1
|
Long Y, Zhao T, Xiao Y, Kong S, Wang R, Cai K, Nie H. Effect of oxymatrine on neutrophil function based on zebrafish inflammation model and primary neutrophil inflammatory responses. Int Immunopharmacol 2024; 142:113064. [PMID: 39243560 DOI: 10.1016/j.intimp.2024.113064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/15/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
Sophora flavescens Ait. (SFA), an extensively utilized herb for the treatment of fevers, inflammatory disorders, ulcers and skin diseases related to bur, contains oxymatrine (OMT) as its principal active constituent. OMT exerts regulatory effects over inflammation, oxidative stress and apoptosis. Neutrophils, critical regulators of the inflammation response, have not been thoroughly elucidated regarding the protective properties and underlying mechanisms of OMT-mediated anti-inflammation. This study was aim to explore the protective effect of OMT on neutrophils under inflammatory conditions and delve into its potential mechanism. Leveraging the advantages of zebrafish, an animal model with a real-time dynamic observation system, we established an in vivo caudal fin wound model and a copper sulfate induced-inflammation model in zebrafish line Tg (mpx:GFP). The result revealed that OMT significantly attenuated neutrophil migration, upregulated the mRNA expression levels of JNK, casp3, mapk14a, mapkapk2a and map2k1 damaged by zebrafish caudal fin wound model, and downregulated mRNA expression levels of JNK, casp3, mapk14a, mapkapk2a and map2k1 in the copper sulfate injury model. In vitro experiments demonstrated that OMT modulated the chemotaxis response of primary neutrophils from mice, enhanced phagocytosis, reduced oxidative stress and alleviated inflammation level. We hypothesize that the OMT may exert its anti-inflammatory effects by regulating primary neutrophils through the MAPK signaling pathway.
Collapse
Affiliation(s)
- Yingxin Long
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Tingting Zhao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Yuan Xiao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China; Department of Pharmacy, Guizhou Provincial People's Hospital, No.83 Zhongshandong Road, Guiyang, Guizhou Province, China
| | - Shang Kong
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Ranjing Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Kexin Cai
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Hong Nie
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| |
Collapse
|
2
|
Jiang X, Shan X, Jia J, Yang X, Yang M, Hou S, Chen Y, Ni Z. The role of AbaI quorum sensing molecule synthase in host cell inflammation induced by Acinetobacter baumannii and its effect on zebrafish infection model. Int J Biol Macromol 2024; 278:134568. [PMID: 39116980 DOI: 10.1016/j.ijbiomac.2024.134568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Acinetobacter baumannii is currently one of the most important opportunistic pathogens causing severe nosocomial infections worldwide. Quorum Sensing (QS) system is a widespread mechanism in bacteria to coordinate group behavior by sensing the density of bacterial populations and affect eukaryotic host cell. In Acinetobacter baumannii, AbaI protein is used as QS molecule synthetase to synthesize N- acyl homoserine lactones (AHLs). Currently, QS has made great progress in the study of drug resistance, but there is still a lack of complete understanding of its damage to host cells after adhesion and invasion. Thus, in this study, we examined the effects of abaI mutant (ΔabaI) on the functions of adhesion and invasion, cell viability, inflammation, apoptosis in A. baumannii infected A549 cells, to evaluate the effects of ΔabaI in a zebrafish model. We found the group infected with ΔabaI increased cell viability, reduced adhesion and invasion, cell injury, inflammatory cytokine production and apoptosis. By RNA-Seq, we explored the possibility that abaI stimulated A549 cells inflammation by A. baumannii infection via TLR4/MAPK signaling pathway. In addition, the ΔabaI significantly reduced pathogenicity and recruitment to neutrophils in zebrafish. These observations suggest that abaI plays a major role in A. baumannii infection.
Collapse
Affiliation(s)
- Xingyu Jiang
- Department of Pathogen Biology, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xuchun Shan
- Department of Pathogen Biology, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Junzhen Jia
- Department of Pathogen Biology, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xiaomeng Yang
- Department of Pathogen Biology, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Ming Yang
- The Second Norman Bethune Clinical Medical College of Jilin University, Changchun, China
| | - Shiqi Hou
- The Second Norman Bethune Clinical Medical College of Jilin University, Changchun, China
| | - Yan Chen
- Department of Neurosurgery, The Second Hospital of Jilin University, Changchun, China.
| | - Zhaohui Ni
- Department of Pathogen Biology, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China.
| |
Collapse
|
3
|
Yan P, Liu J, Li K, Liu P, Li N, Zhu W. Bromine/Sulfur-Substituted 9 H-Carbazoles Produced by the Marine-Derived Streptomyces sp. OUCMDZ-5511 upon NaBr Exposure. JOURNAL OF NATURAL PRODUCTS 2024; 87:1778-1785. [PMID: 38949068 DOI: 10.1021/acs.jnatprod.4c00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Ten undocumented carbazole derivatives (2-11) along with the reported analogue (1) were isolated from the mangrove-derived Streptomyces sp. OUCMDZ-5511, cultured with NaBr-supplemented liquid medium. Compounds 1-7 are brominated carbazoles, and 8, 10, and 11 feature an additional thiazole or 2,3-dihydro-1,4-oxathiine rings, respectively. Their structures were identified through spectroscopic techniques, computational chemistry, and X-ray crystallography. Notably, compounds 6 and 8 effectively inhibited immune cell migration, indicating anti-inflammatory activity in vivo, potentially via Myd88/Nf-κB pathways, as suggested for compound 6.
Collapse
Affiliation(s)
- Pengcheng Yan
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jibin Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Kaixuan Li
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Peipei Liu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Ning Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan 250103, China
| | - Weiming Zhu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Key Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao 266237, China
| |
Collapse
|
4
|
Iriawati I, Vitasasti S, Rahmadian FNA, Barlian A. Isolation and characterization of plant-derived exosome-like nanoparticles from Carica papaya L. fruit and their potential as anti-inflammatory agent. PLoS One 2024; 19:e0304335. [PMID: 38959219 PMCID: PMC11221653 DOI: 10.1371/journal.pone.0304335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/10/2024] [Indexed: 07/05/2024] Open
Abstract
Inflammation is an immune system response that identifies and eliminates foreign material. However, excessive and persistent inflammation could disrupt the healing process. Plant-derived exosome-like nanoparticles (PDENs) are a promising candidate for therapeutic application because they are safe, biodegradable and biocompatible. In this study, papaya PDENs were isolated by a PEG6000-based method and characterized by dynamic light scattering (DLS), transmission Electron Microscopy (TEM), bicinchoninic acid (BCA) assay method, GC-MS analysis, total phenolic content (TPC) analysis, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. For the in vitro test, we conducted internalization analysis, toxicity assessment, determination of nitrite concentration, and assessed the expression of inflammatory cytokine genes using qRT-PCR in RAW 264.7 cells. For the in vivo test, inflammation was induced by caudal fin amputation followed by analysis of macrophage and neutrophil migration in zebrafish (Danio rerio) larvae. The result showed that papaya PDENs can be well isolated using the optimized differential centrifugation method with the addition of 30 ppm pectolyase, 15% PEG, and 0.2 M NaCl, which exhibited cup-shaped and spherical morphological structure with an average diameter of 168.8±9.62 nm. The papaya PDENs storage is stable in aquabidest and 25 mM trehalose solution at -20˚C until the fourth week. TPC estimation of all papaya PDENs ages did not show a significant change, while the DPPH test exhibited a significant change in the second week. The major compounds contained in Papaya PDENs is 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one (DDMP). Papaya PDENs can be internalized and is non-cytotoxic to RAW 264.7 cells. Moreover, LPS-induced RAW 264.7 cells treated with papaya PDENs showed a decrease in NO production and downregulation mRNA expression of pro-inflammatory cytokine genes (IL-1B and IL-6) and an upregulation in mRNA expression of anti-inflammatory cytokine gene (IL-10). In addition, in vivo tests conducted on zebrafish treated with PDENs papaya showed inhibition of macrophage and neutrophil cell migration. These findings suggest that PDENs papaya possesses anti-inflammatory properties.
Collapse
Affiliation(s)
- Iriawati Iriawati
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, Indonesia
| | - Safira Vitasasti
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, Indonesia
| | | | - Anggraini Barlian
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, Indonesia
| |
Collapse
|
5
|
Campos-Sánchez JC, Guardiola FA, Esteban MÁ. In vitro immune-depression and anti-inflammatory activities of cantharidin on gilthead seabream (Sparus aurata) leucocytes activated by λ-carrageenan. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109470. [PMID: 38442766 DOI: 10.1016/j.fsi.2024.109470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/07/2024]
Abstract
Cantharidin is a natural compound with known therapeutic applications in humans. The aim of this study was to investigate the in vitro effects of cantharidin on gilthead seabream (Sparus aurata) head kidney leucocytes (HKL) stimulated with λ-carrageenan. HKLs were incubated for 24 h with cantharidin (0, 2.5 and 5 μg mL-1) and λ-carrageenan (0 and 1000 μg mL-1). The results showed that HKL viability only decreased by 15.2% after incubated with 5 μg mL-1 of cantharidin and λ-carrageenan. Cantharidin increased the peroxidase activity of HKLs only when incubated in combination with λ-carrageenan. Besides this, cantharidin inhibited the respiratory burst and phagocytic activities. Furthermore, cantharidin induced morphological changes in HKLs (apoptotic and vacuolization signs) that were enhanced when incubated with λ-carrageenan. Considering the analysis of the selected gene expression studied in HKLs [NF-κB subunits (rela, relb, crel, nfkb1, nfkb2), proinflammatory cytokines (il1b, tnfa), anti-inflammatory cytokines (il10, tgfb) and caspases (casp1, casp3, casp8, casp9)], although λ-carrageenan up-regulated the expression of the proinflammatory gene il1b, λ-carrageenan and cantharidin down-regulated its expression in HKLs. In addition, cantharidin up-regulated casp3 and casp9 expression. The casp3 and casp9 gene expression was down-regulated while casp1 gene expression was up-regulated in HKLs incubated with both cantharidin and λ-carrageenan. All the effects of cantharidin are related to its inhibitory effect on protein phosphatases, which induce apoptosis at long exposure times, and minimize the effects of λ-carrageenan. The present results provide detailed insight into the immune-depressive and anti-inflammatory properties of cantharidin on immune cells, which could be of interest to the aquaculture sector.
Collapse
Affiliation(s)
- Jose Carlos Campos-Sánchez
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Francisco A Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - María Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
6
|
Falfushynska H, Rychter P, Boshtova A, Faidiuk Y, Kasianchuk N, Rzymski P. Illicit Drugs in Surface Waters: How to Get Fish off the Addictive Hook. Pharmaceuticals (Basel) 2024; 17:537. [PMID: 38675497 PMCID: PMC11054822 DOI: 10.3390/ph17040537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
The United Nations World Drug Report published in 2022 alarmed that the global market of illicit drugs is steadily expanding in space and scale. Substances of abuse are usually perceived in the light of threats to human health and public security, while the environmental aspects of their use and subsequent emissions usually remain less explored. However, as with other human activities, drug production, trade, and consumption of drugs may leave their environmental mark. Therefore, this paper aims to review the occurrence of illicit drugs in surface waters and their bioaccumulation and toxicity in fish. Illicit drugs of different groups, i.e., psychostimulants (methamphetamines/amphetamines, cocaine, and its metabolite benzoylecgonine) and depressants (opioids: morphine, heroin, methadone, fentanyl), can reach the aquatic environment through wastewater discharge as they are often not entirely removed during wastewater treatment processes, resulting in their subsequent circulation in nanomolar concentrations, potentially affecting aquatic biota, including fish. Exposure to such xenobiotics can induce oxidative stress and dysfunction to mitochondrial and lysosomal function, distort locomotion activity by regulating the dopaminergic and glutamatergic systems, increase the predation risk, instigate neurological disorders, disbalance neurotransmission, and produce histopathological alterations in the brain and liver tissues, similar to those described in mammals. Hence, this drugs-related multidimensional harm to fish should be thoroughly investigated in line with environmental protection policies before it is too late. At the same time, selected fish species (e.g., Danio rerio, zebrafish) can be employed as models to study toxic and binge-like effects of psychoactive, illicit compounds.
Collapse
Affiliation(s)
- Halina Falfushynska
- Faculty of Economics, Anhalt University of Applied Sciences, 06406 Bernburg, Germany
| | - Piotr Rychter
- Faculty of Science & Technology, Jan Dlugosz University in Częstochowa, Armii Krajowej 13/15, 42200 Czestochowa, Poland;
| | | | - Yuliia Faidiuk
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53114 Wrocław, Poland;
- Educational and Scientific Centre “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 2 Prospekt Hlushkov, 03022 Kyiv, Ukraine
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 154 Zabolotny Str., 03143 Kyiv, Ukraine
| | - Nadiia Kasianchuk
- Faculty of Biology, Adam Mickiewicz University, 61712 Poznań, Poland;
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, 60806 Poznań, Poland;
| |
Collapse
|
7
|
Ribeiro Liberato H, Bezerra Maciel J, Wlisses Da Silva A, Eduarda Uchoa Bezerra M, San De Oliveira Brito L, Silva J, Kuerislene Amâncio Ferreira M, Machado Marinho M, Marinho GS, Deusdênia Loiola Pessoa O, Guedes MIF, Goberlânio De Barros Silva P, Ferreira de Castro Gomes A, Silva Alencar De Menezes JE, Silva Dos Santos H. Neuromodulation of Acid-Sensitive Ion Channels (ASICs) and Anti-Inflammatory Potential by Lichenxanthone in Adult Zebrafish (Danio rerio): Experimental and Docking Studies. Chem Biodivers 2024; 21:e202400063. [PMID: 38329295 DOI: 10.1002/cbdv.202400063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/09/2024]
Abstract
The xanthone lichenxanthone did not show toxic effects (LC50>1.0 mg/mL). lichenxanthone prevented nociceptive behavior induced by acidic saline, and its analgesic effect was blocked by amiloride, highlighting the involvement of neuromodulation of acid-sensitive ion channels (ASICs). In the analysis of anti-inflammatory activity, concentrations of 0.1 and 0.5 mg/mL of lichenxanthone reduced the edema induced by k-carrageenan 3.5 %, observed from the fourth hour of analysis. This effect was similar to that observed with ibuprofen (positive control). No leukocyte infiltrates were observed in lichenxanthone, suggesting that the compound acts in the acute inflammatory response. The results of the molecular docking study revealed that lichenxanthone exhibited better affinity energy when compared to the ibuprofen control against the two targets evaluated.
Collapse
Affiliation(s)
- Hortência Ribeiro Liberato
- Programa de Pós-graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Jéssica Bezerra Maciel
- Programa de Pós-graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | | | | | - Luana San De Oliveira Brito
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici s/n, Fortaleza, Ceará, Brazil
| | - Jacilene Silva
- Programa de Pós-graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | | | - Marcia Machado Marinho
- Programa de Pós-graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Gabrielle S Marinho
- Programa de Pós-graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Otília Deusdênia Loiola Pessoa
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici s/n, Fortaleza, Ceará, Brazil
| | - Maria Izabel F Guedes
- Centro de Ciências da Saúde, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | | | | | | | - Hélcio Silva Dos Santos
- Programa de Pós-graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
- Universidade Estadual do Vale do Acaraú, Centro de Ciências Exatas e Tecnologia, Sobral, Ceará, Brasil
| |
Collapse
|
8
|
Oliveira SLD, Costa CCD, Aracati MF, Rodrigues LF, Conde G, Moraes ACD, Camplesi AC, Farias THV, Silva IC, Pereira LAM, Belo MADA. Innate immunity response of zafirlukast treated-tilapia during foreign body inflammation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 153:105112. [PMID: 38092068 DOI: 10.1016/j.dci.2023.105112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024]
Abstract
There is limited knowledge regarding the blockade of cysteinyl leukotriene receptors (CysLTRs) and their effects in teleost fish. The present study investigated the effects of Zafirlukast, antagonist of CysLTR1 receptor, on the foreign body inflammatory reaction in Nile tilapia (Oreochromis niloticus). Zafirlukast-treated tilapia demonstrated a decrease in the formation of multinucleated foreign body giant cells and Langhans cells on the round glass coverslips implanted in the subcutaneous tissue, along with a significant reduction in white blood cell counts and decreased production of reactive oxygen species. There was an increase in serum levels of α2-macroglobulins, as well as a decrease in ceruloplasmin and haptoglobin. Zafirlukast treatment led to a significant decrease in the area of splenic melanomacrophage centers and a reduction in the presence of lipofuscin. These findings highlight the potential anti-inflammatory effects of zafirlukast treatment in tilapia and indicate its action on CysLTR1 receptor, modulating the innate immune response of tilapia during the foreign body reaction. The comprehension of chronic inflammation mechanisms in fish has become increasingly relevant, especially concerning the utilization of biomaterials for vaccine and drug delivery.
Collapse
Affiliation(s)
| | | | | | | | - Gabriel Conde
- Department of Preventive Veterinary Medicine, São Paulo State University (UNESP), Brazil
| | | | | | | | - Ives Charlie Silva
- Chemistry Institute, IQ -UNESP (São Paulo State University), Araraquara, SP, Brazil
| | | | - Marco Antonio de Andrade Belo
- Department of Preventive Veterinary Medicine, São Paulo State University (UNESP), Brazil; Brazil University - (UB), Descalvado, SP, Brazil.
| |
Collapse
|
9
|
Campos-Sánchez JC, Serna-Duque JA, Alburquerque C, Guardiola FA, Esteban MÁ. Participation of Hepcidins in the Inflammatory Response Triggered by λ-Carrageenin in Gilthead Seabream (Sparus aurata). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:261-275. [PMID: 38353762 PMCID: PMC11043163 DOI: 10.1007/s10126-024-10293-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 01/26/2024] [Indexed: 04/25/2024]
Abstract
The role of hepcidins, antimicrobial peptides involved in iron metabolism, immunity, and inflammation, is studied. First, gilthead seabream (Sparus aurata L.) head-kidney leucocytes (HKLs) were incubated with λ-carrageenin to study the expression of hepcidin and iron metabolism-related genes. While the expression of most of the genes studied was upregulated, the expression of ferroportin gene (slc40a) was downregulated. In the second part of the study, seabream specimens were injected intramuscularly with λ-carrageenin or buffer (control). The expression of the same genes was evaluated in the head kidney, liver, and skin at different time points after injection. The expression of Hamp1m, ferritin b, and ferroportin genes (hamp1, fthb, and slc40a) was upregulated in the head kidney of fish from the λ-carrageenin-injected group, while the expression of Hamp2C and Hamp2E genes (hamp2.3 and hamp2.7) was downregulated. In the liver, the expression of hamp1, ferritin a (ftha), slc40a, Hamp2J, and Hamp2D (hamp2.5/6) genes was downregulated in the λ-carrageenin-injected group. In the skin, the expression of hamp1 and (Hamp2A Hamp2C) hamp2.1/3/4 genes was upregulated in the λ-carrageenin-injected group. A bioinformatic analysis was performed to predict the presence of transcription factor binding sites in the promoter region of hepcidins. The primary sequence of hepcidin was conserved among the different mature peptides, although changes in specific amino acid residues were identified. These changes affected the charge, hydrophobicity, and probability of hepcidins being antimicrobial peptides. This study sheds light on the poorly understood roles of hepcidins in fish. The results provide insight into the regulatory mechanisms of inflammation in fish and could contribute to the development of new strategies for treat inflammation in farm animals.
Collapse
Affiliation(s)
- Jose Carlos Campos-Sánchez
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Jhon A Serna-Duque
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Carmen Alburquerque
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Francisco A Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - María Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
10
|
Cho KH, Kim JE, Lee MS, Bahuguna A. Cuban Policosanol (Raydel ®) Exerts Higher Antioxidant and Anti-Glycation Activities than Chinese Policosanol (BOC Sciences) in Reconstituted High-Density Lipoproteins: In Vivo Anti-Inflammatory Activities in Zebrafish and Its Embryos. Pharmaceuticals (Basel) 2024; 17:406. [PMID: 38675370 PMCID: PMC11054325 DOI: 10.3390/ph17040406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/21/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
The present study compares sugarcane-wax purified policosanols sourced from Cuba (Raydel®) and China (BOC Sciences) and utilized following the synthesis of reconstituted high-density lipoproteins (rHDL). The two policosanols exhibited distinctly different ingredient ratios of long-chain aliphatic alcohols, particularly 1-octacosanol (C28) and 1-tetratriacotanol (C34). After synthesizing rHDL with apolipoprotein A-I (apoA-I), the two policosanols bound well with phospholipid and apoA-I to form the discoidal rHDL. Notably, rHDL-1, containing Cuban policosanol, displayed the largest particle diameter at approximately 78 ± 3 nm. In contrast, both control rHDL (rHDL-0) and rHDL containing Chinese policosanol (rHDL-2) exhibited smaller particles, with diameters of approximately 58 ± 3 nm and 61 ± 2 nm, respectively. Furthermore, rHDL-1 demonstrated enhanced anti-glycation activity, safeguarding apoA-I from degradation within HDL, and displayed the antioxidant ability to inhibit LDL oxidation. A microinjection of each rHDL into zebrafish embryos in the presence of carboxymethyllysine (CML) revealed rHDL-1 to have the strongest antioxidant activity with the highest embryo survivability and normal developmental morphology. Dermal application to recover the wound revealed rHDL-1 to have the highest wound-healing activity (75%) and survivability (92%) in the cutaneous wound area in the presence of CML. In adult zebrafish, injecting CML (250 μg) caused acute death and hyperinflammation, marked by heightened neutrophil infiltration and interleukin (IL)-6 production in liver. However, co-administering rHDL-1 notably increased survival (85%) and exhibited strong anti-inflammatory properties, reducing IL-6 production while improving the blood lipid profile. However, a co-injection of rHDL-2 resulted in the lowest survivability (47%) with more hepatic inflammation. In conclusion, Cuban policosanol (Raydel®) has more desirable properties for the in vitro synthesis of rHDL with stronger anti-glycation and antioxidant activities than those of Chinese policosanol (BOC Sciences). Moreover, Raydel-policosanol-integrated rHDL demonstrates a noteworthy effect on accelerated wound healing and robust anti-inflammatory properties, leading to increased survivability in zebrafish embryos and adults by effectively suppressing CML-induced hyperinflammation.
Collapse
Affiliation(s)
- Kyung-Hyun Cho
- Raydel Research Institute, Medical Innovation Complex, Daegu 41061, Republic of Korea; (J.-E.K.); (A.B.)
| | | | | | | |
Collapse
|
11
|
Shi Y, Li L, Wang C, Huang J, Feng L, Chen X, Sik AG, Liu K, Jin M, Wang R. Developmental toxicity induced by chelerythrine in zebrafish embryos via activating oxidative stress and apoptosis pathways. Comp Biochem Physiol C Toxicol Pharmacol 2023; 273:109719. [PMID: 37586581 DOI: 10.1016/j.cbpc.2023.109719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/08/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Chelerythrine (CHE), a natural benzophenanthridine alkaloid, possesses various biological and pharmacological activities, such as antimicrobial, antitumor and anti-inflammatory effects. However, its adverse side effect has not been fully elucidated. Therefore, this study was designed to investigate the developmental toxicity of CHE in zebrafish. We found that CHE could lead to a notably increase of the mortality and malformation rate, while lead to reduction of the hatching rate and body length. CHE also could affect the normal developing processes of the heart, liver and phagocytes in zebrafish. Furthermore, the reactive oxygen species (ROS) and apoptosis levels were notably increased. In addition, the mRNA expressions of genes (bax, caspase-9, p53, SOD1, KEAP1, TNF-α, STAT3 and NF-κB) were significantly increased, while the bcl2 and nrf2 were notably inhibited by CHE. These results indicated that the elevation of ROS and apoptosis were involved in the developmental toxicity induced by CHE. In conclusion, CHE exhibits a developmental toxicity in zebrafish, which helps to understand the potential toxic effect of CHE.
Collapse
Affiliation(s)
- Yuxin Shi
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Lei Li
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Chuansen Wang
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Jing Huang
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Lixin Feng
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Xiqiang Chen
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Attila Gabor Sik
- Institute of Physiology, Medical School, University of Pecs, Pecs H-7624, Hungary; Szentagothai Research Centre, University of Pecs, Pecs H-7624, Hungary; Institute of Clinical Sciences, Medical School, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Kechun Liu
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Meng Jin
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China.
| | - Rongchun Wang
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China.
| |
Collapse
|
12
|
Fernandes DC, Tambourgi DV. Complement System Inhibitory Drugs in a Zebrafish ( Danio rerio) Model: Computational Modeling. Int J Mol Sci 2023; 24:13895. [PMID: 37762197 PMCID: PMC10530807 DOI: 10.3390/ijms241813895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The dysregulation of complement system activation usually results in acute or chronic inflammation and can contribute to the development of various diseases. Although the activation of complement pathways is essential for innate defense, exacerbated activity of this system may be harmful to the host. Thus, drugs with the potential to inhibit the activation of the complement system may be important tools in therapy for diseases associated with complement system activation. The synthetic peptides Cp40 and PMX205 can be highlighted in this regard, given that they selectively inhibit the C3 and block the C5a receptor (C5aR1), respectively. The zebrafish (Danio rerio) is a robust model for studying the complement system. The aim of the present study was to use in silico computational modeling to investigate the hypothesis that these complement system inhibitor peptides interact with their target molecules in zebrafish, for subsequent in vivo validation. For this, we analyzed molecular docking interactions between peptides and target molecules. Our study demonstrated that Cp40 and the cyclic peptide PMX205 have positive interactions with their respective zebrafish targets, thus suggesting that zebrafish can be used as an animal model for therapeutic studies on these inhibitors.
Collapse
Affiliation(s)
| | - Denise V. Tambourgi
- Immunochemistry Laboratory, Butantan Institute, São Paulo 05503-900, Brazil;
| |
Collapse
|
13
|
Ferreira MKA, Freitas WPO, Barbosa IM, da Rocha MN, da Silva AW, de Lima Rebouças E, da Silva Mendes FR, Alves CR, Nunes PIG, Marinho MM, Furtado RF, Santos FA, Marinho ES, de Menezes JESA, dos Santos HS. Heterocyclic chalcone ( E)-1-(2-hydroxy-3,4,6-trimethoxyphenyl)-3-(thiophen-2-yl) prop-2-en-1-one derived from a natural product with antinociceptive, anti-inflammatory, and hypoglycemic effect in adult zebrafish. 3 Biotech 2023; 13:276. [PMID: 37457871 PMCID: PMC10349009 DOI: 10.1007/s13205-023-03696-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
Diabetes is a disease linked to pathologies, such as chronic inflammation, neuropathy, and pain. The synthesis by the Claisen-Schmidt condensation reaction aims to obtain medium to high yield chalconic derivatives. Studies for the synthesis of new chalcone molecules aim at the structural manipulation of aromatic rings, as well as the replacement of rings by heterocycles, and combination through chemical reactions of synthesized structures with other molecules, in order to enhance biological activity. A chalcone was synthesized and evaluated for its antinociceptive, anti-inflammatory and hypoglycemic effect in adult zebrafish. In addition to reducing nociceptive behavior, chalcone (40 mg/kg) reversed post-treatment-induced acute and chronic hyperglycemia and reduced carrageenan-induced abdominal edema in zebrafish. It also showed an inhibitory effect on NO production in J774A.1 cells. When compared with the control groups, the oxidative stress generated after chronic hyperglycemia and after induction of abdominal edema was significantly reduced by chalcone. Molecular docking simulations of chalcone with Cox -1, Cox-2, and TRPA1 channel enzymes were performed and indicated that chalcone has a higher affinity for the COX-1 enzyme and 4 interactions with the TRPA1 channel. Chalcone also showed good pharmacokinetic properties as assessed by ADMET. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03696-8.
Collapse
Affiliation(s)
- Maria Kueirislene Amancio Ferreira
- Laboratório de Química de Produtos Naturais-LQPNS, Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Naturais, Fortaleza, CE Brazil
| | - Wendy Pascoal Oliveira Freitas
- Laboratório de Química de Produtos Naturais-LQPNS, Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Naturais, Fortaleza, CE Brazil
| | - Italo Moura Barbosa
- Laboratório de Química de Produtos Naturais-LQPNS, Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Naturais, Fortaleza, CE Brazil
| | - Matheus Nunes da Rocha
- Laboratório de Química de Produtos Naturais-LQPNS, Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Naturais, Fortaleza, CE Brazil
| | - Antônio Wlisses da Silva
- Programa de Doutorado em Biotecnologia, Rede Nordeste de Biotecnologia (RENORBIO), Fortaleza, CE Brazil
| | - Emanuela de Lima Rebouças
- Programa de Doutorado em Biotecnologia, Rede Nordeste de Biotecnologia (RENORBIO), Fortaleza, CE Brazil
| | | | - Carlucio Roberto Alves
- Laboratório de Sistemas de Nanotecnologia e BiomateriaisPrograma de Pós-Graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, CE Brazil
| | - Paulo Iury Gomes Nunes
- Departamento de Fisiologia e Farmacologia Laboratório de Produtos Naturais, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE Brazil
| | | | | | - Flávia Almeida Santos
- Departamento de Fisiologia e Farmacologia Laboratório de Produtos Naturais, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE Brazil
| | - Emmanuel Silva Marinho
- Laboratório de Química de Produtos Naturais-LQPNS, Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Naturais, Fortaleza, CE Brazil
| | - Jane Eire Silva Alencar de Menezes
- Laboratório de Química de Produtos Naturais-LQPNS, Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Naturais, Fortaleza, CE Brazil
| | - Helcio Silva dos Santos
- Laboratório de Química de Produtos Naturais-LQPNS, Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Naturais, Fortaleza, CE Brazil
- Programa de Doutorado em Biotecnologia, Rede Nordeste de Biotecnologia (RENORBIO), Fortaleza, CE Brazil
- Departamento de Química, Universidade Estadual Vale do Acaraú, Sobral, CE Brazil
| |
Collapse
|
14
|
Zhou C, Chen J, Liu K, Maharajan K, Zhang Y, Hou L, Li J, Mi M, Xia Q. Isoalantolactone protects against ethanol-induced gastric ulcer via alleviating inflammation through regulation of PI3K-Akt signaling pathway and Th17 cell differentiation. Biomed Pharmacother 2023; 160:114315. [PMID: 36716661 DOI: 10.1016/j.biopha.2023.114315] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/10/2023] [Accepted: 01/26/2023] [Indexed: 01/30/2023] Open
Abstract
Gastric ulcer (GU) is one of the most prevalent digestive system diseases in humans, and it has been linked to inflammation. Previous studies have demonstrated the anti-inflammatory potential of isoalantolactone (IAL), a sesquiterpene lactone isolated from Radix Inulae. However, the pharmacological effects of IAL on GU and its mechanism of action are still unclear. Hence, the present study is aimed to investigate the anti-inflammatory potential of IAL on GU. Firstly, we assessed the effect of IAL on ethanol-induced injury of human gastric epithelial cells and the levels of inflammatory cytokines in cell culture supernatants. Then, the anti-inflammatory effects of IAL were confirmed in vivo using zebrafish inflammation models. Furthermore, the mechanism of IAL against GU was preliminarily discussed through network pharmacology and molecular docking studies. Quantitative real-time PCR assays were also used to confirm the mechanism of IAL action. ALB, EGFR, SRC, HSP90AA1, and CASP3 were found for the first time as the key targets of the IAL anti-GU. PI3K-Akt signaling pathway and Th17 cell differentiation were identified to play a crucial role in the anti-GU effects of IAL. In conclusion, we found that IAL has anti-inflammatory effects both in vitro and in vivo, and showed potential protective effects against ethanol-induced GU.
Collapse
Affiliation(s)
- Chaoyi Zhou
- School of Pharmacy, Hebei University, Baoding 071002, China; Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Jing Chen
- Tibetan traditional medicine college, Lhasa 850000, China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Kannan Maharajan
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Linhua Hou
- School of Pharmacy, Hebei University, Baoding 071002, China; Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Jianheng Li
- School of Pharmacy, Hebei University, Baoding 071002, China.
| | - Ma Mi
- Tibetan traditional medicine college, Lhasa 850000, China.
| | - Qing Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
| |
Collapse
|
15
|
Mechanisms of Foreign Body Giant Cell Formation in Response to Implantable Biomaterials. Polymers (Basel) 2023; 15:polym15051313. [PMID: 36904554 PMCID: PMC10007405 DOI: 10.3390/polym15051313] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
Long term function of implantable biomaterials are determined by their integration with the host's body. Immune reactions against these implants could impair the function and integration of the implants. Some biomaterial-based implants lead to macrophage fusion and the formation of multinucleated giant cells, also known as foreign body giant cells (FBGCs). FBGCs may compromise the biomaterial performance and may lead to implant rejection and adverse events in some cases. Despite their critical role in response to implants, there is a limited understanding of cellular and molecular mechanisms involved in forming FBGCs. Here, we focused on better understanding the steps and mechanisms triggering macrophage fusion and FBGCs formation, specifically in response to biomaterials. These steps included macrophage adhesion to the biomaterial surface, fusion competency, mechanosensing and mechanotransduction-mediated migration, and the final fusion. We also described some of the key biomarkers and biomolecules involved in these steps. Understanding these steps on a molecular level would lead to enhance biomaterials design and improve their function in the context of cell transplantation, tissue engineering, and drug delivery.
Collapse
|
16
|
Campos-Sánchez JC, Gonzalez-Silvera D, Gong X, Broughton R, Guardiola FA, Betancor MB, Esteban MÁ. Implication of adipocytes from subcutaneous adipose tissue and fatty acids in skin inflammation caused by λ-carrageenin in gilthead seabream (Sparusaurata). FISH & SHELLFISH IMMUNOLOGY 2022; 131:160-171. [PMID: 36210005 DOI: 10.1016/j.fsi.2022.09.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
The role of subcutaneous adipose tissue adipocytes and the effects of fatty acids on carrageenan-induced skin inflammation in gilthead seabream (Sparus aurata) were studied. Fish were injected intramuscularly with phosphate-buffered saline (control) or λ-carrageenin (1%), and skin samples collected at the injection site at 3 and 6 h post-injection (p.i.) were processed for histological study. In addition, the presence and levels of lipid classes, fatty acid methyl esters (FAME) and eicosanoids were evaluated in the skin samples obtained from the injected areas. Histological results indicated an increase in adipocyte area in fish sampled at 3 h p.i. with λ-carrageenin compared to fish in the control group. Furthermore, the frequency of adipocytes between 4500 and 5000 μm2 was increased at 6 h in the λ-carrageenin group compared to the control group. Analysis of lipid classes found that fish injected with λ-carrageenan showed increased free fatty acid (FFA) and sphingomyelin content at 3 and 6 h, respectively, compared to the control group. An increase in saturated fatty acids (SFA), n-6 polyunsaturated fatty acids (PUFA), and a decrease in the values of monounsaturated fatty acids (MUFA), n-3 PUFA and minor fatty acids were observed in fish skin at 6 h after λ-carrageenin injection, with respect to the values obtained in the control group. Regarding the analysis of eicosanoids, an increase in hydroxyeicosatetraenoic acid (5-HETE) was detected in the skin of fish at 6 h post-carrageenin injection compared to the control group. The presented results indicate the contribution of adipocytes and fatty acids in the development and regulation of the inflammatory response triggered by λ-carrageenin in gilthead seabream skin.
Collapse
Affiliation(s)
- Jose Carlos Campos-Sánchez
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology. Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Daniel Gonzalez-Silvera
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK
| | - Xu Gong
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK
| | - Richard Broughton
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK
| | - Francisco A Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology. Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Mónica B Betancor
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK
| | - María Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology. Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
17
|
Mostofa F, Yasid NA, Shamsi S, Ahmad SA, Mohd-Yusoff NF, Abas F, Ahmad S. In Silico Study and Effects of BDMC33 on TNBS-Induced BMP Gene Expressions in Zebrafish Gut Inflammation-Associated Arthritis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238304. [PMID: 36500396 PMCID: PMC9740523 DOI: 10.3390/molecules27238304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022]
Abstract
The bone morphogenic protein (BMP) family is a member of the TGF-beta superfamily and plays a crucial role during the onset of gut inflammation and arthritis diseases. Recent studies have reported a connection with the gut-joint axis; however, the genetic players are still less explored. Meanwhile, BDMC33 is a newly synthesized anti-inflammatory drug candidate. Therefore, in our present study, we analysed the genome-wide features of the BMP family as well as the role of BMP members in gut-associated arthritis in an inflammatory state and the ability of BDMC33 to attenuate this inflammation. Firstly, genome-wide analyses were performed on the BMP family in the zebrafish genome, employing several in silico techniques. Afterwards, the effects of curcumin analogues on BMP gene expression in zebrafish larvae induced with TNBS (0.78 mg/mL) were determined using real time-qPCR. A total of 38 identified BMP proteins were revealed to be clustered in five major clades and contain TGF beta and TGF beta pro peptide domains. Furthermore, BDMC33 suppressed the expression of four selected BMP genes in the TNBS-induced larvae, where the highest gene suppression was in the BMP2a gene (an eight-fold decrement), followed by BMP7b (four-fold decrement), BMP4 (four-fold decrement), and BMP6 (three-fold decrement). Therefore, this study reveals the role of BMPs in gut-associated arthritis and proves the ability of BDMC33 to act as a potential anti-inflammatory drug for suppressing TNBS-induced BMP genes in zebrafish larvae.
Collapse
Affiliation(s)
- Farhana Mostofa
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Nur Adeela Yasid
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Suhaili Shamsi
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Nur Fatihah Mohd-Yusoff
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Bimolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Faridah Abas
- Department of Food Science, Faculty of Food Science & Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Syahida Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Correspondence: ; Tel.: +603-97696724
| |
Collapse
|
18
|
Aracati MF, Luporini de Oliveira S, Rodrigues LF, Carlino da Costa C, Cristina de Moraes A, da Rosa Prado EJ, Fernandes DC, Vaz Farias TH, Eto SF, Charlie-Silva I, de Andrade Belo MA. Antagonism of cysteinyl leukotriene receptors by zafirlukast modulated acute inflammatory reaction in tilapia, Oreochromis niloticus. FISH & SHELLFISH IMMUNOLOGY 2022; 130:323-331. [PMID: 36122633 DOI: 10.1016/j.fsi.2022.09.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
To identify activation pathways and effector mechanisms of innate immunity in fish has become relevant for the sanitary management of intensive fish farming. However, little is known about the blocking of cysteinyl leukotrienes receptors (CysLTRs) and their effects in teleost fish. Our study evaluated the anti-inflammatory effect of 250 and 500 μg zafirlukast (antagonist of CysLTRs)/kg b.w., administered orally in the diet, during acute inflammatory reaction induced by Aeromonas hydrophila bacterins in Oreochromis niloticus. 80 tilapia were distributed in 10 aquariums (100L of water each, n = 8) to constitute three treatments: Control (inoculated with A. hydrophila bacterin and untreated); Treated with 250 μg or 500 μg of zafirlukast/kg b.w. and inoculated. To be evaluated in three periods: 6, 24 and 48 h post-inoculation (HPI), totaling nine aquariums. A tenth group was sampled without any stimulus to constitute reference values (Physiological standards). Tilapia treated with zafirlukast demonstrated dose-response effect in the decrease of accumulated inflammatory cells, strongly influenced by granulocytes and macrophages. Zafirlukast treated-tilapia showed decrease in blood leukocyte counts (mainly neutrophils, and monocytes) and reactive oxygen species production. Treatment with zafirlukast resulted in down-regulation of ceruloplasmin, complement 3, alpha2-macroglobulin, transferrin and apolipoprotein A1, as well as up-regulation of haptoglobin. Our study provided convincing results in the pathophysiology of tilapia inflammatory reaction, considering that treatment with zafirlukast, antagonist of cysteinyl leukotriene receptors, resulted in a dose-response effect by suppressing the dynamics between leukocytes in the bloodstream and cell accumulation in the inflamed focus, as well as modulated the leukocyte oxidative burst and the acute phase protein response.
Collapse
Affiliation(s)
- Mayumi Fernanda Aracati
- Department of Preventive Veterinary Medicine, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | | | - Leticia Franchin Rodrigues
- Department of Preventive Veterinary Medicine, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | - Camila Carlino da Costa
- Department of Preventive Veterinary Medicine, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | | | - Ed Johnny da Rosa Prado
- Department of Preventive Veterinary Medicine, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | - Dayanne Carla Fernandes
- Department of Preventive Veterinary Medicine, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | | | - Silas Fernandes Eto
- Department of Preventive Veterinary Medicine, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | - Ives Charlie-Silva
- Deparment of Pharmacology, University of São Paulo-ICB/USP, São Paulo, SP, Brazil
| | - Marco Antonio de Andrade Belo
- Department of Preventive Veterinary Medicine, São Paulo State University (UNESP), Jaboticabal, SP, Brazil; Laboratory of Animal Pharmacology and Toxicology, Brazil University - (UB), Descalvado, SP, Brazil.
| |
Collapse
|
19
|
Nazario LR, de Sousa JS, de Moraes Silveira FS, Costa KM, de Oliveira GMT, Bogo MR, da Silva RS. Participation of ecto-5'-nucleotidase in the inflammatory response in an adult zebrafish (Danio rerio) model. Comp Biochem Physiol C Toxicol Pharmacol 2022; 260:109402. [PMID: 35779837 DOI: 10.1016/j.cbpc.2022.109402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/20/2022] [Accepted: 06/26/2022] [Indexed: 11/17/2022]
Abstract
The ecto-5'-nucleotidase is an important source of adenosine in the extracellular medium. Adenosine modulation appears early in evolution and performs several biological functions, including a role as an anti-inflammatory molecule. Here, we evaluate the activity and mRNA expression of ecto-5'-nucleotidase in response to lipopolysaccharide (LPS) using zebrafish as a model. Adult zebrafish were injected with LPS (10 μg/g). White blood cell differential counts, inflammatory markers, and ecto-5'-nucleotidase activity and expression in the encephalon, kidney, heart, and intestine were evaluated at 2, 12, and 24 h post-injection (hpi). At 2 hpi of LPS, an increase in neutrophils and monocytes in peripheral blood was observed, which was accompanied by increased tnf-α expression in the heart, kidney, and encephalon, and increased cox-2 expression in the intestine and kidney. At 12 hpi, monocytes remained elevated in the peripheral blood, while tnf-α expression was also increased in the intestine. At 24 hpi, the white blood cell differential count no longer differed from that of the control, whereas tnf-α expression remained elevated in the encephalon but reduced in the kidney compared with the controls. AMP hydrolysis in LPS-treated animals was increased in the heart at 24 hpi [72 %; p = 0.029] without affecting ecto-5'-nucleotidase gene expression. These data indicate that, in most tissues studied, inflammation does not affect ecto-5'-nucleotidase activity, whereas in the heart, a delayed increase in ecto-5'-nucleotidase activity could be related to tissue repair.
Collapse
Affiliation(s)
- Luiza Reali Nazario
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Avenida Ipiranga, 6681, Caixa Postal 1429, 90619-900 Porto Alegre, RS, Brazil
| | - Jéssica Streb de Sousa
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Avenida Ipiranga, 6681, Caixa Postal 1429, 90619-900 Porto Alegre, RS, Brazil
| | - Francielle Schroeder de Moraes Silveira
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Avenida Ipiranga, 6681, Caixa Postal 1429, 90619-900 Porto Alegre, RS, Brazil
| | - Kesiane Mayra Costa
- Laboratório de Biologia Genômica e Molecular, Escola de Ciências da Saúde e Vida, PUCRS, Caixa Postal 1429, 90619-900 Porto Alegre, RS, Brazil
| | | | - Maurício Reis Bogo
- Laboratório de Biologia Genômica e Molecular, Escola de Ciências da Saúde e Vida, PUCRS, Caixa Postal 1429, 90619-900 Porto Alegre, RS, Brazil
| | - Rosane Souza da Silva
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Avenida Ipiranga, 6681, Caixa Postal 1429, 90619-900 Porto Alegre, RS, Brazil.
| |
Collapse
|
20
|
Charlie-Silva I, Feitosa NM, Pontes LG, Fernandes BH, Nóbrega RH, Gomes JMM, Prata MNL, Ferraris FK, Melo DC, Conde G, Rodrigues LF, Aracati MF, Corrêa-Junior JD, Manrique WG, Superio J, Garcez AS, Conceição K, Yoshimura TM, Núñez SC, Eto SF, Fernandes DC, Freitas AZ, Ribeiro MS, Nedoluzhko A, Lopes-Ferreira M, Borra RC, Barcellos LJG, Perez AC, Malafaia G, Cunha TM, Belo MAA, Galindo-Villegas J. Plasma proteome responses in zebrafish following λ-carrageenan-Induced inflammation are mediated by PMN leukocytes and correlate highly with their human counterparts. Front Immunol 2022; 13:1019201. [PMID: 36248846 PMCID: PMC9559376 DOI: 10.3389/fimmu.2022.1019201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/09/2022] [Indexed: 11/23/2022] Open
Abstract
Regulation of inflammation is a critical process for maintaining physiological homeostasis. The λ-carrageenan (λ-CGN) is a mucopolysaccharide extracted from the cell wall of red algae (Chondrus crispus) capable of inducing acute intestinal inflammation, which is translated into the production of acute phase reactants secreted into the blood circulation. However, the associated mechanisms in vertebrates are not well understood. Here, we investigated the crucial factors behind the inflammatory milieu of λ-CGN-mediated inflammation administered at 0, 1.75, and 3.5% (v/w) by i.p. injection into the peritoneal cavity of adult zebrafish (ZF) (Danio rerio). We found that polymorphonuclear leukocytes (neutrophils) and lymphocytes infiltrating the ZF peritoneal cavity had short-term persistence. Nevertheless, they generate a strong pattern of inflammation that affects systemically and is enough to produce edema in the cavity. Consistent with these findings, cell infiltration, which causes notable tissue changes, resulted in the overexpression of several acute inflammatory markers at the protein level. Using reversed-phase high-performance liquid chromatography followed by a hybrid linear ion-trap mass spectrometry shotgun proteomic approach, we identified 2938 plasma proteins among the animals injected with PBS and 3.5% λ-CGN. First, the bioinformatic analysis revealed the composition of the plasma proteome. Interestingly, 72 commonly expressed proteins were recorded among the treated and control groups, but, surprisingly, 2830 novel proteins were differentially expressed exclusively in the λ-CGN-induced group. Furthermore, from the commonly expressed proteins, compared to the control group 62 proteins got a significant (p < 0.05) upregulation in the λ-CGN-treated group, while the remaining ten proteins were downregulated. Next, we obtained the major protein-protein interaction networks between hub protein clusters in the blood plasma of the λ-CGN induced group. Moreover, to understand the molecular underpinnings of these effects based on the unveiled protein sets, we performed a bioinformatic structural similarity analysis and generated overlapping 3D reconstructions between ZF and humans during acute inflammation. Biological pathway analysis pointed to the activation and abundance of diverse classical immune and acute phase reactants, several catalytic enzymes, and varied proteins supporting the immune response. Together, this information can be used for testing and finding novel pharmacological targets to treat human intestinal inflammatory diseases.
Collapse
Affiliation(s)
| | - Natália M. Feitosa
- Integrated Laboratory of Translational Bioscience, Institute of Biodiversity and Sustainability, Federal University of Rio de Janeiro, Macaé, Brazil
| | | | - Bianca H. Fernandes
- Laboratório de Controle Genético e Sanitário, Faculdade de Medicina Universidade de São Paulo, São Paulo, Brazil
| | - Rafael H. Nóbrega
- Reproductive and Molecular Biology Group, Department of Morphology, Institute of Biosciences, São Paulo State University, São Paulo, Brazil
| | - Juliana M. M. Gomes
- Transplantation Immunobiology Lab, Department of Immunology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Mariana N. L. Prata
- Department of Pharmacology, Instituto de CiênciasBiomédicas-Universidade Federal de Minas Gerais (ICB-UFMG), Belo Horizonte, Brazil
| | - Fausto K. Ferraris
- Department of Pharmacology and Toxicology, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Daniela C. Melo
- Laboratory of Zebrafish from Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Gabriel Conde
- Department of Preventive Veterinary Medicine, São Paulo State University, São Paulo, Brazil
| | - Letícia F. Rodrigues
- Department of Preventive Veterinary Medicine, São Paulo State University, São Paulo, Brazil
| | - Mayumi F. Aracati
- Department of Preventive Veterinary Medicine, São Paulo State University, São Paulo, Brazil
| | - José D. Corrêa-Junior
- Department of Morphology, Instituto de CiênciasBiomédicas-Universidade Federal de Minas Gerais (ICB-UFMG), Belo Horizonte, Brazil
| | - Wilson G. Manrique
- Veterinary College, Federal University of Rondonia, Rolim de Moura, Brazil
| | - Joshua Superio
- Department of Aquaculture, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | - Katia Conceição
- Peptide Biochemistry Laboratory, Universidade Federal de São Paulo (UNIFESP), Sao Jose Dos Campos, Brazil
| | - Tania M. Yoshimura
- Center for Lasers and Applications, Instituto de PesquisasEnergéticas e Nucleares (IPEN-CNEN), Sao Paulo, Brazil
| | - Silvia C. Núñez
- University Brazil, São Paulo, Brazil
- University Brazil, Descalvado, Brazil
| | - Silas F. Eto
- Development and Innovation Laboratory, Center of Innovation and Development, Butantan Institute, São Paulo, Brazil
| | - Dayanne C. Fernandes
- Department of Preventive Veterinary Medicine, São Paulo State University, São Paulo, Brazil
| | - Anderson Z. Freitas
- Center for Lasers and Applications, Instituto de PesquisasEnergéticas e Nucleares (IPEN-CNEN), Sao Paulo, Brazil
| | - Martha S. Ribeiro
- Center for Lasers and Applications, Instituto de PesquisasEnergéticas e Nucleares (IPEN-CNEN), Sao Paulo, Brazil
| | - Artem Nedoluzhko
- Paleogenomics Laboratory, European University at Saint Petersburg, Saint Petersburg, Russia
| | | | - Ricardo C. Borra
- Department of Genetics and Evolution, Federal University of São Carlos, São Paulo, Brazil
| | - Leonardo J. G. Barcellos
- Postgraduate Program in Pharmacology, Federal University of Santa Maria, Rio Grande do Sul, Brazil
- Postgraduate Program in Bioexperimentation. University of Passo Fundo, Rio Grande do Sul, Brazil
| | - Andrea C. Perez
- Department of Pharmacology and Toxicology, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Guilheme Malafaia
- Biological Research Laboratory, Goiano Federal Institute, Urutaí, Brazil
| | - Thiago M. Cunha
- Center of Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Marco A. A. Belo
- Department of Preventive Veterinary Medicine, São Paulo State University, São Paulo, Brazil
- University Brazil, São Paulo, Brazil
- University Brazil, Descalvado, Brazil
| | - Jorge Galindo-Villegas
- Department of Genomics, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| |
Collapse
|
21
|
Chen AQ, He SM, Lv SJ, Qiu CZ, Zhou R, Zhang L, Zhang SR, Zhang Z, Ren DL. Muscarinic acetylcholine receptors regulate inflammatory responses through arginases 1/2 in zebrafish. Biomed Pharmacother 2022; 153:113321. [PMID: 35759868 DOI: 10.1016/j.biopha.2022.113321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022] Open
Abstract
Muscarinic acetylcholine receptors (mAChRs) are widely expressed in various effector cells and have been proved to play vital roles in smooth muscle contraction and digestive secretion. However, there are relatively few literatures revealing the roles of mAChRs in inflammatory processes, and its underlying regulatory mechanisms have not been elucidated. Taking the advantages of live imaging of zebrafish, we found that inhibition of mAChRs resulted in increased neutrophils recruitment and proinflammatory cytokines expression, whereas activation of mAChRs led to opposite outcome. Subsequently, we found that mAChRs regulated the expression of arginases (args), and pharmacological intervention of args level could reverse the effects of mAChRs on neutrophils migration and cytokines expression, suggesting that args are important downstream proteins of mAChRs that mediate the regulation of inflammatory response. In this study, we identified args as novel downstream proteins of mAChRs in inflammatory responses, providing additional evidence for system immune regulation of cholinergic receptors.
Collapse
Affiliation(s)
- An-Qi Chen
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Shi-Min He
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Shi-Jie Lv
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Cheng-Zeng Qiu
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Ren Zhou
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Ling Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Shang-Rong Zhang
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, China
| | - Zijun Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Da-Long Ren
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
22
|
Campos-Sánchez JC, Carrillo NG, Guardiola FA, Francisco DC, Esteban MÁ. Ultrasonography and X-ray micro-computed tomography characterization of the effects caused by carrageenin in the muscle of gilthead seabream (Sparus aurata). FISH & SHELLFISH IMMUNOLOGY 2022; 123:431-441. [PMID: 35337979 DOI: 10.1016/j.fsi.2022.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
The current work aimed to carry out an in vivo study of the λ-carrageenin-induced inflammation in the skin of gilthead seabream (Sparus aurata). The fish were injected intramuscularly with phosphate-buffered saline (PBS, as control) or λ-carrageenin (1% in PBS), and the injection zone was evaluated by real-time ultrasonography (Vevo Lab, VisualSonics) at 1.5, 3, 6, 12, and 24 h post-injection (p.i.). Results demonstrated that the skin thickness was increased in fish injected with λ-carrageenin and sampled at 1.5, 3, and 6 h p.i. However, the skin thickness of the injected area decreased to the normal values in those fish sampled at 12 and 24 h p.i. In addition, fish injected with λ-carrageenin and analysed at 1.5, 3, and 6 h p.i. showed, in the underlying muscle at the injection place, several hyperechoic small foci surrounded by an anechoic area which were not observed in control fish. Furthermore, the fish were analysed by X-ray micro-computed tomography (micro-CT). The analysis of the micro-CT acquisitions revealed also a dark area in the place of the injection with λ-carrageenin at 1.5, 3, and 6 h. These areas were smaller in fish analysed at longer times (12 h p.i.) and were almost disappeared in fish sampled at 24 h p.i. These areas had an average density of -850 to -115 HU, which did not correspond with any tissue density of the rest of the body. Furthermore, similar dark areas at the injection zones were never observed in control fish. Present results support the use of both non-invasive techniques to study the inflammatory process in fish of commercial interest such as gilthead seabream.
Collapse
Affiliation(s)
- Jose Carlos Campos-Sánchez
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Nuria García Carrillo
- Integrated Center for Biomedical Research (CEIB), Health Sciences Campus, University of Murcia, 30120, Murcia, Spain
| | - Francisco A Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Diana Ceballos Francisco
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - María Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|