1
|
Dubey S, Verma DK, Kumar M. Real-time infectious disease endurance indicator system for scientific decisions using machine learning and rapid data processing. PeerJ Comput Sci 2024; 10:e2062. [PMID: 39145255 PMCID: PMC11323025 DOI: 10.7717/peerj-cs.2062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/03/2024] [Accepted: 04/25/2024] [Indexed: 08/16/2024]
Abstract
The SARS-CoV-2 virus, which induces an acute respiratory illness commonly referred to as COVID-19, had been designated as a pandemic by the World Health Organization due to its highly infectious nature and the associated public health risks it poses globally. Identifying the critical factors for predicting mortality is essential for improving patient therapy. Unlike other data types, such as computed tomography scans, x-radiation, and ultrasounds, basic blood test results are widely accessible and can aid in predicting mortality. The present research advocates the utilization of machine learning (ML) methodologies for predicting the likelihood of infectious disease like COVID-19 mortality by leveraging blood test data. Age, LDH (lactate dehydrogenase), lymphocytes, neutrophils, and hs-CRP (high-sensitivity C-reactive protein) are five extremely potent characteristics that, when combined, can accurately predict mortality in 96% of cases. By combining XGBoost feature importance with neural network classification, the optimal approach can predict mortality with exceptional accuracy from infectious disease, along with achieving a precision rate of 90% up to 16 days before the event. The studies suggested model's excellent predictive performance and practicality were confirmed through testing with three instances that depended on the days to the outcome. By carefully analyzing and identifying patterns in these significant biomarkers insightful information has been obtained for simple application. This study offers potential remedies that could accelerate decision-making for targeted medical treatments within healthcare systems, utilizing a timely, accurate, and reliable method.
Collapse
Affiliation(s)
- Shivendra Dubey
- Computer Science and Engineering, Jaypee University of Engineering and Technology, Guna, Madhya Pradesh, India
| | - Dinesh Kumar Verma
- Computer Science and Engineering, Jaypee University of Engineering and Technology, Guna, Madhya Pradesh, India
| | - Mahesh Kumar
- Computer Science and Engineering, Jaypee University of Engineering and Technology, Guna, Madhya Pradesh, India
| |
Collapse
|
2
|
Priya Jakkula K, Kishore J, Maheswar Rao U. Longitudinal Follow-Up Study on the Side Effects of COVID-19 Vaccines: A Telephonic Questionnaire Approach. Cureus 2024; 16:e62917. [PMID: 39040783 PMCID: PMC11262540 DOI: 10.7759/cureus.62917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/08/2024] [Accepted: 06/21/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has prompted urgent efforts to develop and deploy effective vaccines. Covishield and Covaxin are two prominent COVID-19 vaccines authorized for emergency use; however, concerns regarding their safety persist. OBJECTIVE This longitudinal follow-up study aimed to comprehensively assess and compare the demographic characteristics, frequencies, severities of reported side effects, and associations between vaccine type and demographic factors among individuals vaccinated with Covishield and Covaxin. METHODS A telephonic questionnaire was used to collect data from individuals who attended COVID-19 vaccination programs between January 1, 2021, and January 1, 2022. Logistic regression analysis was performed to investigate the associations between vaccine type, demographic factors, and likelihood of experiencing side effects. RESULTS Covaxin recipients exhibited a lower incidence of mild flu-like illness (16 cases) and post-vaccination infection (55 cases) than Covishield recipients (110 and 98 cases, respectively). However, Covaxin recipients reported more cases of soreness at the injection site (139 cases) than did Covishield recipients (172 cases). Logistic regression analysis revealed significantly higher odds of experiencing side effects among Covaxin recipients than among Covishield recipients (OR = 1.687, p < 0.001). Age was inversely associated with the likelihood of experiencing side effects (OR = 0.982, p < 0.001), while sex and ethnicity also exhibited significant associations. CONCLUSION This study provides valuable insights into the safety profiles of the Covishield and Covaxin COVID-19 vaccines. These findings underscore the importance of ongoing surveillance and evaluation of vaccine safety and tolerability to inform public health policies and vaccination strategies.
Collapse
Affiliation(s)
| | - J Kishore
- General Surgery, Lions Cancer Hospital, Visakhapatnam, IND
| | | |
Collapse
|
3
|
Madrid J, Agarwal P, Müller-Peltzer K, Benning L, Selig M, Rolauffs B, Diehl P, Kalbhenn J, Trummer G, Utzolino S, Wengenmayer T, Busch HJ, Stolz D, Rieg S, Panning M, Bamberg F, Schlett CL, Askani E. Cardioprotective effects of vaccination in hospitalized patients with COVID-19. Clin Exp Med 2024; 24:103. [PMID: 38758248 PMCID: PMC11101587 DOI: 10.1007/s10238-024-01367-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/17/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024]
Abstract
COVID-19 vaccination has been shown to prevent and reduce the severity of COVID-19 disease. The aim of this study was to explore the cardioprotective effect of COVID-19 vaccination in hospitalized COVID-19 patients. In this retrospective, single-center cohort study, we included hospitalized COVID-19 patients with confirmed vaccination status from July 2021 to February 2022. We assessed outcomes such as acute cardiac events and cardiac biomarker levels through clinical and laboratory data. Our analysis covered 167 patients (69% male, mean age 58 years, 42% being fully vaccinated). After adjustment for confounders, vaccinated hospitalized COVID-19 patients displayed a reduced relative risk for acute cardiac events (RR: 0.33, 95% CI [0.07; 0.75]) and showed diminished troponin T levels (Cohen's d: - 0.52, 95% CI [- 1.01; - 0.14]), compared to their non-vaccinated peers. Type 2 diabetes (OR: 2.99, 95% CI [1.22; 7.35]) and existing cardiac diseases (OR: 4.31, 95% CI [1.83; 10.74]) were identified as significant risk factors for the emergence of acute cardiac events. Our findings suggest that COVID-19 vaccination may confer both direct and indirect cardioprotective effects in hospitalized COVID-19 patients.
Collapse
Affiliation(s)
- Julian Madrid
- Department of Cardiology, Pneumology, Angiology, Acute Geriatrics and Intensive Care, Ortenau Klinikum, Klostenstraße 19, 77933, Lahr/Schwarzwald, Germany.
| | - Prerana Agarwal
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Katharina Müller-Peltzer
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Leo Benning
- University Emergency Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mischa Selig
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bernd Rolauffs
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp Diehl
- Department of Cardiology, Pneumology, Angiology, Acute Geriatrics and Intensive Care, Ortenau Klinikum, Klostenstraße 19, 77933, Lahr/Schwarzwald, Germany
| | - Johannes Kalbhenn
- Department of Anesthesiology and Intensive Care Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Georg Trummer
- Department of Cardiovascular Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stefan Utzolino
- Department of General and Visceral Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tobias Wengenmayer
- Interdisciplinary Medical Intensive Care, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hans-Jörg Busch
- University Emergency Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daiana Stolz
- Clinic of Respiratory Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Siegbert Rieg
- Division of Infectious Diseases, Department of Medicine II, Medical Center -University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marcus Panning
- Institute of Virology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Fabian Bamberg
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Christopher L Schlett
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Esther Askani
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany.
| |
Collapse
|
4
|
Oshakbayev K, Durmanova A, Zhankalova Z, Idrisov A, Bedelbayeva G, Gazaliyeva M, Nabiyev A, Tordai A, Dukenbayeva B. Weight loss treatment for COVID-19 in patients with NCDs: a pilot prospective clinical trial. Sci Rep 2024; 14:10979. [PMID: 38744929 PMCID: PMC11094141 DOI: 10.1038/s41598-024-61703-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/11/2023] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
COVID-19 comorbid with noncommunicable chronic diseases (NCDs) complicates the diagnosis, treatment, and prognosis, and increases the mortality rate. The aim is to evaluate the effects of a restricted diet on clinical/laboratory inflammation and metabolic profile, reactive oxygen species (ROS), and body composition in patients with COVID-19 comorbid with NCDs. We conducted a 6-week open, pilot prospective controlled clinical trial. The study included 70 adult patients with COVID-19 comorbid with type 2 diabetes (T2D), hypertension, or nonalcoholic steatohepatitis (NASH). INTERVENTIONS a restricted diet including calorie restriction, hot water drinking, walking, and sexual self-restraint. PRIMARY ENDPOINTS COVID-19 diagnosis by detecting SARS-CoV-2 genome by RT-PCR; weight loss in Main group; body temperature; C-reactive protein. Secondary endpoints: the number of white blood cells; erythrocyte sedimentation rate; adverse effects during treatment; fasting blood glucose, glycosylated hemoglobin A1c (HbA1c), systolic/diastolic blood pressure (BP); blood lipids; ALT/AST, chest CT-scan. In Main group, patients with overweight lost weight from baseline (- 12.4%; P < 0.0001); 2.9% in Main group and 7.2% in Controls were positive for COVID-19 (RR: 0.41, CI: 0.04-4.31; P = 0.22) on the 14th day of treatment. Body temperature and C-reactive protein decreased significantly in Main group compared to Controls on day 14th of treatment (P < 0.025). Systolic/diastolic BP normalized (P < 0.025), glucose/lipids metabolism (P < 0.025); ALT/AST normalized (P < 0.025), platelets increased from baseline (P < 0.025), chest CT (P < 0.025) in Main group at 14 day of treatment. The previous antidiabetic, antihypertensive, anti-inflammatory, hepatoprotective, and other symptomatic medications were adequately decreased to completely stop during the weight loss treatment. Thus, the fast weight loss treatment may be beneficial for the COVID-19 patients with comorbid T2D, hypertension, and NASH over traditional medical treatment because, it improved clinical and laboratory/instrumental data on inflammation; glucose/lipid metabolism, systolic/diastolic BPs, and NASH biochemical outcomes, reactive oxygen species; and allowed patients to stop taking medications. TRIAL REGISTRATION ClinicalTrials.gov NCT05635539 (02/12/2022): https://clinicaltrials.gov/ct2/show/NCT05635539?term=NCT05635539&draw=2&rank=1 .
Collapse
Affiliation(s)
- Kuat Oshakbayev
- Internal Medicine Department, University Medical Center, Street Syganak, 46, 010000, Astana, Republic of Kazakhstan.
- ANADETO Medical Center, St. Kerey, Zhanibek Khans, 22, 010000, Astana, Republic of Kazakhstan.
| | - Aigul Durmanova
- Internal Medicine Department, University Medical Center, Street Syganak, 46, 010000, Astana, Republic of Kazakhstan
| | - Zulfiya Zhankalova
- Department of General Medical Practice, Asfendiyarov Kazakh National Medical University, #1, Street Tole Bi, 94, 050000, Almaty, Republic of Kazakhstan
| | - Alisher Idrisov
- Department of Endocrinology, Astana Medical University, Street Beibitshilik St 49/A, Astana, Republic of Kazakhstan
| | - Gulnara Bedelbayeva
- Faculty of Postgraduate Education, Asfendiyarov Kazakh National Medical University, Street Tole Bi, 94, 050000, Almaty, Republic of Kazakhstan
| | - Meruyert Gazaliyeva
- Faculty of Internal Medicine, Astana Medical University, Street Beibitshilik St 49/A, Astana, Republic of Kazakhstan
| | - Altay Nabiyev
- Internal Medicine Department, University Medical Center, Street Syganak, 46, 010000, Astana, Republic of Kazakhstan
| | - Attila Tordai
- Department of Transfusion Medicine, Semmelweis University, Vas U. 17, Budapest, 1088, Hungary
| | - Bibazhar Dukenbayeva
- Faculty of Pathology and Forensic Medicine, Astana Medical University, Astana, Republic of Kazakhstan
- ANADETO Medical Center, St. Kerey, Zhanibek Khans, 22, 010000, Astana, Republic of Kazakhstan
| |
Collapse
|
5
|
Chaichuum S, Tseng CL, Chang SC, Chan CL, Hsu CY, Chiang E, Daimon M, Chiang SJ, Chen HH. Assessment of cardiac adverse events following COVID-19 vaccination by speckle tracking echocardiography. Sci Rep 2024; 14:10849. [PMID: 38740940 DOI: 10.1038/s41598-024-61641-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/04/2023] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
Cardiac discomfort has been reported periodically in COVID-19-vaccinated individuals. Thus, this study aimed to evaluate the role of myocardial strains in the early assessment of the clinical presentations after COVID-19 vaccination. Totally, 121 subjects who received at least one dose of vaccine within 6 weeks underwent laboratory tests, electrocardiogram (ECG), and echocardiogram. Two-dimensional speckle tracking echocardiography (2D-STE) was implemented to analyze changes in the left ventricular myocardium. After vaccination, 66 individuals (55.4 ± 17.4 years) developed cardiac discomforts, such as chest tightness, palpitations, dyspnea, and chest pain. The ECG readings exhibited both premature ventricular contractions and premature atrial contractions (n = 24, 36.4%), while none of the individuals in the control group manifested signs of cardiac arrhythmia. All had normal serum levels of creatine phosphokinase, creatine kinase myocardial band, troponin, N-terminal pro b-type natriuretic peptide, platelets, and D-dimer. Left ventricular ejection fraction in the symptomatic group (71.41% ± 7.12%) and the control group (72.18% ± 5.11%) (p = 0.492) were normal. Use of 2D-STE presented global longitudinal strain (GLS) and global circumferential strain (GCS) was reduced in the symptomatic group (17.86% ± 3.22% and 18.37% ± 5.22%) compared to the control group (19.54% ± 2.18% and 20.73% ± 4.09%) (p = 0.001 and p = 0.028). COVID-19 vaccine-related cardiac adverse effects can be assessed early by 2D-STE. The prognostic implications of GLS and GCS enable the evaluation of subtle changes in myocardial function after vaccination.
Collapse
Affiliation(s)
- Srisakul Chaichuum
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, Taiwan
| | - Ching-Li Tseng
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, Taiwan
| | - Su-Chen Chang
- Division of Cardiology, Department of Internal Medicine, Taipei City Hospital Yangming Branch, Taipei, Taiwan
| | - Chih-Lin Chan
- Division of Cardiology, Department of Internal Medicine, Taipei City Hospital Yangming Branch, Taipei, Taiwan
| | - Chu-Ying Hsu
- Division of Cardiology, Department of Internal Medicine, Taipei City Hospital Yangming Branch, Taipei, Taiwan
| | - Edward Chiang
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Masao Daimon
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Shuo-Ju Chiang
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, Taiwan.
- Division of Cardiology, Department of Internal Medicine, Taipei City Hospital Yangming Branch, Taipei, Taiwan.
| | - Hsiang-Ho Chen
- Graduate Institute of Biomedical Engineering, Center for Biomedical Engineering, College of Engineering, Chang Gung University, Taoyuan, Taiwan.
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
6
|
Madrid J, Agarwal P, Müller-Peltzer K, Askani M, Benning L, Selig M, Diehl P, Kalbhenn J, Trummer G, Utzolino S, Wengenmayer T, Busch HJ, Stolz D, Rieg S, Panning M, Schlett CL, Bamberg F, Askani E. Vaccination protects against acute respiratory distress syndrome (ARDS) in hospitalized patients with COVID-19. Clin Exp Med 2024; 24:21. [PMID: 38280024 PMCID: PMC10822002 DOI: 10.1007/s10238-023-01293-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/20/2023] [Accepted: 12/28/2023] [Indexed: 01/29/2024]
Abstract
This study aimed to analyze the effect of COVID-19 vaccination on the occurrence of ARDS in hospitalized COVID-19 patients. The study population of this retrospective, single-center cohort study consisted of hospitalized COVID-19 patients with known vaccination status and chest computed tomography imaging between July 2021 and February 2022. The impact of vaccination on ARDS in COVID-19 patients was assessed through logistic regression adjusting for demographic differences and confounding factors with statistical differences determined using confidence intervals and effect sizes. A total of 167 patients (69% male, average age 58 years, 95% CI [55; 60], 42% fully vaccinated) were included in the data analysis. Vaccinated COVID-19 patients had a reduced relative risk (RR) of developing ARDS (RR: 0.40, 95% CI [0.21; 0.62]). Consequently, non-vaccinated hospitalized patients had a 2.5-fold higher probability of developing ARDS. This risk reduction persisted after adjusting for several confounding variables (RR: 0.64, 95% CI [0.29; 0.94]) in multivariate analysis. The protective effect of COVID-19 vaccination increased with ARDS severity (RR: 0.61, 95% CI [0.37; 0.92]). Particularly, patients under 60 years old were at risk for ARDS onset and seemed to benefit from COVID-19 vaccination (RR: 0.51, 95% CI [0.20; 0.90]). COVID-19 vaccination showed to reduce the risk of ARDS occurrence in hospitalized COVID-19 patients, with a particularly strong effect in patients under 60 years old and those with more severe ARDS.
Collapse
Affiliation(s)
- Julian Madrid
- Department of Cardiology, Pneumology, Angiology, Acute Geriatrics and Intensive Care, Ortenau Klinikum, Klostenstraße 19, 77933, Lahr/Schwarzwald, Germany.
| | - Prerana Agarwal
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Katharina Müller-Peltzer
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Marvin Askani
- Department of Protestant Theology, Faculty of Theology, University of Heidelberg, Heidelberg, Germany
| | - Leo Benning
- University Emergency Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mischa Selig
- G.E.R.N. Research Center for Tissue Replacement, Regeneration and Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp Diehl
- Department of Cardiology, Pneumology, Angiology, Acute Geriatrics and Intensive Care, Ortenau Klinikum, Klostenstraße 19, 77933, Lahr/Schwarzwald, Germany
| | - Johannes Kalbhenn
- Department of Anesthesiology and Intensive Care Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Georg Trummer
- Department of Cardiovascular Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stefan Utzolino
- Department of General and Visceral Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tobias Wengenmayer
- Interdisciplinary Medical Intensive Care, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hans-Jörg Busch
- University Emergency Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daiana Stolz
- Clinic of Respiratory Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Siegbert Rieg
- Division of Infectious Diseases, Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marcus Panning
- Institute of Virology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christopher L Schlett
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Fabian Bamberg
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Esther Askani
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany.
| |
Collapse
|
7
|
Marrone G, Covino M, Merra G, Piccioni A, Amodeo A, Novelli A, Murri R, Pompili M, Gasbarrini A, Franceschi F. Ursodeoxycholic acid does not affect the clinical outcome of SARS-CoV-2 infection: A retrospective study of propensity score-matched cohorts. Liver Int 2024; 44:83-92. [PMID: 37735968 DOI: 10.1111/liv.15736] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 05/07/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND Ursodeoxycholic acid (UDCA) has been recently proposed as a modulator of angiotensin-converting enzyme 2 (ACE2) receptor expression, with potential effects on COVID-19. AIM AND STUDY DESIGN We retrospectively evaluated the clinical course and outcome of subjects taking UDCA admitted to the hospital for COVID-19 compared with matched infected subjects. Differences regarding the severity and outcome of the disease between treated and non-treated subjects were assessed. The Kaplan-Meier survival analysis and log-rank test were used to evaluate the effect of UDCA on all-cause intra-hospital mortality. RESULTS Among 6444 subjects with confirmed COVID-19 admitted to the emergency department (ED) from 1 March 2020 to 31 December 2022, 109 subjects were taking UDCA. After matching 629 subjects were included in the study: 521 in the no UDCA group and 108 in the UDCA group. In our matched cohort, 144 subjects (22.9%) died, 118 (22.6%) in the no-UDCA group and 26 (24.1%) in the UDCA group. The Kaplan-Meier analysis showed no significant difference in survival between groups. In univariate regression analysis, the presence of pneumonia, National Early Warning Score (NEWS) score, and Charlson Comorbidity Index (CCI) were significant independent predictors of death. At multivariate Cox regression analysis, age, NEWS, pneumonia and CCI index were confirmed significant independent predictors of death. UDCA treatment was not a predictor of survival both in univariate and multivariate regressions. CONCLUSIONS UDCA treatment does not appear to have significant effects on the outcome of COVID-19. Specially designed prospective studies are needed to evaluate efficacy in preventing infection and severe disease.
Collapse
Affiliation(s)
- Giuseppe Marrone
- Medical and Surgical Abdominal and Endocrine Metabolic Sciences AND Emergency, Anesthesiology and Resuscitation Departements, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marcello Covino
- Medical and Surgical Abdominal and Endocrine Metabolic Sciences AND Emergency, Anesthesiology and Resuscitation Departements, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giuseppe Merra
- Department of Biomedicine and Prevention, Università degli Studi di Roma Tor Vergata, Rome, Italy
| | - Andrea Piccioni
- Medical and Surgical Abdominal and Endocrine Metabolic Sciences AND Emergency, Anesthesiology and Resuscitation Departements, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Annamaria Amodeo
- Medical and Surgical Abdominal and Endocrine Metabolic Sciences AND Emergency, Anesthesiology and Resuscitation Departements, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Angela Novelli
- Medical and Surgical Abdominal and Endocrine Metabolic Sciences AND Emergency, Anesthesiology and Resuscitation Departements, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Rita Murri
- Medical and Surgical Abdominal and Endocrine Metabolic Sciences AND Emergency, Anesthesiology and Resuscitation Departements, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maurizio Pompili
- Medical and Surgical Abdominal and Endocrine Metabolic Sciences AND Emergency, Anesthesiology and Resuscitation Departements, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonio Gasbarrini
- Medical and Surgical Abdominal and Endocrine Metabolic Sciences AND Emergency, Anesthesiology and Resuscitation Departements, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Franceschi
- Medical and Surgical Abdominal and Endocrine Metabolic Sciences AND Emergency, Anesthesiology and Resuscitation Departements, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
8
|
Bharadwaj A, Kaur R, Gupta S. Emerging Treatment Approaches for COVID-19 Infection: A Critical Review. Curr Mol Med 2024; 24:435-448. [PMID: 37070448 DOI: 10.2174/1566524023666230417112543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/02/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 04/19/2023]
Abstract
In the present scenario, the SARS-CoV-2 virus has imposed enormous damage on human survival and the global financial system. It has been estimated that around 111 million people all around the world have been infected, and about 2.47 million people died due to this pandemic. The major symptoms were sneezing, coughing, cold, difficulty breathing, pneumonia, and multi-organ failure associated 1with SARS-CoV-2. Currently, two key problems, namely insufficient attempts to develop drugs against SARSCoV-2 and the lack of any biological regulating process, are mostly responsible for the havoc caused by this virus. Henceforth, developing a few novel drugs is urgently required to cure this pandemic. It has been noticed that the pathogenesis of COVID-19 is caused by two main events: infection and immune deficiency, that occur during the pathological process. Antiviral medication can treat both the virus and the host cells. Therefore, in the present review, the major approaches for the treatment have been divided into "target virus" and "target host" groups. These two mechanisms primarily rely on drug repositioning, novel approaches, and possible targets. Initially, we discussed the traditional drugs per the physicians' recommendations. Moreover, such therapeutics have no potential to fight against COVID-19. After that, detailed investigation and analysis were conducted to find some novel vaccines and monoclonal antibodies and conduct a few clinical trials to check their effectiveness against SARSCoV- 2 and mutant strains. Additionally, this study presents the most successful methods for its treatment, including combinatorial therapy. Nanotechnology was studied to build efficient nanocarriers to overcome the traditional constraints of antiviral and biological therapies.
Collapse
Affiliation(s)
- Alok Bharadwaj
- Department of Biotechnology, GLA University, Mathura, 281406, UP, India
| | - Rasanpreet Kaur
- Department of Biotechnology, GLA University, Mathura, 281406, UP, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, 281406, UP, India
| |
Collapse
|
9
|
Ghanem H, Ghanem S, AlMutawa E. An Outline of the Immunogenic Potential of Progressing SARSCoV- 2 Vaccine Technologies among Children and Adolescents. Recent Pat Biotechnol 2024; 18:180-189. [PMID: 38528666 DOI: 10.2174/1872208317666230612141930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/31/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 03/27/2024]
Abstract
BACKGROUND SARS-CoV-2, a highly dynamic beta-coronavirus, can afflict all age groups. Notably, over 16100 mortalities have been recorded among children as yet. In this regard, many vaccine projects are operational to assess immuno-potency among young cohorts. A bulk of reports have evidenced the efficacy of these immunization technologies in the elderly population, though the impact is yet to be determined among children. OBJECTIVES This review is envisioned to outline the current efficacy of contributing vaccine technologies and examine the dose-dependent impact of immunization regimens in lowering the risks of SARS-CoV-2 infections among children and adolescents. Furthermore, the current review exclusively estimated the vaccine impact at current doses. METHODS A total of 52 research papers extracted from PubMed, Pubmed Central, Science Direct, Research Gate, Google Scholar and Semantic Scholar were screened along with an emphasis on patents. Inclusion criteria involved all published reports directly or indirectly linked to the contributing vaccine candidates that are operational among the young cohort. Unrelated research papers were excluded from the study. Key search terminologies included information on vaccine identifiers, such as name, type and clinical trial ID, and successively restricted to children and adolscents age groups. RESULTS Several vaccine designs, such as mRNA-based vaccinations, viral vector vaccines, DNA vaccines, inactivated vaccines, recombinant vaccines, and protein-based immunizations, are being examined at various stages of clinical trials to gauge the effects on children and adolescents. With reference to the published reports, the mRNA 1273 (1610 GMT; 6-10 yrs, 1401 GMT; 12-15 yrs), BNT162b2 (1407 GMT; 6 months- <2 yrs, 1535 GMT; 2-4 yrs, 4583 GMT; 5-11 yrs, 1239.5 GMT; 12-15 yrs) and Ad5 nCoV (1037.5 GMT; 6-17 yrs) offered relatively high neutralization titers with sharp seroconversion rates compared to MVC-COV1901 (648.5 GMT; 12-17 yrs) and ZyCoV-D (133.49 GMT; 12-17 yrs), which produced modest immune responses. CONCLUSION Currently, the WHO is analyzing emerging evidence to issue an emergency use list of vaccines for vaccinating children and adolescents.
Collapse
Affiliation(s)
- Hytham Ghanem
- Department of Paediatric Emergency Medicine, Royal Medical Services Hospital, Rifaa, Bahrain
| | - Shehab Ghanem
- Department of Surgery, Royal Medical Services Hospital, Rifaa, Bahrain
| | - Ehsan AlMutawa
- Department of Surgery, Royal Medical Services Hospital, Rifaa, Bahrain
| |
Collapse
|
10
|
Elyasi F, Zarghami M, Fariborzifar A, Cheraghmakani H, Shirzad M, Kazempour F. The diagnostic dilemma in a patient with neuroleptic malignant syndrome during the COVID-19 pandemic: A significant increase in acute phase reactants. Clin Case Rep 2023; 11:e7734. [PMID: 37546158 PMCID: PMC10397481 DOI: 10.1002/ccr3.7734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/18/2023] [Revised: 06/30/2023] [Accepted: 07/08/2023] [Indexed: 08/08/2023] Open
Abstract
Key Clinical Message In some patients, neuroleptic malignant syndrome is accompanied significant high levels of erythrocyte sedimentation rate (ESR), C-reactive protein (CRP). Abstract Neuroleptic malignant syndrome (NMS) is an idiosyncratic life-threatening adverse reaction and usually triggered in response to antipsychotic drugs. In addition, leukocytosis and increased muscle enzymes levels (especially creatine phosphokinase) are observed in NMS. In addition, a transient increase in different types of acute phase reactants in NMS has been mentioned. This article describes a woman treated with haloperidol, perphenazine, escitalopram, and alprazolam because she developed catatonic symptoms after psychological stress. She suffered from NMS symptoms and had elevated CRP and ESR levels, among other signs and symptoms. Given the COVID-19 pandemic and reports of co-occurrence of catatonia and NMS and COVID-19 and elevated erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP), this patient was a diagnostic dilemma. After consultation with the consultation-liaison psychiatry units, she was managed adequately with electroconvulsive therapy and lorazepam.
Collapse
Affiliation(s)
- Forouzan Elyasi
- Sexual and Reproductive Health Research Center, Psychiatry and Behavioral Sciences Research CenterAddiction Institute, Mazandaran University of Medical SciencesSariIran
- Department of Psychiatry, Faculty of MedicineMazandaran University of Medical SciencesSariIran
| | - Mehran Zarghami
- Department of Psychiatry, Faculty of MedicineMazandaran University of Medical SciencesSariIran
- Psychiatry and Behavioral Sciences Research CenterAddiction Institute, Mazandaran University of Medical SciencesSariIran
| | - Arghavan Fariborzifar
- Mental Health Research Center, Psychosocial Health Research Institute (PHRI), Department of Psychiatry, School of MedicineIran University of Medical SciencesTehranIran
| | - Hamed Cheraghmakani
- Neurology Department, Faculty of MedicineMazandaran University of Medical SciencesSariIran
| | - Mahboobeh Shirzad
- Department of internal Medicine, Faculty of MedicineMazandaran University of Medical SciencesSariIran
| | - Feteme Kazempour
- Student Research Committee, Faculty of MedicineMazandaran University of Medical SciencesSariIran
| |
Collapse
|
11
|
Kuang Y, Shen W, Ma X, Wang Z, Xu R, Rao Q, Yang S. In silico identification of natural compounds against SARS-CoV-2 main protease from Chinese herbal medicines. Future Sci OA 2023; 9:FSO873. [PMID: 37485448 PMCID: PMC10357396 DOI: 10.2144/fsoa-2023-0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/27/2023] [Accepted: 05/30/2023] [Indexed: 07/25/2023] Open
Abstract
Aims To determine natural compounds with inhibitory effects toward SARS-CoV-2 Mpro from Chinese herbal medicines. Materials & methods ∼1200 natural compounds from 19 Chinese herbal medicines were collected. Computational methods including molecular docking, drug-likeness assessment, molecular dynamics simulation and molecular mechanics Poisson-Boltzmann surface area analysis were combined to obtain potent inhibitors against SARS-CoV-2 Mpro. Results Top 20 compounds mainly originated from Ranunculus ternatus and Picrasma quassioides exhibited low binding free energies which below -9.0 kcal/mol. Compounds Japonicone G and Picrasidine T were obtained with favorable drug-likeness. Moreover, the complex of Japonicone G and Mpro had prominent stability. Conclusion Natural compound Japonicone G is highly promising as a potent inhibitor against SARS-CoV-2 for further study.
Collapse
Affiliation(s)
- Yi Kuang
- College of Chemical & Materials Engineering, Zhejiang A&F University, Lin'an, 311300, Zhejiang, China
| | - Wenjing Shen
- College of Chemical & Materials Engineering, Zhejiang A&F University, Lin'an, 311300, Zhejiang, China
| | - Xiaodong Ma
- College of Chemical & Materials Engineering, Zhejiang A&F University, Lin'an, 311300, Zhejiang, China
| | - Ziwei Wang
- College of Chemical & Materials Engineering, Zhejiang A&F University, Lin'an, 311300, Zhejiang, China
| | - Rui Xu
- College of Chemical & Materials Engineering, Zhejiang A&F University, Lin'an, 311300, Zhejiang, China
| | - Qingqing Rao
- College of Chemical & Materials Engineering, Zhejiang A&F University, Lin'an, 311300, Zhejiang, China
| | - Shengxiang Yang
- College of Chemical & Materials Engineering, Zhejiang A&F University, Lin'an, 311300, Zhejiang, China
| |
Collapse
|
12
|
Amani B, Akbarzadeh A, Amani B, Shabestan R, Khorramnia S, Navidi Z, Rajabkhah K, Kardanmoghadam V. Comparative efficacy and safety of nirmatrelvir/ritonavir and molnupiravir for COVID-19: A systematic review and meta-analysis. J Med Virol 2023; 95:e28889. [PMID: 37368841 DOI: 10.1002/jmv.28889] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/11/2023] [Revised: 05/24/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
This study aimed to compare the efficacy and safety of nirmatrelvir/ritonavir (Paxlovid) with molnupiravir in the treatment of coronavirus disease 2019 (COVID-19). To end this, PubMed, Cochrane Library, Web of Science, medRxiv, and Google Scholar were systematically searched to collect relevant evidence up to February 15, 2023. The risk of bias was evaluated using the risk of bias in nonrandomized studies of interventions tool. Data were analyzed using Comprehensive Meta-Analysis software. Eighteen studies involving 57 659 patients were included in the meta-analysis. The meta-analysis showed a significant difference between nirmatrelvir/ritonavir and molnupiravir in terms of all-cause mortality rate (odds ratio [OR] = 0.54, 95% confidence interval [CI]: 0.44-0.67), all-cause hospitalization rate (OR = 0.61, 95% CI: 0.54-0.69), death or hospitalization rate (OR = 0.61, 95% CI: 0.38-0.99), and negative polymerase chain reaction conversion time (mean difference = -1.55, 95% CI: -1.74 to -1.37). However, no significant difference was observed between the two groups in terms of COVID-19 rebound (OR = 0.87, 95% CI: 0.71-1.07). In terms of safety, although the incidence of any adverse events was higher in the nirmatrelvir/ritonavir group (OR = 2.52, 95% CI: 1.57-4.06), no significant difference was observed between the two treatments in terms of adverse events leading to treatment discontinuation (OR = 1.18, 95% CI: 0.69-2.00). The present meta-analysis demonstrated the significant superiority of nirmatrelvir/ritonavir over molnupiravir in improving clinical efficacy in COVID-19 patients during the prevalence of Omicron variant. These findings, however, need to be further confirmed.
Collapse
Affiliation(s)
- Bahman Amani
- Department of Epidemiology, School of Health, Ilam University of Medical Sciences, Ilam, Iran
| | - Arash Akbarzadeh
- Department of Biostatistics and Epidemiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnam Amani
- Department of Epidemiology, School of Health, Ilam University of Medical Sciences, Ilam, Iran
| | - Rouhollah Shabestan
- Department of Biostatistics and Epidemiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Khorramnia
- Department of Anesthesiology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Zia Navidi
- Department of Anesthesiology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Kourosh Rajabkhah
- Department of Curative Affairs, Ministry of Health and Medical Education, Tehran, Iran
| | - Vida Kardanmoghadam
- Research Department, Deputy of Research and Technology, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Anand U, Pal T, Zanoletti A, Sundaramurthy S, Varjani S, Rajapaksha AU, Barceló D, Bontempi E. The spread of the omicron variant: Identification of knowledge gaps, virus diffusion modelling, and future research needs. ENVIRONMENTAL RESEARCH 2023; 225:115612. [PMID: 36871942 PMCID: PMC9985523 DOI: 10.1016/j.envres.2023.115612] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 12/30/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 06/11/2023]
Abstract
The World Health Organization (WHO) recognised variant B.1.1.529 of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) as a variant of concern, termed "Omicron", on November 26, 2021. Its diffusion was attributed to its several mutations, which allow promoting its ability to diffuse worldwide and its capability in immune evasion. As a consequence, some additional serious threats to public health posed the risk to undermine the global efforts made in the last two years to control the pandemic. In the past, several works were devoted to discussing a possible contribution of air pollution to the SARS-CoV-2 spread. However, to the best of the authors' knowledge, there are still no works dealing with the Omicron variant diffusion mechanisms. This work represents a snapshot of what we know right now, in the frame of an analysis of the Omicron variant spread. The paper proposes the use of a single indicator, commercial trade data, to model the virus spread. It is proposed as a surrogate of the interactions occurring between humans (the virus transmission mechanism due to human-to-human contacts) and could be considered for other diseases. It allows also to explain the unexpected increase in infection cases in China, detected at beginning of 2023. The air quality data are also analyzed to evaluate for the first time the role of air particulate matter (PM) as a carrier of the Omicron variant diffusion. Due to emerging concerns associated with other viruses (such as smallpox-like virus diffusion in Europe and America), the proposed approach seems to be promising to model the virus spreading.
Collapse
Affiliation(s)
- Uttpal Anand
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| | - Tarun Pal
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| | - Alessandra Zanoletti
- INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123, Brescia, Italy
| | - Suresh Sundaramurthy
- Department of Chemical Engineering, Maulana Azad National Institute of Technology, Bhopal, 462003, Madhya Pradesh, India
| | - Sunita Varjani
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248007, Uttarakhand, India
| | - Anushka Upamali Rajapaksha
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, CO, 10250, Sri Lanka; Instrument Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA-CERCA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, Girona, 17003, Spain; Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), JordiGirona, 1826, Barcelona, 08034, Spain
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123, Brescia, Italy.
| |
Collapse
|
14
|
Cassiano LMG, Cavalcante-Silva V, Oliveira MS, Prado BVO, Cardoso CG, Salim ACM, Franco GR, D’Almeida V, Francisco SC, Coimbra RS. Vitamin B12 attenuates leukocyte inflammatory signature in COVID-19 via methyl-dependent changes in epigenetic markings. Front Immunol 2023; 14:1048790. [PMID: 36993968 PMCID: PMC10040807 DOI: 10.3389/fimmu.2023.1048790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/21/2022] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
COVID-19 induces chromatin remodeling in host immune cells, and it had previously been shown that vitamin B12 downregulates some inflammatory genes via methyl-dependent epigenetic mechanisms. In this work, whole blood cultures from moderate or severe COVID-19 patients were used to assess the potential of B12 as adjuvant drug. The vitamin normalized the expression of a panel of inflammatory genes still dysregulated in the leukocytes despite glucocorticoid therapy during hospitalization. B12 also increased the flux of the sulfur amino acid pathway, that regulates the bioavailability of methyl. Accordingly, B12-induced downregulation of CCL3 strongly and negatively correlated with the hypermethylation of CpGs in its regulatory regions. Transcriptome analysis revealed that B12 attenuates the effects of COVID-19 on most inflammation-related pathways affected by the disease. As far as we are aware, this is the first study to demonstrate that pharmacological modulation of epigenetic markings in leukocytes favorably regulates central components of COVID-19 physiopathology.
Collapse
Affiliation(s)
- Larissa M. G. Cassiano
- Neurogenômica, Imunopatologia, Instituto René Rachou, Fiocruz, Belo Horizonte, Brazil
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vanessa Cavalcante-Silva
- Departamento de Psicobiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marina S. Oliveira
- Neurogenômica, Imunopatologia, Instituto René Rachou, Fiocruz, Belo Horizonte, Brazil
| | | | | | - Anna C. M. Salim
- Plataforma de Sequenciamento NGS (Next Generation Sequencing), Instituto René Rachou, Fiocruz, Belo Horizonte, Brazil
| | - Gloria R. Franco
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vânia D’Almeida
- Departamento de Psicobiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Roney S. Coimbra
- Neurogenômica, Imunopatologia, Instituto René Rachou, Fiocruz, Belo Horizonte, Brazil
| |
Collapse
|
15
|
Li Q, Shah T, Wang B, Qu L, Wang R, Hou Y, Baloch Z, Xia X. Cross-species transmission, evolution and zoonotic potential of coronaviruses. Front Cell Infect Microbiol 2023; 12:1081370. [PMID: 36683695 PMCID: PMC9853062 DOI: 10.3389/fcimb.2022.1081370] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/01/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Coronaviruses (CoVs) continuously evolve, crossing species barriers and spreading across host ranges. Over the last two decades, several CoVs (HCoV-229E, HCoV-NL63, HCoV-HKU1, HCoV-OC43, SARS-CoV, MERS-CoV, and SARS-CoV-2) have emerged in animals and mammals, causing significant economic and human life losses. Due to CoV cross-species transmission and the evolution of novel viruses, it is critical to identify their natural reservoiurs and the circumstances under which their transmission occurs. In this review, we use genetic and ecological data to disentangle the evolution of various CoVs in wildlife, humans, and domestic mammals. We thoroughly investigate several host species and outline the epidemiology of CoVs toward specific hosts. We also discuss the cross-species transmission of CoVs at the interface of wildlife, animals, and humans. Clarifying the epidemiology and diversity of species reservoirs will significantly impact our ability to respond to the future emergence of CoVs in humans and domestic animals.
Collapse
Affiliation(s)
- Qian Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China,Affiliated Anning First People’s Hospital, Kunming University of Science and Technology, Kunming, China,The First Affiliated Hospital & Clinical Medical College, Dali University, Dali, Yunnan, China
| | - Taif Shah
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China,Affiliated Anning First People’s Hospital, Kunming University of Science and Technology, Kunming, China
| | - Binghui Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China,Affiliated Anning First People’s Hospital, Kunming University of Science and Technology, Kunming, China
| | - Linyu Qu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China,Affiliated Anning First People’s Hospital, Kunming University of Science and Technology, Kunming, China
| | - Rui Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China,Affiliated Anning First People’s Hospital, Kunming University of Science and Technology, Kunming, China
| | - Yutong Hou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China,Affiliated Anning First People’s Hospital, Kunming University of Science and Technology, Kunming, China
| | - Zulqarnain Baloch
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China,Affiliated Anning First People’s Hospital, Kunming University of Science and Technology, Kunming, China
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China,Affiliated Anning First People’s Hospital, Kunming University of Science and Technology, Kunming, China,*Correspondence: Xueshan Xia,
| |
Collapse
|
16
|
Ramírez M, Melin P. A New Interval Type-2 Fuzzy Aggregation Approach for Combining Multiple Neural Networks in Clustering and Prediction of Time Series. INTERNATIONAL JOURNAL OF FUZZY SYSTEMS 2023; 25:1077-1104. [PMCID: PMC9669546 DOI: 10.1007/s40815-022-01426-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/20/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 03/14/2024]
Abstract
Inspired by how some cognitive abilities affect the human decision-making process, the proposed approach combines neural networks with type-2 fuzzy systems. The proposal consists of combining computational models of artificial neural networks and fuzzy systems to perform clustering and prediction of time series corresponding to the population, urban population, particulate matter (PM2.5), carbon dioxide (CO2), registered cases and deaths from COVID-19 for certain countries. The objective is to associate these variables by country based on the identification of similarities in the historical information for each variable. The hybrid approach consists of computationally simulating the behavior of cognitive functions in the human brain in the decision-making process by using different types of neural models and interval type-2 fuzzy logic for combining their outputs. Simulation results show the advantages of the proposed approach, because starting from an input data set, the artificial neural networks are responsible for clustering and predicting values of multiple time series, and later a set of fuzzy inference systems perform the integration of these results, which the user can then utilize as a support tool for decision-making with uncertainty.
Collapse
Affiliation(s)
- Martha Ramírez
- Tijuana Institute of Technology, TecNM, Calzada Tecnologico S/N, Fracc. Tomas Aquino, 22379 Tijuana, Mexico
| | - Patricia Melin
- Tijuana Institute of Technology, TecNM, Calzada Tecnologico S/N, Fracc. Tomas Aquino, 22379 Tijuana, Mexico
| |
Collapse
|
17
|
Halabchi F, Selk-Ghaffari M, Tazesh B, Mahdaviani B. The effect of exercise rehabilitation on COVID-19 outcomes: a systematic review of observational and intervention studies. SPORT SCIENCES FOR HEALTH 2022; 18:1201-1219. [PMID: 35789736 PMCID: PMC9244056 DOI: 10.1007/s11332-022-00966-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/17/2022] [Accepted: 05/19/2022] [Indexed: 10/31/2022]
Abstract
Purpose Methods Results Conclusion
Collapse
|
18
|
Pratesi F, Errante F, Pacini L, Peña-Moreno IC, Quiceno S, Carotenuto A, Balam S, Konaté D, Diakité MM, Arévalo-Herrera M, Kajava AV, Rovero P, Corradin G, Migliorini P, Papini AM, Herrera S. A SARS-CoV-2 Spike Receptor Binding Motif Peptide Induces Anti-Spike Antibodies in Mice andIs Recognized by COVID-19 Patients. Front Immunol 2022; 13:879946. [PMID: 35693806 PMCID: PMC9178084 DOI: 10.3389/fimmu.2022.879946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/20/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
The currently devastating pandemic of severe acute respiratory syndrome known as coronavirus disease 2019 or COVID-19 is caused by the coronavirus SARS-CoV-2. Both the virus and the disease have been extensively studied worldwide. A trimeric spike (S) protein expressed on the virus outer bilayer leaflet has been identified as a ligand that allows the virus to penetrate human host cells and cause infection. Its receptor-binding domain (RBD) interacts with the angiotensin-converting enzyme 2 (ACE2), the host-cell viral receptor, and is, therefore, the subject of intense research for the development of virus control means, particularly vaccines. In this work, we search for smaller fragments of the S protein able to elicit virus-neutralizing antibodies, suitable for production by peptide synthesis technology. Based on the analysis of available data, we selected a 72 aa long receptor binding motif (RBM436-507) of RBD. We used ELISA to study the antibody response to each of the three antigens (S protein, its RBD domain and the RBM436-507 synthetic peptide) in humans exposed to the infection and in immunized mice. The seroreactivity analysis showed that anti-RBM antibodies are produced in COVID-19 patients and immunized mice and may exert neutralizing function, although with a frequency lower than anti-S and -RBD. These results provide a basis for further studies towards the development of vaccines or treatments focused on specific regions of the S virus protein, which can benefit from the absence of folding problems, conformational constraints and other advantages of the peptide synthesis production.
Collapse
Affiliation(s)
- Federico Pratesi
- Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Fosca Errante
- Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, Department of NeuroFarBa, University of Florence, Sesto Fiorentino, Italy
| | - Lorenzo Pacini
- Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
| | | | - Sebastian Quiceno
- Department of Immunology, Caucaseco Scientific Research Center, Cali, Colombia
| | | | - Saidou Balam
- Immunogenetic Laboratory and Parasitology, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Drissa Konaté
- Immunogenetic Laboratory and Parasitology, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Mahamadou M. Diakité
- Immunogenetic Laboratory and Parasitology, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | | | | | - Paolo Rovero
- Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, Department of NeuroFarBa, University of Florence, Sesto Fiorentino, Italy
| | | | - Paola Migliorini
- Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Anna M. Papini
- Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
| | - Sócrates Herrera
- Department of Immunology, Caucaseco Scientific Research Center, Cali, Colombia
| |
Collapse
|
19
|
Sharma V, Rai H, Gautam DNS, Prajapati PK, Sharma R. Emerging evidence on Omicron (B.1.1.529) SARS-CoV-2 variant. J Med Virol 2022; 94:1876-1885. [PMID: 35083761 PMCID: PMC9015596 DOI: 10.1002/jmv.27626] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/29/2021] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 11/24/2022]
Abstract
COVID's Omicron variant has sparked a slew of concerns across the globe. This review aims to provide a brief overview of what we know about the Omicron variant right now. The new variant has been discovered in 149 countries across all six World Health Organization (WHO) regions since its discovery in South Africa on November 24, 2021 and became the dominant variant in the country in less than 3 weeks. The WHO has warned that the B.1.1.529 variant is spreading at an unprecedented rate, and has urged countries to prepare for the worst. Over the course of this time, researchers from Africa and around the world have uncovered a wealth of information about the virus's epidemiology and biological properties. Case numbers are increasing exponentially in hard-hit areas such as South Africa, United Kingdom, and USA (overtaking the delta variant), implying that the variant is highly transmissible. Initial research has provided some insights into the efficacy of vaccines against the Omicron variant and whether it produces major illness, however, much remains unknown, and additional work is needed to investigate what the initial reports represent in real-world situations.
Collapse
Affiliation(s)
- Vineet Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical SciencesBanaras Hindu UniversityVaranasiIndia
| | - Himanshu Rai
- DST‐Centre for Interdisciplinary Mathematical Sciences, Institute of ScienceBanaras Hindu UniversityVaranasiIndia
| | - Dev N. S. Gautam
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical SciencesBanaras Hindu UniversityVaranasiIndia
| | - Pradeep K. Prajapati
- Department of Rasa Shastra and Bhaishajya KalpanaAll India Institute of AyurvedaNew DelhiIndia
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical SciencesBanaras Hindu UniversityVaranasiIndia
| |
Collapse
|
20
|
Chikileva I, Shubina I, Burtseva AM, Kirgizov K, Stepanyan N, Varfolomeeva S, Kiselevskiy M. Antiviral Cell Products against COVID-19: Learning Lessons from Previous Research in Anti-Infective Cell-Based Agents. Biomedicines 2022; 10:biomedicines10040868. [PMID: 35453618 PMCID: PMC9027720 DOI: 10.3390/biomedicines10040868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/28/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 02/01/2023] Open
Abstract
COVID-19 is a real challenge for the protective immunity. Some people do not respond to vaccination by acquiring an appropriate immunological memory. The risk groups for this particular infection such as the elderly and people with compromised immunity (cancer patients, pregnant women, etc.) have the most serious problems in developing an adequate immune response. Therefore, dendritic cell (DC) vaccines that are loaded ex vivo with SARS-CoV-2 antigens in the optimal conditions are promising for immunization. Lymphocyte effector cells with chimeric antigen receptor (CAR lymphocytes) are currently used mainly as anti-tumor treatment. Before 2020, few studies on the antiviral CAR lymphocytes were reported, but since the outbreak of SARS-CoV-2 the number of such studies has increased. The basis for CARs against SARS-CoV-2 were several virus-specific neutralizing monoclonal antibodies. We propose a similar, but basically novel and more universal approach. The extracellular domain of the immunoglobulin G receptors will be used as the CAR receptor domain. The specificity of the CAR will be determined by the antibodies, which it has bound. Therefore, such CAR lymphocytes are highly universal and have functional activity against any infectious agents that have protective antibodies binding to a foreign surface antigen on the infected cells.
Collapse
Affiliation(s)
- Irina Chikileva
- Research Institute of Experimental Therapy and Diagnostics of Tumor, NN Blokhin National Medical Center of Oncology, 115478 Moscow, Russia; (I.S.); (M.K.)
- Correspondence:
| | - Irina Shubina
- Research Institute of Experimental Therapy and Diagnostics of Tumor, NN Blokhin National Medical Center of Oncology, 115478 Moscow, Russia; (I.S.); (M.K.)
| | - Anzhelika-Mariia Burtseva
- College of New Materials and Nanotechnologies, National University of Science and Technology “MISiS”, 119049 Moscow, Russia;
| | - Kirill Kirgizov
- Research Institute of Children Oncology and Hematology, NN Blokhin National Medical Center of Oncology, 115478 Moscow, Russia; (K.K.); (N.S.); (S.V.)
| | - Nara Stepanyan
- Research Institute of Children Oncology and Hematology, NN Blokhin National Medical Center of Oncology, 115478 Moscow, Russia; (K.K.); (N.S.); (S.V.)
| | - Svetlana Varfolomeeva
- Research Institute of Children Oncology and Hematology, NN Blokhin National Medical Center of Oncology, 115478 Moscow, Russia; (K.K.); (N.S.); (S.V.)
| | - Mikhail Kiselevskiy
- Research Institute of Experimental Therapy and Diagnostics of Tumor, NN Blokhin National Medical Center of Oncology, 115478 Moscow, Russia; (I.S.); (M.K.)
| |
Collapse
|
21
|
Chavda VP, Bezbaruah R, Athalye M, Parikh PK, Chhipa AS, Patel S, Apostolopoulos V. Replicating Viral Vector-Based Vaccines for COVID-19: Potential Avenue in Vaccination Arena. Viruses 2022; 14:759. [PMID: 35458489 PMCID: PMC9025561 DOI: 10.3390/v14040759] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/01/2022] [Revised: 03/10/2022] [Accepted: 03/28/2022] [Indexed: 02/07/2023] Open
Abstract
The "severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)" is the third member of human coronavirus (CoV) that is held accountable for the current "coronavirus disease 2019 (COVID-19)" pandemic. In the past two decades, the world has witnessed the emergence of two other similar CoVs, namely SARS-CoV in 2002 and MERS-CoV in 2013. The extent of spread of these earlier versions was relatively low in comparison to SARS-CoV-2. Despite having numerous reports inclined towards the zoonotic origin of the virus, one cannot simply sideline the fact that no animal originated CoV is thus far identified that is considered similar to the initial edition of SARS-CoV-2; however, under-sampling of the diverse variety of coronaviruses remains a concern. Vaccines are proved to be an effective tool for bringing the end to such a devastating pandemic. Many vaccine platforms are explored for the same but in this review paper, we will discuss the potential of replicating viral vectors as vaccine carriers for SARS-CoV-2.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India;
- Department of Pharmaceutics, K B Institute of Pharmaceutical Education and Research, Kadi Sarva Vishwavidhyalaya, Gandhinagar 382023, Gujarat, India
| | - Rajashri Bezbaruah
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India;
| | - Mansi Athalye
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India;
| | - Palak K. Parikh
- Department of Pharmaceutical Chemistry and Quality Assurance, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India;
| | - Abu Sufiyan Chhipa
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India; (A.S.C.); (S.P.)
| | - Snehal Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India; (A.S.C.); (S.P.)
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| |
Collapse
|
22
|
Lundberg AL, Lorenzo-Redondo R, Ozer EA, Hawkins CA, Hultquist JF, Welch SB, Prasad PVV, Oehmke JF, Achenbach CJ, Murphy RL, White JI, Havey RJ, Post LA. Has Omicron Changed the Evolution of the Pandemic? JMIR Public Health Surveill 2022; 8:e35763. [PMID: 35072638 PMCID: PMC8812144 DOI: 10.2196/35763] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/22/2021] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Variants of the SARS-CoV-2 virus carry differential risks to public health. The Omicron (B.1.1.529) variant, first identified in Botswana on November 11, 2021, has spread globally faster than any previous variant of concern. Understanding the transmissibility of Omicron is vital in the development of public health policy. OBJECTIVE The aim of this study is to compare SARS-CoV-2 outbreaks driven by Omicron to those driven by prior variants of concern in terms of both the speed and magnitude of an outbreak. METHODS We analyzed trends in outbreaks by variant of concern with validated surveillance metrics in several southern African countries. The region offers an ideal setting for a natural experiment given that most outbreaks thus far have been driven primarily by a single variant at a time. With a daily longitudinal data set of new infections, total vaccinations, and cumulative infections in countries in sub-Saharan Africa, we estimated how the emergence of Omicron has altered the trajectory of SARS-CoV-2 outbreaks. We used the Arellano-Bond method to estimate regression coefficients from a dynamic panel model, in which new infections are a function of infections yesterday and last week. We controlled for vaccinations and prior infections in the population. To test whether Omicron has changed the average trajectory of a SARS-CoV-2 outbreak, we included an interaction between an indicator variable for the emergence of Omicron and lagged infections. RESULTS The observed Omicron outbreaks in this study reach the outbreak threshold within 5-10 days after first detection, whereas other variants of concern have taken at least 14 days and up to as many as 35 days. The Omicron outbreaks also reach peak rates of new cases that are roughly 1.5-2 times those of prior variants of concern. Dynamic panel regression estimates confirm Omicron has created a statistically significant shift in viral spread. CONCLUSIONS The transmissibility of Omicron is markedly higher than prior variants of concern. At the population level, the Omicron outbreaks occurred more quickly and with larger magnitude, despite substantial increases in vaccinations and prior infections, which should have otherwise reduced susceptibility to new infections. Unless public health policies are substantially altered, Omicron outbreaks in other countries are likely to occur with little warning.
Collapse
Affiliation(s)
- Alexander L Lundberg
- Buehler Center for Health Policy and Economics, Robert J. Havey, MD Institute for Global Health, Northwestern University, Chicago, IL, United States
- Department of Emergency Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Ramon Lorenzo-Redondo
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Center for Pathogen Genomics and Microbial Evolution, Robert J. Havey, MD Institute for Global Health, Northwestern University, Chicago, IL, United States
| | - Egon A Ozer
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Center for Pathogen Genomics and Microbial Evolution, Robert J. Havey, MD Institute for Global Health, Northwestern University, Chicago, IL, United States
| | - Claudia A Hawkins
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Center for Global Communicable and Emerging Infectious Diseases, Robert J. Havey, MD Institute for Global Health, Northwestern University, Chicago, IL, United States
| | - Judd F Hultquist
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Center for Pathogen Genomics and Microbial Evolution, Robert J. Havey, MD Institute for Global Health, Northwestern University, Chicago, IL, United States
| | - Sarah B Welch
- Buehler Center for Health Policy and Economics, Robert J. Havey, MD Institute for Global Health, Northwestern University, Chicago, IL, United States
- Department of Emergency Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - P V Vara Prasad
- Sustainable Intensification Innovation Lab, Kansas State University, Manhattan, KS, United States
| | - James F Oehmke
- Department of Emergency Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Chad J Achenbach
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Robert J. Havey, MD Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Robert L Murphy
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Robert J. Havey, MD Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Janine I White
- Buehler Center for Health Policy and Economics, Robert J. Havey, MD Institute for Global Health, Northwestern University, Chicago, IL, United States
| | - Robert J Havey
- Robert J. Havey, MD Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Medicine, General Internal Medicine and Geriatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Lori Ann Post
- Buehler Center for Health Policy and Economics, Robert J. Havey, MD Institute for Global Health, Northwestern University, Chicago, IL, United States
- Department of Emergency Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|