Hosein Ghaffari
- DVM, Student of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
6
|
Wu Y, Zhang H, Chen H, Du Z, Li Q, Wang R. Fleagrass (Adenosma buchneroides Bonati) Acts as a Fungicide Against Candida albicans by Damaging Its Cell Wall. J Microbiol 2024; 62:661-670. [PMID: 38958871 DOI: 10.1007/s12275-024-00146-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/21/2024] [Accepted: 05/02/2024] [Indexed: 07/04/2024]
Abstract
Fleagrass, a herb known for its pleasant aroma, is widely used as a mosquito repellent, antibacterial agent, and for treating colds, reducing swelling, and alleviating pain. The antifungal effects of the essential oils of fleagrass and carvacrol against Candida albicans were investigated by evaluating the growth and the mycelial and biofilm development of C. albicans. Transmission electron microscopy was used to evaluate the integrity of the cell membrane and cell wall of C. albicans. Fleagrass exhibited high fungicidal activity against C. albicans at concentrations of 0.5% v/v (via the Ras1/cAMP/PKA pathway). Furthermore, transmission electron microscopy revealed damage to the cell wall and membrane after treatment with the essential oil, which was further confirmed by the increased levels of β-1,3-glucan and chitin in the cell wall. This study showed that fleagrass exerts good fungicidal and hyphal growth inhibition activity against C. albicans by disrupting its cell wall, and thus, fleagrass may be a potential antifungal drug.
Collapse
Affiliation(s)
- Youwei Wu
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650000, People's Republic of China
| | - Hongxia Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Hongjie Chen
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650000, People's Republic of China
| | - Zhizhi Du
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Qin Li
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650000, People's Republic of China
| | - Ruirui Wang
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650000, People's Republic of China.
| |
Collapse
|
7
|
Park J, Xiang Z, Liu Y, Li CH, Chen C, Nagaraj H, Nguyen T, Nabawy A, Koo H, Rotello VM. Surface-Charge Tuned Polymeric Nanoemulsions for Carvacrol Delivery in Interkingdom Biofilms. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37613-37622. [PMID: 39007413 PMCID: PMC11624604 DOI: 10.1021/acsami.4c06618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Biofilms, intricate microbial communities entrenched in extracellular polymeric substance (EPS) matrices, pose formidable challenges in infectious disease treatment, especially in the context of interkingdom biofilms prevalent in the oral environment. This study investigates the potential of carvacrol-loaded biodegradable nanoemulsions (NEs) with systematically varied surface charges─cationic guanidinium (GMT-NE) and anionic carboxylate (CMT-NE). Zeta potentials of +25 mV (GMT-NE) and -33 mV (CMT-NE) underscore successful nanoemulsion fabrication (∼250 nm). Fluorescent labeling and dynamic tracking across three dimensions expose GMT-NE's superior diffusion into oral biofilms, yielding a robust antimicrobial effect with 99.99% killing for both streptococcal and Candida species and marked reductions in bacterial cell viability compared to CMT-NE (∼4-log reduction). Oral mucosa tissue cultures affirm the biocompatibility of both NEs with no morphological or structural changes, showcasing their potential for combating intractable biofilm infections in oral environment. This study advances our understanding of NE surface charges and their interactions within interkingdom biofilms, providing insights crucial for addressing complex infections involving bacteria and fungi in the demanding oral context.
Collapse
Affiliation(s)
- Jungmi Park
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Zhenting Xiang
- Biofilm Research Laboratories, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, 240 S 40th Street, Philadelphia, Pennsylvania 19104, United States
| | - Yuan Liu
- Biofilm Research Laboratories, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Preventive & Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cheng-Hsuan Li
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Chider Chen
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Harini Nagaraj
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Tiffany Nguyen
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Ahmed Nabawy
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Hyun Koo
- Biofilm Research Laboratories, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, 240 S 40th Street, Philadelphia, Pennsylvania 19104, United States
- Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, 240 S 40th Street, Philadelphia, Pennsylvania 19104, United States
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| |
Collapse
|
8
|
Zhang B, Lan W, Yan P, Xie J. The antibacterial and inhibition effect of chitosan grafted gentisate acid derivatives against Pseudomonas fluorescens: Attacking multiple targets on structure, metabolism system, antioxidant system, and biofilm. Int J Biol Macromol 2024; 273:133225. [PMID: 38897501 DOI: 10.1016/j.ijbiomac.2024.133225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/08/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
This work aimed to investigate the antibacterial ability and potential mechanism of chitosan grafted gentisate acid derivatives (CS-g-GA) against Pseudomonas fluorescens. The results showed that CS-g-GA had a significant suppressive impact on the growth of Pseudomonas fluorescens, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were 0.64 mg/mL and 1.28 mg/mL, respectively. Results of scanning electron microscopy (SEM) and alkaline phosphatase (AKPase) confirmed that CS-g-GA destroyed the cell structure thereby causing the leakage of intracellular components. In addition, 1 × MIC of CS-g-GA could significantly inhibit the formation of biofilms, and 74.78 % mature biofilm and 86.21 % extracellular polysaccharide of Pseudomonas fluorescens were eradicated by CS-g-GA at 2 × MIC. The results on the respiratory energy metabolism system and antioxidant system demonstrated that CS-g-GA caused respiratory disturbance and energy limitation by influencing the key enzyme activities. It could also bind to DNA and affect genetic metabolism. From this, it could be seen that CS-g-GA had the potential to control foodborne contamination of Pseudomonas fluorescens by attacking multiple targets.
Collapse
Affiliation(s)
- Bingjie Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China.
| | - Peiling Yan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China.
| |
Collapse
|
9
|
Lopes APR, Andrade AL, Pinheiro ADA, de Sousa LS, Malveira EA, Oliveira FFM, de Albuquerque CC, Teixeira EH, de Vasconcelos MA. Lippia grata Essential Oil Acts Synergistically with Ampicillin Against Staphylococcus aureus and its Biofilm. Curr Microbiol 2024; 81:176. [PMID: 38755426 DOI: 10.1007/s00284-024-03690-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/04/2024] [Indexed: 05/18/2024]
Abstract
Antimicrobial resistance (AMR) presents a global challenge as microorganisms evolve to withstand the effects of antibiotics. In addition, the improper use of antibiotics significantly contributes to the AMR acceleration. Essential oils have garnered attention for their antimicrobial potential. Indeed, essential oils extracted from plants contain compounds that exhibit antibacterial activity, including against resistant microorganisms. Hence, this study aimed to evaluate the antimicrobial and antibiofilm activity of the essential oil (EO) extracted from Lippia grata and its combination with ampicillin against Staphylococcus aureus strains (ATCC 25923, ATCC 700698, and JKD6008). The plant material (leaves) was gathered in Mossoro, RN, and the EO was obtained using the hydrodistillation method with the Clevenger apparatus. The antimicrobial activity of the EO was assessed through minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays. Antibiofilm activity was evaluated by measuring biomass using crystal violet (CV) staining, viable cell counting, and analysis of preformed biofilms. In addition, the synergistic effects of the EO in combination with ampicillin were examined by scanning electron and confocal microscopy. The EO displayed a MIC value of 2.5 mg/mL against all tested S. aureus strains and an MBC only against S. aureus JKD6008 at 2.5 mg/mL. L. grata EO caused complete biofilm inhibition at concentrations ranging from 10 to 0.312 mg/mL against S. aureus ATCC 25923 and 10 to 1.25 mg/mL against S. aureus ATCC 700698 and S. aureus JKD6008. In the viable cell quantification assay, there was a reduction in CFU ranging from 1.0 to 8.0 logs. The combination of EO with ampicillin exhibited a synergistic effect against all strains. Moreover, the combination showed a significantly inhibiting biofilm formation and eradicating preformed biofilms. Furthermore, the EO and ampicillin (individually and in combination) altered the cellular morphology of S. aureus cells. Regarding the mechanism, the results revealed that L. grata EO increased membrane permeability and caused significant membrane damage. Concerning the synergy mechanism, the results revealed that the combination of EO and ampicillin increases membrane permeability and causes considerable membrane damage, further inhibiting bacteria synergistically. The findings obtained here suggest that L. grata EO in combination with ampicillin could be a viable treatment option against S. aureus infections, including MRSA strain.
Collapse
Affiliation(s)
| | - Alexandre Lopes Andrade
- Laboratório Integrado de Biomoléculas, Departamento de Patologia E Medicina Legal, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Aryane de Azevedo Pinheiro
- Laboratório Integrado de Biomoléculas, Departamento de Patologia E Medicina Legal, Universidade Federal do Ceará, Fortaleza, CE, Brazil
- Centro Universitário Inta - UNINTA, Itapipoca, CE, Brazil
| | - Leonardo Silva de Sousa
- Laboratório Integrado de Biomoléculas, Departamento de Patologia E Medicina Legal, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Ellen Araújo Malveira
- Laboratório Integrado de Biomoléculas, Departamento de Patologia E Medicina Legal, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | | | | | - Edson Holanda Teixeira
- Laboratório Integrado de Biomoléculas, Departamento de Patologia E Medicina Legal, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Mayron Alves de Vasconcelos
- Faculdade de Ciências Exatas E Naturais, Universidade do Estado do Rio Grande do Norte, Mossoró, RN, Brazil.
- Laboratório Integrado de Biomoléculas, Departamento de Patologia E Medicina Legal, Universidade Federal do Ceará, Fortaleza, CE, Brazil.
- Faculdade de Educação de Itapipoca, Universidade Estadual do Ceará, Itapipoca, CE, Brazil.
| |
Collapse
|
10
|
Yi D, Xu W, Qin L, Xiang Y, Mo Y, Liu X, Liu Y, Peng J, Liang Z, He J. Characterization and pharmacokinetics of cinnamon and star anise compound essential oil pellets prepared via centrifugal granulation technology. BMC Vet Res 2024; 20:184. [PMID: 38724994 PMCID: PMC11083769 DOI: 10.1186/s12917-024-04026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
Cinnamon and star anise essential oils are extracted from natural plants and provide a theoretical basis for the development and clinical application of compound essential oil pellets. However, cinnamon oil and star anise oil have the characteristics of a pungent taste, extreme volatility, poor palatability, and unstable physical and chemical properties, which limit their clinical use in veterinary medicine. In this study, the inhibitory effects of cinnamon oil and star anise oil on Escherichia coli and Salmonella were measured. Compound essential oil pellets were successfully prepared by centrifugal granulation technology. Subsequently, the in vitro dissolution of the pellets and their pharmacokinetics in pigs were investigated. The results showd that, cinnamon and star anise oils showed synergistic or additive inhibitiory effects on Escherichia coli and Salmonella. The oil pellets had enteric characteristics in vitro and high dissolution in vitro. The pharmacokinetic results showed that the pharmacokinetic parameters Cmax and AUC were directly correlated with the dosage and showed linear pharmacokinetic characteristics, which provided a theoretical basis for the development and clinical application of compound essential oil pellets.
Collapse
Affiliation(s)
- Dandan Yi
- College of Animal Science and Technology, Guangxi University, 100 Daxue Road, Xixiangtang District, Nanning, 530004, Guangxi, P. R. China
| | - Wei Xu
- College of Animal Science and Technology, Guangxi University, 100 Daxue Road, Xixiangtang District, Nanning, 530004, Guangxi, P. R. China
| | - Lanqian Qin
- College of Animal Science and Technology, Guangxi University, 100 Daxue Road, Xixiangtang District, Nanning, 530004, Guangxi, P. R. China
| | - Yifei Xiang
- College of Animal Science and Technology, Guangxi University, 100 Daxue Road, Xixiangtang District, Nanning, 530004, Guangxi, P. R. China
| | - Yihao Mo
- College of Animal Science and Technology, Guangxi University, 100 Daxue Road, Xixiangtang District, Nanning, 530004, Guangxi, P. R. China
| | - Xia Liu
- College of Animal Science and Technology, Guangxi University, 100 Daxue Road, Xixiangtang District, Nanning, 530004, Guangxi, P. R. China
| | - Yu Liu
- College of Animal Science and Technology, Guangxi University, 100 Daxue Road, Xixiangtang District, Nanning, 530004, Guangxi, P. R. China
| | - Jianbo Peng
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, PR China
| | - Zhengmin Liang
- College of Animal Science and Technology, Guangxi University, 100 Daxue Road, Xixiangtang District, Nanning, 530004, Guangxi, P. R. China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, PR China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, PR China
| | - Jiakang He
- College of Animal Science and Technology, Guangxi University, 100 Daxue Road, Xixiangtang District, Nanning, 530004, Guangxi, P. R. China.
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, PR China.
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, PR China.
- Department of Animal Science and Technology, Guangxi Agricultural Vocational College, Nanning, 530007, PR China.
| |
Collapse
|
11
|
Balef SSH, Hosseini SS, Asgari N, Sohrabi A, Mortazavi N. The inhibitory effects of carvacrol, nystatin, and their combination on oral candidiasis isolates. BMC Res Notes 2024; 17:104. [PMID: 38605312 PMCID: PMC11010274 DOI: 10.1186/s13104-024-06767-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND Candida, a common oral microbiota, can cause opportunistic fungal infections. With rising Candida infections and limited effective antifungals, new treatments are needed. This study investigates carvacrol essential oil's effect on oral candidiasis, alone and with nystatin, compared to nystatin alone. MATERIALS AND METHODS In this study, oral samples were collected from dental clinic patients, especially denture users. The presence of Candida was confirmed and cultured from these samples. Candidiasis was detected by observing Candida colonies. Drug sensitivity was tested on 100 positive samples. The minimum concentration of inhibition and lethality of each isolate was evaluated using nystatin and carvacrol. The results were compared using two-way analysis of variance. Finally, the minimum inhibitory concentration (MIC) of nystatin and carvacrol was calculated individually and in combination. RESULTS The present study found that Candida albicans and non-albicans species were equally prevalent. Carvacrol showed significant biological activity against all Candida species, with an average MTT of 50.01%. The average MIC value of carvacrol was 24.96 µg/ml, indicating its potential to inhibit Candida growth. The mean Minimum Fungicidal Concentration (MFC) value of carvacrol was 23.48 µg/ml, suggesting its effectiveness in killing the fungi. CONCLUSION The study's findings reveal that the MIC of carvacrol was significantly lower than that of nystatin and the combination of nystatin and carvacrol. This suggests that carvacrol holds potential as an effective herbal remedy for candidiasis.
Collapse
Affiliation(s)
| | - Seyed Sedigheh Hosseini
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Mycology and Parasitology, Faculty of Paramedicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Negar Asgari
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ahmad Sohrabi
- Radinmehr Veterinary Laboratory, Radin Makian Azma Mehr Ltd, Gorgan, Iran
| | - Nazanin Mortazavi
- Dental Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Golestan University of Medical Sciences, Gorgan, PO Box 4916953363, Iran.
| |
Collapse
|
12
|
Arévalo-Jaimes BV, Torrents E. Died or Not Dyed: Assessment of Viability and Vitality Dyes on Planktonic Cells and Biofilms from Candida parapsilosis. J Fungi (Basel) 2024; 10:209. [PMID: 38535217 PMCID: PMC10970966 DOI: 10.3390/jof10030209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 11/11/2024] Open
Abstract
Viability and vitality assays play a crucial role in assessing the effectiveness of novel therapeutic approaches, with stain-based methods providing speed and objectivity. However, their application in yeast research lacks consensus. This study aimed to assess the performance of four common dyes on C. parapsilosis planktonic cells as well as sessile cells that form well-structured biofilms (treated and not treated with amphotericin B). Viability assessment employed Syto-9 (S9), thiazole orange (TO), and propidium iodide (PI). Metabolic activity was determined using fluorescein diacetate (FDA) and FUN-1. Calcofluor white (CW) served as the cell visualization control. Viability/vitality percentage of treated samples were calculated for each dye from confocal images and compared to crystal violet and PrestoBlue results. Heterogeneity in fluorescence intensity and permeability issues were observed with S9, TO, and FDA in planktonic cells and biofilms. This variability, influenced by cell morphology, resulted in dye-dependent viability/vitality percentages. Notably, PI and FUN-1 exhibited robust C. parapsilosis staining, with FUN-1 vitality results comparable to PrestoBlue. Our finding emphasizes the importance of evaluating dye permeability in yeast species beforehand, incorporating cell visualization controls. An improper dye selection may lead to misinterpreting treatment efficacy.
Collapse
Affiliation(s)
- Betsy Verónica Arévalo-Jaimes
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), 08028 Barcelona, Spain;
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Eduard Torrents
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), 08028 Barcelona, Spain;
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
13
|
Wang X, Deng T, Zhou X, Chu L, Zeng X, Zhang S, Guan W, Chen F. A Mixture of Formic Acid, Benzoic Acid, and Essential Oils Enhanced Growth Performance via Modulating Nutrient Uptake, Mitochondrion Metabolism, and Immunomodulation in Weaned Piglets. Antioxidants (Basel) 2024; 13:246. [PMID: 38397844 PMCID: PMC10886008 DOI: 10.3390/antiox13020246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
This study aimed to evaluate the effects of a complex comprising formic acid, benzoic acid, and essential oils (AO3) on the growth performance of weaned piglets and explore the underlying mechanism. Dietary AO3 supplementation significantly enhanced the average daily gain (ADG) and average daily feed intake (ADFI), while decreasing the feed conversion rate (FCR) and diarrhea rate (p < 0.05). Additionally, AO3 addition altered the fecal microflora composition with increased abundance of f_Prevotellaceae. LPS challenges were further conducted to investigate the detailed mechanism underlying the benefits of AO3 supplementation. The piglets fed with AO3 exhibited a significant increase in villus height and decrease in crypt depth within the jejunum, along with upregulation of ZO-1, occludin, and claudin-1 (p < 0.05) compared with those piglets subjected to LPS. Furthermore, AO3 supplementation significantly ameliorated redox disturbances (T-AOC, SOD, and GSH) and inflammation (TNF-α, IL-1β, IL-6, and IL-12) in both the serum and jejunum of piglets induced by LPS, accompanied by suppressed activation of the MAPK signaling pathway (ERK, JNK, P38) and NF-κB. The LPS challenge downregulated the activation of the AMPK signaling pathway, mRNA levels of electron transport chain complexes, and key enzymes involved in ATP synthesis, which were significantly restored by the AO3 supplementation. Additionally, AO3 supplementation restored the reduced transport of amino acids, glucose, and fatty acids induced by LPS back to the levels observed in the control group. In conclusion, dietary AO3 supplementation positively affected growth performance and gut microbiota composition, also enhancing intestinal barrier integrity, nutrient uptake, and energy metabolism, as well as alleviating oxidative stress and inflammation under LPS stimulation.
Collapse
Affiliation(s)
- Xinyu Wang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, China; (X.W.); (X.Z.)
| | - Tanyi Deng
- College of Animal Science and National Engineering Research Center for Pig Breeding Industry, South China Agricultural University, Guangzhou 510642, China; (T.D.); (X.Z.); (L.C.); (S.Z.); (W.G.)
- Guangdong Laboratory of Modern Agriculture in Lingnan, Guangzhou 510642, China
| | - Xuemei Zhou
- College of Animal Science and National Engineering Research Center for Pig Breeding Industry, South China Agricultural University, Guangzhou 510642, China; (T.D.); (X.Z.); (L.C.); (S.Z.); (W.G.)
- Guangdong Laboratory of Modern Agriculture in Lingnan, Guangzhou 510642, China
| | - Licui Chu
- College of Animal Science and National Engineering Research Center for Pig Breeding Industry, South China Agricultural University, Guangzhou 510642, China; (T.D.); (X.Z.); (L.C.); (S.Z.); (W.G.)
- Guangdong Laboratory of Modern Agriculture in Lingnan, Guangzhou 510642, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, China; (X.W.); (X.Z.)
| | - Shihai Zhang
- College of Animal Science and National Engineering Research Center for Pig Breeding Industry, South China Agricultural University, Guangzhou 510642, China; (T.D.); (X.Z.); (L.C.); (S.Z.); (W.G.)
- Guangdong Laboratory of Modern Agriculture in Lingnan, Guangzhou 510642, China
| | - Wutai Guan
- College of Animal Science and National Engineering Research Center for Pig Breeding Industry, South China Agricultural University, Guangzhou 510642, China; (T.D.); (X.Z.); (L.C.); (S.Z.); (W.G.)
- Guangdong Laboratory of Modern Agriculture in Lingnan, Guangzhou 510642, China
| | - Fang Chen
- College of Animal Science and National Engineering Research Center for Pig Breeding Industry, South China Agricultural University, Guangzhou 510642, China; (T.D.); (X.Z.); (L.C.); (S.Z.); (W.G.)
- Guangdong Laboratory of Modern Agriculture in Lingnan, Guangzhou 510642, China
| |
Collapse
|
14
|
Yang X, Lan W, Sun X. Effect of chlorogenic acid grafted chitosan on microbiological compositions of sea bass (Lateolabrax japonicus) fillets: Dominant spoilage bacteria, inhibition activity and membrane damage mechanisms. Int J Food Microbiol 2024; 411:110540. [PMID: 38118358 DOI: 10.1016/j.ijfoodmicro.2023.110540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 12/22/2023]
Abstract
This study investigated the effect of chlorogenic acid grafted chitosan (CS-g-CA) on the microbiota composition of sea bass (Lateolabrax japonicus), isolated and identified the specific spoilage organisms (SSOs) in the late stage of refrigerated fillets and evaluation of their spoilage potential. Moreover, antibacterial activity and membrane damage mechanism of CS-g-CA against spoilage bacteria was also investigated. Illumina-MiSeq high throughput sequencing results showed that CS-g-CA retarded the growth of Pseudomonas spp., which largely contributed to delaying the quality degradation of sea bass during storage. Then nine spoilage bacteria were isolated and identified from the fillets at the end of storage and inoculated into sterile fish fillets to determine their spoilage capacity. Results showed that fish fillets inoculated with spoilage bacteria exhibited a significant increase in TVB-N, TBA and putrescine content and decreased sensory quality during storage. Subsequently, the inhibitory activity of CS-g-CA against spoilage bacteria was investigated and strains that were more sensitive to the CS-g-CA with a strong spoilage capacity were selected for the study of the inhibition mechanism. Results suggested that CS-g-CA had strong inhibitory activity and led to bacterial death through the mechanism of membrane damage. Overall, this study analyzed the effect of CS-g-CA on the preservation of fish fillets from a microbiological point of view to provide a reference for the anti-bacterial preservation of aquatic products.
Collapse
Affiliation(s)
- Xin Yang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China.
| | - Xiaohong Sun
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
15
|
Geng X, Yang YJ, Li Z, Ge WB, Xu X, Liu XW, Li JY. Fingolimod Inhibits Exopolysaccharide Production and Regulates Relevant Genes to Eliminate the Biofilm of K. pneumoniae. Int J Mol Sci 2024; 25:1397. [PMID: 38338675 PMCID: PMC10855953 DOI: 10.3390/ijms25031397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Klebsiella pneumoniae (K. pneumoniae) exhibits the ability to form biofilms as a means of adapting to its adverse surroundings. K. pneumoniae in this biofilm state demonstrates remarkable resistance, evades immune system attacks, and poses challenges for complete eradication, thereby complicating clinical anti-infection efforts. Moreover, the precise mechanisms governing biofilm formation and disruption remain elusive. Recent studies have discovered that fingolimod (FLD) exhibits biofilm properties against Gram-positive bacteria. Therefore, the antibiofilm properties of FLD were evaluated against multidrug-resistant (MDR) K. pneumoniae in this study. The antibiofilm activity of FLD against K. pneumoniae was assessed utilizing the Alamar Blue assay along with confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), and crystal violet (CV) staining. The results showed that FLD effectively reduced biofilm formation, exopolysaccharide (EPS), motility, and bacterial abundance within K. pneumoniae biofilms without impeding its growth and metabolic activity. Furthermore, the inhibitory impact of FLD on the production of autoinducer-2 (AI-2) signaling molecules was identified, thereby demonstrating its notable anti-quorum sensing (QS) properties. The results of qRT-PCR analysis demonstrated that FLD significantly decreased the expression of genes associated with the efflux pump gene (AcrB, kexD, ketM, kdeA, and kpnE), outer membrane (OM) porin proteins (OmpK35, OmpK36), the quorum-sensing (QS) system (luxS), lipopolysaccharide (LPS) production (wzm), and EPS production (pgaA). Simultaneously, FLD exhibited evident antibacterial synergism, leading to an increased survival rate of G. mellonella infected with MDR K. pneumoniae. These findings suggested that FLD has substantial antibiofilm properties and synergistic antibacterial potential for colistin in treating K. pneumoniae infections.
Collapse
Affiliation(s)
| | | | | | | | | | - Xi-Wang Liu
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.G.); (Y.-J.Y.); (Z.L.); (W.-B.G.); (X.X.)
| | - Jian-Yong Li
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.G.); (Y.-J.Y.); (Z.L.); (W.-B.G.); (X.X.)
| |
Collapse
|
16
|
Özarslan M, Avcioglu NH, Bilgili Can D, Çalışkan A. Biofilm formation of C. albicans on occlusal device materials and antibiofilm effects of chitosan and eugenol. J Prosthet Dent 2024; 131:144.e1-144.e9. [PMID: 38167132 DOI: 10.1016/j.prosdent.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 01/05/2024]
Abstract
STATEMENT OF PROBLEM Microbial adhesion on occlusal devices may lead to oral diseases such as candidiasis. Whether chitosan and eugenol provide antibiofilm effects is unclear. PURPOSE The purpose of this in vitro study was to evaluate the biofilm formation of C. albicans strains on occlusal device materials and the antibiofilm effects of chitosan and eugenol against C. albicans on these surfaces. MATERIAL AND METHODS A total of 88 specimens (5×10×2 mm) were produced from occlusal device materials with 4 production techniques: vacuum-formed thermoplastic (Group V), head-press (Group H), computer-aided design and computer-aided manufacture (CAD-CAM) (Group C), and 3-dimensionally (3D) printed (Group D) (n=22). After various finishing procedures, the surface properties of the specimens were evaluated by using surface free energy (SFE), surface roughness (SR) measurements, and elemental and topographic analysis. Biofilm formation of C. albicans strain and the antibiofilm effects of chitosan and eugenol against biofilm formation on these surfaces were also examined with a crystal violet assay. The distribution's normality was statistically analyzed with the Kolmogorov-Smirnov test. One-way and two-way analysis of variance with post hoc Tukey tests were used for statistical evaluations (α=.05). RESULTS Surface roughness values in Groups D and H were significantly higher than in other groups (P<.05). While the highest surface free energy values (except γp) were in Group V, Group C had the highest γp. The lowest biofilm value appeared in Group H. Chitosan exhibited an antibiofilm effect in all groups except Group H, while eugenol was effective in all groups. CONCLUSIONS The production method affected the susceptibility of occlusal device materials to the adhesion of C. albicans. Eugenol was an effective antibiofilm agent for device materials.
Collapse
Affiliation(s)
- Merve Özarslan
- Associate Professor, Department of Prosthetic Dentistry, Faculty of Dentistry, Akdeniz University, Antalya, Turkey.
| | - Nermin Hande Avcioglu
- Research Assistant, Department of Biology, Biotechnology Section, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Dilber Bilgili Can
- Associate Professor, Department of Restorative Dentistry, Faculty of Dentistry, Van Yuzuncu Yil University, Van, Turkey
| | | |
Collapse
|
17
|
Acuna E, Ndlovu E, Molaeitabari A, Shahina Z, Dahms TES. Carvacrol-Induced Vacuole Dysfunction and Morphological Consequences in Nakaseomyces glabratus and Candida albicans. Microorganisms 2023; 11:2915. [PMID: 38138059 PMCID: PMC10745442 DOI: 10.3390/microorganisms11122915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
With the prevalence of systemic fungal infections caused by Candida albicans and non-albicans species and their resistance to classical antifungals, there is an urgent need to explore alternatives. Herein, we evaluate the impact of the monoterpene carvacrol, a major component of oregano and thyme oils, on clinical and laboratory strains of C. albicans and Nakaseomyces glabratus. Carvacrol induces a wide range of antifungal effects, including the inhibition of growth and hyphal and biofilm formation. Using biochemical and microscopic approaches, we elucidate carvacrol-induced hyphal inhibition. The significantly reduced survival rates following exposure to carvacrol were accompanied by dose-dependent vacuolar acidification, disrupted membrane integrity, and aberrant morphology. Germ tube assays, used to elucidate the relationship between vacuolar dysfunction and hyphal inhibition, showed that carvacrol significantly reduced hyphal formation, which was accompanied by a defective C. albicans morphology. Thus, we show a link between vacuolar acidification/disrupted vacuole membrane integrity and compromised candidal morphology/morphogenesis, demonstrating that carvacrol exerts its anti-hyphal activity by altering vacuole integrity.
Collapse
Affiliation(s)
| | | | | | - Zinnat Shahina
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK S4S 1P4, Canada; (E.A.)
| | | |
Collapse
|
18
|
Yang L, Cheng T, Shao J. Perspective on receptor-associated immune response to Candida albicans single and mixed infections: Implications for therapeutics in oropharyngeal candidiasis. Med Mycol 2023; 61:myad077. [PMID: 37533203 DOI: 10.1093/mmy/myad077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/11/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023] Open
Abstract
Oropharyngeal candidiasis (OPC), commonly known as 'thrush', is an oral infection that usually dismantles oral mucosal integrity and malfunctions local innate and adaptive immunities in compromised individuals. The major pathogen responsible for the occurrence and progression of OPC is the dimorphic opportunistic commensal Candida albicans. However, the incidence induced by non-albicans Candida species including C. glabrata, C. tropicalis, C. dubliniensis, C. parapsilosis, and C. krusei are increasing in company with several oral bacteria, such as Streptococcus mutans, S. gordonii, S. epidermidis, and S. aureus. In this review, the microbiological and infection features of C. albicans and its co-contributors in the pathogenesis of OPC are outlined. Since the invasion and concomitant immune response lie firstly on the recognition of oral pathogens through diverse cellular surface receptors, we subsequently emphasize the roles of epidermal growth factor receptor, ephrin-type receptor 2, human epidermal growth factor receptor 2, and aryl hydrocarbon receptor located on oral epithelial cells to delineate the underlying mechanism by which host immune recognition to oral pathogens is mediated. Based on these observations, the therapeutic approaches to OPC comprising conventional and non-conventional antifungal agents, fungal vaccines, cytokine and antibody therapies, and antimicrobial peptide therapy are finally overviewed. In the face of newly emerging life-threatening microbes (C. auris and SARS-CoV-2), risks (biofilm formation and interconnected translocation among diverse organs), and complicated clinical settings (HIV and oropharyngeal cancer), the research on OPC is still a challenging task.
Collapse
Affiliation(s)
- Liu Yang
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, P. R. China
| | - Ting Cheng
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, P. R. China
| | - Jing Shao
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, P. R. China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, P. R. China
| |
Collapse
|
19
|
Mączka W, Twardawska M, Grabarczyk M, Wińska K. Carvacrol-A Natural Phenolic Compound with Antimicrobial Properties. Antibiotics (Basel) 2023; 12:antibiotics12050824. [PMID: 37237727 DOI: 10.3390/antibiotics12050824] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
The main purpose of this article is to present the latest research related to selected biological properties of carvacrol, such as antimicrobial, anti-inflammatory, and antioxidant activity. As a monoterpenoid phenol, carvacrol is a component of many essential oils and is usually found in plants together with its isomer, thymol. Carvacrol, either alone or in combination with other compounds, has a strong antimicrobial effect on many different strains of bacteria and fungi that are dangerous to humans or can cause significant losses in the economy. Carvacrol also exerts strong anti-inflammatory properties by preventing the peroxidation of polyunsaturated fatty acids by inducing SOD, GPx, GR, and CAT, as well as reducing the level of pro-inflammatory cytokines in the body. It also affects the body's immune response generated by LPS. Carvacrol is considered a safe compound despite the limited amount of data on its metabolism in humans. This review also discusses the biotransformations of carvacrol, because the knowledge of the possible degradation pathways of this compound may help to minimize the risk of environmental contamination with phenolic compounds.
Collapse
Affiliation(s)
- Wanda Mączka
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Martyna Twardawska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Małgorzata Grabarczyk
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Katarzyna Wińska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| |
Collapse
|
20
|
Evaluation of the synergistic antifungal effects of thymol and cinnamaldehyde combination and its mechanism of action against Rhizopus stolonifer in vitro and in vivo. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
21
|
Kim C, Kim JG, Kim KY. Anti- Candida Potential of Sclareol in Inhibiting Growth, Biofilm Formation, and Yeast-Hyphal Transition. J Fungi (Basel) 2023; 9:jof9010098. [PMID: 36675919 PMCID: PMC9862543 DOI: 10.3390/jof9010098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Even though Candida albicans commonly colonizes on most mucosal surfaces including the vaginal and gastrointestinal tract, it can cause candidiasis as an opportunistic infectious fungus. The emergence of resistant Candida strains and the toxicity of anti-fungal agents have encouraged the development of new classes of potential anti-fungal agents. Sclareol, a labdane-type diterpene, showed anti-Candida activity with a minimum inhibitory concentration of 50 μg/mL in 24 h based on a microdilution anti-fungal susceptibility test. Cell membrane permeability with propidium iodide staining and mitochondrial membrane potential with JC-1 staining were increased in C. albicans by treatment of sclareol. Sclareol also suppressed the hyphal formation of C. albicans in both liquid and solid media, and reduced biofilm formation. Taken together, sclareol induces an apoptosis-like cell death against Candida spp. and suppressed biofilm and hyphal formation in C. albicans. Sclareol is of high interest as a novel anti-fungal agent and anti-virulence factor.
Collapse
Affiliation(s)
- Chaerim Kim
- Department of Life Science, Gachon University, Seongnam 13120, Gyeonggi-do, Republic of Korea
| | - Jae-Goo Kim
- Graduate School of Biotechnology, Kyung Hee University, Yingin 17104, Gyeonggi-do, Republic of Korea
| | - Ki-Young Kim
- Graduate School of Biotechnology, Kyung Hee University, Yingin 17104, Gyeonggi-do, Republic of Korea
- College of Life Science, Kyung Hee University, Yongin 17104, Gyeonggi-do, Republic of Korea
- Correspondence: ; Tel.: +82-312012633
| |
Collapse
|
22
|
Aguilera FR, Viñas M, Sierra JM, Vinuesa T, R. Fernandez de Henestrosa A, Furmanczyk M, Trullàs C, Jourdan E, López-López J, Jorba M. Substantivity of mouth-rinse formulations containing cetylpyridinium chloride and O-cymen-5-ol: a randomized-crossover trial. BMC Oral Health 2022; 22:646. [PMID: 36575444 PMCID: PMC9793821 DOI: 10.1186/s12903-022-02688-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The efficacy of mouth-rinses strongly depends upon their substantivity. The use of natural and non-toxic products that avoid secondary effects is gaining interest in preventive dentistry. The purpose of this study was to evaluate the substantivity of two formulations of mouth-washing solutions based on cetylpyridinium (CPC) and O-cymen-5-ol. METHODS This was a randomized, double-blind, crossover trial conducted at the Faculty of Medicine and Health Sciences of the University of Barcelona. Bacterial re-colonization was followed by live/dead (SYTOTM9 + propidium iodide) bacterial staining and measured by confocal laser scanning microscopy and fluorometry. Unstimulated saliva samples were collected from 16 healthy individuals at baseline saliva and then, at 15 min, 30 min and 1, 2, 3, and 4 h after the following mouth-rinses: (i) a single, 1-min mouth-rinse with 15 ml of placebo (negative control); (ii) a single, 1-min mouth-rinse with 15 ml of CPC (0.05%) ; (iii) a single, 1-min mouth-rinse with 15 ml of O-cymen-5-ol (0.09%); (iv) a single, 1-min mouth-rinse with 15 ml of CPC (0.05%) + O-cymen-5-ol (0.09%). RESULTS Proportion of dead bacteria was significantly higher for all mouthrinses during the first 15 min compared to baseline (CPC = 48.0 ± 13.9; 95% CI 40.98-56.99; p < 0.001, O-cymen-5-ol = 79.8 ± 21.0; 95% CI 67.71-91.90; p < 0.05, CPC + O-cymen-5-ol = 49.4 ± 14; 95% CI 40.98-56.99; p < 0.001 by fluorometry and 54.8 ± 23.0; 95% CI 41.50-68.06; p < 0.001, 76.3 ± 17.1; 95% CI 66.36-86.14; p < 0.001, 47.4 ± 11.9; 95% CI 40.49-54.30; p < 0.001 by confocal laser scanning microscopy, respectively). Nevertheless, after 4 h, CPC + O-cymen-5-ol was the only one that obtained significant values as measured by the two quantification methods used (80.3 ± 22.8; 95% CI 67.15-93.50; p < 0.05 and 81.4 ± 13.8; 95% CI 73.45-89.43; p < 0.05). The combined use of CPC + O-cymen-5-ol increased the substantivity of the mouthrinse with respect to mouthrinses prepared with either of the two active products alone. CONCLUSION The synergistic interaction of CPC and O-cymen-5-ol prolongs their substantivity. The resulting formulation may be as effective as other antimicrobials, such as triclosan or chlorhexidine, but without their undesirable secondary effects. Thus, mouthrinsing products based on Combinations of CPC and O-cymen-5-ol may replace in the near future Triclosan and Chlorhexidine-based mouthrinses.
Collapse
Affiliation(s)
- Felipe-Rodrigo Aguilera
- grid.5841.80000 0004 1937 0247Laboratory of Molecular Microbiology and Antimicrobials, Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona & IDIBELL, 08907 L’Hospitalet de Llobregat, Barcelona, Spain ,grid.7119.e0000 0004 0487 459XDental School, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Miguel Viñas
- grid.5841.80000 0004 1937 0247Laboratory of Molecular Microbiology and Antimicrobials, Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona & IDIBELL, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
| | - Josep M. Sierra
- grid.5841.80000 0004 1937 0247Laboratory of Molecular Microbiology and Antimicrobials, Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona & IDIBELL, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
| | - Teresa Vinuesa
- grid.5841.80000 0004 1937 0247Laboratory of Molecular Microbiology and Antimicrobials, Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona & IDIBELL, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
| | | | - Marta Furmanczyk
- grid.487221.a0000 0004 1795 1224Innovation and Development, ISDIN, Barcelona, Spain
| | - Carles Trullàs
- grid.487221.a0000 0004 1795 1224Innovation and Development, ISDIN, Barcelona, Spain
| | - Eric Jourdan
- grid.487221.a0000 0004 1795 1224Innovation and Development, ISDIN, Barcelona, Spain
| | - José López-López
- grid.5841.80000 0004 1937 0247Department of Dentistry, Faculty of Medicine, University of Barcelona & IDIBELL, Barcelona, Spain
| | - Marta Jorba
- grid.5841.80000 0004 1937 0247Laboratory of Molecular Microbiology and Antimicrobials, Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona & IDIBELL, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
23
|
Encapsulation of Thymol and Eugenol Essential Oils Using Unmodified Cellulose: Preparation and Characterization. Polymers (Basel) 2022; 15:polym15010095. [PMID: 36616445 PMCID: PMC9824510 DOI: 10.3390/polym15010095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Essential oils (EOs) are volatile natural organic compounds, which possess pesticidal properties. However, they are vulnerable to heat and light, limiting their range of applications. Encapsulation of EOs is a useful approach to overcome some of these limitations. In this study, a novel emulsification technique is utilized for encapsulation of thymol (TY) and eugenol (EU) (EOs) within microcapsules with an unmodified cellulose shell. Use of low cost materials and processes can be beneficial in agricultural applications. In the encapsulation process, unmodified cellulose was dissolved in 7% aqueous NaOH at low temperature, regenerated to form a dispersion of cellulose hydrogels, which was rigorously mixed with the EOs by mechanical mixing followed by high-pressure homogenization (HPH). Cellulose:EO ratios of 1:1 and 1:8 utilizing homogenization pressures of 5000, 10,000 and 20,000 psi applied in a microfluidizer were studied. Light microscopy, high-resolution cryogenic scanning electron microscopy (cryo-SEM) and Fourier transform infrared spectroscopy (FTIR) revealed successful fabrication of EO-loaded capsules in size range of 1 to ~8 µm. Stability analyses showed highly stabilized oil in water (O/W) emulsions with instability index close to 0. The emulsions exhibited anti-mold activity in post-harvest alfalfa plants, with potency affected by the cellulose:EO ratio as well as the EO type; TY showed the highest anti-mold activity. Taken together, this study showed potential for anti-fungal activity of cellulose-encapsulated EOs in post-harvest hay.
Collapse
|
24
|
Dynamic Salmonella Enteritidis biofilms development under different flow conditions and their removal using nanoencapsulated thymol. Biofilm 2022; 4:100094. [DOI: 10.1016/j.bioflm.2022.100094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022] Open
|
25
|
Inhibitory Effect of Thymol on Tympanostomy Tube Biofilms of Methicillin-Resistant Staphylococcus aureus and Ciprofloxacin-Resistant Pseudomonas aeruginosa. Microorganisms 2022; 10:microorganisms10091867. [PMID: 36144469 PMCID: PMC9505391 DOI: 10.3390/microorganisms10091867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
The formation of antibiotic-resistant strain biofilms in tympanostomy tubes results in persistent and refractory otorrhea. In the present study, we investigated the in vitro antibiofilm activity of thymol against biofilms formed by methicillin-resistant Staphylococcus aureus (MRSA) and ciprofloxacin-resistant Pseudomonas aeruginosa (CRPA), using live and dead bacterial staining and adhesion, biofilm formation, biofilm eradication, and biofilm hydrolytic activity assays. The antibiofilm activity of thymol against tympanostomy tube biofilms formed by MRSA and CRPA strains was examined using a scanning electron microscope. In response to thymol treatment, we detected significant concentration-dependent reductions in the viability and adhesion of MRSA and CRPA. Exposure to thymol also inhibited the formation of both MRSA and CRPA biofilms. Furthermore, thymol was observed to enhance the eradication of preformed mature biofilms produced by MRSA and CRPA and also promoted a reduction in the rates of MRSA and CRPA hydrolysis. Exposure to thymol eradicated extracellular polysaccharide present in the biofilm matrix produced by MRSA and CRPA. Additionally, thymol was observed to significantly eradicate MRSA and CRPA biofilms that had formed on the surface on tympanostomy tubes. Collectively, our findings indicate that thymol is an effective inhibitor of MRSA and CRPA biofilms, and accordingly has potential utility as a therapeutic agent for the treatment of biofilm-associated refractory post-tympanostomy tube otorrhea resulting from MRSA and CRPA infection.
Collapse
|
26
|
Shariati A, Didehdar M, Razavi S, Heidary M, Soroush F, Chegini Z. Natural Compounds: A Hopeful Promise as an Antibiofilm Agent Against Candida Species. Front Pharmacol 2022; 13:917787. [PMID: 35899117 PMCID: PMC9309813 DOI: 10.3389/fphar.2022.917787] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
The biofilm communities of Candida are resistant to various antifungal treatments. The ability of Candida to form biofilms on abiotic and biotic surfaces is considered one of the most important virulence factors of these fungi. Extracellular DNA and exopolysaccharides can lower the antifungal penetration to the deeper layers of the biofilms, which is a serious concern supported by the emergence of azole-resistant isolates and Candida strains with decreased antifungal susceptibility. Since the biofilms' resistance to common antifungal drugs has become more widespread in recent years, more investigations should be performed to develop novel, inexpensive, non-toxic, and effective treatment approaches for controlling biofilm-associated infections. Scientists have used various natural compounds for inhibiting and degrading Candida biofilms. Curcumin, cinnamaldehyde, eugenol, carvacrol, thymol, terpinen-4-ol, linalool, geraniol, cineole, saponin, camphor, borneol, camphene, carnosol, citronellol, coumarin, epigallocatechin gallate, eucalyptol, limonene, menthol, piperine, saponin, α-terpineol, β-pinene, and citral are the major natural compounds that have been used widely for the inhibition and destruction of Candida biofilms. These compounds suppress not only fungal adhesion and biofilm formation but also destroy mature biofilm communities of Candida. Additionally, these natural compounds interact with various cellular processes of Candida, such as ABC-transported mediated drug transport, cell cycle progression, mitochondrial activity, and ergosterol, chitin, and glucan biosynthesis. The use of various drug delivery platforms can enhance the antibiofilm efficacy of natural compounds. Therefore, these drug delivery platforms should be considered as potential candidates for coating catheters and other medical material surfaces. A future goal will be to develop natural compounds as antibiofilm agents that can be used to treat infections by multi-drug-resistant Candida biofilms. Since exact interactions of natural compounds and biofilm structures have not been elucidated, further in vitro toxicology and animal experiments are required. In this article, we have discussed various aspects of natural compound usage for inhibition and destruction of Candida biofilms, along with the methods and procedures that have been used for improving the efficacy of these compounds.
Collapse
Affiliation(s)
- Aref Shariati
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
| | - Mojtaba Didehdar
- Department of Medical Parasitology and Mycology, Arak University of Medical Sciences, Arak, Iran
| | - Shabnam Razavi
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Heidary
- Department of Laboratory Sciences, School of Paramedical Sciences, Sabzevar University of Medical Sciences, Sabzevar, Iran
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Fatemeh Soroush
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
- Student Research Committee, Khomein University of Medical Sciences, Khomein, Iran
| | - Zahra Chegini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
27
|
Didehdar M, Chegini Z, Tabaeian SP, Razavi S, Shariati A. Cinnamomum: The New Therapeutic Agents for Inhibition of Bacterial and Fungal Biofilm-Associated Infection. Front Cell Infect Microbiol 2022; 12:930624. [PMID: 35899044 PMCID: PMC9309250 DOI: 10.3389/fcimb.2022.930624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Due to the potent antibacterial properties of Cinnamomum and its derivatives, particularly cinnamaldehyde, recent studies have used these compounds to inhibit the growth of the most prevalent bacterial and fungal biofilms. By inhibiting flagella protein synthesis and swarming motility, Cinnamomum could suppress bacterial attachment, colonization, and biofilm formation in an early stage. Furthermore, by downregulation of Cyclic di‐guanosine monophosphate (c‐di‐GMP), biofilm-related genes, and quorum sensing, this compound suppresses intercellular adherence and accumulation of bacterial cells in biofilm and inhibits important bacterial virulence factors. In addition, Cinnamomum could lead to preformed biofilm elimination by enhancing membrane permeability and the disruption of membrane integrity. Moreover, this substance suppresses the Candida species adherence to the oral epithelial cells, leading to the cell wall deformities, damage, and leakages of intracellular material that may contribute to the established Candida’s biofilm elimination. Therefore, by inhibiting biofilm maturation and destroying the external structure of biofilm, Cinnamomum could boost antibiotic treatment success in combination therapy. However, Cinnamomum has several disadvantages, such as poor solubility in aqueous solution, instability, and volatility; thus, the use of different drug-delivery systems may resolve these limitations and should be further considered in future investigations. Overall, Cinnamomum could be a promising agent for inhibiting microbial biofilm-associated infection and could be used as a catheter and other medical materials surface coatings to suppress biofilm formation. Nonetheless, further in vitro toxicology analysis and animal experiments are required to confirm the reported molecular antibiofilm effect of Cinnamomum and its derivative components against microbial biofilm.
Collapse
Affiliation(s)
- Mojtaba Didehdar
- Department of Medical Parasitology and Mycology, Arak University of Medical Sciences, Arak, Iran
| | - Zahra Chegini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seidamir Pasha Tabaeian
- Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shabnam Razavi
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Aref Shariati
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
- *Correspondence: Aref Shariati,
| |
Collapse
|
28
|
Kane A, Carter DA. Augmenting Azoles with Drug Synergy to Expand the Antifungal Toolbox. Pharmaceuticals (Basel) 2022; 15:482. [PMID: 35455479 PMCID: PMC9027798 DOI: 10.3390/ph15040482] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 12/23/2022] Open
Abstract
Fungal infections impact the lives of at least 12 million people every year, killing over 1.5 million. Wide-spread use of fungicides and prophylactic antifungal therapy have driven resistance in many serious fungal pathogens, and there is an urgent need to expand the current antifungal arsenal. Recent research has focused on improving azoles, our most successful class of antifungals, by looking for synergistic interactions with secondary compounds. Synergists can co-operate with azoles by targeting steps in related pathways, or they may act on mechanisms related to resistance such as active efflux or on totally disparate pathways or processes. A variety of sources of potential synergists have been explored, including pre-existing antimicrobials, pharmaceuticals approved for other uses, bioactive natural compounds and phytochemicals, and novel synthetic compounds. Synergy can successfully widen the antifungal spectrum, decrease inhibitory dosages, reduce toxicity, and prevent the development of resistance. This review highlights the diversity of mechanisms that have been exploited for the purposes of azole synergy and demonstrates that synergy remains a promising approach for meeting the urgent need for novel antifungal strategies.
Collapse
Affiliation(s)
| | - Dee A. Carter
- School of Life and Environmental Sciences and Sydney ID, University of Sydney, Camperdown, NSW 2006, Australia;
| |
Collapse
|
29
|
Khadke SK, Lee JH, Kim YG, Raj V, Lee J. Appraisal of Cinnamaldehyde Analogs as Dual-Acting Antibiofilm and Anthelmintic Agents. Front Microbiol 2022; 13:818165. [PMID: 35369516 PMCID: PMC8966877 DOI: 10.3389/fmicb.2022.818165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/02/2022] [Indexed: 12/24/2022] Open
Abstract
Cinnamaldehyde has a broad range of biological activities, which include antibiofilm and anthelmintic activities. The ever-growing problem of drug resistance and limited treatment options have created an urgent demand for natural molecules with antibiofilm and anthelmintic properties. Hence, we hypothesized that molecules with a scaffold structurally similar to that of cinnamaldehyde might act as dual inhibitors against fungal biofilms and helminths. In this regard, eleven cinnamaldehyde analogs were tested to determine their effects on fungal Candida albicans biofilm and nematode Caenorhabditis elegans. α-Methyl and trans-4-methyl cinnamaldehydes efficiently inhibited C. albicans biofilm formation (>90% inhibition at 50 μg/mL) with minimum inhibitory concentrations (MICs) of ≥ 200 μg/mL and 4-bromo and 4-chloro cinnamaldehydes exhibited anthelmintic property at 20 μg/mL against C. elegans. α-Methyl and trans-4-methyl cinnamaldehydes inhibited hyphal growth and cell aggregation. Scanning electron microscopy was employed to determine the surface architecture of C. albicans biofilm and cuticle of C. elegans, and confocal laser scanning microscopy was used to determine biofilm characteristics. The perturbation in gene expression of C. albicans was investigated using qRT-PCR analysis and α-methyl and trans-4-methyl cinnamaldehydes exhibited down-regulation of ECE1, IFD6, RBT5, UCF1, and UME6 and up-regulation of CHT4 and YWP1. Additionally, molecular interaction of these two molecules with UCF1 and YWP1 were revealed by molecular docking simulation. Our observations collectively suggest α-methyl and trans-4-methyl cinnamaldehydes are potent biofilm inhibitors and that 4-bromo and 4-chloro cinnamaldehydes are anthelmintic agents. Efforts are required to determine the range of potential therapeutic applications of cinnamaldehyde analogs.
Collapse
Affiliation(s)
- Sagar Kiran Khadke
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Yong-Guy Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Vinit Raj
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
30
|
Miranda-Cadena K, Marcos-Arias C, Perez-Rodriguez A, Cabello-Beitia I, Mateo E, Sevillano E, Madariaga L, Quindós G, Eraso E. In vitro and in vivo anti- Candida activity of citral in combination with fluconazole. J Oral Microbiol 2022; 14:2045813. [PMID: 35251524 PMCID: PMC8896188 DOI: 10.1080/20002297.2022.2045813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Background The ability of Candida to develop biofilms on inert surfaces or living tissues favors recalcitrant and chronic candidiasis associated, in many instances, with resistance to current antifungal therapy. Aim The aim of this study was to evaluate the antifungal activity of citral, a phytocompound present in lemongrass essential oil, in monotherapy and combined with fluconazole against azole-resistant Candida planktonic cells and biofilms. The effect of citral combined with fluconazole was also analysed with regard to the expression of fluconazole resistance-associated genes in Candida albicans and the effectiveness of the combination therapy in a Caenorhabditis elegans model of candidiasis. Results Citral reduced biofilm formation at initial stages and the metabolic activity of the mature biofilm. The combination of citral with fluconazole was synergistic, with a significant increase in the survival of C. elegans infected with Candida. RNA analysis revealed a reduction of the expression of the efflux pump encoded by MDR1, leading to a greater effect of fluconazole. Conclusion Citral in monotherapy and in combination with fluconazole could represent an interesting therapy to treat recalcitrant Candida infections associated to biofilms.
Collapse
Affiliation(s)
- Katherine Miranda-Cadena
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country, Bilbao, Spain
| | - Cristina Marcos-Arias
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country, Bilbao, Spain
| | - Aitzol Perez-Rodriguez
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country, Bilbao, Spain
| | - Iván Cabello-Beitia
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country, Bilbao, Spain
| | - Estibaliz Mateo
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country, Bilbao, Spain
| | - Elena Sevillano
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country, Bilbao, Spain
| | - Lucila Madariaga
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country, Bilbao, Spain
| | - Guillermo Quindós
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country, Bilbao, Spain
| | - Elena Eraso
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country, Bilbao, Spain
| |
Collapse
|
31
|
Govindaraj A, Paulpandian SS, Shanmugam R. Comparative Evaluation of The Effect of Rind and Pulp Extract of Citrullus Lanatus on Streptococcus Mutans. ANNALS OF DENTAL SPECIALTY 2022. [DOI: 10.51847/otdothz09i] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|