1
|
Xu CX, Huang W, Shi XJ, Du Y, Liang JQ, Fang X, Chen HY, Cheng Y. Dysregulation of Serum Exosomal Lipid Metabolism in Schizophrenia: A Biomarker Perspective. Mol Neurobiol 2025; 62:3556-3567. [PMID: 39312067 DOI: 10.1007/s12035-024-04477-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 09/01/2024] [Indexed: 02/04/2025]
Abstract
Exosomes, crucial extracellular vesicles, have emerged as potential biomarkers for neurological conditions, including schizophrenia (SCZ). However, the exploration of exosomal lipids in the context of SCZ remains scarce, necessitating in-depth investigation. Leveraging ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), this study aimed to characterize the lipidomic profile of serum exosomes from SCZ patients, assessing their potential as novel biomarkers for SCZ diagnosis through absolute quantitative lipidomics. Our comprehensive lipidomic analysis unveiled 39 serum exosomal lipids that were differentially expressed between SCZ patients (n = 20) and healthy controls (HC, n = 20). These findings revealed a profound dysregulation in lipid metabolism pathways, notably in sphingolipid metabolism, glycerophospholipid metabolism, and linoleic acid metabolism. Among these, seven exosomal lipids stood out for their diagnostic potential, exhibiting remarkable ability to differentiate SCZ patients from HCs with an unparalleled classification performance, evidenced by an area under the curve (AUC) of 0.94 (95% CI, 0.82-1.00). These lipids included specific ceramides and phosphoethanolamines, pointing to a distinct lipid metabolic fingerprint associated with SCZ. Furthermore, bioinformatic analyses reinforced the pivotal involvement of these lipids in SCZ-related lipid metabolic processes, suggesting their integral role in the disorder's pathophysiology. This study significantly advances our understanding of SCZ by pinpointing dysregulated exosomal lipid metabolism as a key factor in its pathology. The identified serum exosome-derived lipids emerge as compelling biomarkers for SCZ diagnosis, offering a promising avenue towards the development of objective and reliable diagnostic tools.
Collapse
Affiliation(s)
- Chen-Xi Xu
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, No. 27, South Street of Zhongguancun, Haidian District, Beijing, 100081, China
| | - Wei Huang
- The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Xiao-Jie Shi
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China
| | - Yang Du
- Henan Mental Hospital, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Jia-Quan Liang
- The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Xuan Fang
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, No. 27, South Street of Zhongguancun, Haidian District, Beijing, 100081, China
| | - He-Yuan Chen
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, No. 27, South Street of Zhongguancun, Haidian District, Beijing, 100081, China
| | - Yong Cheng
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, No. 27, South Street of Zhongguancun, Haidian District, Beijing, 100081, China.
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China.
- Institute of National Security, Minzu University of China, Beijing, China.
| |
Collapse
|
2
|
Chestnykh D, Mühle C, Schumacher F, Kalinichenko LS, Löber S, Gmeiner P, Alzheimer C, von Hörsten S, Kleuser B, Uebe S, Ekici AB, Gulbins E, Kornhuber J, Jin HK, Bae JS, Lourdusamy A, Müller CP. Acid sphingomyelinase activity suggests a new antipsychotic pharmaco-treatment strategy for schizophrenia. Mol Psychiatry 2025:10.1038/s41380-025-02893-6. [PMID: 39825014 DOI: 10.1038/s41380-025-02893-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 12/10/2024] [Accepted: 01/10/2025] [Indexed: 01/20/2025]
Abstract
Schizophrenia is a chronic and severe mental disorder. It is currently treated with antipsychotic drugs (APD). However, APD's work only in a limited number of patients and may have cognition impairing side effects. A growing body of evidence points out the potential involvement of abnormal sphingolipid metabolism in the pathophysiology of schizophrenia. Here, an analysis of human gene polymorphisms and brain gene expression in schizophrenia patients identified an association of SMPD1 and SMPD3 genes coding for acid- (ASM) and neutral sphingomyelinase-2 (NSM). In a rat model of psychosis using amphetamine hypersensitization, we found a locally restricted increase of ASM activity in the prefrontal cortex (PFC). Short-term haloperidol (HAL) treatment reversed behavioral symptoms and the ASM activity. A sphingolipidomic analysis confirmed an altered ceramide metabolism in the PFC during psychosis. Targeting enhanced ASM activity in a psychotic-like state with the ASM inhibitor KARI201 reversed psychotic like behavior and associated changes in the sphingolipidome. While effective HAL treatment led to locomotor decline and cognitive impairments, KARI201 did not. An RNA sequencing analysis of the PFC suggested a dysregulation of numerous schizophrenia related genes including Olig1, Fgfr1, Gpr17, Gna12, Abca2, Sox1, Dpm2, and Rab2a in the rat model of psychosis. HAL and KARI201 antipsychotic effects were associated with targeting expression of other schizophrenia associated genes like Col6a3, Slc22a8, and Bmal1, or Nr2f6a, respectively, but none affecting expression of sphingolipid regulating genes. Our data provide new insight into a potentially pathogenic mechanism of schizophrenia and suggest a new pharmaco-treatment strategy with reduced side effects.
Collapse
Affiliation(s)
- Daria Chestnykh
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Christiane Mühle
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | | | - Liubov S Kalinichenko
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Stefan Löber
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
- FAUNeW-Research Center New Bioactive Compounds, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
- FAUNeW-Research Center New Bioactive Compounds, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Christian Alzheimer
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University of Erlangen-Nuremberg, 91054, Erlangen, Germany
| | - Stephan von Hörsten
- Department of Experimental Therapy, Preclinical Experimental Center, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Burkhard Kleuser
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Steffen Uebe
- Institute of Human Genetics, Friedrich Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Arif B Ekici
- Institute of Human Genetics, Friedrich Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, 45147, Essen, Germany
- Department of Surgery, University of Cincinnati, College of Medicine, University of Cincinnati, Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, 45267-0558, USA
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Hee Kyung Jin
- KNU Alzheimer's Disease Research Institute, Kyungpook National University, Daegu, 41566, South Korea
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, South Korea
| | - Jae-Sung Bae
- KNU Alzheimer's Disease Research Institute, Kyungpook National University, Daegu, 41566, South Korea
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu, 41944, South Korea
| | - Anbarasu Lourdusamy
- Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany.
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
3
|
Senko D, Efimova O, Osetrova M, Anikanov N, Boyko M, Sharaev M, Morozova A, Zorkina Y, Kislov M, Kostyuk G, Stekolshchikova E, Khaitovich P. White matter lipidome alterations in the schizophrenia brain. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:123. [PMID: 39725684 DOI: 10.1038/s41537-024-00542-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024]
Abstract
Numerous brain imaging studies have reported white matter alterations in schizophrenia, but the lipidome analysis of the corresponding tissue remains incomplete. In this study, we investigated the lipidome composition of six subcortical white matter regions corresponding to major axonal tracks in both control subjects and schizophrenia patients. All six regions exhibited a consistent pattern of quantitative lipidome alterations in schizophrenia, involving myelin-forming and mitochondria associated lipid classes. While alteration levels of myelin-forming lipids, particularly sphingolipids, aligned with the extent of the myelin changes reported in structural brain imaging studies, a significant decrease of mitochondria in the white matter, indicated by the lipidome alterations, was not previously investigated. To verify this effect, we performed lipidome analysis in a larger set of individuals and in the mitochondria-enriched membrane fraction, as well as directly quantified mitochondrial content. Our results suggest a substantial reduction of the mitochondrial quotient accompanied by the imbalance in myelin lipids in schizophrenia white matter.
Collapse
Affiliation(s)
- Dmitry Senko
- Skolkovo Institute of Science and Technology, Moscow, Russia.
| | - Olga Efimova
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Maria Osetrova
- Skolkovo Institute of Science and Technology, Moscow, Russia
- Mental Health Clinic No.1 Named After N. A. Alexeev of Moscow Healthcare Department, Moscow, Russia
| | | | - Maria Boyko
- Skolkovo Institute of Science and Technology, Moscow, Russia
- BIMAI-lab, Sharjah, UAE
| | - Maksim Sharaev
- Skolkovo Institute of Science and Technology, Moscow, Russia
- Mental Health Clinic No.1 Named After N. A. Alexeev of Moscow Healthcare Department, Moscow, Russia
- BIMAI-lab, Sharjah, UAE
| | - Anna Morozova
- Mental Health Clinic No.1 Named After N. A. Alexeev of Moscow Healthcare Department, Moscow, Russia
- Serbsky National Medical Research Centre of Psychiatry and Narcology, Moscow, Russia
| | - Yana Zorkina
- Mental Health Clinic No.1 Named After N. A. Alexeev of Moscow Healthcare Department, Moscow, Russia
- Serbsky National Medical Research Centre of Psychiatry and Narcology, Moscow, Russia
| | - Maksim Kislov
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Georgiy Kostyuk
- Mental Health Clinic No.1 Named After N. A. Alexeev of Moscow Healthcare Department, Moscow, Russia
- Lomonosov Moscow State University, Moscow, Russia
| | | | | |
Collapse
|
4
|
Hussain M, Khan I, Chaudhary MN, Ali K, Mushtaq A, Jiang B, Zheng L, Pan Y, Hu J, Zou X. Phosphatidylserine: A comprehensive overview of synthesis, metabolism, and nutrition. Chem Phys Lipids 2024; 264:105422. [PMID: 39097133 DOI: 10.1016/j.chemphyslip.2024.105422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Phosphatidylserine (PtdS) is classified as a glycerophospholipid and a primary anionic phospholipid and is particularly abundant in the inner leaflet of the plasma membrane in neural tissues. It is synthesized from phosphatidylcholine or phosphatidylethanolamine by exchanging the base head group with serine, and this reaction is catalyzed by PtdS synthase-1 and PtdS synthase-2 located in the endoplasmic reticulum. PtdS exposure on the outside surface of the cell is essential for eliminating apoptotic cells and initiating the blood clotting cascade. It is also a precursor of phosphatidylethanolamine, produced by PtdS decarboxylase in bacteria, yeast, and mammalian cells. Furthermore, PtdS acts as a cofactor for several necessary enzymes that participate in signaling pathways. Beyond these functions, several studies indicate that PtdS plays a role in various cerebral functions, including activating membrane signaling pathways, neuroinflammation, neurotransmission, and synaptic refinement associated with the central nervous system (CNS). This review discusses the occurrence of PtdS in nature and biosynthesis via enzymes and genes in plants, yeast, prokaryotes, mammalian cells, and the brain, and enzymatic synthesis through phospholipase D (PLD). Furthermore, we discuss metabolism, its role in the CNS, the fortification of foods, and supplementation for improving some memory functions, the results of which remain unclear. PtdS can be a potentially beneficial addition to foods for kids, seniors, athletes, and others, especially with the rising consumer trend favoring functional foods over conventional pills and capsules. Clinical studies have shown that PtdS is safe and well tolerated by patients.
Collapse
Affiliation(s)
- Mudassar Hussain
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Imad Khan
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Muneeba Naseer Chaudhary
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City/College of Food Science, Southwest University, Chongqing, 400715, China
| | - Khubaib Ali
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Anam Mushtaq
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Bangzhi Jiang
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Lei Zheng
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yuechao Pan
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jijie Hu
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xiaoqiang Zou
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
5
|
Alashmali S. Nutritional roles and therapeutic potentials of dietary sphingomyelin in brain diseases. J Clin Biochem Nutr 2024; 74:185-191. [PMID: 38799143 PMCID: PMC11111474 DOI: 10.3164/jcbn.23-97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/12/2023] [Indexed: 05/29/2024] Open
Abstract
Sphingolipids have recently gained interest as potential players in variety of diseases due to their import roles in human body particularly, the brain. As sphingomyelin is the most common type of sphingolipids, deficits in its distribution to brain cells may contribute to neurological anomalies. However, data is limited regarding the impact of different levels of dietary sphingomyelin intake on neural function especially if this approach can boost cognition and prevent neurological disorders. This review evaluates the effect of dietary sphingomyelin and its metabolites (ceramide and sphingosine-1-phosphate) in animal models and in humans, with a primary focus on its impact on brain health. Additionally, it proposes multiple neuroenhancing effects of sphingomyelin-rich diet. This presents an opportunity to stimulate further research that aims to determine the therapeutic value of dietary sphingomyelin in preventing, improving or slowing the progression of central nervous system disorders.
Collapse
Affiliation(s)
- Shoug Alashmali
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
6
|
Alemán-Gómez Y, Baumgartner T, Klauser P, Cleusix M, Jenni R, Hagmann P, Conus P, Do KQ, Bach Cuadra M, Baumann PS, Steullet P. Multimodal Magnetic Resonance Imaging Depicts Widespread and Subregion Specific Anomalies in the Thalamus of Early-Psychosis and Chronic Schizophrenia Patients. Schizophr Bull 2023; 49:196-207. [PMID: 36065156 PMCID: PMC9810016 DOI: 10.1093/schbul/sbac113] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND HYPOTHESIS Although the thalamus has a central role in schizophrenia pathophysiology, contributing to sensory, cognitive, and sleep alterations, the nature and dynamics of the alterations occurring within this structure remain largely elusive. Using a multimodal magnetic resonance imaging (MRI) approach, we examined whether anomalies: (1) differ across thalamic subregions/nuclei, (2) are already present in the early phase of psychosis (EP), and (3) worsen in chronic schizophrenia (SCHZ). STUDY DESIGN T1-weighted and diffusion-weighted images were analyzed to estimate gray matter concentration (GMC) and microstructural parameters obtained from the spherical mean technique (intra-neurite volume fraction [VFINTRA)], intra-neurite diffusivity [DIFFINTRA], extra-neurite mean diffusivity [MDEXTRA], extra-neurite transversal diffusivity [TDEXTRA]) within 7 thalamic subregions. RESULTS Compared to age-matched controls, the thalamus of EP patients displays previously unreported widespread microstructural alterations (VFINTRA decrease, TDEXTRA increase) that are associated with similar alterations in the whole brain white matter, suggesting altered integrity of white matter fiber tracts in the thalamus. In both patient groups, we also observed more localized and heterogenous changes (either GMC decrease, MDEXTRA increase, or DIFFINTRA decrease) in mediodorsal, posterior, and ventral anterior parts of the thalamus in both patient groups, suggesting that the nature of the alterations varies across subregions. GMC and DIFFINTRA in the whole thalamus correlate with global functioning, while DIFFINTRA in the subregion encompassing the medial pulvinar is significantly associated with negative symptoms in SCHZ. CONCLUSION Our data reveals both widespread and more localized thalamic anomalies that are already present in the early phase of psychosis.
Collapse
Affiliation(s)
- Yasser Alemán-Gómez
- Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Psychiatry, Center for Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Prilly, Switzerland
| | - Thomas Baumgartner
- Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Paul Klauser
- Department of Psychiatry, Center for Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Prilly, Switzerland
- Department of Psychiatry, Service of Child and Adolescent Psychiatry, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Martine Cleusix
- Department of Psychiatry, Center for Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Prilly, Switzerland
| | - Raoul Jenni
- Department of Psychiatry, Center for Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Prilly, Switzerland
| | - Patric Hagmann
- Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Philippe Conus
- Department of Psychiatry, Service of General Psychiatry, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Kim Q Do
- Department of Psychiatry, Center for Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Prilly, Switzerland
| | - Meritxell Bach Cuadra
- Medical Image Analysis Laboratory (MIAL), Centre d’Imagerie BioMédicale (CIBM), Switzerland
- Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Philipp S Baumann
- Department of Psychiatry, Service of General Psychiatry, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Pascal Steullet
- Department of Psychiatry, Center for Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Prilly, Switzerland
| |
Collapse
|
7
|
Adrien V, Bosc N, Fumat H, Tessier C, Ferreri F, Mouchabac S, Tareste D, Nuss P. Higher stress response and altered quality of life in schizophrenia patients with low membrane levels of docosahexaenoic acid. Front Psychiatry 2023; 14:1089724. [PMID: 36816405 PMCID: PMC9937080 DOI: 10.3389/fpsyt.2023.1089724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
Schizophrenia is a severe, chronic, and heterogeneous mental disorder that affects approximately 1% of the world population. Ongoing research aims at clustering schizophrenia heterogeneity into various "biotypes" to identify subgroups of individuals displaying homogeneous symptoms, etiopathogenesis, prognosis, and treatment response. The present study is in line with this approach and focuses on a biotype partly characterized by a specific membrane lipid composition. We have examined clinical and biological data of patients with stabilized schizophrenia, including the fatty acid content of their erythrocyte membranes, in particular the omega-3 docosahexaenoic acid (DHA). Two groups of patients of similar size were identified: the DHA- group (N = 19) with a lower proportion of membrane DHA as compared to the norm in the general population, and the DHAn group (N = 18) with a normal proportion of DHA. Compared to DHAn, DHA- patients had a higher number of hospitalizations and a lower quality of life in terms of perceived health and physical health. They also exhibited significant higher interleukin-6 and cortisol blood levels. These results emphasize the importance of measuring membrane lipid and immunoinflammatory biomarkers in stabilized patients to identify a specific subgroup and optimize non-pharmacological interventions. It could also guide future research aimed at proposing specific pharmacological treatments.
Collapse
Affiliation(s)
- Vladimir Adrien
- AP-HP, Sorbonne Université, Department of Psychiatry, Hôpital Saint-Antoine, Paris, France.,Infrastructure for Clinical Research in Neurosciences (iCRIN), Paris Brain Institute, Sorbonne Université, INSERM, CNRS, Paris, France.,Université Paris Cité, INSERM UMR-S 1266, Institut de Psychiatrie et Neurosciences de Paris, Paris, France
| | - Nicolas Bosc
- AP-HP, Sorbonne Université, Department of Psychiatry, Hôpital Saint-Antoine, Paris, France
| | - Hugo Fumat
- Université Paris Cité, INSERM UMR-S 1266, Institut de Psychiatrie et Neurosciences de Paris, Paris, France
| | - Cédric Tessier
- AP-HP, Sorbonne Université, Department of Psychiatry, Hôpital Saint-Antoine, Paris, France
| | - Florian Ferreri
- AP-HP, Sorbonne Université, Department of Psychiatry, Hôpital Saint-Antoine, Paris, France.,Infrastructure for Clinical Research in Neurosciences (iCRIN), Paris Brain Institute, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Stéphane Mouchabac
- AP-HP, Sorbonne Université, Department of Psychiatry, Hôpital Saint-Antoine, Paris, France.,Infrastructure for Clinical Research in Neurosciences (iCRIN), Paris Brain Institute, Sorbonne Université, INSERM, CNRS, Paris, France
| | - David Tareste
- Université Paris Cité, INSERM UMR-S 1266, Institut de Psychiatrie et Neurosciences de Paris, Paris, France
| | - Philippe Nuss
- AP-HP, Sorbonne Université, Department of Psychiatry, Hôpital Saint-Antoine, Paris, France.,Centre de Recherche Saint-Antoine, INSERM UMR S938, Sorbonne Université, Paris, France
| |
Collapse
|
8
|
Decreased Prosaposin and Progranulin in the Cingulate Cortex Are Associated with Schizophrenia Pathophysiology. Int J Mol Sci 2022; 23:ijms231912056. [PMID: 36233357 PMCID: PMC9570388 DOI: 10.3390/ijms231912056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/02/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022] Open
Abstract
Prosaposin (PSAP) and progranulin (PGRN) are two lysosomal proteins that interact and modulate the metabolism of lipids, particularly sphingolipids. Alterations in sphingolipid metabolism have been found in schizophrenia. Genetic associations of PSAP and PGRN with schizophrenia have been reported. To further clarify the role of PSAP and PGRN in schizophrenia, we examined PSAP and PGRN levels in postmortem cingulate cortex tissue from healthy controls along with patients who had suffered from schizophrenia, bipolar disorder, or major depressive disorder. We found that PSAP and PGRN levels are reduced specifically in schizophrenia patients. To understand the role of PSAP in the cingulate cortex, we used an AAV strategy to knock down PSAP in neurons located in this region. Neuronal PSAP knockdown led to the downregulation of neuronal PGRN levels and behavioral abnormalities. Cingulate-PSAP-deficient mice exhibited increased anxiety-like behavior and impaired prepulse inhibition, as well as intact locomotion, working memory, and a depression-like state. The behavioral changes were accompanied by increased early growth response protein 1 (EGR-1) and activity-dependent cytoskeleton-associated protein (ARC) levels in the sensorimotor cortex and hippocampus, regions implicated in circuitry dysfunction in schizophrenia. In conclusion, PSAP and PGRN downregulation in the cingulate cortex is associated with schizophrenia pathophysiology.
Collapse
|
9
|
Ma X, Li X, Wang W, Zhang M, Yang B, Miao Z. Phosphatidylserine, inflammation, and central nervous system diseases. Front Aging Neurosci 2022; 14:975176. [PMID: 35992593 PMCID: PMC9382310 DOI: 10.3389/fnagi.2022.975176] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Phosphatidylserine (PS) is an anionic phospholipid in the eukaryotic membrane and is abundant in the brain. Accumulated studies have revealed that PS is involved in the multiple functions of the brain, such as activation of membrane signaling pathways, neuroinflammation, neurotransmission, and synaptic refinement. Those functions of PS are related to central nervous system (CNS) diseases. In this review, we discuss the metabolism of PS, the anti-inflammation function of PS in the brain; the alterations of PS in different CNS diseases, and the possibility of PS to serve as a therapeutic agent for diseases. Clinical studies have showed that PS has no side effects and is well tolerated. Therefore, PS and PS liposome could be a promising supplementation for these neurodegenerative and neurodevelopmental diseases.
Collapse
Affiliation(s)
- Xiaohua Ma
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Xiaojing Li
- Suzhou Science and Technology Town Hospital, Suzhou, China
| | - Wenjuan Wang
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Meng Zhang
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Bo Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Bo Yang,
| | - Zhigang Miao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
- Zhigang Miao,
| |
Collapse
|
10
|
Pantazopoulos H, Hossain NM, Chelini G, Durning P, Barbas H, Zikopoulos B, Berretta S. Chondroitin Sulphate Proteoglycan Axonal Coats in the Human Mediodorsal Thalamic Nucleus. Front Integr Neurosci 2022; 16:934764. [PMID: 35875507 PMCID: PMC9298528 DOI: 10.3389/fnint.2022.934764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/21/2022] [Indexed: 12/21/2022] Open
Abstract
Mounting evidence supports a key involvement of the chondroitin sulfate proteoglycans (CSPGs) NG2 and brevican (BCAN) in the regulation of axonal functions, including axon guidance, fasciculation, conductance, and myelination. Prior work suggested the possibility that these functions may, at least in part, be carried out by specialized CSPG structures surrounding axons, termed axonal coats. However, their existence remains controversial. We tested the hypothesis that NG2 and BCAN, known to be associated with oligodendrocyte precursor cells, form axonal coats enveloping myelinated axons in the human brain. In tissue blocks containing the mediodorsal thalamic nucleus (MD) from healthy donors (n = 5), we used dual immunofluorescence, confocal microscopy, and unbiased stereology to characterize BCAN and NG2 immunoreactive (IR) axonal coats and measure the percentage of myelinated axons associated with them. In a subset of donors (n = 3), we used electron microscopy to analyze the spatial relationship between axons and NG2- and BCAN-IR axonal coats within the human MD. Our results show that a substantial percentage (∼64%) of large and medium myelinated axons in the human MD are surrounded by NG2- and BCAN-IR axonal coats. Electron microscopy studies show NG2- and BCAN-IR axonal coats are interleaved with myelin sheets, with larger axons displaying greater association with axonal coats. These findings represent the first characterization of NG2 and BCAN axonal coats in the human brain. The large percentage of axons surrounded by CSPG coats, and the role of CSPGs in axonal guidance, fasciculation, conductance, and myelination suggest that these structures may contribute to several key axonal properties.
Collapse
Affiliation(s)
- Harry Pantazopoulos
- Department of Psychiatry and Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
| | | | - Gabriele Chelini
- Translational Neuroscience Laboratory, Mclean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Peter Durning
- Translational Neuroscience Laboratory, Mclean Hospital, Belmont, MA, United States
| | - Helen Barbas
- Department of Health Sciences, Boston University, Boston, MA, United States
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
- Neural Systems Laboratory, Boston University, Boston, MA, United States
| | - Basilis Zikopoulos
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
- Neural Systems Laboratory, Boston University, Boston, MA, United States
| | - Sabina Berretta
- Translational Neuroscience Laboratory, Mclean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Program in Neuroscience, Harvard Medical School, Boston, MA, United States
- *Correspondence: Sabina Berretta,
| |
Collapse
|
11
|
Li M, Gao Y, Wang D, Hu X, Jiang J, Qing Y, Yang X, Cui G, Wang P, Zhang J, Sun L, Wan C. Impaired Membrane Lipid Homeostasis in Schizophrenia. Schizophr Bull 2022; 48:1125-1135. [PMID: 35751100 PMCID: PMC9434453 DOI: 10.1093/schbul/sbac011] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
BACKGROUND AND HYPOTHESIS Multiple lines of clinical, biochemical, and genetic evidence suggest that disturbances of membrane lipids and their metabolism are probably involved in the etiology of schizophrenia (SCZ). Lipids in the membrane are essential to neural development and brain function, however, their role in SCZ remains largely unexplored. STUDY DESIGN Here we investigated the lipidome of the erythrocyte membrane of 80 patients with SCZ and 40 healthy controls using ultra-performance liquid chromatography-mass spectrometry. Based on the membrane lipids profiling, we explored the potential mechanism of membrane phospholipids metabolism. STUDY RESULTS By comparing 812 quantified lipids, we found that in SCZ, membrane phosphatidylcholines and phosphatidylethanolamines, especially the plasmalogen, were significantly decreased. In addition, the total polyunsaturated fatty acids (PUFAs) in the membrane of SCZ were significantly reduced, resulting in a decrease in membrane fluidity. The accumulation of membrane oxidized lipids and the level of peripheral lipid peroxides increased, suggesting an elevated level of oxidative stress in SCZ. Further study of membrane-phospholipid-remodeling genes showed that activation of PLA2s and LPCATs expression in patients, supporting the imbalance of unsaturated and saturated fatty acyl remodeling in phospholipids of SCZ patients. CONCLUSIONS Our results suggest that the mechanism of impaired membrane lipid homeostasis is related to the activated phospholipid remodeling caused by excessive oxidative stress in SCZ. Disordered membrane lipids found in this study may reflect the membrane dysfunction in the central nervous system and impact neurotransmitter transmission in patients with SCZ, providing new evidence for the membrane lipids hypothesis of SCZ.
Collapse
Affiliation(s)
- Minghui Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Gao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Dandan Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaowen Hu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Jiang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Qing
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Xuhan Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Gaoping Cui
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Pengkun Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Juan Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Liya Sun
- To whom correspondence should be addressed; Bio-X Institutes, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China, tel: +86-021-62822491, fax: +86-021-62932059, e-mail: (C.W.), (L.S.)
| | - Chunling Wan
- To whom correspondence should be addressed; Bio-X Institutes, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China, tel: +86-021-62822491, fax: +86-021-62932059, e-mail: (C.W.), (L.S.)
| |
Collapse
|
12
|
Zhuo C, Zhao F, Tian H, Chen J, Li Q, Yang L, Ping J, Li R, Wang L, Xu Y, Cai Z, Song X. Acid sphingomyelinase/ceramide system in schizophrenia: implications for therapeutic intervention as a potential novel target. Transl Psychiatry 2022; 12:260. [PMID: 35739089 PMCID: PMC9226132 DOI: 10.1038/s41398-022-01999-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/09/2022] Open
Abstract
Schizophrenia is a severe mental illness, as the efficacies of current antipsychotic medications are far from satisfactory. An improved understanding of the signaling molecules involved in schizophrenia may provide novel therapeutic targets. Acid sphingomyelinase (ASM) catalyzes cellular membrane sphingomyelin into ceramide, which is further metabolized into sphingosine-1-phophate (S1P). ASM, ceramide, and S1P at the cell surface exert critical roles in the regulation of biophysical processes that include proliferation, apoptosis, and inflammation, and are thereby considered important signaling molecules. Although research on the ASM/ceramide system is still in its infancy, structural and metabolic abnormalities have been demonstrated in schizophrenia. ASM/ceramide system dysfunction is linked to the two important models of schizophrenia, the dopamine (DA) hypothesis through affecting presynaptic DA signaling, and the vulnerability-stress-inflammation model that includes the contribution of stress on the basis of genetic predisposition. In this review, we highlight the current knowledge of ASM/ceramide system dysfunction in schizophrenia gained from human and animal studies, and formulate future directions from the biological landscape for the development of new treatments. Collectively, these discoveries suggest that aberrations in the ASM/ceramide system, especially in ASM activity and levels of ceramide and S1P, may alter cerebral microdomain structure and neuronal metabolism, leading to neurotransmitter (e.g., DA) dysfunction and neuroinflammation. As such, the ASM/ceramide system may offer therapeutic targets for novel medical interventions. Normalization of the aberrant ASM/ceramide system or ceramide reduction by using approved functional inhibitors of ASM, such as fluvoxamine and rosuvastatin, may improve clinical outcomes of patients with schizophrenia. These transformative findings of the ASM/ceramide system in schizophrenia, although intriguing and exciting, may pose scientific questions and challenges that will require further studies for their resolution.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Key Laboratory of Real Time Tracing Brain Circuit, Tianjin Medical Affiliated Tianjin Fourth Center Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Fourth Hospital, 300140, Tianjin, China. .,The key Laboratory of Psychiatric-Neuroimaging-Genetics and Comorbidity (PNGC_Lab) of Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, 300222, Tianjin, China. .,Brain Micro-imaging Center of Psychiatric Animal Model, Wenzhou Seventh Peoples Hospital, 325000, Wenzhou, China. .,Department of Psychiatry, The Fourth Center Hospital of Tianjin Medical University, 300222, Tianjin, China. .,Key Laboratory of the Macro-Brain Neuroimaging Center of Animal Model, Wenzhou Seventh Peoples Hospital, 325000, Wenzhou, China. .,Department of Psychiatry, The First Hospital of Shanxi Medical University, 03000, Taiyuan, China. .,Department of Psychiatry, First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.
| | - Feifei Zhao
- Key Laboratory of the Macro-Brain Neuroimaging Center of Animal Model, Wenzhou Seventh Peoples Hospital, 325000 Wenzhou, China
| | - Hongjun Tian
- grid.265021.20000 0000 9792 1228Department of Psychiatry, The Fourth Center Hospital of Tianjin Medical University, 300222 Tianjin, China
| | - Jiayue Chen
- grid.265021.20000 0000 9792 1228Department of Psychiatry, The Fourth Center Hospital of Tianjin Medical University, 300222 Tianjin, China
| | - Qianchen Li
- grid.265021.20000 0000 9792 1228Department of Psychiatry, The Fourth Center Hospital of Tianjin Medical University, 300222 Tianjin, China
| | - Lei Yang
- grid.265021.20000 0000 9792 1228Department of Psychiatry, The Fourth Center Hospital of Tianjin Medical University, 300222 Tianjin, China
| | - Jing Ping
- Key Laboratory of the Macro-Brain Neuroimaging Center of Animal Model, Wenzhou Seventh Peoples Hospital, 325000 Wenzhou, China
| | - Ranli Li
- Key Laboratory of the Macro-Brain Neuroimaging Center of Animal Model, Wenzhou Seventh Peoples Hospital, 325000 Wenzhou, China
| | - Lina Wang
- Key Laboratory of the Macro-Brain Neuroimaging Center of Animal Model, Wenzhou Seventh Peoples Hospital, 325000 Wenzhou, China
| | - Yong Xu
- grid.452461.00000 0004 1762 8478Department of Psychiatry, The First Hospital of Shanxi Medical University, 03000 Taiyuan, China
| | - Ziyao Cai
- Key Laboratory of the Macro-Brain Neuroimaging Center of Animal Model, Wenzhou Seventh Peoples Hospital, 325000 Wenzhou, China
| | - Xueqin Song
- Department of Psychiatry, First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.
| |
Collapse
|
13
|
Increased PLA 2 activity in individuals at ultra-high risk for psychosis. Eur Arch Psychiatry Clin Neurosci 2021; 271:1593-1599. [PMID: 33677687 DOI: 10.1007/s00406-021-01246-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/24/2021] [Indexed: 10/22/2022]
Abstract
Phospholipase A2 is the main enzyme in the metabolism of membrane phospholipids. It comprises a family of enzymes divided into iPLA2, cPLA2 and sPLA2. Studies have reported increased PLA2 activity in psychotic patients, which suggests an accelerated breakdown of membrane phospholipids. In the present study we investigated whether increased PLA2 activity is also present in individuals at ultra-high risk (UHR) for psychosis. One-hundred fifty adults were included in this study (85 UHR and 65 controls). UHR was assessed using the "structured interview for prodromal syndromes". PLA2 activity was determined in platelets by a radio-enzymatic assay. We found in UHR individuals increased activities of iPLA2 (p < 0.001) and cPLA2 (p = 0.012) as compared to controls. No correlations were found between socio-demographic and clinical parameters and PLA2 activity. Our findings suggest that increased PLA2 activities may be useful as a biological risk-marker for psychotic disorders.
Collapse
|
14
|
Karabicici M, Azbazdar Y, Iscan E, Ozhan G. Misregulation of Wnt Signaling Pathways at the Plasma Membrane in Brain and Metabolic Diseases. MEMBRANES 2021; 11:844. [PMID: 34832073 PMCID: PMC8621778 DOI: 10.3390/membranes11110844] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/23/2021] [Accepted: 10/27/2021] [Indexed: 12/26/2022]
Abstract
Wnt signaling pathways constitute a group of signal transduction pathways that direct many physiological processes, such as development, growth, and differentiation. Dysregulation of these pathways is thus associated with many pathological processes, including neurodegenerative diseases, metabolic disorders, and cancer. At the same time, alterations are observed in plasma membrane compositions, lipid organizations, and ordered membrane domains in brain and metabolic diseases that are associated with Wnt signaling pathway activation. Here, we discuss the relationships between plasma membrane components-specifically ligands, (co) receptors, and extracellular or membrane-associated modulators-to activate Wnt pathways in several brain and metabolic diseases. Thus, the Wnt-receptor complex can be targeted based on the composition and organization of the plasma membrane, in order to develop effective targeted therapy drugs.
Collapse
Affiliation(s)
- Mustafa Karabicici
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir 35340, Turkey; (M.K.); (Y.A.); (E.I.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir 35340, Turkey
| | - Yagmur Azbazdar
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir 35340, Turkey; (M.K.); (Y.A.); (E.I.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir 35340, Turkey
| | - Evin Iscan
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir 35340, Turkey; (M.K.); (Y.A.); (E.I.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir 35340, Turkey
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir 35340, Turkey; (M.K.); (Y.A.); (E.I.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir 35340, Turkey
| |
Collapse
|
15
|
Liu J, Xiu M, Liu H, Wang J, Li X. Plasma Lysophosphatidylcholine and Lysophosphatidylethanolamine Levels Were Associated With the Therapeutic Response to Olanzapine in Female Antipsychotics-naïve First-episode Patients With Schizophrenia. Front Pharmacol 2021; 12:735196. [PMID: 34603051 PMCID: PMC8481943 DOI: 10.3389/fphar.2021.735196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/06/2021] [Indexed: 01/31/2023] Open
Abstract
Background: Accumulating studies have shown that the pathophysiology of schizophrenia may be associated with aberrant lysophospolipid metabolism in the early stage of brain development. Recent evidence demonstrates that antipsychotic medication can regulate the phospholipase activity. However, it remains unclear whether lysophospolipid is associated with the therapeutic response to antipsychotic medication in schizophrenia. This study aimed to investigate the influence of olanzapine monotherapy on lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE) and the association between symptom improvement and changes of LPC and LPE levels during treatment in antipsychotic-naïve first-episode (ANFE) patients. Materials and Methods: The psychotic symptoms were evaluated by the Positive and Negative Syndrome Scale (PANSS). 25 ANFE patients were treated with olanzapine for 1 mo. The levels of LPC and LPE were determined and psychotic symptoms were assessed at baseline and at 1-mo follow-up. Results: Relative to baseline, the psychotic symptoms were significantly reduced after olanzapine treatment, except for negative symptoms. Moreover, the levels of most LPC and LPE increased after treatment. Interestingly, increased LPC(18:3) and LPC(20:2) levels were positively associated with the reduction rates of PANSS positive subscore. In addition, baseline levels of LPE(20:5), LPE(18:3) and LPE(22:5) were predictors for the reduction of positive symptoms. Conclusion: Our study reveals that the levels of lysophospolipid are associated with the improvement of positive symptoms, indicating that LPC may be a potential therapeutic target for olanzapine in schizophrenia. Moreover, baseline LPE levels were predictive biomarkers for the therapeutic response to olanzapine in the early stage of treatment in ANFE patients.
Collapse
Affiliation(s)
- Jiahong Liu
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China
| | - Meihong Xiu
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Haixia Liu
- Department of Psychiatry, Shandong Mental Health Center, Jinan, China
| | - Jun Wang
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Xirong Li
- Department of Psychiatry, Shandong Mental Health Center, Jinan, China
| |
Collapse
|
16
|
Zhou C, Cai M, Wang Y, Wu W, Yin Y, Wang X, Hu G, Wang H, Tan Q, Peng Z. The Effects of Repetitive Transcranial Magnetic Stimulation on Cognitive Impairment and the Brain Lipidome in a Cuprizone-Induced Mouse Model of Demyelination. Front Neurosci 2021; 15:706786. [PMID: 34335176 PMCID: PMC8316767 DOI: 10.3389/fnins.2021.706786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/24/2021] [Indexed: 01/05/2023] Open
Abstract
The protective effects of repetitive transcranial magnetic stimulation (rTMS) on myelin integrity have been extensively studied, and growing evidence suggests that rTMS is beneficial in improving cognitive functions and promoting myelin repair. However, the association between cognitive improvement due to rTMS and changes in brain lipids remains elusive. In this study, we used the Y-maze and 3-chamber tests, as well as a mass spectrometry-based lipidomic approach in a CPZ-induced demyelination model in mice to assess the protective effects of rTMS on cuprizone (CPZ)-induced cognitive impairment and evaluate changes in lipid composition in the hippocampus, prefrontal cortex, and striatum. We found that CPZ induced cognitive impairment and remarkable changes in brain lipids, specifically in glycerophospholipids. Moreover, the changes in lipids within the prefrontal cortex were more extensive, compared to those observed in the hippocampus and striatum. Notably, rTMS ameliorated CPZ-induced cognitive impairment and partially normalized CPZ-induced lipid changes. Taken together, our data suggest that rTMS may reverse cognitive behavioral changes caused by CPZ-induced demyelination by modulating the brain lipidome, providing new insights into the therapeutic mechanism of rTMS.
Collapse
Affiliation(s)
- Cuihong Zhou
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Shaanxi Key Lab of Free Radical Biology and Medicine, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Department of Toxicology, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Min Cai
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ying Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wenjun Wu
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yuezhen Yin
- Minkang Hospital, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Xianli Wang
- Minkang Hospital, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Guangtao Hu
- Department of Psychiatry, Southwest Hospital, Army Medical University, Chongqing, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Qingrong Tan
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhengwu Peng
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Shaanxi Key Lab of Free Radical Biology and Medicine, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Department of Toxicology, School of Public Health, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
17
|
Park HJ, Kang WS, Kim JW. Association between the promoter haplotype of RTN4 gene and schizophrenia in a Korean population. Psychiatry Res 2021; 299:113841. [PMID: 33721786 DOI: 10.1016/j.psychres.2021.113841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/25/2021] [Indexed: 11/15/2022]
Abstract
Previous studies have suggested the involvement of Nogo-A/RTN4 in the pathogenesis of schizophrenia. We investigated an association between the promoter haplotypes of RTN4 comprised of rs1348528-rs1822618-rs2241958 and schizophrenia. A significant association between the rare TGA haplotype and schizophrenia was shown (p < 0.0001). Additionally, the promoter activity was profoundly decreased by the TGA haplotype. These results suggested that the TGA haplotype of RTN4 may contribute to the susceptibility of schizophrenia.
Collapse
Affiliation(s)
- Hae Jeong Park
- Department of Pharmacology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Won Sub Kang
- Department of Neuropsychiatry, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jong Woo Kim
- Department of Neuropsychiatry, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
18
|
Wang D, Sun X, Maziade M, Mao W, Zhang C, Wang J, Cao B. Characterising phospholipids and free fatty acids in patients with schizophrenia: A case-control study. World J Biol Psychiatry 2021; 22:161-174. [PMID: 32677491 DOI: 10.1080/15622975.2020.1769188] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Previous studies have indicated that schizophrenia (SCZ) is linked to abnormal phospholipid and fatty acid metabolism. However, comprehensive analysis of phospholipids and free fatty acids (FFAs) for SCZ is very limited. Herein, we sought to compare serum levels of phospholipids and FFAs between patients with SCZ and healthy controls (HCs). METHODS One hundred and nineteen SCZ patients and 109 HCs were enrolled in the study. The levels of 177 phospholipids and FFAs were measured in serum samples using a targeted liquid chromatography-mass spectrometry (LC-MS)-based platform. RESULTS One hundred and ten metabolites, including 16 FFAs, 25 phosphatidylcholines, 23 lysophosphatidylcholines, 11 phosphatidylcholine plasmalogens, 7 phosphatidylethanolamines, 9 lysophosphatidylethanolamines, 6 phosphatidylethanolamine plasmalogens, and 13 sphingomyelins, were observed to be significantly altered in SCZ patients compared to HCs. These disturbances may represent underlying pathophysiology, including but not limited to altered activity of phospholipases and acyltransferases, increased oxidative stress, dysfunctional oligodendrocyte glycosynapses, and elevated lipid mobilisation and β-oxidation. CONCLUSIONS Our findings suggest that complex lipid profile abnormalities are associated with SCZ. This study may contribute to investigating the role of phospholipid and FFA alterations in the pathoetiology of SCZ.
Collapse
Affiliation(s)
- Dongfang Wang
- Institute of Blood Transfusion, Chongqing Blood Center, Chongqing, P. R. China.,Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, P. R. China
| | - Xiaoyu Sun
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, P. R. China
| | - Michel Maziade
- Centre de recherche CERVO, Centre Intégré Universitaire de Santé et des Services Sociaux de la Capitale-Nationale, Québec, Canada.,Département de Psychiatrie et Neurosciences, Faculté de Médecine, Université Laval, Québec, Canada
| | - Wei Mao
- Institute of Blood Transfusion, Chongqing Blood Center, Chongqing, P. R. China
| | - Chuanbo Zhang
- Psychiatric Department, Weifang Mental Health Center, Weifang, P. R. China
| | - Jingyu Wang
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, P. R. China.,Peking University Medical and Health Analysis Center, Peking University, Beijing, P. R. China.,Vaccine Research Center, School of Public Health, Peking University, Beijing, P. R. China
| | - Bing Cao
- School of Psychology and Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing, P. R. China
| |
Collapse
|
19
|
Esaki K, Balan S, Iwayama Y, Shimamoto-Mitsuyama C, Hirabayashi Y, Dean B, Yoshikawa T. Evidence for Altered Metabolism of Sphingosine-1-Phosphate in the Corpus Callosum of Patients with Schizophrenia. Schizophr Bull 2020; 46:1172-1181. [PMID: 32346731 PMCID: PMC7505171 DOI: 10.1093/schbul/sbaa052] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The disturbed integrity of myelin and white matter, along with dysregulation of the lipid metabolism, may be involved in schizophrenia pathophysiology. Considering the crucial role of sphingolipids in neurodevelopment, particularly in oligodendrocyte differentiation and myelination, we examined the role of sphingolipid dynamics in the pathophysiology of schizophrenia. We performed targeted mass spectrometry-based analysis of sphingolipids from the cortical area and corpus callosum of postmortem brain samples from patients with schizophrenia and controls. We observed lower sphingosine-1-phosphate (S1P) levels, specifically in the corpus callosum of patients with schizophrenia, but not in major depressive disorder or bipolar disorder, when compared with the controls. Patient data and animal studies showed that antipsychotic intake did not contribute to the lowered S1P levels. We also found that lowered S1P levels in the corpus callosum of patients with schizophrenia may stem from the upregulation of genes for S1P-degrading enzymes; higher expression of genes for S1P receptors suggested a potential compensatory mechanism for the lowered S1P levels. A higher ratio of the sum of sphingosine and ceramide to S1P, which can induce apoptosis and cell-cycle arrest, was also observed in the samples of patients with schizophrenia than in controls. These results suggest that an altered S1P metabolism may underlie the deficits in oligodendrocyte differentiation and myelin formation, leading to the structural and molecular abnormalities of white matter reported in schizophrenia. Our findings may pave the way toward a novel therapeutic strategy.
Collapse
Affiliation(s)
- Kayoko Esaki
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
| | - Shabeesh Balan
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
| | - Yoshimi Iwayama
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
- Support Unit for Bio-Material Analysis, Research Division, RIKEN Center for Brain Science, Saitama, Japan
| | | | - Yoshio Hirabayashi
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
| | - Brian Dean
- The Florey Institute of Neuroscience and Mental Health, Howard Florey Laboratories, The University of Melbourne, Victoria, Australia
- The Centre for Mental Health, Swinburne University, Victoria, Australia
| | - Takeo Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
| |
Collapse
|
20
|
Shimamoto-Mitsuyama C, Nakaya A, Esaki K, Balan S, Iwayama Y, Ohnishi T, Maekawa M, Toyota T, Dean B, Yoshikawa T. Lipid Pathology of the Corpus Callosum in Schizophrenia and the Potential Role of Abnormal Gene Regulatory Networks with Reduced Microglial Marker Expression. Cereb Cortex 2020; 31:448-462. [PMID: 32924060 PMCID: PMC7727339 DOI: 10.1093/cercor/bhaa236] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
Structural changes in the corpus callosum have been reported in schizophrenia; however, the underlying molecular mechanism remains unclear. As the corpus callosum is high in lipid content, we analyzed the lipid contents of the corpora callosa from 15 patients with schizophrenia and 15 age- and sex-matched controls using liquid chromatography coupled to tandem mass spectrometry and identified lipid combinations associated with schizophrenia. Real-time quantitative polymerase chain reaction analyses using extended samples (schizophrenia, n = 95; control, n = 91) showed low expression levels of lipid metabolism-related genes and their potential upstream transcription factors in schizophrenia. Subsequent pathway analysis identified a gene regulatory network where nuclear factor of activated T cells 2 (NFATC2) is placed most upstream. We also observed low gene expression levels of microglial markers, inflammatory cytokines, and colony-stimulating factor 1 receptor (CSF1R), which is known to regulate the density of microglia, in the corpus callosum in schizophrenia. The interactions between CSF1R and several genes in the presently identified gene network originating from NFATC2 have been reported. Collectively, this study provides evidence regarding lipid abnormalities in the corpora callosa of patients with schizophrenia and proposes the potential role of impaired “NFATC2-relevant gene network-microglial axis” as its underlying mechanism.
Collapse
Affiliation(s)
| | - Akihiro Nakaya
- Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan.,Laboratory of Genome Data Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Kayoko Esaki
- Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Shabeesh Balan
- Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Yoshimi Iwayama
- Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan.,Support Unit for Bio-Material Analysis, Research Resources Division, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Tetsuo Ohnishi
- Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Motoko Maekawa
- Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Tomoko Toyota
- Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Brian Dean
- The Florey Institute of Neuroscience and Mental Health, Howard Florey Laboratories, The University of Melbourne, Parkville, Victoria, Australia.,The Centre for Mental Health, Swinburne University, Hawthorn, Victoria, Australia
| | - Takeo Yoshikawa
- Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan
| |
Collapse
|
21
|
Zhou CH, Xue SS, Xue F, Liu L, Liu JC, Ma QR, Qin JH, Tan QR, Wang HN, Peng ZW. The impact of quetiapine on the brain lipidome in a cuprizone-induced mouse model of schizophrenia. Biomed Pharmacother 2020; 131:110707. [PMID: 32905942 DOI: 10.1016/j.biopha.2020.110707] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022] Open
Abstract
The antipsychotic effect of Quetiapine (Que) has been extensively studied and growing evidence suggests that Que has a beneficial effect, improving cognitive functions and promoting myelin repair. However, the effects of Que on the brain lipidome and the association between Que-associated cognitive improvement and changes in lipids remain elusive. In the present study, we assessed the cognitive protective effects of Que treatment and used a mass spectrometry-based lipidomic approach to evaluated changes in lipid composition in the hippocampus, prefrontal cortex (PFC), and striatum in a mouse model of cuprizone (CPZ)-induced demyelination. CPZ induces cognitive impairment and remarkable lipid changes in the brain, specifically in lipid species of glycerophospholipids and sphingolipids. Moreover, the changes in lipid classes of the PFC were more extensive than those observed in the hippocampus and striatum. Notably, Que treatment ameliorated cuprizone-induced cognitive impairment and partly normalized CPZ-induced lipid changes. Taken together, our data suggest that Que may rescue cognitive behavioral changes from CPZ-induced demyelination through modulation of the brain lipidome, providing new insights into the pharmacological mechanism of Que for schizophrenia.
Collapse
Affiliation(s)
- Cui-Hong Zhou
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China; Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Shan-Shan Xue
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China; Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Fen Xue
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Ling Liu
- Institute of Neuroscience, Fourth Military Medical University, Xi'an, 710032, China
| | - Jun-Chang Liu
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Quan-Rui Ma
- Department of Pediatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China; Department of Human Anatomy and Histology and Embryology, Basic Medical College, Ningxia Medical University, 750004, China
| | - Jun-Hui Qin
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Qing-Rong Tan
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Hua-Ning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Zheng-Wu Peng
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China; Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
22
|
Zhou X, Long T, Haas GL, Cai H, Yao JK. Reduced Levels and Disrupted Biosynthesis Pathways of Plasma Free Fatty Acids in First-Episode Antipsychotic-Naïve Schizophrenia Patients. Front Neurosci 2020; 14:784. [PMID: 32848558 PMCID: PMC7403507 DOI: 10.3389/fnins.2020.00784] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 07/03/2020] [Indexed: 01/01/2023] Open
Abstract
Membrane phospholipid deficits have been well-documented in schizophrenia (SZ) patients. Free fatty acids (FFAs) partially come from the hydrolysis of membrane phospholipids and serve as the circulating pool of body fatty acids. These FFAs are involved in many important biochemical reactions such as membrane regeneration, oxidation, and prostaglandin production which may have important implications in SZ pathology. Thus, we compared plasma FFA levels and profiles among healthy controls (HCs), affective psychosis (AP) patients, and first-episode antipsychotic-naïve schizophrenia (FEANS) patients. A significant reduction of total FFAs levels was observed in SZ patients. Specifically, significant reductions of 16:0, 18:2n6c, and 20:4n6 levels were detected in FEANS patients but not in APs when compared with levels in HCs. Also, disrupted metabolism of fatty acids especially in saturated and n-6 fatty acid families were observed by comparing correlations between precursor and product fatty acid levels within each fatty acid family. These findings may suggest an increased demand of membrane regeneration, a homeostatic imbalance of fatty acid biosynthesis pathway and a potential indication of increased beta oxidation. Collectively, these findings could help us better understand the lipid metabolism with regard to SZ pathophysiology.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
- Medical Research Service and The VISN 4 Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, United States
| | - Tao Long
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
- Medical Research Service and The VISN 4 Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, United States
| | - Gretchen L. Haas
- Medical Research Service and The VISN 4 Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, United States
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - HuaLin Cai
- The Department of Pharmacy, The second Xiangya Hospital of Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Jeffrey K. Yao
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
- Medical Research Service and The VISN 4 Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, United States
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
23
|
de Almeida V, Alexandrino GL, Aquino A, Gomes AF, Murgu M, Dobrowolny H, Guest PC, Steiner J, Martins-de-Souza D. Changes in the blood plasma lipidome associated with effective or poor response to atypical antipsychotic treatments in schizophrenia patients. Prog Neuropsychopharmacol Biol Psychiatry 2020; 101:109945. [PMID: 32304808 DOI: 10.1016/j.pnpbp.2020.109945] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/06/2020] [Accepted: 04/14/2020] [Indexed: 02/02/2023]
Abstract
Atypical antipsychotics are widely used to manage schizophrenia symptoms. However, these drugs can induce deleterious side effects, such as MetS, which are associated with an increased cardiovascular risk to patients. Lipids play a central role in this context, and changes in lipid metabolism have been implicated in schizophrenia's pathobiology. Furthermore, recent evidence suggests that lipidome changes may be related to antipsychotic treatment response. The aim of this study was to evaluate the lipidome changes in blood plasma samples of schizophrenia patients before and after 6 weeks of treatment with either risperidone, olanzapine, or quetiapine. Liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis showed changes in the levels of ceramides (Cer), glycerophosphatidic acids (PA), glycerophosphocholines (PC), phosphatidylethanolamines (PE), phosphatidylinositols (PI), glycerophosphoglycerols (PG), and phosphatidylserines (PS) for all treatments. However, the treatment with risperidone also affected diacylglycerides (DG), ceramide 1-phosphates (CerP), triglycerides (TG), sphingomyelins (SM), and ceramide phosphoinositols (PI-Cer). Moreover, specific lipid profiles were observed that could be used to distinguish poor and good responders to the different antipsychotics. As such, further work in this area may lead to lipid-based biomarkers that could be used to improve the clinical management of schizophrenia patients.
Collapse
Affiliation(s)
- Valéria de Almeida
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Guilherme L Alexandrino
- Gas Chromatography Laboratory, Chemistry Institute, University of Campinas(UNICAMP), Campinas, SP, Brazil
| | - Adriano Aquino
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Alexandre F Gomes
- Mass Spectrometry Applications & Development Laboratory, Waters Corporation, São Paulo, SP, Brazil
| | - Michael Murgu
- Mass Spectrometry Applications & Development Laboratory, Waters Corporation, São Paulo, SP, Brazil
| | - Henrik Dobrowolny
- Department of Psychiatry and Psychotherapy, University of Magdeburg, Magdeburg, Germany; The Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Johann Steiner
- Department of Psychiatry and Psychotherapy, University of Magdeburg, Magdeburg, Germany; The Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), São Paulo, Brazil; Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, Brazil; D'Or Institute for Research and Education (IDOR), São Paulo, Brazil.
| |
Collapse
|
24
|
Pant DC, Aguilera-Albesa S, Pujol A. Ceramide signalling in inherited and multifactorial brain metabolic diseases. Neurobiol Dis 2020; 143:105014. [PMID: 32653675 DOI: 10.1016/j.nbd.2020.105014] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/13/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022] Open
Abstract
In recent years, research on sphingolipids, particularly ceramides, has attracted increased attention, revealing the important roles and many functions of these molecules in several human neurological disorders. The nervous system is enriched with important classes of sphingolipids, e.g., ceramide and its derivatives, which compose the major portion of this group, particularly in the form of myelin. Ceramides have also emerged as important nodes for lipid signalling, both inside the cell and between cells. Until recently, knowledge about ceramides in the nervous system was limited, but currently, multiple links between ceramide signalling and neurological diseases have been reported. Alterations in the regulation of ceramide pathobiology have been shown to influence the risk of developing neurometabolic diseases. Thus, these molecules are critically important in the maintenance and development of the nervous system and are culprits or major contributors to the development of brain disorders, either inherited or multifactorial. In the present review, we highlight the critical role of ceramide signalling in several different neurological disorders as well as the effects of their perturbations and discuss how this emerging class of bioactive sphingolipids has attracted interest in the field of neurological diseases.
Collapse
Affiliation(s)
- Devesh C Pant
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Sergio Aguilera-Albesa
- Pediatric Neurology Unit, Department of Pediatrics, Navarra Health Service Hospital, Irunlarrea 4, 310620 Pamplona, Spain; Navarrabiomed-Miguel Servet Research Foundation, Pamplona, Spain
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, IDIBELL, Hospital Duran i Reynals, Gran Via 199, 08908, L'Hospitalet de Llobregat, Barcelona, Spain; Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Catalonia, Spain; Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain.
| |
Collapse
|
25
|
Joaquim HPG, Costa AC, Serpa MH, Talib LL, Gattaz WF. Reduced Annexin A3 in schizophrenia. Eur Arch Psychiatry Clin Neurosci 2020; 270:489-494. [PMID: 31372726 DOI: 10.1007/s00406-019-01048-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/23/2019] [Indexed: 12/17/2022]
Abstract
The cellular and molecular mechanisms underlying onset and development of schizophrenia have not yet been completely elucidated, but the association of disturbed neuroplasticity and inflammation has gained particular relevance recently. These mechanisms are linked to annexins functions. ANXA3, particularly, is associated to inflammation and membrane metabolism cascades. The aim was to determine the ANXA3 levels in first-onset drug-naïve psychotic patients. We investigated by western blot the protein expression of annexin A3 in platelets of first-onset, drug-naïve psychotic patients (diagnoses according to DSM-IV: 28 schizophrenia, 27 bipolar disorder) as compared to 30 age- and gender-matched healthy controls. Annexin A3 level was lower in schizophrenia patients as compared to healthy controls (p < 0.001) and to bipolar patients (p < 0.001). Twenty out of 28 schizophrenic patients had undetectable annexin A3 levels, as compared to none from the bipolar and none from the control subjects. ANXA3 was reduced in drug-naïve patients with schizophrenia. ANXA3 affects neuroplasticity, inflammation and apoptosis, as well as it modulates membrane phospholipid metabolism. All these processes have been discussed in regard to the biology of schizophrenia. In face of these data, we feel that further studies with larger samples are warranted to investigate the possible role of reduced ANXA3 as a possible risk marker for schizophrenia.
Collapse
Affiliation(s)
- Helena P G Joaquim
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, University of Sao Paulo, Rua Dr. Ovídio Pires de Campos, 785, 3º andar, São Paulo, SP, 05403-010, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Cientifico e Tecnológico, São Paulo, Brazil
| | - Alana Caroline Costa
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, University of Sao Paulo, Rua Dr. Ovídio Pires de Campos, 785, 3º andar, São Paulo, SP, 05403-010, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Cientifico e Tecnológico, São Paulo, Brazil
| | - Maurício Henriques Serpa
- Laboratory of Psychiatric Neuroimaging (LIM-21), Department and Institute of Psychiatry, University of Sao Paulo Medical School, São Paulo, Brazil
| | - Leda L Talib
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, University of Sao Paulo, Rua Dr. Ovídio Pires de Campos, 785, 3º andar, São Paulo, SP, 05403-010, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Cientifico e Tecnológico, São Paulo, Brazil
| | - Wagner F Gattaz
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, University of Sao Paulo, Rua Dr. Ovídio Pires de Campos, 785, 3º andar, São Paulo, SP, 05403-010, Brazil. .,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Cientifico e Tecnológico, São Paulo, Brazil.
| |
Collapse
|
26
|
Bayat F, Hosseinpour-Moghadam R, Mehryab F, Fatahi Y, Shakeri N, Dinarvand R, Ten Hagen TLM, Haeri A. Potential application of liposomal nanodevices for non-cancer diseases: an update on design, characterization and biopharmaceutical evaluation. Adv Colloid Interface Sci 2020; 277:102121. [PMID: 32092487 DOI: 10.1016/j.cis.2020.102121] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022]
Abstract
Liposomes, lipid-based vesicular systems, have attracted major interest as a means to improve drug delivery to various organs and tissues in the human body. Recent literature highlights the benefits of liposomes for use as drug delivery systems, including encapsulating of both hydrophobic and hydrophilic cargos, passive and active targeting, enhanced drug bioavailability and therapeutic effects, reduced systemic side effects, improved cargo penetration into the target tissue and triggered contents release. Pioneering work of liposomes researchers led to introduction of long-circulating, ligand-targeted and triggered release liposomes, as well as, liposomes containing nucleic acids and vesicles containing combination of cargos. Altogether, these findings have led to widespread application of liposomes in a plethora of areas from cancer to conditions such as cardiovascular, neurologic, respiratory, skin, autoimmune and eye disorders. There are numerous review articles on the application of liposomes in treatment of cancer, which seems the primary focus, whereas other diseases also benefit from liposome-mediated treatments. Therefore, this article provides an illustrated detailed overview of liposomal formulations, in vitro characterization and their applications in different disorders other than cancer. Challenges and future directions, which must be considered to obtain the most benefit from applications of liposomes in these disorders, are discussed.
Collapse
Affiliation(s)
- Fereshteh Bayat
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Hosseinpour-Moghadam
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mehryab
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Niayesh Shakeri
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rassoul Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Timo L M Ten Hagen
- Laboratory Experimental Surgical Oncology, Section Surgical Oncology, Department of Surgery, Erasmus MC Cancer Center, Rotterdam, the Netherlands.
| | - Azadeh Haeri
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
Interaction of Synaptosomal-Associated Protein 25 with Neutral Sphingomyelinase 2: Functional Impact on the Sphingomyelin Pathway. Neuroscience 2020; 427:1-15. [PMID: 31765623 DOI: 10.1016/j.neuroscience.2019.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 11/22/2022]
Abstract
Neurotransmitter release is mediated by ceramide, which is generated by sphingomyelin hydrolysis. In the present study, we examined whether synaptosomal-associated protein 25 (SNAP-25) is involved in ceramide production and exocytosis. Neutral sphingomyelinase 2 (nSMase2) was partially purified from bovine brain and we found that SNAP-25 was enriched in the nSMase2-containing fractions. In rat synaptosomes and PC12 cells, the immunoprecipitation pellet of anti-SNAP-25 antibody showed higher nSMase activity than the immunoprecipitation pellet of anti-nSMase2 antibody. In PC12 cells, SNAP-25 was colocalized with nSMase2. Transfection of SNAP-25 small interfering RNA (siRNA) significantly inhibited nSMase2 translocation to the plasma membrane. A23187-induced ceramide production was concomitantly reduced in SNAP-25 siRNA-transfected PC12 cells compared with that in scrambled siRNA-transfected cells. Moreover, transfection of SNAP-25 siRNA inhibited dopamine release, whereas addition of C6-ceramide to the siRNA-treated cells moderately reversed this inhibition. Additionally, nSMase2 inhibition reduced dopamine release. Collectively, our results indicate that SNAP-25 interacts with nSMase2 during ceramide production, which mediates exocytosis and neurotransmitter release.
Collapse
|
28
|
Profiling of lipidomics before and after antipsychotic treatment in first-episode psychosis. Eur Arch Psychiatry Clin Neurosci 2020; 270:59-70. [PMID: 30604052 DOI: 10.1007/s00406-018-0971-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 12/19/2018] [Indexed: 12/20/2022]
Abstract
Alterations in complex lipids may be involved in pathophysiology of schizophrenia spectrum disorders. Previously, we demonstrated importance of detecting lipid metabolism dysregulation by acylcarnitine (ACs) profile analysis in patients with first-episode psychosis (FEP). The aim of this study was to adopt lipidomics to identify serum glycerophospholipids (GPLs) and sphingomyelins (SMs) for describing FEP status before and after 7-month antipsychotic treatment. Using mass spectrometry and liquid chromatography technique, we profiled 105 individual lipids [14 lysophosphatidylcholines (LysoPCs), 76 phosphatidylcholines (PCs) and 15 SMs] in serum samples from 53 antipsychotic-naïve FEP patients, 44 of them were studied longitudinally and from 37 control subjects (CSs). Among the identified and quantified metabolites one LysoPC was elevated, and contrary the levels of 16 PCs as well as the level of one SM were significantly (p ≤ 0.0005) reduced in antipsychotic-naïve FEP patients compared to CSs. Comparison of serum lipids profiles of FEP patients before and after 7-month antipsychotic treatment revealed that 11 GPLs (2 LysoPCs, 9 PCs), and 2 SMs were found to be significantly changed (p ≤ 0.0005) in which GPLs were up-regulated, and SMs were down-regulated. However, no significant differences were noted when treated patient's serum lipid profiles were compared with CSs. Our findings suggest that complex lipid profile abnormalities are specifically associated with FEP and these discrepancies reflect two different disease-related pathways. Our findings provide insight into lipidomic information that may be used for monitoring FEP status and impact of the treatment in the early stage of the schizophrenia spectrum disorder.
Collapse
|
29
|
Beasley CL, Honer WG, Ramos-Miguel A, Vila-Rodriguez F, Barr AM. Prefrontal fatty acid composition in schizophrenia and bipolar disorder: Association with reelin expression. Schizophr Res 2020; 215:493-498. [PMID: 28583708 DOI: 10.1016/j.schres.2017.05.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/23/2017] [Accepted: 05/26/2017] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The extracellular matrix protein reelin regulates early brain development and synaptic plasticity in adulthood. Reelin is decreased in the postmortem brain in schizophrenia patients. Reelin's two receptors, ApoER2 and VLDLR, are also substrates for ApoE - a key lipoprotein that regulates phospholipid homeostasis in the brain. The goal of the present study was therefore to examine phospholipids and their constituent fatty acids, and determine whether there is an association between reelin, its receptors and phospholipids in the brain. METHODS Dorsolateral prefrontal cortex (BA9) grey matter was obtained from the Stanley Foundation Neuropathology Consortium. Samples included tissue from 35 controls, 35 schizophrenia and 34 bipolar disorder patients. Phospholipids were measured using gas liquid chromatography. RESULTS We quantified 15 individual fatty acid or plasmalogen species for phosphatidylethanolamine and phosphatidylcholine fractions, each comprising >0.5% of the total fatty acid pool. There were no group differences in phospholipids or individual fatty acid species after correcting for multiple comparisons. However, for the entire cohort, both the polyunsaturated subclass of fatty acids, and ApoE, correlated significantly with reelin expression, with a number of individual ω-6 fatty acid species also demonstrating a significant positive correlation. There was a non-significant trend for similar effects with VLDLR expression as for reelin. CONCLUSION Phospholipids and fatty acids in the dorsolateral cortex do not differ in patients with schizophrenia, bipolar disorder and controls. Reelin expression in this brain region is associated with polyunsaturated fatty acids and ApoE, suggesting further study of potential physiological interactions between these substrates is warranted.
Collapse
Affiliation(s)
- Clare L Beasley
- Department of Psychiatry, University of British Columbia, Vancouver, B.C. V6T 1Z3, Canada
| | - William G Honer
- Department of Psychiatry, University of British Columbia, Vancouver, B.C. V6T 1Z3, Canada
| | - Alfredo Ramos-Miguel
- Department of Psychiatry, University of British Columbia, Vancouver, B.C. V6T 1Z3, Canada
| | - Fidel Vila-Rodriguez
- Department of Psychiatry, University of British Columbia, Vancouver, B.C. V6T 1Z3, Canada
| | - Alasdair M Barr
- Department of Pharmacology, 2176 Health Sciences Mall, University of British Columbia, Vancouver, B.C. V6T 1Z3, Canada.
| |
Collapse
|
30
|
van Kruining D, Luo Q, van Echten-Deckert G, Mielke MM, Bowman A, Ellis S, Oliveira TG, Martinez-Martinez P. Sphingolipids as prognostic biomarkers of neurodegeneration, neuroinflammation, and psychiatric diseases and their emerging role in lipidomic investigation methods. Adv Drug Deliv Rev 2020; 159:232-244. [PMID: 32360155 PMCID: PMC7665829 DOI: 10.1016/j.addr.2020.04.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/21/2020] [Accepted: 04/26/2020] [Indexed: 02/06/2023]
Abstract
Lipids play an important role in neurodegeneration, neuroinflammation, and psychiatric disorders and an imbalance in sphingolipid levels is associated with disease. Although early diagnosis and intervention of these disorders would clearly have favorable long-term outcomes, no diagnostic tests currently exist that can accurately identify people at risk. Reliable prognostic biomarkers that are easily accessible would be beneficial to determine therapy and treatment response in clinical trials. Recent advances in lipidomic investigation methods have greatly progressed the knowledge of sphingolipids in neurodegenerative and psychiatric disorders over the past decades although more longitudinal studies are needed to understand its exact role in these disorders to be used as potential tools in the clinic. In this review, we give an overview of the current knowledge of sphingolipids in neurodegenerative and psychiatric disorders and explore recent advances in investigation methods. Finally, the potential of sphingolipid metabolism products and signaling molecules as potential biomarkers for diagnosis, prognostic, or surrogate markers of treatment response is discussed.
Collapse
Affiliation(s)
- Daan van Kruining
- Division of Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Qian Luo
- Division of Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Gerhild van Echten-Deckert
- LIMES Institute for Membrane Biology and Lipid Biochemistry, Kekulé-Institute, University of Bonn, Bonn, Germany
| | - Michelle M Mielke
- Department of Health Sciences Research and Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States
| | - Andrew Bowman
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, the Netherlands
| | - Shane Ellis
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, the Netherlands
| | - Tiago Gil Oliveira
- Life and Health Sciences Research Institute (ICVS), ICVS/3B's, School of Medicine, University of Minho, Braga, Portugal
| | - Pilar Martinez-Martinez
- Division of Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
31
|
Yu Q, He Z, Zubkov D, Huang S, Kurochkin I, Yang X, Halene T, Willmitzer L, Giavalisco P, Akbarian S, Khaitovich P. Lipidome alterations in human prefrontal cortex during development, aging, and cognitive disorders. Mol Psychiatry 2020; 25:2952-2969. [PMID: 30089790 PMCID: PMC7577858 DOI: 10.1038/s41380-018-0200-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/26/2018] [Accepted: 06/11/2018] [Indexed: 12/27/2022]
Abstract
Lipids are essential to brain functions, yet they remain largely unexplored. Here we investigated the lipidome composition of prefrontal cortex gray matter in 396 cognitively healthy individuals with ages spanning 100 years, as well as 67 adult individuals diagnosed with autism (ASD), schizophrenia (SZ), and Down syndrome (DS). Of the 5024 detected lipids, 95% showed significant age-dependent concentration differences clustering into four temporal stages, and resulting in a gradual increase in membrane fluidity in individuals ranging from newborn to nonagenarian. Aging affects 14% of the brain lipidome with late-life changes starting predominantly at 50-55 years of age-a period of general metabolic transition. All three diseases alter the brain lipidome composition, leading-among other things-to a concentration decrease in glycerophospholipid metabolism and endocannabinoid signaling pathways. Lipid concentration decreases in SZ were further linked to genetic variants associated with disease, indicating the relevance of the lipidome changes to disease progression.
Collapse
Affiliation(s)
- Qianhui Yu
- grid.9227.e0000000119573309Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031 China ,grid.419092.70000 0004 0467 2285CAS Key Laboratory of Compstudy has been deposited in the National Omics Datautational Biology, CAS-MPG Partner Institute for Computational Biology, SIBS, CAS, Shanghai, 200031 China
| | - Zhisong He
- grid.419092.70000 0004 0467 2285CAS Key Laboratory of Compstudy has been deposited in the National Omics Datautational Biology, CAS-MPG Partner Institute for Computational Biology, SIBS, CAS, Shanghai, 200031 China ,grid.454320.40000 0004 0555 3608Skolkovo Institute of Science and Technology, Moscow, 143028 Russia
| | - Dmitry Zubkov
- grid.454320.40000 0004 0555 3608Skolkovo Institute of Science and Technology, Moscow, 143028 Russia
| | - Shuyun Huang
- grid.419092.70000 0004 0467 2285CAS Key Laboratory of Compstudy has been deposited in the National Omics Datautational Biology, CAS-MPG Partner Institute for Computational Biology, SIBS, CAS, Shanghai, 200031 China ,grid.440637.20000 0004 4657 8879ShanghaiTech University, Shanghai, 200031 China
| | - Ilia Kurochkin
- grid.454320.40000 0004 0555 3608Skolkovo Institute of Science and Technology, Moscow, 143028 Russia
| | - Xiaode Yang
- grid.9227.e0000000119573309Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031 China ,grid.419092.70000 0004 0467 2285CAS Key Laboratory of Compstudy has been deposited in the National Omics Datautational Biology, CAS-MPG Partner Institute for Computational Biology, SIBS, CAS, Shanghai, 200031 China
| | - Tobias Halene
- grid.59734.3c0000 0001 0670 2351Department of Psychiatry and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Lothar Willmitzer
- grid.418390.70000 0004 0491 976XMax Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, Potsdam, 14476 Germany
| | - Patrick Giavalisco
- Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, Potsdam, 14476, Germany.
| | - Schahram Akbarian
- Department of Psychiatry and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Philipp Khaitovich
- Skolkovo Institute of Science and Technology, Moscow, 143028, Russia. .,ShanghaiTech University, Shanghai, 200031, China. .,Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany. .,Comparative Biology Group, CAS-MPG Partner Institute for Computational Biology, SIBS, CAS, Shanghai, 200031, China.
| |
Collapse
|
32
|
Enkavi G, Javanainen M, Kulig W, Róg T, Vattulainen I. Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Chem Rev 2019; 119:5607-5774. [PMID: 30859819 PMCID: PMC6727218 DOI: 10.1021/acs.chemrev.8b00538] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 12/23/2022]
Abstract
Biological membranes are tricky to investigate. They are complex in terms of molecular composition and structure, functional over a wide range of time scales, and characterized by nonequilibrium conditions. Because of all of these features, simulations are a great technique to study biomembrane behavior. A significant part of the functional processes in biological membranes takes place at the molecular level; thus computer simulations are the method of choice to explore how their properties emerge from specific molecular features and how the interplay among the numerous molecules gives rise to function over spatial and time scales larger than the molecular ones. In this review, we focus on this broad theme. We discuss the current state-of-the-art of biomembrane simulations that, until now, have largely focused on a rather narrow picture of the complexity of the membranes. Given this, we also discuss the challenges that we should unravel in the foreseeable future. Numerous features such as the actin-cytoskeleton network, the glycocalyx network, and nonequilibrium transport under ATP-driven conditions have so far received very little attention; however, the potential of simulations to solve them would be exceptionally high. A major milestone for this research would be that one day we could say that computer simulations genuinely research biological membranes, not just lipid bilayers.
Collapse
Affiliation(s)
- Giray Enkavi
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Matti Javanainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy
of Sciences, Flemingovo naḿesti 542/2, 16610 Prague, Czech Republic
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Waldemar Kulig
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Tomasz Róg
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Ilpo Vattulainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
- MEMPHYS-Center
for Biomembrane Physics
| |
Collapse
|
33
|
Wang D, Cheng SL, Fei Q, Gu H, Raftery D, Cao B, Sun X, Yan J, Zhang C, Wang J. Metabolic profiling identifies phospholipids as potential serum biomarkers for schizophrenia. Psychiatry Res 2019; 272:18-29. [PMID: 30579177 DOI: 10.1016/j.psychres.2018.12.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 12/02/2018] [Accepted: 12/02/2018] [Indexed: 01/16/2023]
Abstract
Schizophrenia (SCZ) is a multifactorial psychiatric disorder. However, the molecular pathogenesis of SCZ remains largely unknown, and no reliable diagnostic test is currently available. Phospholipid metabolism is known to be disturbed during disease processes of SCZ. In this study, we used an untargeted liquid chromatography-mass spectrometry (LC-MS)-based metabolic profiling approach to measure lipid metabolites in serum samples from 119 SCZ patients and 109 healthy controls, to identify potential lipid biomarkers for the discrimination between SCZ patients and healthy controls. 51 lipid metabolites were identified to be significant for discriminating SCZ patients from healthy controls, including phosphatidylcholines (PCs), lysophosphatidylcholines (LPCs), phosphatidylethanolamines (PEs), lysophosphatidylethanolamines (LPEs) and sphingomyelins (SMs). Compared to healthy controls, most PCs and LPCs, as well as all PEs in patients were decreased, while most LPEs and all SMs were increased. A panel of six lipid metabolites could effectively discriminate SCZ patients from healthy controls with an area under the receiver-operating characteristic curve of 0.991 in the training samples and 0.980 in the test samples. These findings suggest that extensive disturbances of phospholipids may be involved in the development of SCZ. This LC-MS-based metabolic profiling approach shows potential for the identification of putative serum biomarkers for the diagnosis of SCZ.
Collapse
Affiliation(s)
- Dongfang Wang
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing 100191, PR China; Chongqing Blood Center, Chongqing 400015, PR China
| | - Sunny Lihua Cheng
- School of Public Health, University of Washington, Seattle, WA 98105, USA
| | - Qiang Fei
- Department of Chemistry, Jilin University, Changchun, Jilin Province 130061, PR China
| | - Haiwei Gu
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Scottsdale, AZ 85259, USA
| | - Daniel Raftery
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | - Bing Cao
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing 100191, PR China
| | - Xiaoyu Sun
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing 100191, PR China
| | - Jingjing Yan
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing 100191, PR China
| | - Chuanbo Zhang
- Weifang Mental Health Center, Weifang, Shandong Province 262400, PR China
| | - Jingyu Wang
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China; Peking University Medical and Health Analysis Center, Peking University, Beijing 100191, PR China.
| |
Collapse
|
34
|
Iritani S, Torii Y, Habuchi C, Sekiguchi H, Fujishiro H, Yoshida M, Go Y, Iriki A, Isoda M, Ozaki N. The neuropathological investigation of the brain in a monkey model of autism spectrum disorder with ABCA13 deletion. Int J Dev Neurosci 2018; 71:130-139. [PMID: 30201574 DOI: 10.1016/j.ijdevneu.2018.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/31/2018] [Accepted: 09/03/2018] [Indexed: 02/06/2023] Open
Abstract
The precise biological etiology of autism spectrum disorder (ASD) remains unknown. In this study, we investigated the neuropathology of a monkey model of autism Human ABCA13 is the largest ABC transporter protein, with a length of 5058 amino acids and a predicted molecular weight of >450 kDa. However, the function of this protein remains to be elucidated. This protein is thought to be associated with major psychiatric disease. Using this monkey model of autism with an ABCA13 deletion and a mutation of 5HT2c, we neuropathologically investigated the changes in the neuronal formation in the frontal cortex. As a result, the neuronal formation in the cortex was found to be disorganized with regard to the neuronal size and laminal distribution in the ABCA13 deletion monkey. The catecholaminergic and GABAergic neuronal systems, serotoninergic neuronal formation (5HT2c) were also found to be impaired by an immunohistochemical evaluation. This study suggested that ABCA13 deficit induces the impairment of neuronal maturation or migration, and the function of the neuronal network. This protein might thus play a role in the neurodevelopmental function of the central nervous system and the dysfunction of this protein may be a pathophysiological cause of mental disorders including autism.
Collapse
Affiliation(s)
- Shuji Iritani
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.
| | - Youta Torii
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Chikako Habuchi
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Hirotaka Sekiguchi
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Hiroshige Fujishiro
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan
| | - Yasuhiro Go
- Department of Brain Sciences, Center for Novel Science Initiatives, National Institutes of Natural Sciences, Okazaki, Aichi, Japan; Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Japan; The Graduate University for Advanced Studies (Sokendai), Okazaki, Japan
| | - Astushi Iriki
- Laboratory for Symbolic Cognitive Developmen RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Masaki Isoda
- Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki, Aichi, Japan; Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Wako, Saitama, Japan; Department of Physiology, Kansai Medical University School of Medicine, Hirakata, Osaka, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
35
|
Cerebrospinal fluid levels of sphingolipids associate with disease severity in first episode psychosis patients. Schizophr Res 2018; 199:438-441. [PMID: 29627172 DOI: 10.1016/j.schres.2018.03.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/15/2018] [Accepted: 03/17/2018] [Indexed: 11/22/2022]
|
36
|
Juhola H, Postila PA, Rissanen S, Lolicato F, Vattulainen I, Róg T. Negatively Charged Gangliosides Promote Membrane Association of Amphipathic Neurotransmitters. Neuroscience 2018; 384:214-223. [DOI: 10.1016/j.neuroscience.2018.05.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 01/09/2023]
|
37
|
Brodowicz J, Przegaliński E, Müller CP, Filip M. Ceramide and Its Related Neurochemical Networks as Targets for Some Brain Disorder Therapies. Neurotox Res 2018; 33:474-484. [PMID: 28842833 PMCID: PMC5766709 DOI: 10.1007/s12640-017-9798-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 08/01/2017] [Accepted: 08/10/2017] [Indexed: 11/01/2022]
Abstract
Correlational and causal comparative research link ceramide (Cer), the precursor of complex sphingolipids, to some psychiatric (e.g., depression, schizophrenia (SZ), alcohol use disorder, and morphine antinociceptive tolerance) and neurological (e.g., Alzheimer's disease (AD), Parkinson disease (PD)) disorders. Cer generation can occur through the de novo synthesis pathway, the sphingomyelinase pathways, and the salvage pathway. The discoveries that plasma Cer concentration increase during depressive episodes in patients and that tricyclic and tetracyclic antidepressants functionally inhibit acid sphingomyelinase (ASM), the enzyme that catalyzes the degradation of sphingomyelin to Cer, have initiated a series of studies on the role of the ASM-Cer system in depressive disorder. Disturbances in the metabolism of Cer or SM are associated with the occurrence of SZ and PD. In both PD and SZ patients, the elevated levels of Cer or SM in the brain regions were associated with the disease. AD patients showed also an abnormal metabolism of brain Cer at early stages of the disease which may suggest Cer as an AD biomarker. In plasma of AD patients and in AD transgenic mice, ASM activity was increased. In contrast, partial ASM inhibition of Aβ deposition improved memory deficits. Furthermore, in clinical and preclinical research, ethanol enhanced activation of ASM followed by Cer production. Limited data have shown that Cer plays an important role in the development of morphine antinociceptive tolerance. In summary, clinical and preclinical findings provide evidence that targeting the Cer system should be considered as an innovative translational strategy for some brain disorders.
Collapse
Affiliation(s)
- Justyna Brodowicz
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688, Kraków, Poland
- Department of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343, Kraków, Poland
| | - Edmund Przegaliński
- Department of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343, Kraków, Poland
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Malgorzata Filip
- Department of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343, Kraków, Poland.
| |
Collapse
|
38
|
Ohi K, Sumiyoshi C, Fujino H, Yasuda Y, Yamamori H, Fujimoto M, Sumiyoshi T, Hashimoto R. A Brief Assessment of Intelligence Decline in Schizophrenia As Represented by the Difference between Current and Premorbid Intellectual Quotient. Front Psychiatry 2017; 8:293. [PMID: 29312019 PMCID: PMC5743746 DOI: 10.3389/fpsyt.2017.00293] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/11/2017] [Indexed: 01/25/2023] Open
Abstract
Patients with schizophrenia elicit several clinical features, such as psychotic symptoms, cognitive impairment, and subtle decline of intelligence. The latter two features become evident around the onset of the illness, although they may exist even before the disease onset in a substantial proportion of cases. Here, we review the literature concerning intelligence decline (ID) during the progression of schizophrenia. ID can be estimated by comparing premorbid and current intellectual quotient (IQ) by means of the Adult Reading Test and Wechsler Adult Intelligence Scale (WAIS), respectively. For the purpose of brief assessment, we have recently developed the WAIS-Short Form, which consists of Similarities and Symbol Search and well reflects functional outcomes. According to the degree of ID, patients were classified into three distinct subgroups; deteriorated, preserved, and compromised groups. Patients who show deteriorated IQ (deteriorated group) elicit ID from a premorbid level (≥10-point difference between current and premorbid IQ), while patients who show preserved or compromised IQ do not show such decline (<10-point difference). Furthermore, the latter patients were divided into patients with preserved and compromised IQ based on an estimated premorbid IQ score >90 or below 90, respectively. We have recently shown the distribution of ID in a large cohort of schizophrenia patients. Consistent with previous studies, approximately 30% of schizophrenia patients had a decline of less than 10 points, i.e., normal intellectual performance. In contrast, approximately 70% of patients showed deterioration of IQ. These results indicate that there is a subgroup of schizophrenia patients who have mild or minimal intellectual deficits, following the onset of the disorder. Therefore, a careful assessment of ID is important in identifying appropriate interventions, including medications, cognitive remediation, and social/community services.
Collapse
Affiliation(s)
- Kazutaka Ohi
- Department of Neuropsychiatry, Kanazawa Medical University, Uchinada, Japan
| | - Chika Sumiyoshi
- Faculty of Human Development and Culture, Fukushima University, Fukushima, Japan
| | - Haruo Fujino
- Graduate School of Education, Oita University, Oita, Japan
| | - Yuka Yasuda
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hidenaga Yamamori
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Michiko Fujimoto
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tomiki Sumiyoshi
- Department of Clinical Epidemiology, Translational Medical Center, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Ryota Hashimoto
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
- Molecular Research Center for Children’s Mental Development, United Graduate School of Child Development, Osaka University, Suita, Japan
| |
Collapse
|
39
|
Lerner R, Post JM, Ellis SR, Vos DRN, Heeren RMA, Lutz B, Bindila L. Simultaneous lipidomic and transcriptomic profiling in mouse brain punches of acute epileptic seizure model compared to controls. J Lipid Res 2017; 59:283-297. [PMID: 29208697 DOI: 10.1194/jlr.m080093] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/28/2017] [Indexed: 01/07/2023] Open
Abstract
In this study, we report the development of a dual extraction protocol for RNA and lipids, including phospholipids, endocannabinoids, and arachidonic acid, at high spatial resolution, e.g., brain punches obtained from whole frozen brains corresponding to four brain subregions: dorsal hippocampus, ventral hippocampus, basolateral amygdala, and hypothalamus. This extraction method combined with LC/multiple reaction monitoring for lipid quantifi-cation and quantitative PCR for RNA investigation allows lipidomic and transcriptomic profiling from submilligram amounts of tissue, thus benefiting the time and animal costs for analysis and the data reliability due to prevention of biological variability between animal batches and/or tissue heterogeneity, as compared with profiling in distinct animal batches. Moreover, the method allows a higher extraction efficiency and integrity preservation for RNA, while allowing concurrently quantitative analysis of low and high abundant lipids. The method was applied for brain punches obtained 1 h after kainic acid-induced epileptic seizures in mice (n = 10) compared with controls (n = 10), and enabled the provision of valuable new insights into the subregional lipid and RNA changes with epilepsy, highlighting its potential as a new viable tool in quantitative neurobiology.
Collapse
Affiliation(s)
- Raissa Lerner
- University Medical Center of Johannes Gutenberg University Mainz, Institute of Physiological Chemistry, 55128 Mainz, Germany; and
| | - Julia M Post
- University Medical Center of Johannes Gutenberg University Mainz, Institute of Physiological Chemistry, 55128 Mainz, Germany; and
| | - Shane R Ellis
- Maastricht MultiModal Molecular Imaging Institute (M4I), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - D R Naomi Vos
- Maastricht MultiModal Molecular Imaging Institute (M4I), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Ron M A Heeren
- Maastricht MultiModal Molecular Imaging Institute (M4I), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Beat Lutz
- University Medical Center of Johannes Gutenberg University Mainz, Institute of Physiological Chemistry, 55128 Mainz, Germany; and
| | - Laura Bindila
- University Medical Center of Johannes Gutenberg University Mainz, Institute of Physiological Chemistry, 55128 Mainz, Germany; and
| |
Collapse
|
40
|
Ghosh S, Dyer RA, Beasley CL. Evidence for altered cell membrane lipid composition in postmortem prefrontal white matter in bipolar disorder and schizophrenia. J Psychiatr Res 2017; 95:135-142. [PMID: 28843843 DOI: 10.1016/j.jpsychires.2017.08.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/24/2017] [Accepted: 08/09/2017] [Indexed: 11/30/2022]
Abstract
Brain imaging suggests that white matter abnormalities, including compromised white matter integrity in the frontal lobe, are shared across bipolar disorder (BD) and schizophrenia (SCZ). However, the precise molecular and cellular correlates remain to be elucidated. Given evidence for widespread alterations in cell membrane lipid composition in both disorders, we sought to investigate whether lipid composition is disturbed in frontal white matter in SCZ and BD. The phospholipids phosphatidylethanolamine (PE) and phosphatidylcholine (PC) were quantified in white matter adjacent to the dorsolateral prefrontal cortex in subjects with BD (n = 34), SCZ (n = 35), and non-psychiatric controls (n = 35) using high-pressure liquid chromatography. Individual fatty acid species and plasmalogens were then quantified separately in PE and PC fractions by gas liquid chromatography. PC was significantly lower in the BD group, compared to controls. The fatty acids PE22:0, PE24:1 and PE20:2n6 were higher, and PC20:4n6, PE22:5n6 and PC22:5n6 lower in the BD group, relative to the control group. PE22:1 was higher and PC20:3n6, PE22:5n6 and PC22:5n6 lower in the SCZ group, compared to the control group. These data provide evidence for altered lipid composition in white matter in both BD and SCZ. Changes in white matter lipid composition could ultimately contribute to dysfunction of frontal white matter circuits in SCZ and BD.
Collapse
Affiliation(s)
- Sanjoy Ghosh
- Department of Biology, Irving K. Barber School of Arts & Sciences, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| | - Roger A Dyer
- Nutrition and Metabolism Research Program, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Clare L Beasley
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
41
|
Sethi S, Hayashi MA, Sussulini A, Tasic L, Brietzke E. Analytical approaches for lipidomics and its potential applications in neuropsychiatric disorders. World J Biol Psychiatry 2017; 18:506-520. [PMID: 26555297 DOI: 10.3109/15622975.2015.1117656] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES In this review, the authors discuss an overview of lipidomics followed by in-depth discussion of its application to the study of human diseases, including extraction methods of lipids, analytical techniques and clinical research in neuropsychiatric disorders. METHODS Lipidomics is a lipid-targeted metabolomics approach aiming at the comprehensive analysis of lipids in biological systems. Recent technological advancements in mass spectrometry and chromatography have greatly enhanced the development and applications of metabolic profiling of diverse lipids in complex biological samples. RESULTS An effective evaluation of the clinical course of diseases requires the application of very precise diagnostic and assessment approaches as early as possible. In order to achieve this, "omics" strategies offer new opportunities for biomarker identification and/or discovery in complex diseases and may provide pathological pathways understanding for diseases beyond traditional methodologies. CONCLUSIONS This review highlights the importance of lipidomics for the future perspectives as a tool for biomarker identification and discovery and its clinical application.
Collapse
Affiliation(s)
- Sumit Sethi
- a Interdisciplinary Laboratory for Clinical Neuroscience (LiNC), Department of Psychiatry , Universidade Federal De São Paulo - UNIFESP , São Paulo , Brazil
| | - Mirian A Hayashi
- a Interdisciplinary Laboratory for Clinical Neuroscience (LiNC), Department of Psychiatry , Universidade Federal De São Paulo - UNIFESP , São Paulo , Brazil
| | - Alessandra Sussulini
- b Department of Analytical Chemistry , Institute of Chemistry, Universidade Estadual De Campinas - UNICAMP , Campinas , SP , Brazil
| | - Ljubica Tasic
- c Department of Organic Chemistry , Institute of Chemistry, Universidade Estadual De Campinas - UNICAMP , Campinas , SP , Brazil
| | - Elisa Brietzke
- a Interdisciplinary Laboratory for Clinical Neuroscience (LiNC), Department of Psychiatry , Universidade Federal De São Paulo - UNIFESP , São Paulo , Brazil
| |
Collapse
|
42
|
Schmitt A, Martins-de-Souza D, Akbarian S, Cassoli JS, Ehrenreich H, Fischer A, Fonteh A, Gattaz WF, Gawlik M, Gerlach M, Grünblatt E, Halene T, Hasan A, Hashimoto K, Kim YK, Kirchner SK, Kornhuber J, Kraus TFJ, Malchow B, Nascimento JM, Rossner M, Schwarz M, Steiner J, Talib L, Thibaut F, Riederer P, Falkai P. Consensus paper of the WFSBP Task Force on Biological Markers: Criteria for biomarkers and endophenotypes of schizophrenia, part III: Molecular mechanisms. World J Biol Psychiatry 2017; 18:330-356. [PMID: 27782767 DOI: 10.1080/15622975.2016.1224929] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Despite progress in identifying molecular pathophysiological processes in schizophrenia, valid biomarkers are lacking for both the disease and treatment response. METHODS This comprehensive review summarises recent efforts to identify molecular mechanisms on the level of protein and gene expression and epigenetics, including DNA methylation, histone modifications and micro RNA expression. Furthermore, it summarises recent findings of alterations in lipid mediators and highlights inflammatory processes. The potential that this research will identify biomarkers of schizophrenia is discussed. RESULTS Recent studies have not identified clear biomarkers for schizophrenia. Although several molecular pathways have emerged as potential candidates for future research, a complete understanding of these metabolic pathways is required to reveal better treatment modalities for this disabling condition. CONCLUSIONS Large longitudinal cohort studies are essential that pair a thorough phenotypic and clinical evaluation for example with gene expression and proteome analysis in blood at multiple time points. This approach might identify biomarkers that allow patients to be stratified according to treatment response and ideally also allow treatment response to be predicted. Improved knowledge of molecular pathways and epigenetic mechanisms, including their potential association with environmental influences, will facilitate the discovery of biomarkers that could ultimately be effective tools in clinical practice.
Collapse
Affiliation(s)
- Andrea Schmitt
- a Department of Psychiatry and Psychotherapy , LMU Munich , Germany.,b Laboratory of Neuroscience (LIM27) , Institute of Psychiatry, University of Sao Paulo , Sao Paulo , Brazil
| | - Daniel Martins-de-Souza
- b Laboratory of Neuroscience (LIM27) , Institute of Psychiatry, University of Sao Paulo , Sao Paulo , Brazil.,c Laboratory of Neuroproteomics, Department of Biochemistry , Institute of Biology University of Campinas (UNICAMP), Campinas , SP , Brazil
| | - Schahram Akbarian
- d Division of Psychiatric Epigenomics, Departments of Psychiatry and Neuroscience , Mount Sinai School of Medicine , New York , USA
| | - Juliana S Cassoli
- c Laboratory of Neuroproteomics, Department of Biochemistry , Institute of Biology University of Campinas (UNICAMP), Campinas , SP , Brazil
| | - Hannelore Ehrenreich
- e Clinical Neuroscience , Max Planck Institute of Experimental Medicine, DFG Centre for Nanoscale Microscopy & Molecular Physiology of the Brain , Göttingen , Germany
| | - Andre Fischer
- f Research Group for Epigenetics in Neurodegenerative Diseases , German Centre for Neurodegenerative Diseases (DZNE), Göttingen , Germany.,g Department of Psychiatry and Psychotherapy , University Medical Centre Göttingen , Germany
| | - Alfred Fonteh
- h Neurosciences , Huntington Medical Research Institutes , Pasadena , CA , USA
| | - Wagner F Gattaz
- b Laboratory of Neuroscience (LIM27) , Institute of Psychiatry, University of Sao Paulo , Sao Paulo , Brazil
| | - Michael Gawlik
- i Department of Psychiatry and Psychotherapy , University of Würzburg , Germany
| | - Manfred Gerlach
- j Centre for Mental Health, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy , University of Würzburg , Germany
| | - Edna Grünblatt
- i Department of Psychiatry and Psychotherapy , University of Würzburg , Germany.,k Department of Child and Adolescent Psychiatry and Psychotherapy , Psychiatric Hospital, University of Zürich , Switzerland.,l Neuroscience Centre Zurich , University of Zurich and the ETH Zurich , Switzerland.,m Zurich Centre for Integrative Human Physiology , University of Zurich , Switzerland
| | - Tobias Halene
- d Division of Psychiatric Epigenomics, Departments of Psychiatry and Neuroscience , Mount Sinai School of Medicine , New York , USA
| | - Alkomiet Hasan
- a Department of Psychiatry and Psychotherapy , LMU Munich , Germany
| | - Kenij Hashimoto
- n Division of Clinical Neuroscience , Chiba University Centre for Forensic Mental Health , Chiba , Japan
| | - Yong-Ku Kim
- o Department of Psychiatry , Korea University, College of Medicine , Republic of Korea
| | | | - Johannes Kornhuber
- p Department of Psychiatry and Psychotherapy , Friedrich-Alexander-University Erlangen-Nuremberg , Erlangen , Germany
| | | | - Berend Malchow
- a Department of Psychiatry and Psychotherapy , LMU Munich , Germany
| | - Juliana M Nascimento
- c Laboratory of Neuroproteomics, Department of Biochemistry , Institute of Biology University of Campinas (UNICAMP), Campinas , SP , Brazil
| | - Moritz Rossner
- r Department of Psychiatry, Molecular and Behavioural Neurobiology , LMU Munich , Germany.,s Research Group Gene Expression , Max Planck Institute of Experimental Medicine , Göttingen , Germany
| | - Markus Schwarz
- t Institute for Laboratory Medicine, LMU Munich , Germany
| | - Johann Steiner
- u Department of Psychiatry , University of Magdeburg , Magdeburg , Germany
| | - Leda Talib
- b Laboratory of Neuroscience (LIM27) , Institute of Psychiatry, University of Sao Paulo , Sao Paulo , Brazil
| | - Florence Thibaut
- v Department of Psychiatry , University Hospital Cochin (site Tarnier), University of Paris-Descartes, INSERM U 894 Centre Psychiatry and Neurosciences , Paris , France
| | - Peter Riederer
- w Center of Psychic Health; Department of Psychiatry, Psychosomatics and Psychotherapy , University Hospital of Würzburg , Germany
| | - Peter Falkai
- a Department of Psychiatry and Psychotherapy , LMU Munich , Germany
| | | |
Collapse
|
43
|
Skrobecki P, Chmielińska A, Bonarek P, Stepien P, Wisniewska-Becker A, Dziedzicka-Wasylewska M, Polit A. Sulpiride, Amisulpride, Thioridazine, and Olanzapine: Interaction with Model Membranes. Thermodynamic and Structural Aspects. ACS Chem Neurosci 2017; 8:1543-1553. [PMID: 28375612 DOI: 10.1021/acschemneuro.7b00057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Neuroleptic drugs are widely applied in effective treatment of schizophrenia and related disorders. The lipophilic character of neuroleptics means that they tend to accumulate in the lipid membranes, impacting their functioning and processing. In this paper, the effect of four drugs, namely, thioridazine, olanzapine, sulpiride, and amisulpride, on neutral and negatively charged lipid bilayers was examined. The interaction of neuroleptics with lipids and the subsequent changes in the membrane physical properties was assessed using several complementary biophysical approaches (isothermal titration calorimetry, electron paramagnetic resonance spectroscopy, dynamic light scattering, and ζ potential measurements). We have determined the thermodynamic parameters, that is, the enthalpy of interaction and the binding constant, to describe the interactions of the investigated drugs with model membranes. Unlike thioridazine and olanzapine, which bind to both neutral and negatively charged membranes, amisulpride interacts with only the negatively charged one, while sulpiride does not bind to any of them. The mechanism of olanzapine and thioridazine insertion into the bilayer membrane cannot be described merely by a simple molecule partition between two different phases (the aqueous and the lipid phase). We have estimated the number of protons transferred in the course of drug binding to determine which of its forms, ionized or neutral, binds more strongly to the membrane. Finally, electron paramagnetic resonance results indicated that the drugs are localized near the water-membrane interface of the bilayer and presence of a negative charge promotes their burying deeper into the membrane.
Collapse
Affiliation(s)
- Piotr Skrobecki
- Department
of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Kraków, Poland
| | - Anna Chmielińska
- Faculty of Biochemistry,
Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Piotr Bonarek
- Faculty of Biochemistry,
Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Piotr Stepien
- Faculty of Biochemistry,
Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Anna Wisniewska-Becker
- Faculty of Biochemistry,
Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Marta Dziedzicka-Wasylewska
- Faculty of Biochemistry,
Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
- Department
of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Kraków, Poland
| | - Agnieszka Polit
- Faculty of Biochemistry,
Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
44
|
Lipids in psychiatric disorders and preventive medicine. Neurosci Biobehav Rev 2017; 76:336-362. [DOI: 10.1016/j.neubiorev.2016.06.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 05/06/2016] [Accepted: 06/06/2016] [Indexed: 01/12/2023]
|
45
|
Demirel ÖF, Cetin İ, Turan Ş, Sağlam T, Yıldız N, Duran A. Decreased Expression of α-Synuclein, Nogo-A and UCH-L1 in Patients with Schizophrenia: A Preliminary Serum Study. Psychiatry Investig 2017; 14:344-349. [PMID: 28539953 PMCID: PMC5440437 DOI: 10.4306/pi.2017.14.3.344] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/15/2016] [Accepted: 07/03/2016] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE α-synuclein, Nogo-A and Ubiquitin C-terminal hydrolase L1 (UCH-L1) have neuromodulatory roles for human brain. Therefore, abnormalities of these molecules are associated with neuropsychiatric disorders. Although some serum studies in the other disorders have been made, serum study of α-synuclein, Nogo-A and UCH-L1 is not present in patients with schizophrenia and healthy controls. Therefore, our aim was to compare serum levels of α-synuclein, Nogo-A and UCH-L1 of the patients with schizophrenia and healthy controls. METHODS Forty-four patients with schizophrenia who is followed by psychotic disorders unit, and 40 healthy control were included in this study. Socio-demographic form and Positive and Negative Syndrome Scale (PANSS) was applied to patients, and sociodemographic form was applied to control group. Fasting bloods were collected and the serum levels of α-synuclein, Nogo-A and UCH-L1 were measured by ELISA method. RESULTS Serum α-synuclein [patient: 12.73 (5.18-31.84) ng/mL; control: 41.77 (15.12-66.98) ng/mL], Nogo-A [patient: 33.58 (3.09-77.26) ng/mL; control: 286.05 (136.56-346.82) ng/mL] and UCH-L1 [patient: 5.26 (1.64-10.87) ng/mL; control: 20.48 (11.01-20.81) ng/mL] levels of the patients with schizophrenia were significianly lower than healthy controls (p<0.001). CONCLUSION Our study results added new evidence for explaining the etiopathogenesis of schizophrenia on the basis of neurochemical markers.
Collapse
Affiliation(s)
- Ömer Faruk Demirel
- Department of Psychiatry, Cerrahpaşa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - İhsan Cetin
- Department of Nutrition and Dietetics, Health High School, Batman University, Batman, Turkey
| | - Şenol Turan
- Department of Psychiatry, Cerrahpaşa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Tarık Sağlam
- Department of Psychiatry, Cerrahpaşa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Nazım Yıldız
- Department of Psychiatry, Cerrahpaşa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Alaattin Duran
- Department of Psychiatry, Cerrahpaşa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
46
|
Clozapine Modulates Glucosylceramide, Clears Aggregated Proteins, and Enhances ATG8/LC3 in Caenorhabditis elegans. Neuropsychopharmacology 2017; 42:951-962. [PMID: 27711049 PMCID: PMC5312067 DOI: 10.1038/npp.2016.230] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 08/27/2016] [Accepted: 09/21/2016] [Indexed: 12/31/2022]
Abstract
Defining the mechanisms of action of the antipsychotic drug (APD), clozapine, is of great importance, as clozapine is more effective and has therapeutic benefits in a broader range of psychiatric disorders compared with other APDs. Its range of actions have not been fully characterized. Exposure to APDs early in development causes dose-dependent developmental delay and lethality in Caenorhabditis elegans. A previous genome-wide RNAi screen for suppressors of clozapine-induced developmental delay and lethality revealed 40 candidate genes, including sms-1, which encodes a sphingomyelin synthase. One sms-1 isoform is expressed in the C. elegans pharynx, and its transgene rescues the sms-1 mutant phenotype. We examined pharyngeal pumping and observed that clozapine-induced inhibition of pharyngeal pumping requires sms-1, a finding that may explain the role of the gene in mediating clozapine-induced developmental delay/lethality. By analyzing multiple enzymes involved in sphingolipid metabolism, and by observing the effect of addition of various lipids directly to the worms, we suggest that glucosylceramide may be a key mediator of the effects of clozapine. We further observed that clozapine clears protein aggregates, such as α-synuclein, PolyQ protein, and α-1-antitrypsin mutant protein. In addition, it enhances ATG8/LC3. We conclude that clozapine appears to affect the development and induce lethality of worms, in part, through modulating glucosylceramide. We discuss the possible connections among glucosylceramide, protein aggregate clearance, and autophagy. Interactions, including mechanistic pathways involving these elements, may underlie some of the clinical effects of clozapine.
Collapse
|
47
|
Martínez-Gardeazabal J, González de San Román E, Moreno-Rodríguez M, Llorente-Ovejero A, Manuel I, Rodríguez-Puertas R. Lipid mapping of the rat brain for models of disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1548-1557. [PMID: 28235468 DOI: 10.1016/j.bbamem.2017.02.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/10/2017] [Accepted: 02/18/2017] [Indexed: 11/19/2022]
Abstract
Lipids not only constitute the primary component of cellular membranes and contribute to metabolism but also serve as intracellular signaling molecules and bind to specific membrane receptors to control cell proliferation, growth and convey neuroprotection. Over the last several decades, the development of new analytical techniques, such as imaging mass spectrometry (IMS), has contributed to our understanding of their involvement in physiological and pathological conditions. IMS allows researchers to obtain a wide range of information about the spatial distribution and abundance of the different lipid molecules that is crucial to understand brain functions. The primary aim of this study was to map the spatial distribution of different lipid species in the rat central nervous system (CNS) using IMS to find a possible relationship between anatomical localization and physiology. The data obtained were subsequently applied to a model of neurological disease, the 192IgG-saporin lesion model of memory impairment. The results were obtained using a LTQ-Orbitrap XL mass spectrometer in positive and negative ionization modes and analyzed by ImageQuest and MSIReader software. A total of 176 different molecules were recorded based on the specific localization of their intensities. However, only 34 lipid species in negative mode and 51 in positive were assigned to known molecules with an error of 5ppm. These molecules were grouped by different lipid families, resulting in: Phosphatidylcholines (PC): PC (34: 1)+K+ and PC (32: 0)+K+ distributed primarily in gray matter, and PC (36: 1)+K+ and PC (38: 1)+Na+ distributed in white matter. Phosphatidic acid (PA): PA (38: 3)+K+ in white matter, and PA (38: 5)+K+ in gray matter and brain ventricles. Phosphoinositol (PI): PI (18: 0/20: 4)-H+ in gray matter, and PI (O-30: 1) or PI (P-30: 0)-H+ in white matter. Phosphatidylserines (PS): PS (34: 1)-H+ in gray matter, and PS (38: 1)-H+ in white matter. Sphingomyelin (SM) SM (d18: 1/16: 0)-H+ in ventricles and SM (d18: 1/18: 0)-H+ in gray matter. Sulfatides (ST): ST (d18: 1/24: 1)-H+ in white matter. The specific distribution of different lipids supports their involvement not only in structural and metabolic functions but also as intracellular effectors or specific receptor ligands and/or precursors. Moreover, the specific localization in the CNS described here will enable us to analyze lipid distribution to identify their physiological conditions in rat models of neurodegenerative pathologies, such as Alzheimer's disease. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.
Collapse
Affiliation(s)
- J Martínez-Gardeazabal
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain
| | - E González de San Román
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain
| | - M Moreno-Rodríguez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain
| | - A Llorente-Ovejero
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain
| | - I Manuel
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain
| | - R Rodríguez-Puertas
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain.
| |
Collapse
|
48
|
Stedehouder J, Kushner SA. Myelination of parvalbumin interneurons: a parsimonious locus of pathophysiological convergence in schizophrenia. Mol Psychiatry 2017; 22:4-12. [PMID: 27646261 PMCID: PMC5414080 DOI: 10.1038/mp.2016.147] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 07/09/2016] [Accepted: 07/13/2016] [Indexed: 12/11/2022]
Abstract
Schizophrenia is a debilitating psychiatric disorder characterized by positive, negative and cognitive symptoms. Despite more than a century of research, the neurobiological mechanism underlying schizophrenia remains elusive. White matter abnormalities and interneuron dysfunction are the most widely replicated cellular neuropathological alterations in patients with schizophrenia. However, a unifying model incorporating these findings has not yet been established. Here, we propose that myelination of fast-spiking parvalbumin (PV) interneurons could be an important locus of pathophysiological convergence in schizophrenia. Myelination of interneurons has been demonstrated across a wide diversity of brain regions and appears highly specific for the PV interneuron subclass. Given the critical influence of fast-spiking PV interneurons for mediating oscillations in the gamma frequency range (~30-120 Hz), PV myelination is well positioned to optimize action potential fidelity and metabolic homeostasis. We discuss this hypothesis with consideration of data from human postmortem studies, in vivo brain imaging and electrophysiology, and molecular genetics, as well as fundamental and translational studies in rodent models. Together, the parvalbumin interneuron myelination hypothesis provides a falsifiable model for guiding future studies of schizophrenia pathophysiology.
Collapse
Affiliation(s)
- J Stedehouder
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - S A Kushner
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
49
|
Lipidomics, Biomarkers, and Schizophrenia: A Current Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 965:265-290. [PMID: 28132184 DOI: 10.1007/978-3-319-47656-8_11] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lipidomics is a lipid-targeted metabolomics approach aiming at comprehensive analysis of lipids in biological systems. Recent technological progresses in mass spectrometry, nuclear magnetic resonance spectroscopy, and chromatography have significantly enhanced the developments and applications of metabolic profiling of lipids in more complex biological samples. As many diseases reveal a notable change in lipid profiles compared with that of healthy people, lipidomics have also been broadly introduced to scientific research on diseases. Exploration of lipid biochemistry by lipidomics approach will not only provide insights into specific roles of lipid molecular species in health and disease, but it will also support the identification of potential biomarkers for establishing preventive or therapeutic approaches for human health. This chapter aims to illustrate how lipidomics can contribute for understanding the biological mechanisms inherent to schizophrenia and why lipids are relevant biomarkers of schizophrenia. The application of lipidomics in clinical studies has the potential to provide new insights into lipid profiling and pathophysiological mechanisms underlying schizophrenia. The future perspectives of lipidomics in mental disorders are also discussed herein.
Collapse
|
50
|
Huang JH, Park H, Iaconelli J, Berkovitch SS, Watmuff B, McPhie D, Öngür D, Cohen BM, Clish CB, Karmacharya R. Unbiased Metabolite Profiling of Schizophrenia Fibroblasts under Stressful Perturbations Reveals Dysregulation of Plasmalogens and Phosphatidylcholines. J Proteome Res 2016; 16:481-493. [DOI: 10.1021/acs.jproteome.6b00628] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Joanne H. Huang
- Center
for Experimental Drugs and Diagnostics, Psychiatric and Neurodevelopmental
Genetics Unit, Center for Human Genetic Research, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Chemical
Biology Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, United States
| | - Hyoungjun Park
- Institute
of Neuroinformatics, ETH Zurich and University of Zurich, CH-8057, Zurich, Switzerland
| | - Jonathan Iaconelli
- Center
for Experimental Drugs and Diagnostics, Psychiatric and Neurodevelopmental
Genetics Unit, Center for Human Genetic Research, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Chemical
Biology Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, United States
| | - Shaunna S. Berkovitch
- Center
for Experimental Drugs and Diagnostics, Psychiatric and Neurodevelopmental
Genetics Unit, Center for Human Genetic Research, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Chemical
Biology Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, United States
| | - Bradley Watmuff
- Center
for Experimental Drugs and Diagnostics, Psychiatric and Neurodevelopmental
Genetics Unit, Center for Human Genetic Research, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Chemical
Biology Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, United States
| | - Donna McPhie
- Schizophrenia
and Bipolar Disorder Program, Harvard Medical School and McLean Hospital, Belmont, Massachusetts 02478, United States
| | - Dost Öngür
- Schizophrenia
and Bipolar Disorder Program, Harvard Medical School and McLean Hospital, Belmont, Massachusetts 02478, United States
| | - Bruce M. Cohen
- Schizophrenia
and Bipolar Disorder Program, Harvard Medical School and McLean Hospital, Belmont, Massachusetts 02478, United States
| | - Clary B. Clish
- Chemical
Biology Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, United States
| | - Rakesh Karmacharya
- Center
for Experimental Drugs and Diagnostics, Psychiatric and Neurodevelopmental
Genetics Unit, Center for Human Genetic Research, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Chemical
Biology Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, United States
- Schizophrenia
and Bipolar Disorder Program, Harvard Medical School and McLean Hospital, Belmont, Massachusetts 02478, United States
| |
Collapse
|