1
|
Ullah Z, Iqbal J, Abbasi BA, Gul F, Ali S, Kanwal S, Aljowaie RM, Murtaza G, Iqbal R, Mahmood T. Eco-friendly Synthesis of Iron Oxide Nanoparticles Using Parietaria alsinifolia Extracts and Evaluation of Biological Applications. Appl Biochem Biotechnol 2025:10.1007/s12010-024-05151-7. [PMID: 39752127 DOI: 10.1007/s12010-024-05151-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2024] [Indexed: 01/04/2025]
Abstract
The current research was conducted to synthesize Parietaria alsinifolia-mediated iron oxide nanoparticles (P.A@FeONPs) using the green and eco-friendly protocol. The biosynthesized P.A@FeONPs were characterized using various approaches like UVs, FTIR, SEM, EDX, and DLS. The mean crystallite size was calculated to be ~ 21.48 nm using the Debye-Scherrer equation. Further, various in vitro biological assays were performed to analyze the therapeutic potentials of FeONPs. 2,2-Diphenyl-1-picrylhydrazy (DPPH) antioxidant activity was performed to reveal the DPPH radical scavenging potential of P.A@FeONPs and was calculated as 72%. Similarly, the total reducing power was determined as 65.45 ± 1.77%. In addition, P.A@FeONPs exhibited a significant total antioxidant capacity of 87 ± 4.8%. Antibacterial and antifungal assays were performed using the disc diffusion method. Among the different bacterial strains accession (EFB-10-2023 M.B), Rhodococcus jostii has shown the highest zone of inhibition (23.9 mm at 1000 μg/mL), while Escherichia coli displayed a 22.65 mm zone of inhibition at (1000 μg/mL). Similarly, Aspergillus niger exhibited a substantial zone of inhibition (28.75 mm). A brine shrimp cytotoxicity assay revealed the cytotoxicity potential (LC50 244.92 μg/mL). P.A@FeONPs were also tested against red blood cells, HEK-293, and VERO cell lines (< 200 μg/mL) to validate their biocompatibility. An alpha-amylase inhibition assay demonstrated 68.66% inhibition and substantial cytotoxicity against Hep-2 liver cancer cells (IC50 100 μg/mL). In conclusion, P.A@FeONPs have shown significant bioactivities. In the future, we recommend other biological and catalytic activities using different animal models to explore its potential further.
Collapse
Affiliation(s)
- Zakir Ullah
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University Islamabad, Islamabad, 45320, Pakistan
| | - Javed Iqbal
- Department of Botany, Bacha Khan University, Charsadda, 24420, Khyber Pakhtunkhwa, Pakistan.
| | - Banzeer Ahsan Abbasi
- Department of Botany, Rawalpindi Women University, 6Th Road, Satellite Town, Rawalpindi, 46300, Pakistan
| | - Farhat Gul
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University Islamabad, Islamabad, 45320, Pakistan
| | - Sarfaraz Ali
- Quality Control Laboratory (Biological), National Institute of Health, Islamabad, 45320, Pakistan
| | - Sobia Kanwal
- Department of Biology and Environmental Sciences, Allama Iqbal Open University, Islamabad, 45320, Pakistan
| | - Reem M Aljowaie
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Ghulam Murtaza
- School of Agriculture, Yunnan University, Kunming, 650504, Yunnan, China
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan.
| | - Tariq Mahmood
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University Islamabad, Islamabad, 45320, Pakistan.
| |
Collapse
|
2
|
Bian Y, Dong J, Zhou Z, Zhou H, Xu Y, Zhang Q, Chen C, Pi J. The spatiotemporal and paradoxical roles of NRF2 in renal toxicity and kidney diseases. Redox Biol 2024; 79:103476. [PMID: 39724848 DOI: 10.1016/j.redox.2024.103476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/04/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Over 10% of the global population is at risk to kidney disorders. Nuclear factor erythroid-derived 2-related factor 2 (NRF2), a pivotal regulator of redox homeostasis, orchestrates antioxidant response that effectively counters oxidative stress and inflammatory response in a variety of acute pathophysiological conditions, including acute kidney injury (AKI) and early stage of renal toxicity. However, if persistently activated, NRF2-induced transcriptional cascade may disrupt normal cell signaling and contribute to numerous chronic pathogenic processes such as fibrosis. In this concise review, we assembled experimental evidence to reveal the cell- and pathophysiological condition-specific roles of NRF2 in renal chemical toxicity, AKI, and chronic kidney disease (CKD), all of which are closely associated with oxidative stress and inflammation. By incorporating pertinent research findings on NRF2 activators, we dissected the spatiotemporal roles of NRF2 in distinct nephrotoxic settings and kidney diseases. Herein, NRF2 exhibits diverse expression patterns and downstream gene profiles across distinct kidney regions and cell types, and during specific phases of nephropathic progression. These changes are directly or indirectly connected to altered antioxidant defense, damage repair, inflammatory response, regulated cell death and fibrogenesis, culminating ultimately in either protective or deleterious outcomes. The spatiotemporal and paradoxical characteristics of NRF2 in mitigating nephrotoxicity suggest that translational application of NRF2 activation strategy for prevention and interventions of kidney injury are unlikely to be straightforward - right timing and spatial precision must be taken into consideration.
Collapse
Affiliation(s)
- Yiying Bian
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China.
| | - Jize Dong
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Zhengsheng Zhou
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Hua Zhou
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Xu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), China; Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, China
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, GA, 30322, USA
| | - Chengjie Chen
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China.
| | - Jingbo Pi
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China.
| |
Collapse
|
3
|
Zhang Z, Wang Y, Xu Q, Liu Y, Wang K, Li P, Zheng X. Rosmarinic Acid Restores the Ceftiofur Antibacterial Activity against Methicillin-Resistant Staphylococcus aureus by Inhibiting Sortase A. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27215-27224. [PMID: 39614811 DOI: 10.1021/acs.jafc.4c07505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), one of the most important zoonotic bacterial pathogens, necessitates innovative antibacterial strategies. Rosmarinic acid (RA) possesses various biological functions, including antibacterial and anti-inflammatory effects. This study aimed to explore the synergistic effects and mechanism of RA in conjunction with ceftiofur (CF) against MRSA. Results showed that the combination of RA and CF demonstrated synergistic anti-MRSA activity, conferring protective effects in an MRSA bacteremia mouse model. Mechanistic investigations further established that RA interacts with sortase A (SrtA) through hydrogen bonds, electrostatic, and van der Waals forces at critical sites, leading to the reversible inhibition of SrtA activity. Consequently, this inhibition impeded the ability of MRSA to invade cells and form biofilms. Conclusively, RA directly inhibits SrtA activity, thus enhancing the synergistic anti-MRSA effect of CF. These findings provide a theoretical foundation for the use of RA in combination with CF as a therapeutic strategy for MRSA infections.
Collapse
Affiliation(s)
- Zhuohui Zhang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China
| | - Yan Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China
| | - Qianqian Xu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China
| | - Yimiao Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China
| | - Kaiyu Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China
| | - Pishun Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China
| | - Xiaofeng Zheng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
4
|
Yang Y, Hu X, Wang S, Tian Y, Yang K, Li C, Wu Q, Liu W, Gao T, Yuan F, Guo R, Liu Z, Yang Y, Zhou D. Rosmarinic acid-mediated downregulation of RIG-I and p62 in microglia confers resistance to Japanese encephalitis virus-induced inflammation. BMC Vet Res 2024; 20:555. [PMID: 39643884 PMCID: PMC11622684 DOI: 10.1186/s12917-024-04397-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/21/2024] [Indexed: 12/09/2024] Open
Abstract
BACKGROUND Japanese encephalitis virus (JEV) is a mosquito-borne zoonotic pathogen that causes encephalitis in humans and reproductive failure in pigs. The transmission of JEV between humans and animals poses a significant public health threat and results in substantial economic losses. Excessive inflammation in the central nervous system of JEV-infected patients is a major cause of mortality and disability. Rosmarinic acid (RA), a polyhydroxyphenolic compound isolated from medicinal herbs, has been preliminarily shown to possess anti-inflammatory properties and significantly inhibit JEV-induced neuroinflammation in mice. RESULTS This study investigated the antiviral capacity and potential mechanisms of RA in JEV-infected cells. The results demonstrated that RA could inhibit JEV replication in vitro. Furthermore, the expression levels of inflammatory cytokines (including IL-6, IL-1β, CCL-2, and TNF-α), membrane receptors (including RIG-I, TLR3, TLR4, TLR7, and TLR8), NF-κB complex and p62/SQSTM1 were assessed using qPCR, ELISA, and Western blot, respectively. The findings indicated that RA significantly suppressed the expression of IL-6, IL-1α, TNF-α, and CCL-2 in JEV-infected BV-2 cells in a dose-dependent manner. Additionally, RA treatment downregulated the expression levels of RIG-I and p62, while p62 silencing inhibited the upregulation of inflammatory cytokines in JEV-infected BV-2 cells. CONCLUSION Our present study highlights the important role of RA-mediated reduction of RIG-I and p62 in microglia, conferring resistance to Japanese encephalitis virus-induced inflammation.
Collapse
Affiliation(s)
- Yuxin Yang
- College of Animal Science, Yangtze University, Jingzhou, 434025, China
| | - XianWang Hu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, 430064, China
| | - Shuangshuang Wang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, 430064, China
| | - Yongxiang Tian
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, 430064, China
| | - Keli Yang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, 430064, China
| | - Chang Li
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, 430064, China
| | - Qiong Wu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, 430064, China
| | - Wei Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, 430064, China
| | - Ting Gao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, 430064, China
| | - Fangyan Yuan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, 430064, China
| | - Rui Guo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, 430064, China
| | - Zewen Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, 430064, China
| | - Yuying Yang
- College of Animal Science, Yangtze University, Jingzhou, 434025, China.
| | - Danna Zhou
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China.
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, 430064, China.
| |
Collapse
|
5
|
Oselusi SO, Sibuyi NR, Martin DR, Meyer M, Madiehe AM. Potential matrix metalloproteinase 2 and 9 inhibitors identified from Ehretia species for the treatment of chronic wounds - Computational drug discovery approaches. Comput Biol Med 2024; 185:109487. [PMID: 39637455 DOI: 10.1016/j.compbiomed.2024.109487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/29/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Matrix metalloproteinases (MMPs) serve as prognostic factors in several pathophysiological conditions, including chronic wounds. Therefore, they are considered important therapeutic targets in the intervention and treatment of these conditions. In this study, computational tools such as molecular docking and molecular dynamics simulations were used to gain insight into protein‒ligand interactions and determine the free binding energy between Ehretia species phytoconstituents and gelatinases (MMP2 and MMP9). A total of 74 phytoconstituents from Ehretia species were compiled from the literature, and 46 of these compounds were identified as potential inhibitors of at least one type of MMP. Molecular docking revealed that lithospermic acid B, rosmarinic acid, and danshensu had stronger binding affinities against the two enzymes than the reference ligands. Furthermore, (9S, 10E, 12Z, 15Z)-9-hydroxy-10,12,15-octadecatrienoic (∗-octadecatrienoic) had a higher binding energy for MMP2, whereas caffeic anhydride and caffeic acid established stronger binding energy with MMP9 than the reference ligand. These complexes also demonstrated relatively stable, favourable, and comparable conformational changes with those of unbound proteins at 500 ns. The free energy decomposition results further provide detailed insights into the contributions of active site residues and different types of interactions to the overall binding free energy. Finally, most of the hit phytoconstituents (rosmarinic acid, caffeic anhydride, caffeic acid, and danshensu) had good physicochemical, drug-likeness, and pharmacokinetic properties. Collectively, our findings showed that phytoconstituents from Ehretia species could be beneficial in the search for novel MMP inhibitors as therapeutic agents for the treatment of chronic wounds.
Collapse
Affiliation(s)
- Samson O Oselusi
- Nanobiotechnology Research Group, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town, 7535, South Africa; DSI/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town, 7535, South Africa
| | - Nicole Rs Sibuyi
- DSI/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town, 7535, South Africa; Health Platform, Advanced Materials Division, Mintek, 200 Malibongwe Drive, Randburg, South Africa
| | - Darius R Martin
- DSI/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town, 7535, South Africa
| | - Mervin Meyer
- DSI/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town, 7535, South Africa
| | - Abram M Madiehe
- Nanobiotechnology Research Group, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town, 7535, South Africa; DSI/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town, 7535, South Africa.
| |
Collapse
|
6
|
Fujita Y, Biswas KB, Kawai Y, Takayama S, Masutani T, Iddamalgoda A, Sakamoto K. Mentha piperita leaf extract suppresses the release of ATP from epidermal keratinocytes and reduces dermal thinning as well as wrinkle formation. Int J Cosmet Sci 2024; 46:972-981. [PMID: 39049707 DOI: 10.1111/ics.12996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVES To achieve a more beautiful and younger appearance, reducing wrinkles is a key concern. The process of wrinkle formation is complex and the development of truly effective cosmetic ingredients to reduce wrinkles remains a challenge. Recent studies have revealed a close relationship between wrinkles and skin thinning, suggesting that preventing skin thinning could also prevent wrinkle formation. In this study, we examined the role of extracellular adenosine triphosphate (eATP) in the progression of thinning, as eATP reportedly increases skin ageing factors, such as senescence-associated secreted phenotype (SASP) factors in epidermal cells. We determined the effects of Mentha piperita leaf extract on suppressing eATP to reduce thinning and wrinkles. METHODS Adenosine triphosphate (ATP) levels were measured in normal human epidermal keratinocytes (NHEK) in the presence of M. piperita leaf extract. Dryness, high pH, and UVB radiation were used as extrinsic ageing factors. Intrinsic skin ageing was evaluated by comparing cells from adults (AD-NHEK) and newborns (NB-NHEK). A placebo-controlled in vivo study was carried out with a formulation containing 1% M. piperita leaf extract. RESULTS The eATP levels were significantly higher in AD-NHEK compared with that in NB-NHEK cells. M. piperita leaf extract significantly decreased eATP levels in adult cells. Extrinsic ageing factors increased eATP levels in NHEK, whereas M. piperita leaf extract significantly suppressed eATP under all conditions. The active components of M. piperita leaf extract, luteolin glucuronide and rosmarinic acid, also decreased eATP. Moreover, compared with placebo lotion, M. piperita leaf extract-formulated lotion markedly increased dermal thickness and reduced wrinkles associated with crow's feet and the neck area. CONCLUSION We demonstrated for the first time that M. piperita leaf extract containing rosmarinic acid and luteolin-7-O-glucuronide has the potential to reduce eATP release from epidermal keratinocytes. An increase in eATP was observed not only during inflammation but also during natural ageing. Furthermore, the in vivo experiment revealing that 1% M. piperita leaf extract-containing lotion improved dermal thinning and wrinkles across multiple areas is attributed to the amelioration of dermal thinning. Thus, our data suggest the possibility of a novel cosmetic approach for reducing skin ageing by reducing eATP-mediated dermal thinning.
Collapse
Affiliation(s)
- Yukiko Fujita
- Department of Research and Development, Ichimaru Pharcos Co. Ltd., Gifu, Japan
| | - Kazal Boron Biswas
- Department of Research and Development, Ichimaru Pharcos Co. Ltd., Gifu, Japan
| | - Yuka Kawai
- Department of Research and Development, Ichimaru Pharcos Co. Ltd., Gifu, Japan
| | - Satoru Takayama
- Department of Research and Development, Ichimaru Pharcos Co. Ltd., Gifu, Japan
| | - Teruaki Masutani
- Department of Research and Development, Ichimaru Pharcos Co. Ltd., Gifu, Japan
| | | | - Kotaro Sakamoto
- Department of Research and Development, Ichimaru Pharcos Co. Ltd., Gifu, Japan
| |
Collapse
|
7
|
Safari Maleki A, Hayes AW, Karimi G. Enhancing renal protection against cadmium toxicity: the role of herbal active ingredients. Toxicol Res (Camb) 2024; 13:tfae222. [PMID: 39712642 PMCID: PMC11662934 DOI: 10.1093/toxres/tfae222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/02/2024] [Accepted: 12/11/2024] [Indexed: 12/24/2024] Open
Abstract
Background Rapid industrialization globally has led to a notable increase in the production and utilization of metals, including cadmium (Cd), consequently escalating global metal pollution worldwide. Cd, characterized as a persistent environmental contaminant, poses significant health risks, particularly impacting human health, notably the functionality of the kidneys. The profound effects of Cd stem primarily from its limited excretion capabilities and extended half-life within the human body. Mechanisms underlying its toxicity encompass generating reactive oxygen species (ROS), disrupting calcium-signaling pathways and impairing cellular antioxidant defense mechanisms. This review focuses on the protective effects of various herbal active ingredients against Cd-induced nephrotoxicity. Aim This study aims to investigate the mechanisms of action of herbal active ingredients, including ant-oxidative, anti-inflammatory and anti-apoptotic pathways, to elucidate potential therapeutic strategies for reducing nephrotoxicity caused by Cd exposure. Methods A comprehensive search of scientific databases, including Web of Science, PubMed, Scopus and Google Scholar, used relevant keywords to identify studies published up to October 2024. Results Research illustrates that herbal active ingredients protect against Cd nephrotoxicity by reducing oxidative stress, enhancing antioxidant enzyme activity, inhibiting inflammation, preventing apoptosis, alleviating endoplasmic reticulum (ER) stress, enhancing autophagy and improving mitochondrial function in the kidney. Conclusion The present study indicates that an extensive understanding of the protective effects of herbal active ingredients holds promise for the development of innovative approaches to safeguard human health and environmental integrity against the detrimental effects of Cd exposure.
Collapse
Affiliation(s)
- Ahmad Safari Maleki
- Student Research Committee, Mashhad University of Medical Sciences, P. O. Box 91388-13944, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, P. O. Box 91779-48954, Mashhad, Iran
| | - A Wallace Hayes
- University of South Florida College of Public Health, Tampa, FL, USA and Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, P. O. Box 91779-48954, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, P. O. Box 91967-73117, Mashhad, Iran
| |
Collapse
|
8
|
de Carvalho Braga G, Coiado JV, de Melo VC, Loureiro BB, Bagatini MD. Cutaneous melanoma and purinergic modulation by phenolic compounds. Purinergic Signal 2024; 20:581-593. [PMID: 38498100 PMCID: PMC11555167 DOI: 10.1007/s11302-024-10002-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 03/06/2024] [Indexed: 03/20/2024] Open
Abstract
Cutaneous melanoma is a complex pathology that still has only treatments that lack efficiency and offer many adverse effects. Due to this scenario emerges the need to analyze other possible treatments against this disease, such as the effect of phenolic compounds. These substances have proven antitumor effects, but still have not been fully explored as a form of therapy to combat melanoma. Also, the purinergic receptors, along with its system molecules, take part in the formation of tumors from many pathways, such as the actions of ectoenzymes and receptors activity, especially P2Rs family, and are formed by structures that can be modulated by the phenolic compounds. Therefore, more studies have to be made with the aim of explaining the purinergic system activity in carcinogenesis of cutaneous melanoma and the effects of its modulation by phenolic compound, in order to enable the development of new therapies to combat this aggressive and feared cancer.
Collapse
Affiliation(s)
| | - João Victor Coiado
- Medical School, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | | | | | | |
Collapse
|
9
|
Yi D, Liu X, Wang M, Zhao L, Liu Y, Xu Z, Peng Y, Zhang R, Wei Q, Liang Z, He J. Rosmarinic acid alleviated intestinal barrier damage caused by Escherichia coli by regulating the gut microbiota and inhibiting the NF-κB signalling pathway in mice. Food Funct 2024; 15:11740-11756. [PMID: 39540591 DOI: 10.1039/d4fo02654c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Escherichia coli (E. coli) is a common zoonotic foodborne pathogen that poses a major threat to public health and economic development. Rosmarinic acid (RA) can inhibit intestinal inflammation; however, the protective effect of RA against the intestinal barrier damage induced by E. coli in mice and the underlying mechanism have not been elucidated. In this study, mice were orally administered with RA (20 mg kg-1) by gavage for one week and then were intraperitoneally challenged with E. coli. Mouse colonic epithelial cells (MCECs) were pretreated with RA for 6 h and challenged with E. coli (MOI = 1000) for 3 h. The results revealed that RA alleviated E. coli-induced weight loss in mice; reduced the increase in the levels of TNF-α, IL-6 and IL-1β in the serum; alleviated the decrease in ZO-1 protein expression; and increased intestinal permeability by inhibiting the NF-κB signalling pathway both in vivo and in vitro. Moreover, RA relieved the increase in intestinal permeability, reversed the structural damage to the mouse gut microbiota caused by E. coli, and increased the abundance of beneficial bacteria, including Lachnospiraceae_NK4136_group. Additionally, RA lost its protective function against E. coli infection in a pseudosterile mouse model, suggesting that the protection induced by RA was dependent on the gut microbiota. In conclusion, these results indicate that RA alleviates E. coli-induced inflammatory damage to the intestinal barrier by inhibiting the NF-κB signalling pathway and maintaining gut microbiota homeostasis. These findings provide new ideas and foundations for the application of RA as protection against E. coli.
Collapse
Affiliation(s)
- Dandan Yi
- College of Animal Science and Technology, Guangxi University, Room 307, 100 Daxue Road, Xixiangtang District, Nanning, Guangxi 530004, P. R. China.
| | - Xia Liu
- College of Animal Science and Technology, Guangxi University, Room 307, 100 Daxue Road, Xixiangtang District, Nanning, Guangxi 530004, P. R. China.
| | - Menghui Wang
- College of Animal Science and Technology, Guangxi University, Room 307, 100 Daxue Road, Xixiangtang District, Nanning, Guangxi 530004, P. R. China.
| | - Linyi Zhao
- College of Animal Science and Technology, Guangxi University, Room 307, 100 Daxue Road, Xixiangtang District, Nanning, Guangxi 530004, P. R. China.
| | - Yu Liu
- College of Animal Science and Technology, Guangxi University, Room 307, 100 Daxue Road, Xixiangtang District, Nanning, Guangxi 530004, P. R. China.
| | - Zhiran Xu
- College of Animal Science and Technology, Guangxi University, Room 307, 100 Daxue Road, Xixiangtang District, Nanning, Guangxi 530004, P. R. China.
| | - Ying Peng
- College of Animal Science and Technology, Guangxi University, Room 307, 100 Daxue Road, Xixiangtang District, Nanning, Guangxi 530004, P. R. China.
| | - Rui Zhang
- College of Animal Science and Technology, Guangxi University, Room 307, 100 Daxue Road, Xixiangtang District, Nanning, Guangxi 530004, P. R. China.
| | - Qianyin Wei
- College of Animal Science and Technology, Guangxi University, Room 307, 100 Daxue Road, Xixiangtang District, Nanning, Guangxi 530004, P. R. China.
| | - Zhengmin Liang
- College of Animal Science and Technology, Guangxi University, Room 307, 100 Daxue Road, Xixiangtang District, Nanning, Guangxi 530004, P. R. China.
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, PR China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, PR China
| | - Jiakang He
- College of Animal Science and Technology, Guangxi University, Room 307, 100 Daxue Road, Xixiangtang District, Nanning, Guangxi 530004, P. R. China.
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, PR China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, PR China
| |
Collapse
|
10
|
Khurram I, Khan MU, Ibrahim S, Ghani MU, Amin I, Falzone L, Herrera-Bravo J, Setzer WN, Sharifi-Rad J, Calina D. Thapsigargin and its prodrug derivatives: exploring novel approaches for targeted cancer therapy through calcium signaling disruption. Med Oncol 2024; 42:7. [PMID: 39557802 DOI: 10.1007/s12032-024-02541-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024]
Abstract
Thapsigargin, a sesquiterpene lactone derived from Thapsia garganica L., has demonstrated mixed potential as an anticancer agent due to its potent ability to disrupt calcium signaling and induce apoptosis. This review evaluates the chemopreventive and chemotherapeutic potential of thapsigargin, focusing on its molecular mechanisms and toxicity. An extensive literature review of studies published since 2015 was conducted using databases such as PubMed/MedLine and Science Direct. Findings indicate that thapsigargin's primary mechanism is the inhibition of sarco/endoplasmic reticulum calcium ATPase, leading to endoplasmic reticulum stress and cell death in various cancer types. Despite these effects, thapsigargin's non-specific cytotoxicity results in significant side effects, including organ damage and histamine-related reactions. Recent advances in targeted delivery, especially with the prodrug mipsagargin, initially suggested promise in minimizing these toxicities by selectively activating in cancer cells expressing prostate-specific membrane antigen (PSMA). However, the completion of clinical trials with no ongoing studies suggests that the viability of mipsagargin and other prodrugs remains uncertain, especially in light of the toxicities observed. While thapsigargin and its derivatives present a potential pathway in cancer treatment, their future role in oncology requires careful re-evaluation.
Collapse
Affiliation(s)
- Iqra Khurram
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Umer Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan.
| | - Saooda Ibrahim
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Usman Ghani
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Iram Amin
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Luca Falzone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santiago, Chile.
| | - William N Setzer
- Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT, 84043, USA
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL, 35899, USA
| | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón, Ecuador.
- Centro de Estudios Tecnológicos y, Universitarios del Golfo, Veracruz, Mexico.
- Department of Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| |
Collapse
|
11
|
Czerwińska K, Radziejewska I. Rosmarinic Acid: A Potential Therapeutic Agent in Gastrointestinal Cancer Management-A Review. Int J Mol Sci 2024; 25:11704. [PMID: 39519255 PMCID: PMC11546295 DOI: 10.3390/ijms252111704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Gastrointestinal cancers are still the leading cause of death worldwide. This is related, among other things, to the non-specific symptoms, especially in the initial stages, and also to the limited possibilities for treatment. Therefore, research is still being conducted to improve the detection of this type of cancer and increase the effectiveness of therapy. The potential application of natural compounds in cancer management deserves special attention. In the group of such products, there are polyphenolic compounds that reveal, e.g., anti-oxidative, anti-carcinogenic, anti-inflammatory, anti-diabetic, and neuroprotective properties. One of these polyphenols is rosmarinic acid, commonly found in plants such as the Boraginaceae and Nepetoideae subfamilies of the Lamiaceae (mint) family. A number of studies have considered the positive effects of rosmarinic acid in the treatment of many cancers, including gastrointestinal ones such as oral, stomach, pancreas, colon, and liver cancers. The main aim of this paper was to summarize the mechanisms of action of rosmarinic acid in gastrointestinal cancers.
Collapse
Affiliation(s)
| | - Iwona Radziejewska
- Department of Medical Chemistry, Medical University of Białystok, ul. Mickiewicza 2a, 15-222 Białystok, Poland;
| |
Collapse
|
12
|
Chrzanowska E, Denisow B, Ekiert H, Pietrzyk Ł. Metabolites Obtained from Boraginaceae Plants as Potential Cosmetic Ingredients-A Review. Molecules 2024; 29:5088. [PMID: 39519729 PMCID: PMC11547297 DOI: 10.3390/molecules29215088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
One of the challenges of the pharmaceutical and cosmetic industries is to deliver biochemical compounds that can be advantageous for the skin. Research on Boraginaceae taxa has confirmed their use in traditional medicine and proved the potential biological importance of various molecules in cosmetology. The main classes of valuable compounds associated with Boraginaceae taxa are fatty acids, including γ-linolenic acid, essential oils, phenolic acids (e.g., rosmarinic acid), flavonoids, anthocyanins, tannins, and saponins. Highly specific are naphthoquinone pigments (including shikonin) and allantoin. Another distinguishing feature is the accumulation of silica (silicon dioxide) in trichomes. Some taxa produce mucilages. However, pyrrolizidine alkaloids (PAs) with toxic properties are also found (mainly in Symphytum spp.); therefore, their applications should be avoided. Extracts or individual compounds of Boraginaceae plants are characterized by antioxidant, anti-inflammatory, antiseptic, anti-irritant, antiaging, and photoprotective activities. Boraginaceae products are widespread in the cosmetic industry as ingredients of creams, balms, lotions, gels, shampoos, lipsticks, perfumes, and deodorants. The most valuable for the cosmetic industry are raw materials obtained from the genera Alcanna Anchusa, Arnebia, Borago, Buglossoides, Cerinthe, Cordia, Echium, Ehretia, Eriodictyon, Glendora, Lappula, Lithospermum, Lycopsis, Macrotomia, Maharanga, Mertensia, Messerschmidia, Myosotis, Omphalodes, Onosma, Pulmonaria, Rindera, Symphytum, Trachystemon, and Trigonotis. Further research should focus on the search for active substances in other plants of the family.
Collapse
Affiliation(s)
- Ewelina Chrzanowska
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, 15 Akademicka St., 20-950 Lublin, Poland;
| | - Bożena Denisow
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, 15 Akademicka St., 20-950 Lublin, Poland;
| | - Halina Ekiert
- Department of Medicinal Plant and Mushroom Biotechnology, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland;
| | - Łukasz Pietrzyk
- Faculty of Medicine, Institute of Medical Sciences, The John Paul II Catholic University of Lublin, 1H Konstantynów Str., 20-708 Lublin, Poland;
| |
Collapse
|
13
|
Endalew SA, Abebaw BT. Exploring the Anti-Inflammatory Potential of Ajuga integrifolia Leaves Extract: In Vitro Dual Inhibition of Cyclooxygenase and Lipoxygenase Enzymes. Adv Pharmacol Pharm Sci 2024; 2024:2938314. [PMID: 39502576 PMCID: PMC11535186 DOI: 10.1155/2024/2938314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/17/2024] [Indexed: 11/08/2024] Open
Abstract
This study investigated the anti-inflammatory properties of Ajuga integrifolia, an herbal preparation. Qualitative and quantitative phytochemical analyses were conducted to identify active compounds in the preparation. The researchers also assessed its ability to inhibit the production of pro-inflammatory enzymes, cyclooxygenases (COX-1, COX-2), and lipoxygenase (5-LOX) in vitro. The extracts demonstrated dose-dependent inhibition of these enzymes, with some extracts showing IC50 values comparable to standard anti-inflammatory drugs. The ethanol extract exhibited significant inhibition of 5-LOX (52.99 μg/mL), compared to the standard drug zileuton (32.41 μg/mL), while the inhibition of COX-1 (66.00 μg/mL) and COX-2 (71.62 μg/mL) was comparable to the standard drug indomethacin (40.57 and 54.39 μg/mL, respectively). These findings suggest that A. integrifolia has the potential to be used as a herbal remedy for treating inflammatory conditions. By inhibiting pro-inflammatory enzymes, the extracts may effectively reduce inflammation and promote tissue healing or repair. The inhibition potential of extract of this plant can be taken as a good candidate of anti-inflammatory agent.
Collapse
Affiliation(s)
- Sisay Awoke Endalew
- Department of Chemistry, College of Natural Science, Wollo University, P.O. Box 1145, Dessie, Ethiopia
| | - Belete Tesfaw Abebaw
- Department of Chemistry, College of Natural Science, Wollo University, P.O. Box 1145, Dessie, Ethiopia
| |
Collapse
|
14
|
Cetiz MV, Isah M, Ak G, Bakar K, Himidi AA, Mohamed A, Glamočlija J, Nikolić F, Gašic U, Cespedes-Acuna CL, Zengin G. Exploring of Chemical Profile and Biological Activities of Three Ocimum Species From Comoros Islands: A Combination of In Vitro and In Silico Insights. Cell Biochem Funct 2024; 42:e70000. [PMID: 39432386 DOI: 10.1002/cbf.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/22/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024]
Abstract
Ocimum species have a great interest in different traditional medicinal systems. This study examined the chemical composition, antioxidant properties, enzyme inhibitory effects, and antibacterial and antifungal activities of the aerial parts of Ocimum gratissimum, Ocimum americanum, and Ocimum basilicum from the Comoros Islands. The extracts were analyzed using high-performance liquid chromatography-mass spectrometry (HPLC-MS) to determine their chemical composition. Antioxidant activity was assessed using 2,2-Diphenyl-1-picrylhydrazyl (DPPH), 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), cupric reducing antioxidant capacity (CUPRAC), ferric reducing antioxidant power (FRAP), chelating ability, and phosphomolybdenum radical scavenging assays. Enzyme inhibitory activities against acetylcholinesterase (AChE), butrylcholinesterase (BChE), tyrosinase, amylase, and glucosidase were evaluated using spectrophotometric methods. Antibacterial and antifungal activities were tested using the broth microdilution method against selected pathogenic microorganisms. The selected enzymes and proteins were evaluated using in silico methods with biomolecules from these plants. In addition, 111 different metabolites were identified in the tested extracts using advanced HPLC/MS techniques. The most significant number of detected compounds were derivatives of hydroxycinnamic acids, followed by flavonoid glycosides and aglycones and derivatives of hydroxybenzoic acids. All three Ocimum species exhibited significant antioxidant activities, O. gratissimum exhibited the best-reducing abilities in CUPRAC and FRAP assays. In addition, enzyme inhibitory assays revealed that O. americanum had the most potent inhibitory effect on tyrosinase (48.01 ± 3.89 mg kojic acid equivalent [KAE]/g), and amylase (1.08 ± 0.02 mmol acarbose equivalent [ACAE]/g). Antibacterial and antifungal tests demonstrated that the extracts possess broad-spectrum activity. Molecular docking results showed that compounds exhibited remarkable binding energies with target enzymes and proteins. The molecular dynamics simulations identified chicoric acid with MurE of Staphylococcus aureus complex as the most promising drug candidate. These findings support their traditional medical and nutraceutical uses and suggest possibilities for natural functional applications.
Collapse
Affiliation(s)
- Mehmet Veysi Cetiz
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, Wurzburg, Germany
| | - Musa Isah
- Department of Microbiology, Kebbi State University of Science and Technology Aliero, Aliero, Kebbi State, Nigeria
- Biomedicine Programme, School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Gunes Ak
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Kassim Bakar
- Laboratoire Aliments, Réactivité et Synthèse des Substances Naturelles, Faculté des Sciences et Techniques, Université des Comores, Moroni, Comoros
| | - Azali Ahamada Himidi
- Laboratoire Aliments, Réactivité et Synthèse des Substances Naturelles, Faculté des Sciences et Techniques, Université des Comores, Moroni, Comoros
| | - Andilyat Mohamed
- Herbier National des Comores, Faculté des Sciences et Techniques, Université des Comores, Moroni, Comoros
| | - Jasmina Glamočlija
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Filip Nikolić
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Uroš Gašic
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Carlos L Cespedes-Acuna
- Plant Biochemistry and Phytochemical Ecology Lab, Departmento de Ciencias Basicas, Facultad de Ciencias, Universidad del Bio Bio, Chillan, Chile
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| |
Collapse
|
15
|
Wang W, Zhang Y, Huang X, Li D, Lin Q, Zhuang H, Li H. The role of the miR-30a-5p/BCL2L11 pathway in rosmarinic acid-induced apoptosis in MDA-MB-231-derived breast cancer stem-like cells. Front Pharmacol 2024; 15:1445034. [PMID: 39239646 PMCID: PMC11375422 DOI: 10.3389/fphar.2024.1445034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/06/2024] [Indexed: 09/07/2024] Open
Abstract
Background Rosmarinic acid (RA), a natural phenolic acid, exhibits promising anti-cancer properties. The abnormal expression of microRNA (miRNA) regulates the gene expression and plays a role as an oncogenic or tumor suppressor in TNBC. However, the biological role of RA in miR-30a-5p on BCL2L11 during MDA-MB-231 induced breast cancer stem-like cells (BCSCs) progression and its regulatory mechanism have not been elucidated. Objective To investigate whether RA inhibited the silencing effect of miR-30a-5p on the BCL2L11 gene and promoted apoptosis in BCSCs. Materials and Methods We assessed the migration, colony formation, proliferation, cell cycle, and apoptosis of BCSCs after RA treatment using the wound-healing assay, colony formation assay, CCK-8 assay, and flow cytometry, respectively. The expression of mRNA and protein levels of BCL-2, Bax, BCL2L11, and P53 genes in BCSCs after RA treatment was obtained by real-time polymerase chain reaction and Western blot. Differential miRNA expression in BCSCs was analyzed by high-throughput sequencing. Targetscan was utilized to predict the targets of miR-30a-5p. The dual luciferase reporter system was used for validation of the miR-30a-5p target. Results Wound-healing assay, colony formation assay, CCK-8 assay, and cell cycle assay results showed that RA inhibited migration, colony formation and viability of BCSCs, and cell cycle arrest in the G0-G1 phase. At the highest dose of RA, we noticed cell atrophy, while the arrest rate at 100 μg/mL RA surpassed that at 200 μg/mL RA. Apoptotic cells appeared early (Membrane Associated Protein V FITC+, PI-) or late (Membrane Associated Protein V FITC+, PI+) upon administration of 200 μg/mL RA, Using high-throughput sequencing to compare the differences in miRNA expression, we detected downregulation of miR-30a-5p expression, and the results of dual luciferase reporter gene analysis indicated that BCL2L11 was a direct target of miR-30a-5p. Conclusion RA inhibited the silencing effect of miR-30a-5p on the BCL2L11 gene and enhanced apoptosis in BCSCs.
Collapse
Affiliation(s)
- Wei Wang
- School of Public Health and Health Management, Fujian Health College, Fuzhou, Fujian, China
| | - Yuefen Zhang
- Science and Technology Service Center, Fujian Health College, Fuzhou, Fujian, China
| | - Xiaomin Huang
- School of Pharmacy, Fujian Health College, Fuzhou, Fujian, China
| | - Dan Li
- School of Public Health and Health Management, Fujian Health College, Fuzhou, Fujian, China
| | - Qi Lin
- School of Public Health and Health Management, Fujian Health College, Fuzhou, Fujian, China
| | - Hailin Zhuang
- School of Public Health and Health Management, Fujian Health College, Fuzhou, Fujian, China
| | - Hong Li
- School of Public Health and Health Management, Fujian Health College, Fuzhou, Fujian, China
| |
Collapse
|
16
|
Dinu S, Dumitrel SI, Buzatu R, Dinu DC, Popovici R, Szuhanek C, Matichescu A. New Perspectives about Relevant Natural Compounds for Current Dentistry Research. Life (Basel) 2024; 14:951. [PMID: 39202693 PMCID: PMC11355384 DOI: 10.3390/life14080951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
Natural compounds have been used since the earliest civilizations and remain, to this day, a safer alternative for treating various dental problems. These present antimicrobial, anti-inflammatory, antioxidant, analgesic, and antimutagenic effects, making them useful in the prophylactic and curative treatment of various oral diseases such as infections, gingivitis, periodontitis, and even cancer. Due to the high incidence of unpleasant adverse reactions to synthetic compounds, natural products tend to gradually replace conventional treatment, as they can be just as potent and cause fewer, milder adverse effects. Researchers use several methods to measure the effectiveness and safety profile of these compounds, and employing standard techniques also contributes to progress across all medical disciplines.
Collapse
Affiliation(s)
- Stefania Dinu
- Department of Pedodontics, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 9 No., Revolutiei 1989 Bv., 300041 Timisoara, Romania;
- Pediatric Dentistry Research Center, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 9 No., Revolutiei 1989 Bv., 300041 Timisoara, Romania
| | - Stefania-Irina Dumitrel
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 30004 Timisoara, Romania;
| | - Roxana Buzatu
- Department of Dental Aesthetics, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 9 No., Revolutiei 1989 Bv., 300041 Timisoara, Romania
| | - Dorin Cristian Dinu
- Family Dental Clinic, Private Practice, 24 Budapesta Street, 307160 Dumbravita, Romania;
| | - Ramona Popovici
- Department of Management, Legislation and Communication in Dentistry, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 9 No., Revolutiei 1989 Bv., 300041 Timisoara, Romania;
| | - Camelia Szuhanek
- Department of Orthodontics, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 9 No., Revolutiei 1989 Bv., 300041 Timisoara, Romania;
| | - Anamaria Matichescu
- Department of Preventive, Community Dentistry and Oral Health, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 14A Tudor Vladimirescu Ave., 300173 Timisoara, Romania;
- Translational and Experimental Clinical Research Centre in Oral Health, Victor Babes University of Medicine and Pharmacy, 14A Tudor Vladimirescu Ave., 300173 Timisoara, Romania
| |
Collapse
|
17
|
Villegas C, Cortez N, Ogundele AV, Burgos V, Pardi PC, Cabrera-Pardo JR, Paz C. Therapeutic Applications of Rosmarinic Acid in Cancer-Chemotherapy-Associated Resistance and Toxicity. Biomolecules 2024; 14:867. [PMID: 39062581 PMCID: PMC11274592 DOI: 10.3390/biom14070867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Chemotherapeutic drugs and radiotherapy are fundamental treatments to combat cancer, but, often, the doses in these treatments are restricted by their non-selective toxicities, which affect healthy tissues surrounding tumors. On the other hand, drug resistance is recognized as the main cause of chemotherapeutic treatment failure. Rosmarinic acid (RA) is a polyphenol of the phenylpropanoid family that is widely distributed in plants and vegetables, including medicinal aromatic herbs, consumption of which has demonstrated beneficial activities as antioxidants and anti-inflammatories and reduced the risks of cancers. Recently, several studies have shown that RA is able to reverse cancer resistance to first-line chemotherapeutics, as well as play a protective role against toxicity induced by chemotherapy and radiotherapy, mainly due to its scavenger capacity. This review compiles information from 56 articles from Google Scholar, PubMed, and ClinicalTrials.gov aimed at addressing the role of RA as a complementary therapy in cancer treatment.
Collapse
Affiliation(s)
- Cecilia Villegas
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (C.V.); (N.C.)
| | - Nicole Cortez
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (C.V.); (N.C.)
| | - Ayorinde Victor Ogundele
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (C.V.); (N.C.)
- Department of Chemistry and Industrial Chemistry, Kwara State University, Malete 1530, Nigeria
| | - Viviana Burgos
- Departamento de Ciencias Biológicas y Químicas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Rudecindo Ortega, Temuco 4780000, Chile;
| | | | - Jaime R. Cabrera-Pardo
- Laboratorio de Química Aplicada y Sustentable, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica 1000000, Chile;
| | - Cristian Paz
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (C.V.); (N.C.)
| |
Collapse
|
18
|
Jiang M, Qiu Z, Diao Y, Shi Y, Liu W, Li N, Jia A. Optimization of the extraction process for Shenshou Taiyi powder based on Box-Behnken experimental design, standard relation, and FAHP-CRITIC methods. BMC Complement Med Ther 2024; 24:251. [PMID: 38956573 PMCID: PMC11221082 DOI: 10.1186/s12906-024-04554-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 06/17/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Ancient classic prescription play a crucial role in the preservation and advancement of traditional Chinese medicine (TCM) theories. They represent a significant milestone in the ongoing development and transmission of TCM knowledge and practices and are considered one of the breakthroughs in the development of TCM inheritance. In the process of developing ancient classic prescriptions, many problems may still arise in ensuring quality consistency between traditional methods and modern production processes, among which the extraction process poses major challenges. This paper introduces a practical approach extracting an ancient classic prescription using a modern extraction process. The technique is demonstrated through the study of the extraction process of Shenshou Taiyi powder (STP). METHODS This study focuses on optimising the STP extraction process to ensure consistency in the quality of the product obtained through ancient and modern processes using the standard relation and fuzzy analytic hierarchical process (FAHP) and criteria importance through intercriteria correlation (CRITIC) method integrated weights combined with the Box-Behnken response surface test. Using the contents of rosmarinic acid, isoimperatorin, puerarin, as well as the extract yield and fingerprint similarity as evaluation indexes of STP, the Box-Behnken response surface method was employed to examine the varying extraction parameters, including water addition ratio, extraction duration, and number of extractions. The weighted coefficients for each parameter were calculated by combining the benchmark correlation and FAHP-CRITIC method, deriving a comprehensive score. RESULTS The optimal extraction process for STP consisted of a two extractions, each using at a tenfold quantity of water, performed for one hour. Process verification across three separate batches yielded a comprehensive score of 94.7, with a relative standard deviation of 0.76%. CONCLUSIONS The application of the Box-Behnken response surface method combined with standard relation and FAHP-CRITIC approach proved to be stable and feasible for optimising the extraction process of STP.
Collapse
Affiliation(s)
- Mengcheng Jiang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Zhidong Qiu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Yuanyuan Diao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Yuwen Shi
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Weipeng Liu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Na Li
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Ailing Jia
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China.
| |
Collapse
|
19
|
Schiera V, Carfì Pavia F, La Carrubba V, Brucato V, Dintcheva NT. Poly-l-Lactic Acid Scaffolds Additivated with Rosmarinic Acid: A Multi-Analytical Approach to Assess The Morphology, Thermal Behavior, and Hydrophilicity. Polymers (Basel) 2024; 16:1672. [PMID: 38932024 PMCID: PMC11207696 DOI: 10.3390/polym16121672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/31/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
This study aims to demonstrate the possibility of incorporating a natural antioxidant biomolecule into polymeric porous scaffolds. To this end, Poly-l-Lactic Acid (PLLA) scaffolds were produced using the Thermally Induced Phase Separation (TIPS) technique and additivated with different amounts of rosmarinic acid (RA). The scaffolds, with a diameter of 4 mm and a thickness of 2 mm, were characterized with a multi-analytical approach. Specifically, Scanning Electron Microscopy analyses demonstrated the presence of an interconnected porous network, characterized by a layer of RA at the level of the pore's surfaces. Moreover, the presence of RA biomolecules increased the hydrophilic nature of the sample, as evidenced by the decrease in the contact angle with water from 128° to 76°. The structure of PLLA and PLLA containing RA molecules has been investigated through DSC and XRD analyses, and the obtained results suggest that the crystallinity decreases when increasing the RA content. This approach is cost-effective, and it can be customized with different biomolecules, offering the possibility of producing porous polymeric structures containing antioxidant molecules. These scaffolds meet the requirements of tissue engineering and could offer a potential solution to reduce inflammation associated with scaffold implantation, thus improving tissue regeneration.
Collapse
Affiliation(s)
- Veronica Schiera
- Dipartimento di Ingegneria, Università degli Studi di Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, Italy
| | | | | | | | - Nadka Tz. Dintcheva
- Dipartimento di Ingegneria, Università degli Studi di Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, Italy
| |
Collapse
|
20
|
Kobayashi H, Hirao Y, Kawanishi S, Kato S, Mori Y, Murata M, Oikawa S. Rosmarinic acid, a natural polyphenol, has a potential pro-oxidant risk via NADH-mediated oxidative DNA damage. Genes Environ 2024; 46:13. [PMID: 38831385 PMCID: PMC11149181 DOI: 10.1186/s41021-024-00307-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 05/15/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Rosmarinic acid (RA) has a wide range of beneficial effects on human health. On the other hand, RA has been reported to induce metal-mediated reactive oxygen species (ROS) generation and DNA damage. However, its mechanism remains unknown. In this study, to clarify the underlying mechanism, we analyzed metal-mediated DNA damage in isolated DNA treated with RA and its analog isorinic acid. RESULTS RA plus Cu(II), but not Fe(III), significantly increased 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) formation, an indicator of oxidative DNA damage, in calf thymus DNA. Furthermore, a comparison of the 8-oxodG formation induced by RA and its analog isorinic acid suggested that the catechol groups in RA could be associated with their abilities to form 8-oxodG. Interestingly, the 8-oxodG formation induced by RA and isorinic acid plus Cu(II) was markedly enhanced by the addition of NADH, an endogenous reductant. To elucidate the mechanism of RA plus Cu(II)-induced oxidative DNA damage, we examined DNA damage in 32P-labeled DNA treated with RA in the presence of Cu(II). RA plus Cu(II) caused DNA cleavage, which was enhanced by piperidine treatment, suggesting that RA causes not only DNA strand breakage but also base modification. RA plus Cu(II)-induced DNA damage was inhibited by catalase (H2O2 scavenger), bathocuproine (Cu(I) chelator), and methional (scavenger of a variety of ROS other than •OH) but not by typical •OH scavengers and SOD, indicating the involvement of H2O2, Cu(I), and ROS other than •OH. DNA cleavage site analysis showing RA-induced site-specific DNA damage (frequently at thymine and some cytosine residues) supports the involvement of ROS other than •OH, because •OH causes DNA cleavage without site specificity. Based on these results, Cu(I) and H2O2 generation with concomitant RA autoxidation could lead to the production of Cu(I)-hydroperoxide, which induces oxidative DNA damage. o-Quinone and o-semiquinone radicals are likely to be again reduced to RA by NADH, which dramatically increases oxidative DNA damage, particularly at low concentrations of RA. CONCLUSIONS In this study, physiologically relevant concentrations of RA effectively induced oxidative DNA damage in isolated DNA through redox cycle reactions with copper and NADH.
Collapse
Affiliation(s)
- Hatasu Kobayashi
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, 514-8507, Mie, Japan
| | - Yuichiro Hirao
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, 514-8507, Mie, Japan
- Mie Prefectural College of Nursing, Yumegaoka 1-1-1, Tsu, 514-0116, Mie, Japan
| | - Shosuke Kawanishi
- Faculty of Pharmaceutical Science, Suzuka University of Medical Science, Minamitamagaki, Suzuka, 3500-3, 513-8670, Mie, Japan
| | - Shinya Kato
- Radioisotope Experimental Facility, Advanced Science Research Promotion Center, Mie University, Edobashi 2-174, Tsu, 514-8507, Mie, Japan
| | - Yurie Mori
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, 514-8507, Mie, Japan
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, 514-8507, Mie, Japan
| | - Shinji Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, 514-8507, Mie, Japan.
| |
Collapse
|
21
|
Hung TW, Hsieh YH, Lee HL, Ting YH, Lin CL, Chao WW. Renoprotective effect of rosmarinic acid by inhibition of indoxyl sulfate-induced renal interstitial fibrosis via the NLRP3 inflammasome signaling. Int Immunopharmacol 2024; 135:112314. [PMID: 38788450 DOI: 10.1016/j.intimp.2024.112314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/10/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
We previously reported that rosmarinic acid (RA) ameliorated renal fibrosis in a unilateral ureteral obstruction (UUO) murine model of chronic kidney disease. This study aimed to determine whether RA attenuates indoxyl sulfate (IS)-induced renal fibrosis by regulating the activation of the NLRP3 inflammasome/IL-1β/Smad circuit. We discovered the NLRP3 inflammasome was activated in the IS treatment group and downregulated in the RA-treated group in a dose-dependent manner. Additionally, the downstream effectors of the NLRP3 inflammasome, cleaved-caspase-1 and cleaved-IL-1β showed similar trends in different groups. Moreover, RA administration significantly decreased the ROS levels of reactive oxygen species in IS-treated cells. Our data showed that RA treatment significantly inhibited Smad-2/3 phosphorylation. Notably, the effects of RA on NLRP3 inflammasome/IL-1β/Smad and fibrosis signaling were reversed by the siRNA-mediated knockdown of NLRP3 or caspase-1 in NRK-52E cells. In vivo, we demonstrated that expression levels of NLRP3, c-caspase-1, c-IL-1β, collagen I, fibronectin and α-SMA, and TGF- β 1 were downregulated after treatment of UUO mice with RA or RA + MCC950. Our findings suggested RA and MCC950 synergistically inhibited UUO-induced NLRP3 signaling activation, revealing their renoprotective properties and the potential for combinatory treatment of renal fibrosis and chronic kidney inflammation.
Collapse
Affiliation(s)
- Tung-Wei Hung
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; Division of Nephrology, Department of Medicine, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Hsiang-Lin Lee
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; Deptartment of Surgery, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Yi-Hsuan Ting
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Chu-Liang Lin
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Wen-Wan Chao
- Department of Nutrition and Health Sciences, Kainan University, Taoyuan 33857, Taiwan.
| |
Collapse
|
22
|
Farnoosh S, Masoudian N, Safipour Afshar A, Nematpour FS, Roudi B. Foliar-applied iron and zinc nanoparticles improved plant growth, phenolic compounds, essential oil yield, and rosmarinic acid production of lemon balm (Melissa officinalis L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:36882-36893. [PMID: 38758440 DOI: 10.1007/s11356-024-33680-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024]
Abstract
Metallic nanoparticles (NPs) have been highlighted to improve plant growth and development in the recent years. Although positive effects of some NPs have been reported on medicinal plants, the knowledge for stimulations application of iron (Fe) and zinc (Zn) NPs is not available. Hence, the present work aimed to discover the effects of Fe NPs at 10, 20, and 30 mg L-1 and Zn NPs at 60 and 120 mg L-1 on growth, water content, photosynthesis pigments, phenolic content, essential oil (EO) quality, and rosmarinic acid (RA) production of lemon balm (Melissa officinalis L.). The results showed that Fe NPs at 20 and 30 mg L-1 and Zn NPs at 120 mg L-1 significantly improved biochemical attributes. Compared with control plants, the interaction of Fe NPs at 30 mg-1 and Zn NPs at 120 mg L-1 led to noticeable increases in shoot weight (72%), root weight (92%), chlorophyll (Chl) a (74%), Chl b (47%), RA (66%), proline (81%), glycine betaine (GB, 231%), protein (286%), relative water content (8%), EO yield (217%), total phenolic content (63%), and total flavonoid content (57%). Heat map analysis revealed that protein, GB, EO yield, shoot weight, root weight, and proline had the maximum changes upon Fe NPs. Totally, the present study recommended the stimulations application of Fe NPs at 20-30 mg L-1 and Zn NPs at 120 mg L-1 to reach the optimum growth and secondary metabolites of lemon balm.
Collapse
Affiliation(s)
- Samaneh Farnoosh
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Nahid Masoudian
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | | | | | - Bostan Roudi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| |
Collapse
|
23
|
Koli R, Mannur VS, Shetti PP. Robust high-performance thin-layer chromatography (HPTLC) method for stability assessment and simultaneous quantification of epigallocatechin-3-gallate and rosmarinic acid in lipid-based nanoparticles and biological matrices. PHYTOCHEMICAL ANALYSIS : PCA 2024. [PMID: 38623624 DOI: 10.1002/pca.3360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024]
Abstract
INTRODUCTION Skin cancer poses a significant health risk globally, necessitating effective and safe therapeutic interventions. Epigallocatechin-3-gallate (EGCG) from green tea and rosmarinic acid (RA) from herbs like rosemary offer promising anticancer properties. Combining these compounds may enhance their effectiveness, prompting the need for a reliable analytical method to quantify them. OBJECTIVE Herein, we present the development and validation of a high-performance thin-layer chromatography (HPTLC) method for concurrent quantification of EGCG and RA in lipid-based nanoparticles and biological samples. METHODOLOGY The method underwent optimisation through design of experiments (DoE), resulting in the establishment of robust chromatographic conditions. The separation process utilised aluminium HPTLC plates coated with silica gel 60 F254 as the stationary phase, with the mobile phase comprising ethyl acetate, toluene, formic acid, and methanol in a ratio of 4:4:1:1 v/v. RESULTS The retention factor (Rf) values obtained were 0.38 for EGCG and 0.61 for RA. The method demonstrated linearity over a range of 100-500 ng/band for both compounds with excellent correlation coefficients. Limits of detection and quantification were determined, indicating high sensitivity. Precision evaluations revealed relative standard deviation below 2%, ensuring method reproducibility. Recovery assays in lipid-based nanoparticles, plasma, and urine samples demonstrated excellent recoveries (96.2%-102.1%). Forced degradation studies revealed minimal degradation under various stress conditions, with photolytic degradation showing the least impact. CONCLUSION The developed HPTLC method offers a rapid, sensitive, and reliable approach for quantifying EGCG and RA, laying the groundwork for their further investigation as anticancer agents alone and in combination therapies.
Collapse
Affiliation(s)
- Rahul Koli
- Department of Pharmaceutical Quality Assurance, KLE College of Pharmacy, KLE Academy of Higher Education and Research, Belagavi, Karnataka, India
| | - Vinod S Mannur
- Department of Pharmaceutical Quality Assurance, KLE College of Pharmacy, KLE Academy of Higher Education and Research, Belagavi, Karnataka, India
| | - Priya P Shetti
- Dr Prabhakar Kore, Basic Science Research Centre, KLE Academy of Higher Education and Research, Belagavi, Karnataka, India
| |
Collapse
|
24
|
Sharma P, Gupta K, Khandai SK, Malik S, Thareja S. Phytometabolites as modulators of breast cancer: a comprehensive review of mechanistic insights. Med Oncol 2024; 41:45. [PMID: 38172452 DOI: 10.1007/s12032-023-02269-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024]
Abstract
Breast cancer (BC) is a highly debilitating malignancy affecting females globally and imposing a substantial burden on healthcare systems in both developed and developing nations. Despite the application of conventional therapeutic modalities such as chemotherapy, radiation therapy, and hormonal intervention, BC frequently exhibits resistance, necessitating the urgent development of novel, cost-effective, and accessible treatment strategies. In this context, there is a growing scientific interest in exploring the pharmacological potential of chemical compounds derived from botanical sources, which often exhibit notable biological activity. Extensive in vitro and in vivo investigations have revealed the capacity of these compounds, referred to as phytochemicals, to attenuate the metastatic cascade and reduce the risk of cancer dissemination. These phytochemicals exert their effects through modulation of key molecular and metabolic processes, including regulation of the cell cycle, induction of apoptotic cell death, inhibition of angiogenesis, and suppression of metastatic progression. To shed light on the latest advancements in this field, a comprehensive review of the scientific literature has been conducted, focusing on secondary metabolite agents that have recently been investigated and have demonstrated promising anticancer properties. This review aims to delineate their underlying mechanisms of action and elucidate the associated signaling pathways, thereby contributing to a deeper understanding of their therapeutic potential in the context of BC management.
Collapse
Affiliation(s)
- Priyanka Sharma
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Khushi Gupta
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Sumit Kumar Khandai
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Sonia Malik
- Laboratory of Woody Plants and Crops Biology, University of Orleans, Orleans, France
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India.
| |
Collapse
|
25
|
Piao MJ, Fernando PMDJ, Kang KA, Fernando PDSM, Herath HMUL, Kim YR, Hyun JW. Rosmarinic Acid Inhibits Ultraviolet B-Mediated Oxidative Damage via the AKT/ERK-NRF2-GSH Pathway In Vitro and In Vivo. Biomol Ther (Seoul) 2024; 32:84-93. [PMID: 38148554 PMCID: PMC10762280 DOI: 10.4062/biomolther.2023.179] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 12/28/2023] Open
Abstract
Rosmarinic acid (RA) is a phenolic ester that protects human keratinocytes against oxidative damage induced by ultraviolet B (UVB) exposure, however, the mechanisms underlying its effects remain unclear. This study aimed to elucidate the cell signaling mechanisms that regulate the antioxidant activity of RA and confirm its cyto-protective role. To explore the signaling mechanisms, we used the human keratinocyte cell line HaCaT and SKH1 hairless mouse skin. RA enhanced glutamate-cysteine ligase catalytic subunit (GCLC) and glutathione synthetase (GSS) expression in HaCaT cells in a dose- and time-dependent manner. Moreover, RA induced nuclear factor erythroid-2-related factor 2 (NRF2) nuclear translocation and activated the signaling kinases protein kinase B (AKT) and extracellular signal-regulated kinase (ERK). Treatment with the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002, the ERK inhibitor U0126, and small interfering RNA (siRNA) gene silencing suppressed RA-enhanced GCLC, GSS, and NRF2 expression, respectively. Cell viability tests showed that RA significantly prevented UVB-induced cell viability decrease, whereas the glutathione (GSH) inhibitors buthionine sulfoximine, LY294002, and U0126 significantly reduced this effect. Moreover, RA protected against DNA damage and protein carbonylation, lipid peroxidation, and apoptosis caused by UVB-induced oxidative stress in a concentration-dependent manner in SKH1 hairless mouse skin tissues. These results suggest that RA protects against UVB-induced oxidative damage by activating AKT and ERK signaling to regulate NRF2 signaling and enhance GSH biosynthesis. Thus, RA treatment may be a promising approach to protect the skin from UVB-induced oxidative damage.
Collapse
Affiliation(s)
- Mei Jing Piao
- Department of Biochemistry, College of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | | | - Kyoung Ah Kang
- Department of Biochemistry, College of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | | | | | - Young Ree Kim
- Department of Laboratory Medicine, Jeju National University Hospital, and College of Medicine, Jeju National University, Jeju 63241, Republic of Korea
| | - Jin Won Hyun
- Department of Biochemistry, College of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
26
|
Bouammali H, Zraibi L, Ziani I, Merzouki M, Bourassi L, Fraj E, Challioui A, Azzaoui K, Sabbahi R, Hammouti B, Jodeh S, Hassiba M, Touzani R. Rosemary as a Potential Source of Natural Antioxidants and Anticancer Agents: A Molecular Docking Study. PLANTS (BASEL, SWITZERLAND) 2023; 13:89. [PMID: 38202397 PMCID: PMC10780489 DOI: 10.3390/plants13010089] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/26/2023] [Accepted: 12/07/2023] [Indexed: 01/12/2024]
Abstract
Rosmarinus officinalis L. compounds, especially its main polyphenolic compounds, carnosic acid (CA) and rosmarinic acid (RA), influence various facets of cancer biology, making them valuable assets in the ongoing fight against cancer. These two secondary metabolites exhibit formidable antioxidant properties that are a pivotal contributor against the development of cancer. Their antitumor effect has been related to diverse mechanisms. In the case of CA, it has the capacity to induce cell death of cancer cells through the rise in ROS levels within the cells, the inhibition of protein kinase AKT, the activation of autophagy-related genes (ATG) and the disrupt mitochondrial membrane potential. Regarding RA, its antitumor actions encompass apoptosis induction through caspase activation, the inhibition of cell proliferation by interrupting cell cycle progression and epigenetic regulation, antioxidative stress-induced DNA damage, and interference with angiogenesis to curtail tumor growth. To understand the molecular interaction between rosemary compounds (CA and RA) and a protein that is involved in cancer and inflammation, S100A8, we have performed a series of molecular docking analyses using the available three-dimensional structures (PDBID: 1IRJ, 1MR8, and 4GGF). The ligands showed different binding intensities in the active sites with the protein target molecules, except for CA with the 1MR8 protein.
Collapse
Affiliation(s)
- Haytham Bouammali
- Laboratory of Applied Chemistry Environment (LCAE), Faculty of Science Oujda, University Mohammed First, Oujda 60000, Morocco; (I.Z.); (M.M.); (L.B.); (E.F.); (A.C.); (R.T.)
| | - Linda Zraibi
- Water, Environment and Sustainable Development Laboratory (LEEDD), Faculty of Science Oujda, University Mohammed First, Oujda 60000, Morocco;
| | - Imane Ziani
- Laboratory of Applied Chemistry Environment (LCAE), Faculty of Science Oujda, University Mohammed First, Oujda 60000, Morocco; (I.Z.); (M.M.); (L.B.); (E.F.); (A.C.); (R.T.)
| | - Mohammed Merzouki
- Laboratory of Applied Chemistry Environment (LCAE), Faculty of Science Oujda, University Mohammed First, Oujda 60000, Morocco; (I.Z.); (M.M.); (L.B.); (E.F.); (A.C.); (R.T.)
| | - Lamiae Bourassi
- Laboratory of Applied Chemistry Environment (LCAE), Faculty of Science Oujda, University Mohammed First, Oujda 60000, Morocco; (I.Z.); (M.M.); (L.B.); (E.F.); (A.C.); (R.T.)
| | - Elmehdi Fraj
- Laboratory of Applied Chemistry Environment (LCAE), Faculty of Science Oujda, University Mohammed First, Oujda 60000, Morocco; (I.Z.); (M.M.); (L.B.); (E.F.); (A.C.); (R.T.)
| | - Allal Challioui
- Laboratory of Applied Chemistry Environment (LCAE), Faculty of Science Oujda, University Mohammed First, Oujda 60000, Morocco; (I.Z.); (M.M.); (L.B.); (E.F.); (A.C.); (R.T.)
| | - Khalil Azzaoui
- Laboratory of Engineering, Electrochemistry Modeling and Environment, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco;
- Euro-Mediterranean University of Fes (UEMF), Fez 30070, Morocco; (R.S.); (B.H.)
| | - Rachid Sabbahi
- Euro-Mediterranean University of Fes (UEMF), Fez 30070, Morocco; (R.S.); (B.H.)
- Higher School of Technology, Ibn Zohr University, Quartier 25 Mars, P.O. Box 3007, Laayoune 70000, Morocco
| | - Belkheir Hammouti
- Euro-Mediterranean University of Fes (UEMF), Fez 30070, Morocco; (R.S.); (B.H.)
- Laboratory of Industrial Engineering, Energy and the Environment (LI3E), SupMTI, Rabat 10000, Morocco
| | - Shehdeh Jodeh
- Department of Chemistry, An-Najah National University, Nablus P.O. Box 7, Palestine;
| | - Maryam Hassiba
- College of Medicine, QU Health, Qatar University, Doha 2713, Qatar
| | - Rachid Touzani
- Laboratory of Applied Chemistry Environment (LCAE), Faculty of Science Oujda, University Mohammed First, Oujda 60000, Morocco; (I.Z.); (M.M.); (L.B.); (E.F.); (A.C.); (R.T.)
| |
Collapse
|
27
|
Mohmad Saberi SE, Chua LS. Potential of rosmarinic acid from Orthosiphon aristatus extract for inflammatory induced diseases and its mechanisms of action. Life Sci 2023; 333:122170. [PMID: 37827234 DOI: 10.1016/j.lfs.2023.122170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Orthosiphon aristatus has been traditionally used as a medicinal herb for various illnesses in Southeast Asia and Europe. The most dominant bioactive compound of the herb is rosmarinic acid (RosA) which has been demonstrated for its remarkable anti-inflammatory properties. This review describes the recent progress of studies on multi-target molecular pathways of RosA in relation to targeted inflammatory-associated diseases. An inclusive literature search was conducted using electronic databases such as Google Scholar, Scopus, Springer Link, PubMed, Medline, Wiley and Science Direct for studies reporting on the anti-inflammatory actions of RosA from 2008 until 2023. The keywords of the search were RosA and anti-inflammatory in relation to hepatoprotective, chondroprotective, cardioprotective, neuroprotective and toxicity. Only publications that are written in English are included in this review. The inhibition and deactivation of pro-inflammatory biomolecules by RosA were explained based on the initial inflammation stimuli and their location in the body. The activation of Nrf2/HO-1 expression to inhibit NF-κB pathway is the key mechanism for hepatoprotection. Besides NF-κB inhibition, RosA activates PPARγ to alleviate ischemia/reperfusion (I/R)-induced myocardial injury for cardioprotection. The regulation of MAPK and T-cell activation is important for chondroprotection, whereas the anti-oxidant property of RosA is the main contributor of neuroprotection. Even though less studies on the anti-inflammation of RosA extracts from O. aristatus, but the effective pharmacological properties of RosA has promoted it as a natural potent lead for further investigation.
Collapse
Affiliation(s)
- Salfarina Ezrina Mohmad Saberi
- Herbal and Phytochemical Unit, Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru, Johor, Malaysia
| | - Lee Suan Chua
- Herbal and Phytochemical Unit, Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru, Johor, Malaysia; Department of Bioprocess and Polymer Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru, Johor, Malaysia.
| |
Collapse
|
28
|
Shanmuganathan R, Hoang Le Q, Devanesan S, R M Sayed S, Rajeswari VD, Liu X, Jhanani GK. Mint leaves (Mentha arvensis) mediated CaO nanoparticles in dye degradation and their role in anti-inflammatory, anti-cancer properties. ENVIRONMENTAL RESEARCH 2023; 236:116718. [PMID: 37481060 DOI: 10.1016/j.envres.2023.116718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/24/2023]
Abstract
In ancient times, herbal plants were considered one of the greatest gifts from nature that human beings could receive, and about 80% of these plants have medicinal uses. In traditional medicine, Mentha arvensis, commonly known as mint, has many applications, and in the present study, the mint leaf extract has been used to synthesis nanoparticles using the mint leaf extract as a biosource for the extraction of nanoparticles. In addition to having a wide range of applications in various fields, calcium oxide (CaO) nanoparticles are also considered to be safe for human use. In order to assess the characteristics of the abstracted CaO nanoparticles, UV-visible absorption spectrophotometers, Fourier Transform Infrared spectrophotometers (FTIR), Scanning Electron Microscopes (SEMs), Dynamic Light Scattering (DLS), and X-ray Diffraction Spectrophotometers (XRDs) were used. By conducting a protein denaturation assay and nitric oxide scavenging assay, mint leaf mediated CaO nanoparticles were evaluated for their therapeutic applications. MTT assays were used to prove that the CaO nanoparticles mediated by mint leaf had anti-cancer properties. By examining the ability of mint leaf mediated CaO nanoparticles to degrade various dyes such as methyl red, methyl orange, and methylene blue, which are the most used azo dyes in textile industries resulting in water contamination, the ability of these nanoparticles to act as a photocatalytic agent was examined.
Collapse
Affiliation(s)
- Rajasree Shanmuganathan
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Vietnam; Institute of Research and Development, Duy Tan University, Da Nang, Vietnam.
| | - Quynh Hoang Le
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Vietnam; Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Shaban R M Sayed
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - V Devi Rajeswari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Xinghui Liu
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong, China
| | - G K Jhanani
- Center for Transdisciplinary Research (CFTR), Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| |
Collapse
|
29
|
Vidal I, Torres-Vargas JA, Sánchez JM, Trigal M, García-Caballero M, Medina MÁ, Quesada AR. Danthron, an Anthraquinone Isolated from a Marine Fungus, Is a New Inhibitor of Angiogenesis Exhibiting Interesting Antitumor and Antioxidant Properties. Antioxidants (Basel) 2023; 12:antiox12051101. [PMID: 37237967 DOI: 10.3390/antiox12051101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
The role played by a sustained angiogenesis in cancer and other diseases stimulates the interest in the search for new antiangiogenic drugs. In this manuscript, we provide evidence that 1,8- dihydroxy-9,10-anthraquinone (danthron), isolated from the fermentation broth of the marine fungus Chromolaenicola sp. (HL-114-33-R04), is a new inhibitor of angiogenesis. The results obtained with the in vivo CAM assay indicate that danthron is a potent antiangiogenic compound. In vitro studies with human umbilical endothelial cells (HUVEC) reveal that this anthraquinone inhibits certain key functions of activated endothelial cells, including proliferation, proteolytic and invasive capabilities and tube formation. In vitro studies with human breast carcinoma MDA-MB231 and fibrosarcoma HT1080 cell lines suggest a moderate antitumor and antimetastatic activity of this compound. Antioxidant properties of danthron are evidenced by the observation that it reduces the intracellular reactive oxygen species production and increases the amount of intracellular sulfhydryl groups in endothelial and tumor cells. These results support a putative role of danthron as a new antiangiogenic drug with potential application in the treatment and angioprevention of cancer and other angiogenesis-dependent diseases.
Collapse
Affiliation(s)
- Isabel Vidal
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, Andalucía Tech, and IBIMA Plataforma BIONAND, E-29071 Málaga, Spain
| | - José Antonio Torres-Vargas
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, Andalucía Tech, and IBIMA Plataforma BIONAND, E-29071 Málaga, Spain
| | - José María Sánchez
- Biomar Microbial Technologies, Parque Tecnológico de León, Parcela M-10.4, Armunia, 24009 León, Spain
| | - Mónica Trigal
- Biomar Microbial Technologies, Parque Tecnológico de León, Parcela M-10.4, Armunia, 24009 León, Spain
| | - Melissa García-Caballero
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, Andalucía Tech, and IBIMA Plataforma BIONAND, E-29071 Málaga, Spain
| | - Miguel Ángel Medina
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, Andalucía Tech, and IBIMA Plataforma BIONAND, E-29071 Málaga, Spain
- Unidad 741 de CIBER "de Enfermedades Raras", E-29071 Málaga, Spain
| | - Ana R Quesada
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, Andalucía Tech, and IBIMA Plataforma BIONAND, E-29071 Málaga, Spain
- Unidad 741 de CIBER "de Enfermedades Raras", E-29071 Málaga, Spain
| |
Collapse
|